JP3060694B2 - Sheet separator and sealed lead-acid battery - Google Patents

Sheet separator and sealed lead-acid battery

Info

Publication number
JP3060694B2
JP3060694B2 JP4031856A JP3185692A JP3060694B2 JP 3060694 B2 JP3060694 B2 JP 3060694B2 JP 4031856 A JP4031856 A JP 4031856A JP 3185692 A JP3185692 A JP 3185692A JP 3060694 B2 JP3060694 B2 JP 3060694B2
Authority
JP
Japan
Prior art keywords
diameter
weight
less
sheet
average fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4031856A
Other languages
Japanese (ja)
Other versions
JPH0567463A (en
Inventor
純資 武藤
宏紀 北脇
昌司 杉山
恭秀 中山
勝美 北川
健二郎 岸本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Yuasa Corp
Original Assignee
Nippon Sheet Glass Co Ltd
Yuasa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd, Yuasa Corp filed Critical Nippon Sheet Glass Co Ltd
Priority to JP4031856A priority Critical patent/JP3060694B2/en
Publication of JPH0567463A publication Critical patent/JPH0567463A/en
Application granted granted Critical
Publication of JP3060694B2 publication Critical patent/JP3060694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はシート状セパレータ及び
密閉形鉛蓄電池に係り、特に電解液の成層化が生じ難く
長寿命でかつ廉価なシート状セパレータ及び密閉形鉛蓄
電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sheet-like separator and a sealed lead-acid battery, and more particularly to a long-life and inexpensive sheet-like separator and a sealed lead-acid battery that are less likely to cause stratification of an electrolyte.

【0002】[0002]

【従来の技術】密閉形鉛蓄電池は、密閉容器内にセパレ
ータと極板とが積層配置された構成のものであり、電池
内の電解液はこのセパレータ及び正・負両極の孔内に流
動することがないように保持されている。この密閉形鉛
蓄電池は、耐漏液性に優れ、補水を必要とせず、また自
己放電が少ないといった特徴を有している。
2. Description of the Related Art A sealed lead-acid battery has a structure in which a separator and an electrode plate are stacked in a sealed container, and an electrolyte in the battery flows into the separator and holes of the positive and negative electrodes. It is kept so that there is no. This sealed type lead-acid battery has the features that it has excellent liquid leakage resistance, does not require rehydration, and has little self-discharge.

【0003】ところで、特公昭63−27826号公報
に記載されている如く、極板高さが高い大容量の密閉形
鉛蓄電池にあっては、注液時は均一であるにも拘らず充
放電をくり返すとセパレータ及び極板の多孔内に保持さ
れた電解液の濃度は上下方向で差が出てくる。即ち、セ
パレータの下部ほど電解液濃度が高くなる成層化現象が
生ずるのである。この成層化現象は主としてセパレータ
部分で生じ易いためこれを防止するためには、セパレー
タの保液力を高めること及び、セパレータの上下におい
ても保液性に差がないようにすることあるいは電解液に
ケイ酸微粉末を添加することによってその粘度を高くす
ることが要請される。
As described in JP-B-63-27826, a large-capacity sealed lead-acid battery having a high electrode plate height is charged and discharged despite being uniform at the time of pouring. When the process is repeated, the concentration of the electrolyte held in the pores of the separator and the electrode plate becomes different in the vertical direction. That is, a stratification phenomenon occurs in which the concentration of the electrolytic solution becomes higher toward the lower part of the separator. Since this stratification phenomenon is likely to occur mainly in the separator portion, in order to prevent this, it is necessary to increase the liquid retaining power of the separator and to make sure that there is no difference in liquid retaining properties even above and below the separator, or that the electrolytic solution It is required to increase the viscosity by adding fine silica powder.

【0004】従来より、前記セパレータとしてはガラス
繊維を主体としたものが主として用いられている。そし
て、この成層化現象が発生するのを防止するために、用
いるセパレータの保液性(液保持特性)を向上させるこ
とに関して種々の改良が試みられている。
Heretofore, as the separator, those mainly composed of glass fiber have been mainly used. In order to prevent the occurrence of the stratification phenomenon, various improvements have been attempted with respect to improving the liquid retaining property (liquid retaining property) of the separator used.

【0005】例えば、特開昭62−133669号、同
62−136751号には、SiO2 、TiO2 又は希
土類元素酸化物などの粉末を塗布ないし混合したセパレ
ータが記載されている。特開昭63−152853号、
同62−221954号、同61−269852号には
粉末としてシリカ又は発泡パーライトを用いることが記
載されている。また、特開昭63−143742号、同
63−146348号には中空細管状のガラス繊維より
なるセパレータが記載されている。
For example, Japanese Patent Application Laid-Open Nos. 62-133669 and 62-136751 describe a separator coated or mixed with a powder such as SiO 2 , TiO 2 or a rare earth element oxide. JP-A-63-152853,
Nos. 62-221954 and 61-269852 describe the use of silica or expanded pearlite as a powder. JP-A-63-143742 and JP-A-63-146348 disclose a separator made of a hollow tubular glass fiber.

【0006】上記公報に代表される従来の改良技術は、
大きく分けて次の〜に分類される。 ガラス繊維の平均繊維径を小さくする。 有機繊維を併用する。 シリカ粉末を併用する。
[0006] A conventional improvement technique represented by the above-mentioned publication is as follows.
It is roughly divided into the following. Reduce the average fiber diameter of the glass fibers. Use organic fiber together. Use silica powder together.

【0007】しかしながら、ガラス繊維の平均繊維径を
小さくすることはコストアップを招く。また、ガラス繊
維製セパレータは、毛細管現象の力で良好な液吸収が得
られるが、注液時の反撥力の低下を招く問題も残されて
いる。
[0007] However, reducing the average fiber diameter of the glass fibers increases the cost. Further, the glass fiber separator can obtain good liquid absorption by the force of the capillary phenomenon, but still has a problem that the repulsion force at the time of liquid injection is reduced.

【0008】また、有機繊維を併用すると、液中への不
純物溶出の可能性がある。
When organic fibers are used in combination, there is a possibility that impurities may elute into the liquid.

【0009】シリカ粉末の併用では、セパレータ密度が
大となり、空間率が小さくなり、保液量が低下し、この
ため、電池容量が低下する。また、シリカ粉末を併用す
る場合、電解液中にシリカ粉末を添加することは容易で
はあるが、工程上複雑になり、結果的には得られる電池
は高価になり、一方、セパレータ中にシリカを混抄する
ことは、次のような理由から実用化に到っていないのが
現状である。即ち、シリカ粉末のみではセパレータとし
て抄紙することはできず、従って、ガラス繊維を主体と
するものにシリカ粉末を加えて混抄することになるが、
シリカ粉末の割合が少ないと成層化現象の防止効果が低
く、逆にシリカ粉末の割合が多いと抄紙が困難になる。
When silica powder is used in combination, the density of the separator increases, the porosity decreases, the amount of liquid retained decreases, and the battery capacity decreases. When silica powder is used in combination, it is easy to add the silica powder to the electrolytic solution, but the process becomes complicated, and the resulting battery becomes expensive.On the other hand, silica is used in the separator. At present, mixing is not practical because of the following reasons. That is, papermaking cannot be performed as a separator only with silica powder, and therefore, silica powder is added to a material mainly composed of glass fiber and mixed.
If the proportion of the silica powder is small, the effect of preventing the stratification phenomenon is low, and if the proportion of the silica powder is large, papermaking becomes difficult.

【0010】このように、従来においては、成層化現象
の防止効果に優れ、しかも製造が容易な密閉形鉛蓄電池
用セパレータは提供されていなかった。それ故、従来の
密閉形鉛蓄電池は成層化を生じ、寿命が短いものであっ
た。
As described above, there has not been provided a separator for a sealed lead-acid battery which is excellent in the effect of preventing the stratification phenomenon and is easy to manufacture. Therefore, the conventional sealed lead-acid battery is stratified and has a short life.

【0011】上記従来の問題点を解決し、電解液の成層
化が生じ難く、長寿命でかつ廉価な密閉形鉛蓄電池を提
供するものとして、本出願人らは、電解液の流下速度が
100mm/時間以下であるセパレータを使用した密閉
形鉛蓄電池を提案し、先に特許出願した(特開平2−2
26654号)。また、電解液の成層化が生じ難く、長
寿命でかつ廉価な密閉形鉛蓄電池として、本出願人は、
電解液の流化速度が100mm/時間以下であるセパレ
ータを使用したものを見出し、先に特許出願した(特願
平1−45584。以下「先願」という。)。この先願
セパレータは、実用上は、平均繊維径0.65μm以下
のガラス繊維のみから実質的に構成されるか、或いは、
平均繊維径2μm以下の含アルカリガラス繊維95〜3
0重量%、及び、湿式法で製造された比表面積100m
2 /g以上のシリカ粉末5〜70重量%から実質的に構
成される。
To solve the above-mentioned conventional problems and to provide a long-life and inexpensive sealed lead-acid battery in which stratification of the electrolyte is unlikely to occur, the present applicant has proposed that the flow rate of the electrolyte is 100 mm. Per hour / hour or less using a sealed lead-acid battery, and a patent application was previously filed (Japanese Patent Application Laid-Open No. 2-2).
No. 26654). In addition, as a sealed lead-acid battery that is unlikely to cause stratification of the electrolyte, has a long life, and is inexpensive,
The inventors found a device using a separator having a flow rate of the electrolyte of not more than 100 mm / hour, and filed a patent application (Japanese Patent Application No. 1-45454; hereinafter, referred to as "first application"). This prior application separator is practically substantially composed of only glass fibers having an average fiber diameter of 0.65 μm or less, or
Alkali-containing glass fibers 95 to 3 having an average fiber diameter of 2 μm or less
0% by weight, and specific surface area 100m produced by wet method
It is substantially composed of 5 to 70% by weight of silica powder of 2 / g or more.

【0012】[0012]

【発明が解決しようとする課題】特開平2−22665
4号によれば、成層化が生じ難く、長寿命で廉価な密閉
形鉛蓄電池が提供されるが、なお、更に、次のような問
題点があった。
Problems to be Solved by the Invention
According to No. 4, a low-cost sealed lead-acid battery that does not easily stratify, has a long service life, and is inexpensive is provided, but further has the following problems.

【0013】即ち、極群を電槽内にセットして、電解液
を注入してゆくと、乾燥状態でのセット圧力より槽内緊
圧が小さくなる。この場合には、 陽極活物質の軟化速度が大となり、活物質が脱落し
易くなる。 セパレータと極板とが密着し難く、隙間ができて電
池容量が低下し、その結果、電解液流下速度は小さい
が、前述の如く、注液反撥力が小さいため電池性能の向
上が十分になされない。 といった問題が生じる。また、先願に係る平均繊維径
0.65μm以下の極細のガラス繊維のみから実質的に
構成されるセパレータでは、コスト高となる。一方、シ
リカ粉末を混抄するセパレータでは、前述の如く、成層
化現象を防止するためには、硬度が大きくなり過ぎ好ま
しくない。
That is, when the electrode group is set in the battery case and the electrolytic solution is injected, the pressure in the bath becomes smaller than the set pressure in the dry state. In this case, the softening rate of the anode active material is increased, and the active material is easily dropped. It is difficult for the separator and the electrode plate to adhere to each other, a gap is formed, and the battery capacity is reduced. As a result, although the flow rate of the electrolyte solution is small, as described above, since the injection repulsion force is small, the battery performance is not sufficiently improved. Not done. Such a problem arises. Further, in the separator according to the prior application, which is substantially composed of only ultrafine glass fibers having an average fiber diameter of 0.65 μm or less, the cost increases. On the other hand, as described above, in order to prevent the stratification phenomenon, the hardness of the separator containing the silica powder is too high, which is not preferable.

【0014】しかも、従来においては、極板の厚さのバ
ラツキを吸収し、一定の緊圧を確保できるセパレータは
なく、過少な緊圧では放電特性(特に高率放電)が劣っ
たり、過大な緊圧では電槽への挿入が困難で、電槽が膨
れたり挿入不可能な場合さえおきるのが現状である。
In addition, there is no conventional separator capable of absorbing a variation in the thickness of the electrode plate and ensuring a constant pressure. If the pressure is too low, the discharge characteristics (particularly, high-rate discharge) are inferior or excessive. At present, it is difficult to insert the battery case into the battery case under strained pressure, and even when the battery case swells or cannot be inserted.

【0015】このように、上記先願も含め、従来におい
ては、成層化現象の防止効果に優れ、しかも製造が容易
で一定の緊圧が確保できる密閉形鉛蓄電池用セパレー
タ、及び、このようなセパレータを用いることにより、
電池性能を改善すると共に、寿命を延長し、かつ廉価な
ものとした密閉形鉛蓄電池は提供されていなかった。
As described above, including the above-mentioned prior application, in the related art, a separator for a sealed type lead-acid battery which is excellent in the effect of preventing stratification, can be easily manufactured, and can maintain a constant pressure, and the like. By using a separator,
There has not been provided a sealed lead-acid battery that has improved battery performance, has a longer life, and is inexpensive.

【0016】本発明は上記従来の問題点を解決し、電解
液の成層化が生じ難く、活物質の軟化防止効果が高く、
長寿命でかつ廉価な密閉形鉛蓄電池を提供することがで
きるシート状セパレータ及びそれを用いた密閉形鉛蓄電
池を提供することを目的とする。
The present invention solves the above-mentioned conventional problems, it is difficult for the electrolyte solution to be stratified, and has a high effect of preventing softening of the active material.
It is an object of the present invention to provide a sheet-type separator capable of providing a long-life and inexpensive sealed lead-acid battery and a sealed lead-acid battery using the same.

【0017】本発明はまた、電解液の成層化が生じ難
い、一定の緊圧が確保できるシート状セパレータ及びそ
れを用いた密閉形鉛蓄電池を提供することを目的とす
る。
Another object of the present invention is to provide a sheet-like separator in which stratification of an electrolytic solution is unlikely to occur and which can maintain a constant pressure, and a sealed lead-acid battery using the same.

【0018】[0018]

【課題を解決するための手段及び作用】請求項1のシー
ト状セパレータは電解液の流下速度が100mm/hr
以下のシート状セパレータであって、図1に示す希硫酸
を注入した時の注液反撥力曲線において、反撥力の値
が、 S点=Pkg/dm2 とする時 B点≧0.55Pkg/dm2 C点≧0.40Pkg/dm2 であることを特徴とする。
According to the first aspect of the present invention, the flow rate of the electrolyte solution is 100 mm / hr.
In the following sheet-like separator, in the injection repellency curve when dilute sulfuric acid is injected as shown in FIG. 1, when the repulsion value is: S point = Pkg / dm 2 B point ≧ 0.55 Pkg / dm 2 C point ≧ 0.40 Pkg / dm 2 .

【0019】請求項2のシート状セパレータは、請求項
1のセパレータにおいて、電解液の流下速度が80mm
/hr以下であることを特徴とする。
According to a second aspect of the present invention, in the separator of the first aspect, the flow rate of the electrolyte is 80 mm.
/ Hr or less.

【0020】請求項3のシート状セパレータは、請求項
1又は2のセパレータにおいて、ガラス繊維のみから実
質的に構成されていることを特徴とする。
According to a third aspect of the present invention, there is provided the sheet-like separator according to the first or second aspect, wherein the separator is substantially composed of only glass fibers.

【0021】請求項4のシート状セパレータは、請求項
3のセパレータにおいて、平均繊維径0.4〜0.7μ
mの細径ガラス繊維40〜60重量%、平均繊維径0.
7μmを超え1.1μm未満の中細径ガラス繊維20重
量%以下、平均繊維径1.1〜5.0μmの中太径ガラ
ス繊維60〜40重量%、及び、平均繊維径5.0μm
を超え30μm以下の太径ガラス繊維15重量%以下で
実質的に構成されていることを特徴とする。
The sheet-like separator according to claim 4 is the separator according to claim 3, wherein the average fiber diameter is 0.4 to 0.7 μm.
40-60% by weight of small-diameter glass fibers having an average fiber diameter of 0.
20% by weight or less of medium and small diameter glass fibers exceeding 7 μm and less than 1.1 μm, 60 to 40% by weight of medium and large diameter glass fibers having an average fiber diameter of 1.1 to 5.0 μm, and 5.0 μm of average fiber diameter
, And is substantially constituted by 15% by weight or less of large-diameter glass fibers having a diameter of more than 30 μm.

【0022】請求項5のシート状セパレータは、請求項
4のセパレータにおいて、平均繊維径0.50〜0.6
5μmの細径ガラス繊維44〜56重量%、平均繊維径
0.65μmを超え2.0μm未満の中細径ガラス繊維
10重量%以下、平均繊維径2.0〜4.5μmの中太
径ガラス繊維44〜56重量%、及び、平均繊維径4.
5μmを超え30μm以下の太径ガラス繊維10重量%
以下で実質的に構成されていることを特徴とする。
A sheet-like separator according to a fifth aspect is the separator according to the fourth aspect, wherein the average fiber diameter is 0.50 to 0.6.
44-56% by weight of small-diameter glass fibers having a diameter of 5 μm, 10% by weight or less of medium- and small-diameter glass fibers having an average fiber diameter of more than 0.65 μm and less than 2.0 μm, and medium- and large-diameter glasses having an average fiber diameter of 2.0-4.5 μm. 3. 44-56% by weight of fiber and average fiber diameter
10% by weight of large-diameter glass fiber exceeding 5 μm and not more than 30 μm
It is characterized by being substantially constituted as follows.

【0023】請求項6のシート状セパレータは、請求項
1ないし3のセパレータにおいて、ガラス繊維の一部又
は全部が撥水処理を施したものであることを特徴とす
る。
According to a sixth aspect of the present invention, there is provided the sheet separator according to the first to third aspects, wherein a part or all of the glass fibers are subjected to a water-repellent treatment.

【0024】請求項7のシート状セパレータは、請求項
6のセパレータにおいて、撥水処理はシランカップリン
グ剤によりなされていることを特徴とする。
According to a seventh aspect of the present invention, in the sheet separator according to the sixth aspect, the water-repellent treatment is performed by a silane coupling agent.

【0025】請求項8のシート状セパレータは、請求項
7のセパレータにおいて、撥水処理したガラス繊維のガ
ラス繊維に対するシランカップリング剤の平均付着率が
0.01〜4.0重量%であることを特徴とする。
The sheet-like separator according to claim 8 is the separator according to claim 7, wherein the water-repellent treated glass fiber has an average adhesion rate of the silane coupling agent to the glass fiber of 0.01 to 4.0% by weight. It is characterized by.

【0026】請求項9のシート状セパレータは、請求項
7又は8のセパレータにおいて、撥水処理したガラス繊
維の割合が、セパレータを構成するガラス繊維に対して
5〜100重量%であることを特徴とする。
In a ninth aspect of the present invention, the ratio of the water-repellent glass fibers is 5 to 100% by weight based on the glass fibers constituting the separator. And

【0027】請求項10のシート状セパレータは、請求
項6ないし9のセパレータにおいて、ガラス繊維の平均
繊維径が2μm以下であることを特徴とする。
A sheet-like separator according to a tenth aspect is the separator according to the sixth to ninth aspects, wherein the average fiber diameter of the glass fibers is 2 μm or less.

【0028】請求項11のシート状セパレータは、請求
項6ないし9のセパレータにおいて、ガラス繊維が、平
均繊維径2μm以下の細径ガラス繊維と平均繊維径2μ
mを超える太径ガラス繊維とで構成され、細径ガラス繊
維及び/又は太径ガラス繊維の一部又は全部が撥水処理
されていることを特徴とする。
[0028] The sheet-like separator according to claim 11 is the separator according to claims 6 to 9, wherein the glass fiber comprises a thin glass fiber having an average fiber diameter of 2 μm or less and an average fiber diameter of 2 μm.
m, and a part or all of the small-diameter glass fiber and / or the large-diameter glass fiber is water-repellent.

【0029】請求項12のシート状セパレータは、請求
項6〜10のセパレータにおいて、平均繊維径0.4〜
0.7μmの細径ガラス繊維40〜60重量%、平均繊
維径0.7μmを超え1.1μm未満の中細径ガラス繊
維20重量%以下、平均繊維径1.1〜5.0μmの中
太径ガラス繊維60〜40重量%、及び、平均繊維径
5.0μmを超え30μm以下の太径ガラス繊維15重
量%以下で実質的に構成されていることを特徴とする。
The sheet-like separator according to claim 12 is the separator according to claims 6 to 10, wherein the average fiber diameter is 0.4 to
40 to 60% by weight of small diameter glass fiber of 0.7 μm, 20% by weight or less of medium and small diameter glass fiber exceeding 0.7 μm and less than 1.1 μm, medium thickness of 1.1 to 5.0 μm It is characterized by being substantially composed of 60 to 40% by weight of glass fiber having a diameter of 15% by weight or less and large diameter glass fiber having an average fiber diameter of more than 5.0 μm and 30 μm or less.

【0030】請求項13のシート状セパレータは、請求
項12のセパレータにおいて、平均繊維径0.50〜
0.65μmの細径ガラス繊維44〜56重量%、平均
繊維径0.65μmを超え2.0μm未満の中細径ガラ
ス繊維10重量%以下、平均繊維径2.0〜4.5μm
の中太径ガラス繊維44〜56重量%、及び、平均繊維
径4.5μmを超え30μm以下の太径ガラス繊維10
重量%以下で実質的に構成されていることを特徴とす
る。
The sheet-like separator according to claim 13 is the separator according to claim 12, wherein the average fiber diameter is 0.50 to 0.50.
44-56% by weight of small-diameter glass fibers of 0.65 μm, 10% by weight or less of medium- and small-diameter glass fibers having an average fiber diameter of more than 0.65 μm and less than 2.0 μm, and an average fiber diameter of 2.0-4.5 μm
44 to 56% by weight of medium and large diameter glass fibers, and large diameter glass fibers 10 having an average fiber diameter of more than 4.5 μm and 30 μm or less.
It is characterized by being substantially constituted by weight% or less.

【0031】請求項14のシート状セパレータは、請求
項1又は2のセパレータにおいて、有機繊維及びガラス
繊維より実質的に構成されていることを特徴とする。
According to a fourteenth aspect of the present invention, in the sheet separator according to the first or the second aspect, the sheet separator is substantially composed of organic fibers and glass fibers.

【0032】請求項15のシート状セパレータは、請求
項14のセパレータにおいて、有機繊維が平均繊維径2
〜20μmで、平均繊維長さ2〜25mmのポリプロピ
レン繊維であることを特徴とする。
The sheet-like separator according to claim 15 is the separator according to claim 14, wherein the organic fibers have an average fiber diameter of 2
It is a polypropylene fiber having a mean fiber length of 2 to 25 mm with a size of 2020 μm.

【0033】請求項16のシート状セパレータは、請求
項14又は15のセパレータにおいて、有機繊維7〜3
5重量%及びガラス繊維93〜65重量%より実質的に
構成されていることを特徴とする。
The sheet-like separator according to claim 16 is the separator according to claim 14 or 15, wherein the organic fibers 7 to 3 are used.
It is characterized by being substantially composed of 5% by weight and 93 to 65% by weight of glass fiber.

【0034】請求項17のシート状セパレータは請求項
14ないし16のセパレータにおいて、ガラス繊維の平
均繊維径が2μm以下であることを特徴とする。
A sheet-like separator according to a seventeenth aspect is the separator according to the fourteenth to sixteenth aspects, wherein the average fiber diameter of the glass fibers is 2 μm or less.

【0035】請求項18のシート状セパレータは、請求
項14ないし16のセパレータにおいて、ガラス繊維は
平均繊維径2μm以下のガラス繊維と平均繊維径2μm
を超えるガラス繊維とで構成されることを特徴とする。
The sheet-like separator according to claim 18 is the separator according to claims 14 to 16, wherein the glass fibers are glass fibers having an average fiber diameter of 2 μm or less and glass fibers having an average fiber diameter of 2 μm or less.
And more than one glass fiber.

【0036】請求項19のシート状セパレータは、請求
項14ないし16のセパレータにおいて、ガラス繊維
は、平均繊維径0.4〜0.7μmの細径ガラス繊維4
0〜60重量%、平均繊維径0.7μmを超え1.1μ
m未満の中細径ガラス繊維20重量%以下、平均繊維径
1.1〜5.0μmの中太径ガラス繊維60〜40重量
%、及び、平均繊維径5.0μmを超え30μm以下の
太径ガラス繊維15重量%以下で構成されることを特徴
とする。
A sheet-like separator according to a nineteenth aspect is the separator according to the fourteenth to sixteenth aspects, wherein the glass fibers are thin glass fibers having an average fiber diameter of 0.4 to 0.7 μm.
0 to 60% by weight, average fiber diameter exceeding 0.7 μm and 1.1 μm
20% by weight or less of medium- and small-diameter glass fibers having a mean diameter of less than 20 m, 60 to 40% by weight of medium and large-diameter glass fibers having an average fiber diameter of 1.1 to 5.0 μm, and a large diameter of not less than 30 μm and having an average fiber diameter of more than 5.0 μm. It is characterized by being composed of 15% by weight or less of glass fiber.

【0037】請求項20のシート状セパレータは、請求
項19のセパレータにおいて、ガラス繊維は、平均繊維
径0.50〜0.65μmの細径ガラス繊維44〜56
重量%、平均繊維径0.65μmを超え2.0μm未満
の中細径ガラス繊維10重量%以下、平均繊維径2.0
〜4.5μmの中太径ガラス繊維44〜56重量%、及
び、平均繊維径4.5μmを超え30μm以下の太径ガ
ラス繊維10重量%以下で構成されることを特徴とす
る。
A sheet-like separator according to a twentieth aspect is the separator according to the nineteenth aspect, wherein the glass fibers are thin glass fibers having an average fiber diameter of 0.50 to 0.65 μm.
% By weight, medium fiber glass fiber having an average fiber diameter of more than 0.65 μm and less than 2.0 μm 10% by weight or less, average fiber diameter
It is characterized by being composed of 44 to 56% by weight of medium and large diameter glass fibers of 4.5 to 4.5 μm and 10% by weight or less of large diameter glass fibers having an average fiber diameter of more than 4.5 μm and 30 μm or less.

【0038】請求項21のシート状セパレータは、請求
項1のセパレータにおいて、ガラス繊維を主体として構
成され、ポリエチレン粉末が0.5〜5.0重量%混抄
されていることを特徴とする。
According to a twenty-first aspect of the present invention, there is provided the sheet-like separator according to the first aspect, wherein the separator is mainly composed of glass fiber, and is mixed with 0.5 to 5.0% by weight of polyethylene powder.

【0039】請求項22のシート状セパレータは、請求
項21のセパレータにおいて、ガラス繊維は、平均繊維
径0.4〜0.7μmの細径ガラス繊維25〜60重量
%、平均繊維径0.7μmを超え1.1μm未満の中細
径ガラス繊維0〜20重量%、平均繊維径1.1〜5.
0μmの中太径ガラス繊維75〜40重量%、及び、平
均繊維径5.0μmを超え30μm以下の太径ガラス繊
維0〜15重量%で構成されることを特徴とする。
A sheet-like separator according to a twenty-second aspect is the separator according to the twenty-first aspect, wherein the glass fibers are 25 to 60% by weight of small-diameter glass fibers having an average fiber diameter of 0.4 to 0.7 μm and an average fiber diameter of 0.7 μm. 0 to 20% by weight of medium and small-diameter glass fibers exceeding 1.1 μm and an average fiber diameter of 1.1 to 5.
It is characterized by being comprised of 75 to 40% by weight of medium and large diameter glass fibers of 0 μm and 0 to 15% by weight of large diameter glass fibers having an average fiber diameter of more than 5.0 μm and 30 μm or less.

【0040】請求項23のシート状セパレータは、請求
項22のセパレータにおいて、ガラス繊維は、平均繊維
径0.50〜0.65μmの細径ガラス繊維24〜56
重量%、平均繊維径0.65μmを超え2.0μm未満
の中細径ガラス繊維0〜10重量%、平均繊維径2.0
〜4.5μmの中太径ガラス繊維71〜36重量%、及
び、平均繊維径4.5μmを超え30μm以下の太径ガ
ラス繊維0〜10重量%で構成されることを特徴とす
る。
The sheet-like separator according to claim 23 is the separator according to claim 22, wherein the glass fibers are thin glass fibers having an average fiber diameter of 0.50 to 0.65 μm.
0% to 10% by weight of medium and small diameter glass fibers having an average fiber diameter of more than 0.65 μm and less than 2.0 μm.
It is characterized by being composed of 71 to 36% by weight of medium and large-diameter glass fibers of 4.5 to 4.5 μm and 0 to 10% by weight of large-diameter glass fibers having an average fiber diameter of more than 4.5 μm and 30 μm or less.

【0041】請求項24の密閉形鉛蓄電池は、請求項1
ないし23のいずれか1項に記載のシート状セパレータ
を用いたことを特徴とする。
According to a twenty-fourth aspect of the present invention, there is provided a sealed lead-acid battery according to the first aspect.
24. A sheet separator according to any one of the above items 23 to 23.

【0042】以下に本発明を詳細に説明する。まず、図
1に示す注液反撥力曲線の原理について説明する。図1
において、横軸は液飽和度、縦軸は反撥力である。
Hereinafter, the present invention will be described in detail. First, the principle of the liquid repellency curve shown in FIG. 1 will be described. FIG.
In the graph, the horizontal axis represents the liquid saturation and the vertical axis represents the repulsion.

【0043】微細ガラス繊維マット一定荷重下の状態で
徐々(2分毎)に電解液を投入していくと、図1のよう
な軌跡を取る。この曲線のA点、B点、C点の各位置は
ガラス繊維マットを構成するガラス繊維径を変化させる
ことにより上下する。
When the electrolyte is gradually (every 2 minutes) charged under a constant load of the fine glass fiber mat, a locus as shown in FIG. 1 is taken. The positions of the points A, B, and C of the curve move up and down by changing the diameter of the glass fiber constituting the glass fiber mat.

【0044】 S点→B点の軌跡 セパレータの収縮によって下って行く。 B点→A点の軌跡 微細ガラス繊維マットの膨張による。A点で液飽和度は
ほぼ100%となる。 A点→C点の軌跡 セパレータの再収縮による。原理は、S点→B点の軌跡
と同様(但し、B点とC点の位置は常にB点>C点とな
る。)。 B点とC点の位置のズレ 測定方法により、反撥力の測定は、短時間(2分間隔)
で行っているため、注液後の電解液が微細ガラス繊維マ
ットに均一に拡散する前に反撥力を測定しているため、
B点>C点のような現象が発生する。
The locus from point S to point B goes down due to contraction of the separator. Locus from point B to point A due to expansion of the fine glass fiber mat. At the point A, the liquid saturation becomes almost 100%. Locus from point A to point C Due to re-shrinkage of the separator. The principle is the same as that of the locus from point S to point B (however, the positions of points B and C always satisfy point B> point C). Displacement between point B and point C Measurement of repulsion is short (2 minute interval)
Since the repelling force is measured before the electrolyte solution after injection is uniformly diffused into the fine glass fiber mat,
A phenomenon such as point B> point C occurs.

【0045】本発明のシート状セパレータは、電解液の
流下速度が100mm/hr以下のセパレータである。
電解液の流下速度が100mm/hrを超えるもので
は、電解液の保持能力が小さいため、充放電をくり返し
た時に電解液濃度がセパレータ上下方向で変わるいわゆ
る成層化現象が顕著になる。この電解液の流下速度はそ
の成層化現象を防止する点からは小さい程好ましいが、
過度に小さいと注液に多大の時間が必要になる。従っ
て、本発明の密閉形鉛蓄電池に用いるセパレータにおい
て、その電解液の流下速度は80mm/hr以下、好ま
しくは5〜80mm/hr、より好ましくは20〜70
mm/hrであるのが良い。
The sheet-like separator of the present invention is a separator having a flow rate of the electrolytic solution of 100 mm / hr or less.
When the flow rate of the electrolytic solution exceeds 100 mm / hr, the so-called stratification phenomenon in which the electrolytic solution concentration changes in the vertical direction of the separator when charge and discharge are repeated becomes remarkable because the ability to retain the electrolytic solution is small. The flow rate of the electrolytic solution is preferably as small as possible from the viewpoint of preventing the stratification phenomenon,
If it is too small, a great deal of time is required for injection. Therefore, in the separator used in the sealed lead-acid battery of the present invention, the flow rate of the electrolytic solution is 80 mm / hr or less, preferably 5 to 80 mm / hr, more preferably 20 to 70 mm / hr.
mm / hr.

【0046】なお、本発明において、シート状セパレー
タの注液反撥力及び電解液の流下速度は、後述の実施例
に記載する方法により求めることができる。
In the present invention, the liquid repellency of the sheet-like separator and the flow rate of the electrolyte can be determined by the methods described in Examples below.

【0047】本発明のシート状セパレータは、次のよう
な態様を採用し得る。 (1)ガラス繊維のみより構成されているもの。 (2)ガラス繊維のみから構成され、その一部が撥水処
理されているもの。 (3)有機繊維及びガラス繊維で構成されるもの。 (4) ガラス繊維とポリエチレン粉末とで構成される
もの。
The sheet-like separator of the present invention may employ the following embodiments. (1) Glass fiber only. (2) Glass fiber only, part of which is water-repellent. (3) Those composed of organic fibers and glass fibers. (4) Glass fiber and polyethylene powder.

【0048】上記(1)の場合、ガラス繊維径が細いと
液流下速度が小さいが反面注液反撥力が小さくなる。逆
に、ガラス繊維径が太いと注液反撥力は大きいが、液流
下速度が大きくなる。従って、本発明で特定される液流
下速度及び注液反撥力を満足するために、ガラス繊維径
の組み合せが必要となり、下記繊維配合I、より好まし
くは繊維配合IIとするのが良い。
In the case of the above (1), when the diameter of the glass fiber is small, the liquid flowing speed is low, but the liquid repelling force is small. Conversely, when the glass fiber diameter is large, the liquid repelling force is large, but the liquid flowing speed increases. Therefore, a combination of glass fiber diameters is required in order to satisfy the liquid flow rate and liquid repellency as specified in the present invention, and it is preferable to use the following fiber composition I, more preferably fiber composition II.

【0049】繊維配合I 平均繊維径0.4〜0.7μmの細径ガラス繊維:40
〜60重量% 平均繊維径0.7μmを超え1.1μm未満の中細径ガ
ラス繊維:20重量%以下 平均繊維径1.1〜5.0μmの中太径ガラス繊維:6
0〜40重量% 平均繊維径5.0μmを超え30μm以下の太径ガラス
繊維:15重量%以下繊維配合II 平均繊維径0.50〜0.65μmの細径ガラス繊維:
44〜56重量% 平均繊維径0.65μmを超え2.0μm未満の中細径
ガラス繊維:10重量%以下 平均繊維径2.0〜4.5μmの中太径ガラス繊維:4
4〜56重量% 平均繊維径4.5μmを超え30μm以下の太径ガラス
繊維:10重量%以下 前記(2)の場合、撥水処理はシランカップリング剤に
よりなされていることが好ましく、撥水処理したガラス
繊維のガラス繊維に対するシランカップリング剤の平均
付着率が0.01〜4.0重量%、特に0.05〜2.
0重量%であり、撥水処理したガラス繊維の割合が、セ
パレータを構成するガラス繊維に対して5〜100重量
%であることが好ましい。シランカップリング剤は、ガ
ラス繊維表面に強固に付着し、表面を撥水性にする。こ
のため、注液反撥力を高め、液流下速度を下げることが
できる。撥水処理の程度が上記範囲外では、このような
効果を十分に達成することができない場合がある。な
お、シランはガラス繊維表面への付着力が著しく高いた
め、電解液中への溶出は殆どなく、極めて有利である。
Fiber blend I Fine glass fiber having an average fiber diameter of 0.4 to 0.7 μm: 40
Medium fiber glass fiber having an average fiber diameter of more than 0.7 μm and less than 1.1 μm: 20 wt% or less Medium glass fiber having an average fiber diameter of 1.1 to 5.0 μm: 6
0 to 40% by weight Large-diameter glass fiber having an average fiber diameter of more than 5.0 μm and 30 μm or less: 15% by weight or less Fiber blend II Small-diameter glass fiber having an average fiber diameter of 0.50 to 0.65 μm:
44 to 56% by weight Medium and small diameter glass fibers having an average fiber diameter of more than 0.65 μm and less than 2.0 μm: 10% by weight or less Medium and large diameter glass fibers having an average fiber diameter of 2.0 to 4.5 μm: 4
4 to 56% by weight Large-diameter glass fiber having an average fiber diameter of more than 4.5 μm and 30 μm or less: 10% by weight or less In the case of the above (2), the water-repellent treatment is preferably performed by a silane coupling agent, The treated glass fiber has an average adhesion rate of the silane coupling agent to the glass fiber of 0.01 to 4.0% by weight, particularly 0.05 to 2.
It is preferably 0% by weight, and the ratio of the water-repellent glass fibers is preferably 5 to 100% by weight based on the glass fibers constituting the separator. The silane coupling agent firmly adheres to the glass fiber surface and makes the surface water-repellent. For this reason, it is possible to increase the liquid repelling force and reduce the liquid flowing speed. If the degree of the water-repellent treatment is out of the above range, such effects may not be sufficiently achieved. Since silane has a remarkably high adhesive force to the glass fiber surface, it hardly elutes into the electrolytic solution, which is extremely advantageous.

【0050】(2)の態様において、ガラス繊維構成と
しては、 (A)ガラス繊維の平均繊維径が2μm以下である。 (B)ガラス繊維は、平均繊維径2μm以下の細径ガラ
ス繊維と平均繊維径2μmを超える太径ガラス繊維とで
構成される。 (C)ガラス繊維は、前記繊維配合I、好ましくは繊維
配合IIで構成される。 を採用することができ、(B)、(C)の場合におい
て、撥水処理されるガラス繊維の繊維径には特に制限は
なく、細径及び太径ガラス繊維の少なくとも一方、細
径、中細径、中太径及び太径ガラス繊維の少なくとも1
種を撥水処理することができる。
In the embodiment (2), the glass fiber composition is as follows: (A) The average fiber diameter of the glass fiber is 2 μm or less. (B) The glass fibers are composed of small-diameter glass fibers having an average fiber diameter of 2 μm or less and large-diameter glass fibers having an average fiber diameter of more than 2 μm. (C) The glass fiber is composed of the above-mentioned fiber blend I, preferably the fiber blend II. In the cases (B) and (C), the fiber diameter of the glass fiber to be subjected to the water-repellent treatment is not particularly limited, and at least one of the small diameter and the large diameter glass fibers, the small diameter, and the medium diameter At least one of small, medium and large glass fibers
Seeds can be water repellent.

【0051】なお、この場合、電池に無害な他の物質を
補強材として少量混抄しても良い(特開昭64−523
75号参照)。
In this case, a small amount of another substance harmless to the battery may be mixed as a reinforcing material (Japanese Patent Application Laid-Open No. 64-523 / 1988).
No. 75).

【0052】前記(3)の態様において、有機繊維とし
ては、平均繊維径2〜20μmで、平均繊維長さ2〜2
5mmのポリプロピレン繊維が好ましく、有機繊維7〜
35重量%及びガラス繊維93〜65重量%より実質的
に構成されていることが好ましい。
In the embodiment (3), the organic fibers have an average fiber diameter of 2 to 20 μm and an average fiber length of 2 to 2 μm.
5 mm polypropylene fibers are preferred, and organic fibers 7 to
It is preferable that it is substantially constituted by 35% by weight and 93 to 65% by weight of glass fiber.

【0053】即ち、ポリプロピレン繊維は撥水性が高
く、本発明に有効である。ポリプロピレン繊維の平均繊
維径は2μm未満では高価であり、20μmを超えると
効果が小さい。また、平均繊維長さが2mm未満では切
断コストが高くつき実用性が低く、25mmを超えると
分散性が悪くなる。また、有機繊維配合割合が7重量%
未満では効果が小さく、35重量%を超えると保液性が
悪くなる。
That is, polypropylene fibers have high water repellency and are effective in the present invention. If the average fiber diameter of the polypropylene fiber is less than 2 μm, it is expensive, and if it exceeds 20 μm, the effect is small. If the average fiber length is less than 2 mm, the cutting cost is high and the practicality is low. If the average fiber length is more than 25 mm, the dispersibility is poor. In addition, the mixing ratio of organic fibers is 7% by weight.
If it is less than 35% by weight, the effect is small.

【0054】(3)の態様においても、ガラス繊維構成
としては、前記(A)〜(C)のガラス繊維構成を採用
することができる。
Also in the mode (3), the glass fiber constitutions (A) to (C) can be adopted as the glass fiber constitution.

【0055】前記(4)の態様において、ポリエチレン
粉末としては、平均粒径2〜10μmのものが好まし
い。ポリエチレン粉末の平均粒径が2μm未満ではコス
ト高となり、10μmを超えると液流下速度を小さくす
る効果が少なくなり、いずれの場合も好ましくない。
In the above embodiment (4), the polyethylene powder preferably has an average particle size of 2 to 10 μm. If the average particle size of the polyethylene powder is less than 2 μm, the cost becomes high, and if it exceeds 10 μm, the effect of reducing the liquid flowing speed decreases, and any case is not preferable.

【0056】このようなポリエチレン粉末の割合が0.
5重量%未満であるとポリエチレン粉末を混抄したこと
による十分な効果が得られず、5.0重量%を超えると
ポリエチレン粉末量が多過ぎて、電解液がセパレータに
浸み込み難くなる。従って、セパレータ中のポリエチレ
ン粉末の割合は0.5〜5.0重量%とする。
When the ratio of such polyethylene powder is 0.1.
If the amount is less than 5% by weight, a sufficient effect of mixing the polyethylene powder cannot be obtained. If the amount is more than 5.0% by weight, the amount of the polyethylene powder is too large, and the electrolyte does not easily permeate into the separator. Therefore, the ratio of the polyethylene powder in the separator is set to 0.5 to 5.0% by weight.

【0057】ポリエチレン粉末は疎水性であるため、こ
れを混抄することにより、セパレータ内の電解液流下速
度を効果的に小さくすることができる。このためセパレ
ータの成層化現象が防止される。
Since the polyethylene powder is hydrophobic, by mixing it, the flow rate of the electrolyte in the separator can be effectively reduced. For this reason, the stratification phenomenon of the separator is prevented.

【0058】また、ポリエチレン粉末は、ガラス繊維同
志の接着を弱くする作用があり、このためセパレータは
柔軟性に富むソフトなものとなる。このため一定の緊圧
を確保することが可能とされる。
Further, the polyethylene powder has an effect of weakening the adhesion between the glass fibers, so that the separator becomes soft and flexible. For this reason, it is possible to secure a constant tension.

【0059】しかも、ポリエチレン粉末を用いることに
より、細径のガラス繊維を用いなくても必要特性を確保
することが可能となる。このため、比較的太径のガラス
繊維を用いて、セパレータを低コストにて提供すること
が可能とされる。
Moreover, by using polyethylene powder, it is possible to secure required characteristics without using fine glass fibers. Therefore, it is possible to provide a separator at a low cost by using a relatively large diameter glass fiber.

【0060】このため、ガラス繊維の配合は前記の繊維
配合I,IIより比較的太径のガラス繊維の配合比率を大
きくすることができ、例えば次の繊維配合III 、好まし
くは繊維配合IVの如く、平均繊維径1.1〜5.0μm
の中太径のガラス繊維の比率を大きくすることができ
る。
For this reason, the blending ratio of the glass fibers can increase the blending ratio of the glass fibers having a relatively large diameter compared to the above-mentioned fiber blends I and II. For example, the following fiber blend III, preferably fiber blend IV , Average fiber diameter 1.1 to 5.0 μm
The ratio of the glass fiber of medium and large diameters can be increased.

【0061】繊維配合III 平均繊維径0.4〜0.7μmの細径ガラス繊維:25
〜60重量% 平均繊維径0.7μmを超え1.1μm未満の中細径ガ
ラス繊維:0〜20重量% 平均繊維径1.1〜5.0μmの中太径ガラス繊維:7
5〜40重量% 平均繊維径5.0μmを超え30μm以下の太径ガラス
繊維:0〜15重量%繊維配合IV 平均繊維径0.50〜0.65μmの細径ガラス繊維:
24〜56重量% 平均繊維径0.65μmを超え2.0μm未満の中細径
ガラス繊維:0〜10重量% 平均繊維径2.0〜4.5μmの中太径ガラス繊維:7
1〜36重量% 平均繊維径4.5μmを超え30μm以下の太径ガラス
繊維:0〜10重量% (4)の態様によるセパレータによれば、後掲の実施例
における測定方法において、次のような特性を確保する
ことができる。
Fiber composition III Fine glass fiber having an average fiber diameter of 0.4 to 0.7 μm: 25
-60% by weight Medium and small diameter glass fibers having an average fiber diameter of more than 0.7 μm and less than 1.1 μm: 0 to 20% by weight Medium and large diameter glass fibers having an average fiber diameter of 1.1 to 5.0 μm: 7
5 to 40% by weight Large-diameter glass fiber having an average fiber diameter of more than 5.0 μm and 30 μm or less: 0 to 15% by weight fiber-containing IV Small-diameter glass fiber having an average fiber diameter of 0.50 to 0.65 μm:
24 to 56% by weight Medium and small diameter glass fibers having an average fiber diameter of more than 0.65 μm and less than 2.0 μm: 0 to 10% by weight Medium and large diameter glass fibers having an average fiber diameter of 2.0 to 4.5 μm: 7
1 to 36% by weight Large-diameter glass fiber having an average fiber diameter of more than 4.5 μm and 30 μm or less: 0 to 10% by weight According to the separator according to the aspect of (4), in the measurement method in Examples described below, Characteristics can be secured.

【0062】 電解液流下速度 :100mm/時間以下 見掛密度/緊圧 :1.3×10-4以上 20kg/dm2 加圧時密度:0.165g/cm3 以下 引張強度 :200g/15mm幅以上 保液性 :0.6g/cc以上 吸液性 :50mm/5分以上 なお、本発明で使用されるガラス繊維は、含アルカリ珪
酸塩ガラス繊維のうちでも、蓄電池に使用されることか
ら、耐酸性の良好なものが好適に使用される。この耐酸
性の程度は、平均繊維径1μm以下のガラス繊維の状態
で、JIS C−2202に従って測定した場合の重量
減が2%以下であるのが望ましい。また、このようなガ
ラス繊維の組成としては重量比で60〜75%のSiO
2 及び8〜20%のR2 O(Na2 O、K2 Oなどのア
ルカリ金属酸化物)を主として含有し(ただしSiO2
+R2 Oは75〜90%)、その他に例えばCaO、M
gO、B23 、Al23 、ZnO、Fe23 など
の1種又は2種以上を含んだものが挙げられる。尚好ま
しい含アルカリ珪酸塩ガラスの一例を次の表1に示す。
Electrolyte flow rate: 100 mm / hour or less Apparent density / tight pressure: 1.3 × 10 −4 or more 20 kg / dm 2 Density under pressure: 0.165 g / cm 3 or less Tensile strength: 200 g / 15 mm width Liquid retention: 0.6 g / cc or more Liquid absorption: 50 mm / 5 minutes or more Since the glass fibers used in the present invention are used for storage batteries even among alkali-silicate glass fibers, Those having good acid resistance are preferably used. The degree of acid resistance is desirably that the weight loss is 2% or less when measured according to JIS C-2202 in the state of glass fibers having an average fiber diameter of 1 μm or less. In addition, the composition of such glass fibers may be 60 to 75% SiO 2 by weight.
2 and 8 to 20% of R 2 O (alkali metal oxide such as Na 2 O, K 2 O) mainly (provided that SiO 2
+ R 2 O 75 to 90%), Other example CaO, M
One containing one or more of gO, B 2 O 3 , Al 2 O 3 , ZnO, Fe 2 O 3 and the like can be mentioned. An example of a preferred alkali-containing silicate glass is shown in Table 1 below.

【0063】[0063]

【表1】 [Table 1]

【0064】本発明のセパレータを製造するには、例え
ば次のような方法によるのが有利である。即ち、FA法
(火炎法)、遠心法その他のガラス短繊維製造法により
製造された、比較的長さの短いガラス繊維を用意し、こ
れをパルパーで離解、切断、分散させる。あるいは、こ
れを抄紙機ネットに供給する途中において、適宜の切断
手段により、ガラス繊維を短く切断しても良い。
For producing the separator of the present invention, for example, the following method is advantageous. That is, a glass fiber having a relatively short length produced by a FA method (flame method), a centrifugal method, or another method for producing short glass fiber is prepared, and defibrated, cut, and dispersed by a pulper. Alternatively, the glass fiber may be cut into short pieces by an appropriate cutting means during the supply of the glass fiber to the papermaking machine net.

【0065】なお、切断されたガラス繊維及びポリエチ
レン粉末(前記(4)の態様において)はネット上に抄
紙される。この湿式抄造されたガラス繊維抄造体は、一
般にドラムやドライヤに沿わせて乾燥され製品とされ
る。
The cut glass fiber and polyethylene powder (in the above-mentioned embodiment (4)) are made on a net. This wet-formed glass fiber paper is generally dried along a drum or a dryer to obtain a product.

【0066】なお、抄造にあたり、繊維を水中に分散さ
せるときに分散剤を使用しても良い。又、湿式抄造され
た繊維抄造体、例えば抄造ネット上にある繊維抄造体に
ジアルキルスルフォサクシネートをスプレーして、ガラ
ス繊維に対して0.005〜10重量%付着させること
によって、ジアルキルスルフォサクシネートの有する親
水性によりセパレータの保液性を向上させることができ
る。ジアルキルスルフォサクシネートを上記の如くスプ
レーする代わりに抄造槽中の分散水に混入しても良い。
In the papermaking, a dispersant may be used when the fibers are dispersed in water. Further, a dialkyl sulfosuccinate is sprayed on a wet paper-formed fiber paper, for example, a fiber paper on a paper-making net, and adhered to the glass fiber in an amount of 0.005 to 10% by weight to obtain a dialkyl sulfo. The liquid retaining property of the separator can be improved by the hydrophilicity of the succinate. Instead of spraying the dialkyl sulfosuccinate as described above, the dialkyl sulfosuccinate may be mixed into the dispersion water in the papermaking tank.

【0067】本発明のセパレータの厚さは特に限定され
るものではないが、ガラス繊維の平均繊維長さ以上の厚
さとするのが好ましい。
The thickness of the separator of the present invention is not particularly limited, but is preferably not less than the average fiber length of the glass fibers.

【0068】本発明の密閉形鉛蓄電池は、このような本
発明のセパレータを用いて、常法に従って、容易に製造
することができる。
The sealed lead-acid battery of the present invention can be easily manufactured by using such a separator of the present invention according to a conventional method.

【0069】[0069]

【実施例】以下、実施例及び比較例について説明する。
なお、実施例及び比較例における電解液の流下速度、注
液反撥力、電池寿命サイクル、引張強度、吸液性、保液
性、厚さ及び目付の測定方法は次の通りである。
EXAMPLES Examples and comparative examples will be described below.
The methods for measuring the flow rate of the electrolytic solution, the repelling force of the electrolyte solution, the battery life cycle, the tensile strength, the liquid absorbing property, the liquid retaining property, the thickness and the basis weight in Examples and Comparative Examples are as follows.

【0070】電解液の流下速度 試料を50mm×250mmの大きさに切断する。 試料の重量が約6.75gになるように(充填密度
0.16〜0.21g/cm3 )、両端にスペーサを介
して対向して設置された2枚のアクリル板(幅70〜8
0mm×長さ500mm)の間にセットする。 試料を水に漬ける。 湿潤状態の試料を測定治具にセットする。 アクリル板の上方から比重1.3の硫酸液をピペッ
トで静かに注液する。 硫酸液の注液は、サンプルの上から100mmにしてお
き、随時液を追加して高さを一定にしておく。硫酸液
は、予め赤インクまたはメチルオレンジで着色してお
く。 電解液を入れ終えた後から5分、10分、30分、
60分後の落下距離を鋼尺で測定する。時間はストップ
ウォッチで正確に測定する。 測定は、サンプル毎3回づつ行なう。
Flow Rate of Electrolyte Solution A sample is cut into a size of 50 mm × 250 mm. Two acrylic plates (width 70 to 8) placed opposite each other with spacers at both ends so that the weight of the sample is about 6.75 g (packing density 0.16 to 0.21 g / cm 3 )
(0 mm x length 500 mm). Immerse the sample in water. The wet sample is set on the measuring jig. A sulfuric acid solution having a specific gravity of 1.3 is gently injected from above the acrylic plate with a pipette. The injection of the sulfuric acid solution is set to 100 mm from the top of the sample, and the height is kept constant by adding a liquid as needed. The sulfuric acid solution is previously colored with red ink or methyl orange. 5 minutes, 10 minutes, 30 minutes, after finishing pouring the electrolyte,
The falling distance after 60 minutes is measured with a steel measure. Time is measured accurately with a stopwatch. The measurement is performed three times for each sample.

【0071】注液反撥力 図2に示す反撥力試験機を用いて次のように測定する。 (1) 試料を100mm×100mmに30枚(10
枚1組)裁断する。 (2) 1組の試料1の重量を測定する。 (3) 始めに予備実験を行なう。
Injection repulsion force Measured as follows using a repulsion force tester shown in FIG. (1) 30 samples (100 mm x 100 mm)
Cut one sheet). (2) The weight of one set of samples 1 is measured. (3) Perform preliminary experiments first.

【0072】予備実験手順: 試料1を反撥力試験機にかけ、ハンドル2を回して
試料1を圧縮して、圧縮力をロードセル3で検出して圧
力計4で読み取り、40kg/m2圧力にセットする。 セットした後、水5を試料1の上から徐々に加え何
cc加えた時に試料の横から水が出てくるかを確認す
る。 横から水が出た時の液量を(W)とする。
Preliminary experiment procedure: The sample 1 was set on a repulsion tester, the handle 2 was turned, the sample 1 was compressed, the compression force was detected by the load cell 3, read by the pressure gauge 4, and set to 40 kg / m 2 pressure. I do. After setting, gradually add water 5 from the top of the sample 1 and check how many cc of water comes out from the side of the sample. The amount of liquid when water comes out from the side is defined as (W).

【0073】(4) 予備実験終了後、試料を反撥力試
験機にかけ再度40kg/m2 圧力にセットする。(セ
ット後は1分毎に再度40kgに圧力を合わせ直し、5
分後でも40kgになるようにする) (5) セット後、試料の厚みをノギスで4点測定す
る。 (6) 水を10gづつ投入し、2分後の圧力の変化を
測定する。 (7) 水の量がW(予備実験値)−20gの周辺から
水の投入量を5gと半分にして(6)と同じ測定を行な
う。 (8) 次に、余分な水(試料が吸いきれない水)をス
ポイト及び注射器で吸い取り、吸い取った水の量を測定
し記録する。 (9) 最後に注射器により試料中の水を吸い取る。 (10) (9)の操作は圧力が変化しなくなるまで細
目に行なうこととする。 (11) 測定は2回以上行なうこととする。 (12) 結果は図1のグラフにスタート時緊圧を1と
した時の変化率でS、B、C点として示す。
(4) After completion of the preliminary experiment, the sample is set on a repulsion tester and set to a pressure of 40 kg / m 2 again. (After setting, adjust the pressure to 40 kg again every minute,
(5kg) After setting, measure the thickness of the sample at 4 points with a caliper. (6) Charge 10 g of water at a time, and measure the change in pressure after 2 minutes. (7) The same measurement as in (6) is performed by halving the input amount of water to 5 g from around 20 g of the amount of water (preliminary experimental value). (8) Next, extra water (water that cannot be absorbed by the sample) is sucked with a dropper and a syringe, and the amount of the sucked water is measured and recorded. (9) Finally, suck up the water in the sample with a syringe. (10) The operation of (9) is to be performed finely until the pressure no longer changes. (11) The measurement shall be performed twice or more. (12) The results are shown as points S, B, and C in the graph of FIG.

【0074】電池寿命サイクル 各種セパレータを用いて、密閉形鉛蓄電池を組み立て
た。組み立てた密閉形鉛蓄電池は、巾40mm×高さ7
0mm×厚さ3.3mmの正極板2枚と同じ大きさで厚
さが2.0mmである負極板とを所定のセパレータを介
して20kg/dm2 の圧力をかけて積層したものであ
り、比重1.30のH2SO4 をセル当り43cc注液
し、そのセル当りの容量は5Ah/20HRである。こ
のようにして組み立てた電池を「1.4Aで3時間放
電、1.02Aで5時間充電」を1サイクルとして交互
充放電寿命試験した。電池の容量が4.2Ah(=1.
4A×3h)以下になった時点を寿命とした。
Battery Life Cycle A sealed lead-acid battery was assembled using various separators. The assembled sealed lead-acid battery has a width of 40 mm and a height of 7
0 mm × 3.3 mm thick positive electrode plate and a negative electrode plate having the same size and a thickness of 2.0 mm are laminated by applying a pressure of 20 kg / dm 2 through a predetermined separator, 43 cc of H 2 SO 4 having a specific gravity of 1.30 was injected per cell, and the capacity per cell was 5 Ah / 20 HR. The battery assembled in this manner was subjected to an alternate charge / discharge life test with one cycle of "discharge at 1.4 A for 3 hours and charge at 1.02 A for 5 hours". When the capacity of the battery is 4.2 Ah (= 1.
4A × 3h) or less was defined as the life.

【0075】引張強度 幅15mmの試料の両端を引張り、それが切断するとき
の外力の値(g)で表示する。
Tensile strength A sample having a width of 15 mm is pulled at both ends, and is indicated by an external force value (g) when the sample is cut.

【0076】吸液性 試料を垂直にしてその下部を比重1.03の希硫酸液に
浸漬し、5分間に上昇する液位を測定することにより求
める。
The liquid-absorbent sample is vertically set, and its lower part is immersed in a dilute sulfuric acid solution having a specific gravity of 1.03, and the liquid level rising for 5 minutes is measured.

【0077】保液性 あらかじめ試料の重量及び厚さを測定する。これを水を
満したバンドに30秒間浸漬後傾斜台に引上げ、45°
で5分間保持した後、試料の重量を測定し次式により保
液性を求める。 保液性(g/cc)=(W2 −W1 )/l×W×t W1 :浸漬前の試料重量(g) W2 :浸漬後の試料重量(g) l :長さ 25cm W :巾(cm) 5cm t :試料の実厚さ(cm)見掛密度/緊圧 60kg/dm2 加圧時の見掛密度D60と10kg/d
2 加圧時の見掛密度D10との差を50kg/dm2 で除
した値(D60−D10)/50即ち(見掛密度/緊圧)で
表す。
Liquid holding property The weight and thickness of the sample are measured in advance. This was immersed in a water-filled band for 30 seconds, and then pulled up on a tilting stand, and 45 °
After holding the sample for 5 minutes, the weight of the sample is measured, and the liquid retention is determined by the following equation. Liquid retention (g / cc) = (W 2 −W 1 ) / l × W × t W 1 : Weight of sample before immersion (g) W 2 : Weight of sample after immersion (g) l: Length 25 cm W : Width (cm) 5 cm t: Actual thickness of sample (cm) Apparent density / tightness 60 kg / dm 2 Apparent density D 60 when pressurized and 10 kg / d
Value obtained by dividing the difference between the apparent density D 10 of 2 under pressure in 50kg / dm 2 (D 60 -D 10) / 50 That is represented by (apparent density /緊圧).

【0078】目付 試料重量を試料面積で除して得られる値である。This is a value obtained by dividing the basis weight of the sample by the area of the sample.

【0079】厚さ 試料をその厚み方向に20kg/dm2 の荷重で押圧し
た状態で測定する。(JISC−2202) 実施例1,2、比較例1〜5 表2に示す値の液流下速度及び注液反撥力のシート状セ
パレータを製造し、その電池寿命サイクルを調べ、結果
を表2に示した。
The thickness is measured with the sample pressed in the thickness direction with a load of 20 kg / dm 2 . (JISC-2202) Examples 1 and 2, Comparative Examples 1 to 5 Sheet-like separators having the values shown in Table 2 and a liquid repelling force were prepared, and the battery life cycle was examined. The results are shown in Table 2. Indicated.

【0080】[0080]

【表2】 [Table 2]

【0081】実施例3〜5、比較例6〜11 表3に示すガラス繊維配合のセパレータについて、各種
物性及び特性を調べ、結果を表3に示した。
Examples 3 to 5 and Comparative Examples 6 to 11 Various physical properties and characteristics of the glass fiber-containing separator shown in Table 3 were examined, and the results are shown in Table 3.

【0082】[0082]

【表3】 [Table 3]

【0083】実施例6 下記図3に示す平均繊維径のガラス繊維配合系につい
て、液流下速度と注液反撥力(B点)を調べ、結果を図
3に示した。なお、図3において、実線は0.6μmと
2.0μmの平均繊維径のガラス繊維の配合系、破線は
0.6μmと4.0μmの平均繊維径のガラス繊維の配
合系の結果を示す。図3よりαの配合範囲が好適である
ことが明らかである。
Example 6 For the glass fiber blending system having the average fiber diameter shown in FIG. 3 below, the liquid flowing speed and the liquid repellency (point B) were examined. The results are shown in FIG. In FIG. 3, the solid line shows the results of a glass fiber blending system having an average fiber diameter of 0.6 μm and 2.0 μm, and the broken line shows the results of a glass fiber blending system having an average fiber diameter of 0.6 μm and 4.0 μm. It is apparent from FIG. 3 that the blending range of α is suitable.

【0084】なお、表3より、実施例5の如く、平均繊
維径5μmを超え30μmの太径のガラス繊維を少量混
入する場合、コストの低減が図れるが、この繊維は径が
太く、繊維自体の柔軟性が低いため、あまり多く混合す
ると、比較例11の如く、液流下速度、注液反撥力共に
悪くなるため、15重量%以下、好ましくは10重量%
以下にする必要がある。
As shown in Table 3, when a small amount of glass fiber having a diameter of more than 30 μm and exceeding 30 μm is mixed in a small amount as in Example 5, the cost can be reduced. If the mixture is too much mixed, as in Comparative Example 11, the liquid flow rate and the repellency of the injected liquid deteriorate, so that the mixing ratio is not more than 15% by weight, preferably 10% by weight.
It must be:

【0085】実施例7〜23、比較例12〜14 下記ガラス繊維を表4〜6に示す配合としたセパレータ
について、各種特性を調べ、結果を表4〜6に示した。
Examples 7 to 23 and Comparative Examples 12 to 14 Various characteristics were examined for separators having the following glass fibers blended as shown in Tables 4 to 6, and the results are shown in Tables 4 to 6.

【0086】[0086]

【表4】 [Table 4]

【0087】[0087]

【表5】 [Table 5]

【0088】[0088]

【表6】 [Table 6]

【0089】実施例24,25、比較例15〜20 表7に示す繊維配合のセパレータについて各種特性を調
べ、結果を表7に示した。なお、用いた有機繊維は次の
通りである。
Examples 24 and 25 and Comparative Examples 15 to 20 Various characteristics of the fiber-containing separators shown in Table 7 were examined, and the results are shown in Table 7. The organic fibers used are as follows.

【0090】ポリプロピレン繊維=平均繊維径 8μm 平均繊維長さ 5mm ポリエチレン繊維=平均繊維径 8μm 平均繊維長さ 2mm ポリエステル繊維=平均繊維径 7μm 平均繊維長さ 5mmPolypropylene fiber = Average fiber diameter 8 μm Average fiber length 5 mm Polyethylene fiber = Average fiber diameter 8 μm Average fiber length 2 mm Polyester fiber = Average fiber diameter 7 μm Average fiber length 5 mm

【0091】[0091]

【表7】 [Table 7]

【0092】実施例26〜29、比較例21〜26 表8に示す繊維配合のセパレータについて各種特性を調
べ、結果を表8に示した。
Examples 26 to 29 and Comparative Examples 21 to 26 Various properties of the fiber-containing separator shown in Table 8 were examined, and the results are shown in Table 8.

【0093】[0093]

【表8】 [Table 8]

【0094】実施例30〜37、比較例27〜34 表9及び表10に示す材料配合にて蓄電池用セパレータ
を製造し、その諸特性の測定結果を表9及び表10に示
した。また、各特性の測定結果から、総合的に評価した
結果を、×=不可、○=良として表9及び表10に併記
した。
Examples 30 to 37 and Comparative Examples 27 to 34 Separators for storage batteries were manufactured using the materials shown in Tables 9 and 10, and the results of measuring various characteristics are shown in Tables 9 and 10. In addition, the results of comprehensive evaluation from the measurement results of each characteristic are shown in Tables 9 and 10 as x = impossible and o = good.

【0095】[0095]

【表9】 [Table 9]

【0096】[0096]

【表10】 [Table 10]

【0097】表9及び表10より次のことが明らかであ
る。即ち、本発明の(4)の態様のセパレータは、成層
化防止効果が優れているため寿命性能、特に交互充放電
寿命性能にすぐれるものとなる。また、保液性が著しく
高く、見掛密度/緊圧が1.3×10-4以上であり、密
閉形鉛蓄電池のケースに組み込み易い。なお、見掛密度
/緊圧は、それが大きいほど弾力性に富み、電槽に入れ
る時圧縮しやすく又入れた後の圧迫力に優れ、セパレー
タとして好適であることを示す。このように、このセパ
レータは、弾力性に富むソフトなものであるため、極板
の枚数が多くても緊圧が吸収され、密閉形鉛蓄電池のケ
ースにセパレータを入れやすく、緊圧がバラつくことが
ない。
The following is clear from Tables 9 and 10. That is, the separator according to the aspect (4) of the present invention has excellent stratification prevention effect, and thus has excellent life performance, particularly excellent alternating charge / discharge life performance. In addition, the liquid retentivity is remarkably high, and the apparent density / toning pressure is 1.3 × 10 −4 or more, so that it can be easily incorporated into a sealed lead-acid battery case. The larger the apparent density / stress is, the higher the elasticity is, the easier it is to compress when placed in a battery case, and the superior the pressing force after being placed, indicating that it is suitable as a separator. As described above, since the separator is soft and highly resilient, even if the number of the electrode plates is large, the tension is absorbed, and the separator is easily put in the case of the sealed lead-acid battery, and the tension varies. Nothing.

【0098】[0098]

【発明の効果】以上詳述した通り、本発明のシート状セ
パレータは電解液の保液性が著しく高く、セパレータ上
下方向での保液性が均等化されるようになり、成層化現
象及び活物質の軟化が防止されるため、極めて長寿命の
性能を有する。
As described in detail above, the sheet-like separator of the present invention has a remarkably high liquid-retaining property for the electrolytic solution, the liquid-retaining property in the vertical direction of the separator is equalized, and the stratification phenomenon and the activity are improved. Since the material is prevented from softening, it has an extremely long life performance.

【0099】従って、小容量の密閉形鉛蓄電池はもちろ
ん、極板高さが高い大容量の密閉形鉛蓄電池においても
安定したかつ優れた電池性能を有する長寿命のものとな
る。この長寿命化が、試験したような交互充放電のみで
なく、浮動充電される用途であっても長い寿命性能を発
揮することは明らかである。
Therefore, not only a small-capacity sealed lead-acid battery but also a large-capacity sealed lead-acid battery having a high electrode plate has a long life with stable and excellent battery performance. It is clear that this extended life exhibits a long life performance not only in the alternating charging and discharging as tested, but also in the application of floating charging.

【0100】請求項4〜20のシート状セパレータであ
れば、特に電解液の流下速度が小さく、注液反撥力の大
きいシート状セパレータが提供される。
In the case of the sheet separator according to any one of the fourth to twentieth aspects, it is possible to provide a sheet separator having a particularly low flow rate of the electrolyte and a high repulsion force.

【0101】特に、請求項21〜23のシート状セパレ
ータは、ソフトで弾力性に富むための、電池のケースに
組み込み易い。また、緊圧が一定である。しかも、この
セパレータは、比較的太径のガラス繊維を主体として構
成することができ、セパレータコストを低減し、製造作
業性に優れた安価な密閉形鉛蓄電池を提供することが可
能とされる。
In particular, the sheet-like separator of claims 21 to 23 is easy to incorporate into a battery case because it is soft and rich in elasticity. Also, the tension is constant. Moreover, this separator can be composed mainly of glass fibers having a relatively large diameter, so that it is possible to reduce the cost of the separator and to provide an inexpensive sealed lead-acid battery excellent in manufacturing workability.

【0102】請求項24の密閉形鉛蓄電池によれば、長
寿命かつ廉価で、電池性能に優れた密閉形鉛蓄電池が提
供される。
According to the sealed lead-acid battery of the twenty-fourth aspect, a sealed lead-acid battery having a long service life, low cost, and excellent battery performance is provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】注液反撥力曲線を示すグラフである。FIG. 1 is a graph showing an injection repulsion curve.

【図2】注液反撥力の測定器を説明する図である。FIG. 2 is a diagram illustrating a measuring device for liquid repellency;

【図3】実施例5の結果を示すグラフである。FIG. 3 is a graph showing the results of Example 5.

【符号の説明】[Explanation of symbols]

1 試料 2 ハンドル 3 ロードセル 4 圧力計 5 水 1 sample 2 handle 3 load cell 4 pressure gauge 5 water

フロントページの続き (72)発明者 杉山 昌司 大阪府大阪市中央区道修町3丁目5番11 号 日本板硝子株式会社内 (72)発明者 中山 恭秀 大阪府高槻市城西町6番6号 湯浅電池 株式会社内 (72)発明者 北川 勝美 大阪府高槻市城西町6番6号 湯浅電池 株式会社内 (72)発明者 岸本 健二郎 大阪府高槻市城西町6番6号 湯浅電池 株式会社内 (56)参考文献 特開 平2−226654(JP,A) 特開 平1−248459(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 2/14 - 2/18 Continuing from the front page (72) Inventor Shoji Sugiyama 3-5-11 Doshomachi, Chuo-ku, Osaka-shi, Osaka Inside Nippon Sheet Glass Co., Ltd. (72) Inventor Yasuhide Nakayama 6-6 Josaicho, Takatsuki-shi, Osaka Yuasa Battery Co., Ltd. Inside the company (72) Katsumi Kitagawa 6-6 Josai-cho, Takatsuki-shi, Osaka Yuasa Battery Co., Ltd. (72) Inventor Kenjiro Kishimoto 6-6 Josai-cho, Takatsuki-shi, Osaka Yuasa Battery Co., Ltd. (56) Reference Reference JP-A-2-226654 (JP, A) JP-A 1-248459 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 2/14-2/18

Claims (24)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 電解液の流下速度が100mm/hr以
下のシート状セパレータであって、図1に示す希硫酸を
注入した時の注液反撥力曲線において、反撥力の値が、 S点=Pkg/dm2 とする時 B点≧0.55Pkg/dm2 C点≧0.40Pkg/dm2 であることを特徴とするシート状セパレータ。
1. A sheet-like separator in which the flow rate of an electrolytic solution is 100 mm / hr or less, and in a liquid repelling force curve when dilute sulfuric acid is injected as shown in FIG. sheet separator, characterized in that when a point B ≧ 0.55Pkg / dm 2 C point ≧ 0.40Pkg / dm 2 to pkg / dm 2.
【請求項2】 電解液の流下速度が80mm/hr以下
である請求項1に記載のシート状セパレータ。
2. The sheet-like separator according to claim 1, wherein the flow rate of the electrolyte is 80 mm / hr or less.
【請求項3】 ガラス繊維のみから実質的に構成されて
いる請求項1又は2に記載のシート状セパレータ。
3. The sheet-like separator according to claim 1, which is substantially composed of only glass fibers.
【請求項4】 平均繊維径0.4〜0.7μmの細径ガ
ラス繊維40〜60重量%、平均繊維径0.7μmを超
え1.1μm未満の中細径ガラス繊維20重量%以下、
平均繊維径1.1〜5.0μmの中太径ガラス繊維60
〜40重量%、及び、平均繊維径5.0μmを超え30
μm以下の太径ガラス繊維15重量%以下で実質的に構
成されている請求項3に記載のシート状セパレータ。
4. A small glass fiber having an average fiber diameter of 0.4 to 0.7 μm, 40 to 60% by weight, a medium diameter glass fiber having an average fiber diameter of more than 0.7 μm and less than 1.1 μm, and not more than 20% by weight.
Medium-diameter glass fiber 60 having an average fiber diameter of 1.1 to 5.0 μm
-40% by weight and an average fiber diameter of more than 5.0 μm and 30
The sheet-like separator according to claim 3, which is substantially constituted by 15% by weight or less of a large-diameter glass fiber having a diameter of not more than μm.
【請求項5】 平均繊維径0.50〜0.65μmの細
径ガラス繊維44〜56重量%、平均繊維径0.65μ
mを超え2.0μm未満の中細径ガラス繊維10重量%
以下、平均繊維径2.0〜4.5μmの中太径ガラス繊
維44〜56重量%、及び、平均繊維径4.5μmを超
え30μm以下の太径ガラス繊維10重量%以下で実質
的に構成されている請求項4に記載のシート状セパレー
タ。
5. A small-diameter glass fiber having an average fiber diameter of 0.50 to 0.65 μm, 44 to 56% by weight, and an average fiber diameter of 0.65 μm.
10% by weight of medium- and small-diameter glass fibers exceeding 2.0 m and less than 2.0 μm
Hereinafter, it is substantially composed of 44 to 56% by weight of medium and large diameter glass fibers having an average fiber diameter of 2.0 to 4.5 μm and 10% by weight or less of large diameter glass fibers having an average fiber diameter of more than 4.5 μm and 30 μm or less. The sheet-like separator according to claim 4, which is formed.
【請求項6】 ガラス繊維の少なくとも一部が撥水処理
を施したものである請求項1ないし3のいずれか1項に
記載のシート状セパレータ。
6. The sheet-like separator according to claim 1, wherein at least a part of the glass fiber has been subjected to a water-repellent treatment.
【請求項7】 撥水処理はシランカップリング剤により
なされている請求項6に記載のシート状セパレータ。
7. The sheet separator according to claim 6, wherein the water-repellent treatment is performed using a silane coupling agent.
【請求項8】 撥水処理したガラス繊維のガラス繊維に
対するシランカップリング剤の平均付着率が0.01〜
4.0重量%である請求項7に記載のシート状セパレー
タ。
8. The water-repellent treated glass fiber has an average adhesion rate of the silane coupling agent to the glass fiber of 0.01 to 0.01.
The sheet-like separator according to claim 7, which is 4.0% by weight.
【請求項9】 撥水処理したガラス繊維の割合が、セパ
レータを構成するガラス繊維に対して5〜100重量%
である請求項7又は8に記載のシート状セパレータ。
9. The ratio of the glass fiber subjected to the water-repellent treatment is 5 to 100% by weight with respect to the glass fiber constituting the separator.
The sheet-like separator according to claim 7 or 8, wherein
【請求項10】 ガラス繊維の平均繊維径が2μm以下
である請求項6ないし9のいずれか1項に記載のシート
状セパレータ。
10. The sheet-like separator according to claim 6, wherein the average fiber diameter of the glass fibers is 2 μm or less.
【請求項11】 ガラス繊維が、平均繊維径2μm以下
の細径ガラス繊維と平均繊維径2μmを超える太径ガラ
ス繊維とで構成され、細径ガラス繊維及び/又は太径ガ
ラス繊維の一部又は全部が撥水処理されている請求項6
ないし9のいずれか1項に記載のシート状セパレータ。
11. The glass fiber is composed of a small-diameter glass fiber having an average fiber diameter of 2 μm or less and a large-diameter glass fiber exceeding an average fiber diameter of 2 μm, and a part of the small-diameter glass fiber and / or the large-diameter glass fiber or 7. All the parts are water-repellent.
10. The sheet separator according to any one of claims 9 to 9.
【請求項12】 平均繊維径0.4〜0.7μmの細径
ガラス繊維40〜60重量%、平均繊維径0.7μmを
超え1.1μm未満の中細径ガラス繊維20重量%以
下、平均繊維径1.1〜5.0μmの中太径ガラス繊維
60〜40重量%、及び、平均繊維径5.0μmを超え
30μm以下の太径ガラス繊維15重量%以下で実質的
に構成されている請求項6〜10のいずれか1項記載の
シート状セパレータ。
12. A small-diameter glass fiber having an average fiber diameter of 0.4 to 0.7 μm, 40 to 60% by weight, a medium-diameter glass fiber having an average fiber diameter of more than 0.7 μm and less than 1.1 μm, and an average of 20% by weight or less. It is substantially composed of medium to large diameter glass fibers having a fiber diameter of 1.1 to 5.0 μm, 60 to 40% by weight, and large diameter glass fibers having an average fiber diameter of more than 5.0 μm and 30 μm or less, 15% by weight or less. The sheet separator according to any one of claims 6 to 10.
【請求項13】 平均繊維径0.50〜0.65μmの
細径ガラス繊維44〜56重量%、平均繊維径0.65
μmを超え2.0μm未満の中細径ガラス繊維10重量
%以下、平均繊維径2.0〜4.5μmの中太径ガラス
繊維44〜56重量%、及び、平均繊維径4.5μmを
超え30μm以下の太径ガラス繊維10重量%以下で実
質的に構成されている請求項12に記載のシート状セパ
レータ。
13. A small-diameter glass fiber having an average fiber diameter of 0.50 to 0.65 μm, 44 to 56% by weight, and an average fiber diameter of 0.65.
More than 10 μ% by weight of medium- and small-diameter glass fibers exceeding 2.0 μm and less than 2.0 μm, 44-56% by weight of medium- and large-diameter glass fibers having an average fiber diameter of 2.0 to 4.5 μm, and exceeding 4.5 μm in average fiber diameter The sheet-like separator according to claim 12, which is substantially constituted by 10% by weight or less of a large-diameter glass fiber of 30 µm or less.
【請求項14】 有機繊維及びガラス繊維より実質的に
構成されている請求項1又は2に記載のシート状セパレ
ータ。
14. The sheet-like separator according to claim 1, which is substantially composed of an organic fiber and a glass fiber.
【請求項15】 有機繊維が平均繊維径2〜20μm
で、平均繊維長さ2〜25mmのポリプロピレン繊維で
ある請求項14に記載のシート状セパレータ。
15. The organic fiber has an average fiber diameter of 2 to 20 μm.
The sheet-like separator according to claim 14, wherein the sheet-like separator is a polypropylene fiber having an average fiber length of 2 to 25 mm.
【請求項16】 有機繊維7〜35重量%及びガラス繊
維93〜65重量%より実質的に構成されている請求項
14又は15に記載のシート状セパレータ。
16. The sheet-like separator according to claim 14, which is substantially composed of 7 to 35% by weight of organic fibers and 93 to 65% by weight of glass fibers.
【請求項17】 ガラス繊維の平均繊維径が2μm以下
である請求項14ないし16のいずれか1項に記載のシ
ート状セパレータ。
17. The sheet-like separator according to claim 14, wherein the average fiber diameter of the glass fibers is 2 μm or less.
【請求項18】 ガラス繊維は平均繊維径2μm以下の
ガラス繊維と平均繊維径2μmを超えるガラス繊維とで
構成される請求項14ないし16のいずれか1項に記載
のシート状セパレータ。
18. The sheet-like separator according to claim 14, wherein the glass fibers are composed of glass fibers having an average fiber diameter of 2 μm or less and glass fibers having an average fiber diameter of more than 2 μm.
【請求項19】 ガラス繊維は、平均繊維径0.4〜
0.7μmの細径ガラス繊維40〜60重量%、平均繊
維径0.7μmを超え1.1μm未満の中細径ガラス繊
維20重量%以下、平均繊維径1.1〜5.0μmの中
太径ガラス繊維60〜40重量%、及び、平均繊維径
5.0μmを超え30μm以下の太径ガラス繊維15重
量%以下で構成される請求項14ないし16のいずれか
1項に記載のシート状セパレータ。
19. The glass fiber has an average fiber diameter of 0.4 to
40 to 60% by weight of small diameter glass fiber of 0.7 μm, 20% by weight or less of medium and small diameter glass fiber exceeding 0.7 μm and less than 1.1 μm, medium thickness of 1.1 to 5.0 μm The sheet-like separator according to any one of claims 14 to 16, comprising a glass fiber having a diameter of 60 to 40% by weight and a large-diameter glass fiber having an average fiber diameter of more than 5.0 µm and 30 µm or less being 15% by weight or less. .
【請求項20】 ガラス繊維は、平均繊維径0.50〜
0.65μmの細径ガラス繊維44〜56重量%、平均
繊維径0.65μmを超え2.0μm未満の中細径ガラ
ス繊維10重量%以下、平均繊維径2.0〜4.5μm
の中太径ガラス繊維44〜56重量%、及び、平均繊維
径4.5μmを超え30μm以下の太径ガラス繊維10
重量%以下で構成される請求項19に記載のシート状セ
パレータ。
20. The glass fiber has an average fiber diameter of 0.50 to 0.50.
44-56% by weight of small-diameter glass fibers of 0.65 μm, 10% by weight or less of medium- and small-diameter glass fibers having an average fiber diameter of more than 0.65 μm and less than 2.0 μm, and an average fiber diameter of 2.0-4.5 μm
44 to 56% by weight of medium and large diameter glass fibers, and large diameter glass fibers 10 having an average fiber diameter of more than 4.5 μm and 30 μm or less.
20. The sheet-like separator according to claim 19, wherein the sheet-like separator is constituted by less than or equal to% by weight.
【請求項21】 ガラス繊維を主体として構成され、ポ
リエチレン粉末が0.5〜5.0重量%混抄されている
請求項1に記載のシート状セパレータ。
21. The sheet-like separator according to claim 1, wherein the sheet-like separator is mainly composed of glass fibers, and is mixed with 0.5 to 5.0% by weight of polyethylene powder.
【請求項22】 ガラス繊維は、平均繊維径0.4〜
0.7μmの細径ガラス繊維25〜60重量%、平均繊
維径0.7μmを超え1.1μm未満の中細径ガラス繊
維0〜20重量%、平均繊維径1.1〜5.0μmの中
太径ガラス繊維75〜40重量%、及び、平均繊維径
5.0μmを超え30μm以下の太径ガラス繊維0〜1
5重量%で構成される請求項21に記載のシート状セパ
レータ。
22. The glass fiber has an average fiber diameter of 0.4 to
25 to 60% by weight of small-diameter glass fiber having a diameter of 0.7 μm, 0 to 20% by weight of medium- and small-diameter glass fibers having an average fiber diameter of more than 0.7 μm and less than 1.1 μm, and an average fiber diameter of 1.1 to 5.0 μm. 75 to 40% by weight of large-diameter glass fiber, and 0 to 1 large-diameter glass fiber having an average fiber diameter of more than 5.0 μm and 30 μm or less.
The sheet-like separator according to claim 21, which is composed of 5% by weight.
【請求項23】 ガラス繊維は、平均繊維径0.50〜
0.65μmの細径ガラス繊維24〜56重量%、平均
繊維径0.65μmを超え2.0μm未満の中細径ガラ
ス繊維0〜10重量%、平均繊維径2.0〜4.5μm
の中太径ガラス繊維71〜36重量%、及び、平均繊維
径4.5μmを超え30μm以下の太径ガラス繊維0〜
10重量%で構成される請求項22に記載のシート状セ
パレータ。
23. The glass fiber has an average fiber diameter of 0.50 to 0.50.
24-56% by weight of 0.65 μm thin glass fiber, 0-10% by weight of medium and thin glass fiber having an average fiber diameter of more than 0.65 μm and less than 2.0 μm, average fiber diameter of 2.0-4.5 μm
71 to 36% by weight of medium and large diameter glass fibers, and large diameter glass fibers 0 having an average fiber diameter of more than 4.5 μm and 30 μm or less.
23. The sheet separator according to claim 22, comprising 10% by weight.
【請求項24】 請求項1ないし23のいずれか1項に
記載のシート状セパレータを用いた密閉形鉛蓄電池。
24. A sealed lead-acid battery using the sheet-like separator according to any one of claims 1 to 23.
JP4031856A 1991-05-23 1992-02-19 Sheet separator and sealed lead-acid battery Expired - Fee Related JP3060694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4031856A JP3060694B2 (en) 1991-05-23 1992-02-19 Sheet separator and sealed lead-acid battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP3-118526 1991-05-23
JP11852691 1991-05-23
JP13111491 1991-06-03
JP3-131114 1991-06-03
JP4031856A JP3060694B2 (en) 1991-05-23 1992-02-19 Sheet separator and sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JPH0567463A JPH0567463A (en) 1993-03-19
JP3060694B2 true JP3060694B2 (en) 2000-07-10

Family

ID=27287500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4031856A Expired - Fee Related JP3060694B2 (en) 1991-05-23 1992-02-19 Sheet separator and sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP3060694B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2352187B1 (en) 2008-11-11 2014-04-30 Nippon Sheet Glass Company, Limited Separator for sealed lead acid battery
JP5432813B2 (en) 2010-05-11 2014-03-05 日本板硝子株式会社 Sealed lead-acid battery separator and sealed lead-acid battery
JP5798962B2 (en) * 2012-03-27 2015-10-21 日本板硝子株式会社 Separator for liquid lead acid battery and liquid lead acid battery
CN104518201B (en) * 2013-09-30 2018-10-23 松下蓄电池(沈阳)有限公司 Lead accumulator
JP6544126B2 (en) * 2015-08-05 2019-07-17 日立化成株式会社 Control valve type lead storage battery
JP6506448B1 (en) * 2018-05-25 2019-04-24 日本板硝子株式会社 Lead battery separator

Also Published As

Publication number Publication date
JPH0567463A (en) 1993-03-19

Similar Documents

Publication Publication Date Title
JP2743438B2 (en) Sealed lead-acid battery
JP2576277B2 (en) Separator for sealed lead-acid battery and sealed lead-acid battery
JP5432813B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
US6706450B2 (en) Separator for sealed lead acid battery
EP1429401A1 (en) Enclosed lead battery-use separator and enclosed lead battery
JP3060694B2 (en) Sheet separator and sealed lead-acid battery
EP0515105B1 (en) Sheet like separator and valve regulated lead acid battery
JP2762446B2 (en) Storage battery separator
JP3705164B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
JP2707728B2 (en) Sealed lead-acid battery
JPH0381266B2 (en)
JP2576277C (en)
JP3650439B2 (en) Sealed lead-acid battery separator
JPH0521306B2 (en)
JPH0732007B2 (en) Storage battery separator
JPH0249348A (en) Sealed lead-acid battery
JP7262686B1 (en) Pasting paper for lead-acid batteries
JP2003308818A (en) Separator for sealed lead storage battery
JPH0555974B2 (en)
JPH0555977B2 (en)
JPS63224143A (en) Separator for storage battery
JPS62252065A (en) Separator for storage battery
JPH0457068B2 (en)
JPS61224262A (en) Separator for alkaline storage battery
JPH03112067A (en) Sealed lead-acid battery

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090428

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100428

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110428

Year of fee payment: 11

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees