JPWO2013187458A1 - Lithium ion battery separator - Google Patents

Lithium ion battery separator Download PDF

Info

Publication number
JPWO2013187458A1
JPWO2013187458A1 JP2014521393A JP2014521393A JPWO2013187458A1 JP WO2013187458 A1 JPWO2013187458 A1 JP WO2013187458A1 JP 2014521393 A JP2014521393 A JP 2014521393A JP 2014521393 A JP2014521393 A JP 2014521393A JP WO2013187458 A1 JPWO2013187458 A1 JP WO2013187458A1
Authority
JP
Japan
Prior art keywords
porous body
separator
inorganic particles
nonwoven fabric
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014521393A
Other languages
Japanese (ja)
Other versions
JP6292625B2 (en
Inventor
宏明 渡邉
宏明 渡邉
加藤 真
真 加藤
加藤 隆久
隆久 加藤
敬生 増田
敬生 増田
信子 高濱
信子 高濱
貴仁 落合
貴仁 落合
加寿美 加藤
加寿美 加藤
誉子 笠井
誉子 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2014521393A priority Critical patent/JP6292625B2/en
Publication of JPWO2013187458A1 publication Critical patent/JPWO2013187458A1/en
Application granted granted Critical
Publication of JP6292625B2 publication Critical patent/JP6292625B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータにおいて、該無機粒子の形状が不定形であることを特徴とし、低内部抵抗、ピンホールや粉落ちが発生し難い、漏れ電流が少ないといった性能を兼ね備えたリチウムイオン電池用セパレータ。In a lithium ion battery separator comprising a porous body mainly composed of at least inorganic particles, the shape of the inorganic particles is indefinite, and low internal resistance, pinholes and powder fall off are unlikely to occur. A separator for lithium-ion batteries that has low leakage current.

Description

本発明はリチウムイオン電池用セパレータ(以下、「セパレータ」と略記する場合がある)に関する。   The present invention relates to a separator for a lithium ion battery (hereinafter sometimes abbreviated as “separator”).

電気化学素子のひとつであるリチウムイオン電池は、エネルギー密度が高いという特徴を有する二次電池である。携帯電話、携帯型音楽プレーヤー、ノート型パーソナルコンピューター等の携帯型電気機器の電源として広く利用されている。また、電気自転車、ハイブリッド自動車、電気自動車等の大型機器にも、リチウムイオン電池を利用する動きが広がっている。そのため、リチウムイオン電池には高容量化、大電流での充放電特性といった性能が求められている。しかし、リチウムイオン電池は非水系電池であるため、水系電池と比較して、発煙、発火、破裂等の危険性が高いことが知られており、安全性の向上も要求されている。   A lithium ion battery, which is one of electrochemical elements, is a secondary battery having a feature of high energy density. It is widely used as a power source for portable electric devices such as mobile phones, portable music players, and notebook personal computers. In addition, the use of lithium ion batteries is spreading in large equipment such as electric bicycles, hybrid cars, and electric cars. Therefore, lithium ion batteries are required to have high performance and charge / discharge characteristics at a large current. However, since a lithium ion battery is a non-aqueous battery, it is known that there is a higher risk of smoke, ignition, rupture and the like than an aqueous battery, and an improvement in safety is also required.

リチウムイオン電池では、外熱による温度上昇、過充電、内部短絡、外部短絡等によって発煙等の危険性が高まる。これらは、外部保護回路によってある程度防ぐことが可能である。また、リチウムイオン電池用セパレータとして使用されているポリオレフィン系樹脂の多孔質フィルムが120℃付近で溶融し、孔が閉塞して電流やイオンの流れを遮断することによって、電池の温度上昇が抑制される。これは、シャットダウン機能と呼ばれている。しかし、外熱によって温度が上昇した場合や温度上昇によって電池内部で化学反応が起きた場合には、シャットダウン機能が働いても電池温度はさらに上昇する。そして、電池温度が150℃以上にまで達すると、多孔質フィルムが収縮して内部短絡が起こり、発火等が起きることがあった。   In a lithium ion battery, the risk of fuming increases due to temperature rise due to external heat, overcharge, internal short circuit, external short circuit, and the like. These can be prevented to some extent by an external protection circuit. In addition, the polyolefin resin porous film used as a separator for lithium ion batteries melts at around 120 ° C, and the pores are blocked to block current and ion flow, thereby suppressing battery temperature rise. The This is called a shutdown function. However, when the temperature rises due to external heat or when a chemical reaction occurs inside the battery due to the temperature rise, the battery temperature further rises even if the shutdown function is activated. When the battery temperature reaches 150 ° C. or higher, the porous film contracts, an internal short circuit occurs, and ignition may occur.

このように、セパレータのシャットダウン機能では電池の発火を抑制することができ難くなっている。また、電池の高容量化に伴って充放電における大電流化も進んでおり、その際に発生するジュール熱を抑制するために、電解液を含浸したセパレータの抵抗値そのものを下げることも必要になっている。そのため、ポリオレフィン系樹脂の多孔質フィルムよりも熱収縮温度を上げることによって、内部短絡を起こり難くして電池の発火を抑制すると共に、抵抗値を下げることを目的として、金属酸化物粒子を用いたセパレータが開発されている。このセパレータでは、金属酸化物粒子によって細孔径をコントロールし、内部短絡の抑制、耐熱性の向上、抵抗値の低下が可能となっている。   As described above, it is difficult to suppress the ignition of the battery by the shutdown function of the separator. In addition, with the increase in capacity of batteries, the increase in current during charging and discharging is also progressing, and in order to suppress the Joule heat generated at that time, it is also necessary to lower the resistance value of the separator impregnated with the electrolyte. It has become. Therefore, metal oxide particles were used for the purpose of suppressing the ignition of the battery by increasing the heat shrinkage temperature more than the polyolefin resin porous film, thereby preventing the internal short circuit and lowering the resistance value. Separator has been developed. In this separator, the pore diameter is controlled by the metal oxide particles, and internal short circuit can be suppressed, heat resistance can be improved, and resistance value can be reduced.

例えば、無機粒子である擬似ベーマイトとバインダーとを混合し、別に準備したフィルム上にコーティング後に乾燥及び剥離することによって、多孔質フィルムとして得られた微細多孔擬似ベーマイト層を有するセパレータが提案されている(例えば、特許文献1参照)。しかしながら、このセパレータは、熱収縮温度は向上しているものの、粉落ちやひび割れが起こり易いために、巻き取り状のセパレータとして単独で取り出すのが難しく、電池製造時のハンドリング性が悪いという問題があった。   For example, a separator having a microporous pseudoboehmite layer obtained as a porous film by mixing pseudoboehmite that is inorganic particles and a binder, drying and peeling after coating on a separately prepared film has been proposed. (For example, refer to Patent Document 1). However, although this separator has an improved heat shrinkage temperature, powder falling and cracking are likely to occur, so that it is difficult to take out as a rolled-up separator alone, and handling properties at the time of battery production are poor. there were.

また、不織布上及び不織布中に多孔性の無機被覆を有し、該無機被覆が、無機粒子であるアルミニウム(Al)、ケイ素(Si)及び/又はジルコニウム(Zr)の酸化物粒子を有しているセパレータが提案されている(例えば、特許文献2及び3参照)。このセパレータは、基材として不織布を利用しているため、ハンドリング性が向上している。しかし、ゾルゲル法によって生成するシリカ粒子によって他の無機粒子を目止めしているために、衝撃や変形による粉落ちやひび割れが発生し易く、これがピンホールの生成につながって、微小な内部短絡に起因する漏れ電流の原因となり、有用なセパレータとはいい難かった。   In addition, it has a porous inorganic coating on the nonwoven fabric and in the nonwoven fabric, and the inorganic coating has oxide particles of aluminum (Al), silicon (Si) and / or zirconium (Zr) which are inorganic particles. A separator has been proposed (see, for example, Patent Documents 2 and 3). Since this separator uses a non-woven fabric as a base material, handling properties are improved. However, because the silica particles produced by the sol-gel method keeps track of other inorganic particles, powder and cracks are likely to occur due to impact and deformation, which leads to the generation of pinholes, resulting in minute internal short circuits. This was a cause of leakage current, and it was difficult to be a useful separator.

不織布上及び不織布中に、無機粒子と有機バインダーを含有してなる多孔質体を設けたセパレータも提案されている(例えば、特許文献4及び5参照)。特許文献4では、無機粒子として、平板状のベーマイト粒子が提案されている。しかし、平板状のベーマイト粒子を用いた場合、漏れ電流の抑制効果は向上するものの、平板状の無機粒子がセパレータの細孔を塞ぐため、リチウムイオンの通過を妨げ、内部抵抗が上昇するといった問題があった。   A separator provided with a porous body containing inorganic particles and an organic binder on and in a nonwoven fabric has also been proposed (see, for example, Patent Documents 4 and 5). Patent Document 4 proposes tabular boehmite particles as inorganic particles. However, when tabular boehmite particles are used, the effect of suppressing leakage current is improved, but the tabular inorganic particles block the pores of the separator, thereby preventing the passage of lithium ions and increasing the internal resistance. was there.

また、特許文献5では、無機粒子として、一次粒子の連なった二次粒子構造を有するベーマイト粒子が提案されている。リチウムイオン電池において、より小さな電池体積により多くのエネルギーを貯蔵するためには、発電に直接寄与しないセパレータ等の部材はできる限り薄型化することが好ましい。しかし、このような無機粒子を基材上に塗工したセパレータにおいては、該無機粒子の分散状態や塗工方式によっては、ピンホールが発生する場合があり、セパレータを薄くした場合に、正極材料と負極材料の間の絶縁を十分に保つことができず、漏れ電流が増大する場合があった。   Patent Document 5 proposes boehmite particles having a secondary particle structure in which primary particles are continuous as inorganic particles. In a lithium ion battery, in order to store more energy in a smaller battery volume, it is preferable to make a member such as a separator that does not directly contribute to power generation as thin as possible. However, in a separator in which such inorganic particles are coated on a substrate, pinholes may occur depending on the dispersion state of the inorganic particles and the coating method. Insulation between the electrode and the negative electrode material could not be sufficiently maintained, and the leakage current sometimes increased.

また、不織布上及び不織布中に、無機粒子と有機バインダーを含有してなる多孔質体を設けたセパレータにおいて、多孔質体の付与量(以下、「塗工量」と略記する場合がある)が少ない場合には、漏れ電流の小さな電池が得られないという問題があり、塗工量が多い場合には、厚みが薄くて内部抵抗の低いセパレータが得られないという問題がある。この問題を解決するため、細孔径の異なる2つの塗層を積層してなるセパレータが提案されているが(例えば、特許文献6参照)、漏れ電流と内部抵抗を高い水準で両立しているものではなかった。   Moreover, in the separator which provided the porous body which contains an inorganic particle and an organic binder on a nonwoven fabric and in a nonwoven fabric, the provision amount (henceforth "the coating amount" may be abbreviated as a "coating amount") of a porous body. When the amount is small, there is a problem that a battery having a small leakage current cannot be obtained. When the amount of coating is large, there is a problem that a separator having a small thickness and a low internal resistance cannot be obtained. In order to solve this problem, a separator formed by laminating two coating layers having different pore diameters has been proposed (see, for example, Patent Document 6), which has both high leakage current and high internal resistance. It wasn't.

特表2001−527274号公報JP-T-2001-527274 特表2005−536658号公報JP 2005-536658 Gazette 特表2009−507353号公報Special table 2009-507353 特開2007−157723号公報JP 2007-157723 A 国際公開第2008/114727号パンフレットInternational Publication No. 2008/114727 Pamphlet 特表2006−507635号公報JP 2006-507635 A

本発明の課題は、少なくとも無機粒子を含有してなる耐熱性の高いリチウムイオン電池用セパレータにおいて、低内部抵抗、ピンホールや粉落ちが発生し難い、漏れ電流が少ないといった性能を兼ね備えたリチウムイオン電池用セパレータを提供することにある。   An object of the present invention is a lithium ion battery separator that contains at least inorganic particles and has high internal resistance, low internal resistance, resistance to pinholes and powder falling, and low leakage current. The object is to provide a battery separator.

本発明者らは、上記課題を解決するために鋭意研究した結果、下記発明を見出した。   As a result of intensive studies to solve the above problems, the present inventors have found the following invention.

(1)少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータにおいて、該無機粒子の形状が不定形であることを特徴とするリチウムイオン電池用セパレータ。
(2)無機粒子が凹みのある形状を有する(1)記載のリチウムイオン電池用セパレータ。
(1) A lithium ion battery separator comprising a porous body mainly composed of inorganic particles, wherein the inorganic particles have an irregular shape.
(2) The separator for lithium ion batteries according to (1), wherein the inorganic particles have a concave shape.

(3)無機粒子がアルミナ水和物である(1)又は(2)記載のリチウムイオン電池用セパレータ。 (3) The separator for lithium ion batteries according to (1) or (2), wherein the inorganic particles are alumina hydrate.

(4)少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータにおいて、無機粒子が、その20質量%水分散物のpHが7.0以上8.3以下であり、該水分散物の粘度が50mPa・s以上2000mPa・s以下であるアルミナ水和物であることを特徴とするリチウムイオン電池用セパレータ。 (4) In a lithium ion battery separator comprising a porous body mainly composed of at least inorganic particles, the inorganic particles have a 20 mass% aqueous dispersion having a pH of 7.0 or more and 8.3 or less, A separator for a lithium ion battery, wherein the aqueous dispersion is an alumina hydrate having a viscosity of 50 mPa · s to 2000 mPa · s.

(5)不織布基材を含有してなる(1)〜(4)のいずれか記載のリチウムイオン電池用セパレータ。
(6)少なくとも片面に、不織布基材の繊維が露出してなる(5)記載のリチウムイオン電池用セパレータ。
(5) The lithium ion battery separator according to any one of (1) to (4), comprising a nonwoven fabric substrate.
(6) The separator for a lithium ion battery according to (5), wherein the fibers of the nonwoven fabric substrate are exposed on at least one surface.

(7)不織布基材に、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体と、形状が不定形であり、凹みのある形状であり、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体とが、この順に積層されており、不織布基材の片面が実質的に第2の多孔質体によって被覆されており、反対面には不織布基材の繊維が露出してなることを特徴とするリチウムイオン電池用セパレータ。 (7) The first porous body mainly composed of inorganic particles having a dispersed particle diameter of 1.0 μm or more and 3.0 μm or less on the nonwoven fabric substrate and having an aggregated structure, and the shape is irregular And a second porous body mainly composed of inorganic particles having a dent shape, a dispersed particle diameter of less than 1.0 μm, and having no agglomerated structure. A separator for a lithium ion battery, wherein one side of the substrate is substantially covered with a second porous body, and fibers of the nonwoven fabric substrate are exposed on the opposite side.

本発明では、少なくとも無機粒子を含有してなる耐熱性の高いリチウムイオン電池用セパレータにおいて、低内部抵抗、ピンホールや粉落ちが発生し難い、漏れ電流が少ないといった性能を兼ね備えたリチウムイオン電池用セパレータを提供することができる。   In the present invention, a lithium ion battery separator having high heat resistance, which contains at least inorganic particles, has a low internal resistance, a resistance to pinholes and powder falling off, and a low leakage current. A separator can be provided.

少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータにおいて、該無機粒子の形状が不定形であることを特徴とするリチウムイオン電池用セパレータにより、ピンホール及び粉落ちが少ないという効果を達成することができる。   In a lithium ion battery separator comprising a porous body mainly composed of at least inorganic particles, the lithium ion battery separator is characterized in that the shape of the inorganic particles is indefinite. The effect of being less can be achieved.

また、無機粒子が凹みのある形状を有することにより、無機粒子で充填された状態でも、凹みにより、空隙が形成されやすくなるため、漏れ電流が少なく、かつ内部抵抗が低いという効果を達成することができる。   In addition, since the inorganic particles have a concave shape, even when the inorganic particles are filled with the inorganic particles, voids are easily formed by the recesses, thereby achieving the effects of low leakage current and low internal resistance. Can do.

無機粒子がアルミナ水和物であることにより、セパレータの耐熱性が高くなり、かつこれを用いた電池の寿命も長くなるという効果を達成することができる。   When the inorganic particles are alumina hydrate, it is possible to achieve the effect that the heat resistance of the separator is increased and the life of the battery using the separator is also increased.

少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータにおいて、無機粒子が、その20質量%水分散物のpHが7.0以上8.3以下であり、該水分散物の粘度が50mPa・s以上2000mPa・s以下であるアルミナ水和物であることを特徴とするリチウムイオン電池用セパレータにより、ピンホールが少ないという効果を達成することができる。   In a lithium ion battery separator comprising a porous body mainly composed of at least inorganic particles, the inorganic particles have a pH of 7.0 to 8.3 in a 20% by mass aqueous dispersion, and the aqueous dispersion The lithium ion battery separator is characterized in that the product is an alumina hydrate having a viscosity of 50 mPa · s or more and 2000 mPa · s or less, thereby achieving an effect that there are few pinholes.

また、少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータにおいて、さらに不織布基材を含有してなることにより、ハンドリング性に優れ、性能が均一で、引っ張り強度が高いセパレータが得られるという効果を達成することができる。   In addition, in a lithium ion battery separator that contains at least a porous body mainly composed of inorganic particles, by further including a non-woven fabric base material, the handling property is excellent, the performance is uniform, and the tensile strength is high. The effect that a separator is obtained can be achieved.

また、不織布基材を含有してなるセパレータの少なくとも片面において、不織布基材の繊維が露出してなることにより、漏れ電流が小さいという効果を達成することができる。   Moreover, the effect that the leakage current is small can be achieved by exposing the fibers of the nonwoven fabric substrate on at least one side of the separator containing the nonwoven fabric substrate.

また、 不織布基材に、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体と、形状が不定形であり、凹みのある形状であり、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体とが、この順に積層されており、不織布基材の片面が実質的に第2の多孔質体によって被覆されており、反対面には不織布基材の繊維が露出してなることを特徴とするリチウムイオン電池用セパレータによって、漏れ電流が小さく、厚みが薄く、かつ内部抵抗が低いという効果を達成することができる。   Further, in the nonwoven fabric base material, the dispersed particle diameter is 1.0 μm or more and 3.0 μm or less, the first porous body mainly composed of inorganic particles having an aggregated structure, and the shape is irregular, A second porous body mainly composed of inorganic particles having a dent shape, a dispersed particle size of less than 1.0 μm, and having no aggregate structure is laminated in this order, The lithium ion battery separator is characterized in that one surface is substantially covered with the second porous body, and the fibers of the nonwoven fabric substrate are exposed on the opposite surface. The effect of being thin and having low internal resistance can be achieved.

形状が不定形である無機粒子の走査型電子顕微鏡(SEM)写真である。It is a scanning electron microscope (SEM) photograph of the inorganic particle whose shape is indefinite. 菱形柱状を有する無機粒子のSEM写真である。It is a SEM photograph of the inorganic particle which has a rhombus column shape. キューブ状を有する無機粒子のSEM写真である。It is a SEM photograph of inorganic particles which have a cube shape. 凹みのある形状を有する無機粒子のSEM写真である。It is a SEM photograph of the inorganic particle which has a shape with a dent. 平板状を有する無機粒子のSEM写真である。It is a SEM photograph of the inorganic particle which has flat form. 円柱状を有する無機粒子のSEM写真である。It is a SEM photograph of inorganic particles having a columnar shape. 不織布基材と少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータの断面構造を示す概念図である。It is a conceptual diagram which shows the cross-sectional structure of the separator for lithium ion batteries containing the nonwoven fabric base material and the porous body which has an inorganic particle as a main component. 不織布基材と少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータの断面構造を示す概念図である。It is a conceptual diagram which shows the cross-sectional structure of the separator for lithium ion batteries containing the nonwoven fabric base material and the porous body which has an inorganic particle as a main component. 不織布基材と少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータの断面構造を示す概念図である。It is a conceptual diagram which shows the cross-sectional structure of the separator for lithium ion batteries containing the nonwoven fabric base material and the porous body which has an inorganic particle as a main component. 不織布基材と少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータの断面構造を示す概念図である。It is a conceptual diagram which shows the cross-sectional structure of the separator for lithium ion batteries containing the nonwoven fabric base material and the porous body which has an inorganic particle as a main component. 不織布基材と少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータの断面構造を示す概念図である。It is a conceptual diagram which shows the cross-sectional structure of the separator for lithium ion batteries containing the nonwoven fabric base material and the porous body which has an inorganic particle as a main component.

本発明のセパレータは、少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータである。多孔質体は、少なくとも無機粒子を多数集合させたものである。例えば、無機粒子のみが多数集合されてなる多孔質体、無機バインダー、有機バインダー等から選ばれる少なくとも一種と共に無機粒子が多数集合されてなる多孔質体等が挙げられる。本発明において、「少なくとも無機粒子を主体とする多孔質体」とは、「空隙以外の部分の70体積%以上が無機粒子から構成されている多孔質体」を言う。   The separator of the present invention is a lithium ion battery separator containing a porous body mainly composed of at least inorganic particles. The porous body is a collection of at least a large number of inorganic particles. Examples thereof include a porous body in which only a large number of inorganic particles are aggregated, a porous body in which a large number of inorganic particles are aggregated together with at least one selected from an inorganic binder, an organic binder, and the like. In the present invention, “a porous body mainly composed of at least inorganic particles” means “a porous body in which 70% by volume or more of the portion other than the voids is composed of inorganic particles”.

本発明のセパレータ(1)では、無機粒子の形状が不定形であることを特徴としている。図1は、形状が不定形である無機粒子のSEM写真である。図2及び図3は、定形の無機粒子のSEM写真である。図2は菱形柱状の無機粒子であり、図3はキューブ状の無機粒子である。図1は、平板状の粒子であるが、各粒子の形状が均一ではなく、不定形である。無機粒子の形状が不定形であることによって、多孔質体中で無機粒子がランダムな状態でありながら、密に充填され、複雑な配置となるため、粉落ちが防止され、ピンホールが抑制される。そして、低い漏れ電流を実現することができる。   The separator (1) of the present invention is characterized in that the shape of the inorganic particles is indefinite. FIG. 1 is an SEM photograph of inorganic particles having an irregular shape. 2 and 3 are SEM photographs of regular inorganic particles. FIG. 2 shows diamond-shaped inorganic particles, and FIG. 3 shows cube-shaped inorganic particles. Although FIG. 1 shows tabular grains, the shape of each grain is not uniform and is indefinite. Due to the irregular shape of the inorganic particles, the inorganic particles are in a random state in the porous body, but are closely packed and have a complex arrangement, thus preventing powder falling and suppressing pinholes. The And a low leakage current can be realized.

不定形である無機粒子を作製する方法は、特に制限はない。例えば、無機粒子の結晶を成長させる段階で成長条件を操作することにより不定形とする方法、無機粒子を砕いて形成する方法が挙げられる。   There is no particular limitation on the method for producing the inorganic particles having an irregular shape. For example, a method of forming an amorphous shape by manipulating the growth conditions at the stage of growing crystals of inorganic particles and a method of crushing and forming inorganic particles can be mentioned.

本発明のセパレータ(2)のように、形状が不定形である無機粒子が凹みのある形状を有していることが好ましい。図4は、凹みのある形状を有する無機粒子のSEM写真である。図2、図3、図5及び図6は、凹みのない形状を有する無機粒子のSEM写真である。図5は不定形の平板状無機粒子である。図6は、定形の円柱状無機粒子である。図2は定形の菱形柱状の無機粒子である。図3は定形のキューブ状の無機粒子である。図4は、図5と同様に、不定形の平板状無機粒子であるが、その外縁の一部に凹みを有している(白色矢印部分)。この凹みが存在することによって、多孔質体中で無機粒子が密に充填された場合でも、空隙が形成される。密に充填されることで、漏れ電流を抑制することができ、凹みによる空隙の形成によって、内部抵抗を低くすることができる。   Like the separator (2) of this invention, it is preferable that the inorganic particle whose shape is indefinite has a shape with a dent. FIG. 4 is an SEM photograph of inorganic particles having a concave shape. 2, 3, 5, and 6 are SEM photographs of inorganic particles having a shape without a dent. FIG. 5 shows irregular tabular inorganic particles. FIG. 6 shows regular cylindrical inorganic particles. FIG. 2 shows regular diamond-shaped columnar inorganic particles. FIG. 3 shows regular cube-shaped inorganic particles. FIG. 4 is an irregular tabular inorganic particle similar to FIG. 5, but has a recess at a part of its outer edge (white arrow portion). Due to the presence of the dent, voids are formed even when the inorganic particles are densely packed in the porous body. By densely filling, leakage current can be suppressed, and the internal resistance can be lowered by forming a gap by a dent.

無機粒子の凹みを形成する方法は、特に制限はない。例えば、無機粒子の結晶を成長させる段階で成長条件を操作することにより凹みを形成させる方法、無機粒子を砕いて形成する方法等が挙げられる。   There is no particular limitation on the method for forming the recesses of the inorganic particles. For example, a method of forming a dent by manipulating growth conditions at the stage of growing crystals of inorganic particles, a method of crushing and forming inorganic particles, and the like can be mentioned.

本発明において、無機粒子としては、α−アルミナ、β−アルミナ、γ−アルミナ等のアルミナ;ベーマイト等のアルミナ水和物;酸化マグネシウム、酸化カルシウム等のアルカリ土類金属の酸化物;シリカ;炭酸カルシウム、炭酸マグネシウム等のアルカリ土類金属炭酸塩;ケイ酸アルミニウム等の複合酸化物等が挙げられる。特に安定性の点から、アルミナ又はアルミナ水和物が好ましく用いられる。また、本発明のセパレータ(3)のように、無機粒子がアルミナ水和物であることがより好ましい。アルミナ水和物としては、ギブサイト型、ベーマイト型、擬ベーマイト型、バイヤライト型、ジアスポア型の各種結晶型のものが挙げられる。本発明においては、耐熱性が高く、サイクル寿命の良好な電池が得られる点から、合成ベーマイトであることが好ましい。   In the present invention, inorganic particles include alumina such as α-alumina, β-alumina and γ-alumina; alumina hydrate such as boehmite; oxide of alkaline earth metal such as magnesium oxide and calcium oxide; silica; Examples thereof include alkaline earth metal carbonates such as calcium and magnesium carbonate; complex oxides such as aluminum silicate. In particular, alumina or alumina hydrate is preferably used from the viewpoint of stability. Moreover, as for the separator (3) of this invention, it is more preferable that an inorganic particle is an alumina hydrate. Examples of the alumina hydrate include various crystal types such as gibbsite type, boehmite type, pseudoboehmite type, bayerite type, and diaspore type. In the present invention, synthetic boehmite is preferable from the viewpoint of obtaining a battery having high heat resistance and good cycle life.

本発明のセパレータ(4)は、無機粒子が、その20質量%水分散物のpHが7.0以上8.3以下であり、該水分散物の粘度が50mPa・s以上2000mPa・s以下であるアルミナ水和物であることを特徴としている。該水分散物の粘度は、より好ましくは100mPa・s以上500mPa・s以下である。   In the separator (4) of the present invention, the inorganic particles have a 20 mass% aqueous dispersion having a pH of 7.0 or more and 8.3 or less, and the viscosity of the aqueous dispersion is 50 mPa · s or more and 2000 mPa · s or less. It is characterized by being an alumina hydrate. The viscosity of the aqueous dispersion is more preferably 100 mPa · s or more and 500 mPa · s or less.

無機粒子の20質量%水分散物のpHは、電導率0.5μS/cm以下のイオン交換水を用い、20質量%に調製したアルミナ水和物粒子の水分散物における25℃でガラス電極pH計により測定されるpHである。   The pH of the 20% by mass aqueous dispersion of inorganic particles was adjusted to a glass electrode pH at 25 ° C. in an aqueous dispersion of alumina hydrate particles prepared to 20% by mass using ion exchange water having a conductivity of 0.5 μS / cm or less. PH measured by a meter.

無機粒子の20質量%水分散物の粘度とは、JIS−Z8803に準じ、ブルックフィールド粘度計(B型粘度計)を用い、電導率0.5μS/cm以下のイオン交換水を用い、20質量%に調製したアルミナ水和物粒子の水分散物における25℃での測定値を表す。   According to JIS-Z8803, the viscosity of the 20 mass% aqueous dispersion of inorganic particles is 20 mass using ion-exchanged water having a conductivity of 0.5 μS / cm or less using a Brookfield viscometer (B-type viscometer). % Represents a measured value at 25 ° C. in an aqueous dispersion of alumina hydrate particles prepared in%.

本発明のセパレータ(4)において、アルミナ水和物としては、ギブサイト型、ベーマイト型、擬ベーマイト型、バイヤライト型、ジアスポア型の各種結晶型のものが挙げられる。本発明においては、耐熱性が高く、サイクル寿命の良好な電池が得られる点から、合成ベーマイトであることが好ましい。また、アルミナ水和物における粒子の形状については、特に制限はなく、略球状、ラグビーボール状、キューブ状などの粒状でもよく、鱗片状や針状、板状などでもよい。また、一次粒子が凝集し二次粒子となったものでも、非凝集粒子でも用いることができる。しかし、粒子の形状が不定形であることが好ましく、凹みのある形状を有することがより好ましい。   In the separator (4) of the present invention, examples of the alumina hydrate include various crystal types such as gibbsite type, boehmite type, pseudoboehmite type, bayerite type, and diaspore type. In the present invention, synthetic boehmite is preferable from the viewpoint of obtaining a battery having high heat resistance and good cycle life. Moreover, there is no restriction | limiting in particular about the shape of the particle | grains in an alumina hydrate, Granules, such as substantially spherical shape, rugby ball shape, and cube shape, scale shape, needle shape, plate shape, etc. may be sufficient. Moreover, the primary particles can be aggregated into secondary particles or non-aggregated particles can be used. However, the shape of the particles is preferably indeterminate, and more preferably has a concave shape.

本発明において、無機粒子を接着させる目的で、バインダーを多孔質体に含有させてもよい。バインダーとしては、電気化学的に安定かつ非水電解液に対して安定であれば特に制限はなく、無機バインダーを使用してもよいし、有機バインダーを使用してもよい。   In the present invention, a binder may be contained in the porous body for the purpose of adhering inorganic particles. The binder is not particularly limited as long as it is electrochemically stable and stable with respect to the nonaqueous electrolytic solution, and an inorganic binder or an organic binder may be used.

無機バインダーとしては、例えば、一般にはシランカップリング剤とも称され、脱水又は脱アルコール反応等を経て、無機酸化物と有機化合物とを化学結合させる、3−グリシジルオキシトリメトキシシラン、メタクリロイルオキシプロピルトリメトキシシラン、3−アミノプロピルトリエトシキシラン等の有機官能基を有するシリコン化合物と、シリカや酸化ジルコニウム等の無機酸化物ゾルとの混合物が、接着強度や耐熱性に優れるために好ましいが、これに限定されるものではない。   As the inorganic binder, for example, generally called a silane coupling agent, a 3-glycidyloxytrimethoxysilane, methacryloyloxypropyltrimethylsilane, which chemically bonds an inorganic oxide and an organic compound through a dehydration or dealcoholization reaction or the like. A mixture of a silicon compound having an organic functional group such as methoxysilane or 3-aminopropyltriethoxysilane and an inorganic oxide sol such as silica or zirconium oxide is preferable because of its excellent adhesive strength and heat resistance. It is not limited.

有機バインダーとしては、例えば、例えば、エチレン−酢酸ビニル共重合体(EVA)、アクリレート共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、アクリレート共重合体、ポリウレタンなどの樹脂等の非水溶性バインダーが挙げられる。これらの樹脂の一部に、非水電解液への溶解を防止するために架橋構造を導入したものも用いることができる。また、ポリビニルアルコール、ポリビニルピロリドンなどの合成高分子;カルボキシメチルセルロースの塩、ヒドロキシメチルセルロースなどのセルロース誘導体;でんぷん、ゼラチン及びそれらの変性物、カゼイン、アルブミン、アルギン酸及びその塩等の天然高分子等の水溶性バインダーを用いることができる。これらのバインダーは1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、SBR、アクリレート共重合体、ポリビニルアルコール、ポリビニルピロリドンなどの合成高分子;カルボキシメチルセルロースの塩、ヒドロキシメチルセルロースなどのセルロース誘導体が特に好ましい。   Examples of the organic binder include water-insoluble water such as ethylene-vinyl acetate copolymer (EVA), acrylate copolymer, fluorine rubber, styrene butadiene rubber (SBR), acrylate copolymer, polyurethane, and the like. A binder is mentioned. A resin in which a crosslinked structure is introduced in order to prevent dissolution in a non-aqueous electrolyte can also be used for some of these resins. In addition, synthetic polymers such as polyvinyl alcohol and polyvinyl pyrrolidone; salts of carboxymethyl cellulose, cellulose derivatives such as hydroxymethyl cellulose; Can be used. These binders may be used individually by 1 type, and may use 2 or more types together. Among these, synthetic polymers such as SBR, acrylate copolymers, polyvinyl alcohol, and polyvinylpyrrolidone; salts of carboxymethyl cellulose and cellulose derivatives such as hydroxymethyl cellulose are particularly preferable.

バインダーの添加量としては、セパレータに必要とされるイオンの透過性を維持する観点から、空隙を除く多孔質体の体積の30体積%未満である必要があり、20体積%未満であることが好ましい。また、多孔質体からの粉落ちを減らす観点からは、3体積%以上であることが好ましい。   The addition amount of the binder needs to be less than 30% by volume of the volume of the porous body excluding the voids and from less than 20% by volume from the viewpoint of maintaining the permeability of ions required for the separator. preferable. Moreover, it is preferable that it is 3 volume% or more from a viewpoint of reducing the powder fall from a porous body.

本発明のセパレータは、多孔質体単独でセパレータとすることもできるが、セパレータとして必要な強度を持たせる観点からは、多孔質フィルム、織布、不織布、編物等の基材を含有することが好ましい。具体的には、多孔質フィルム上に多孔質体を有するセパレータ、織布、不織布、編物等の繊維状物からなる基材上又は基材内部の空孔内に多孔質体を有するセパレータ等が挙げられる。   The separator of the present invention can be used alone as a porous body. However, from the viewpoint of providing the separator with the necessary strength, it may contain a substrate such as a porous film, a woven fabric, a nonwoven fabric, or a knitted fabric. preferable. Specifically, a separator having a porous body on a porous film, a separator having a porous body on a substrate made of a fibrous material such as a woven fabric, a nonwoven fabric, or a knitted fabric or in a pore inside the substrate, etc. Can be mentioned.

多孔質体を形成する方法としては、例えば、剥離性能を有するフィルム等に無機粒子を含有する塗工液を塗工・乾燥した後、剥離して多孔質体を形成する方法、リチウムイオン電池用の正極又は負極上に無機粒子を含有する塗工液を塗工・乾燥して多孔質体を形成する方法、織布、不織布、編物、多孔質フィルム等の基材に無機粒子を含有する塗工液を塗工・乾燥して多孔質体を形成する方法などが挙げられる。   As a method of forming a porous body, for example, a method of forming a porous body by coating and drying a coating solution containing inorganic particles on a film having peelability, etc., and for a lithium ion battery A method of forming a porous body by applying and drying a coating liquid containing inorganic particles on a positive electrode or a negative electrode, a coating containing inorganic particles on a substrate such as a woven fabric, a nonwoven fabric, a knitted fabric, or a porous film Examples thereof include a method of forming a porous body by applying and drying a working solution.

織布、不織布、編物、多孔質フィルム等の基材の構成材料は、電気化学的に安定かつ非水電解液に対して安定であれば特に制限はない。例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びそれらの誘導体、芳香族ポリエステル、全芳香族ポリエステルなどのポリエステル;ポリオレフィン;アクリルポリマー;ポリアセタール;ポリカーボネート;脂肪族ポリケトン、芳香族ポリケトンなどのポリケトン;脂肪族ポリアミド、芳香族ポリアミド、全芳香族ポリアミド、半芳香族ポリアミドなどのポリアミド;ポリイミド;ポリアミドイミド;ポリフェニレンスルフィド;ポリベンゾイミダゾール;ポリエーテルエーテルケトン;ポリエーテルスルホン;ポリ(パラ−フェニレンベンゾビスチアゾール);ポリ(パラ−フェニレン−2,6−ベンゾビスオキサゾール);ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素樹脂;ポリビニルアルコール;ポリウレタン;ポリ塩化ビニルなどが挙げられる。これらの構成材料から2種以上を組み合わせて使用してもよい。これらの中で、融点が高く、また、電池に用いられる電解液への耐性が高いことから、ポリエステル又は芳香族ポリアミドが好ましい。   The constituent material of the base material such as woven fabric, non-woven fabric, knitted fabric, and porous film is not particularly limited as long as it is electrochemically stable and stable to the non-aqueous electrolyte. For example, polyethylene terephthalate, polybutylene terephthalate and derivatives thereof, polyester such as aromatic polyester and wholly aromatic polyester; polyolefin; acrylic polymer; polyacetal; polycarbonate; polyketone such as aliphatic polyketone and aromatic polyketone; Polyamide, Polyamideimide, Polyphenylene sulfide, Polybenzimidazole, Polyetheretherketone, Polyethersulfone, Poly (para-phenylenebenzobisthiazole), Poly (para -Phenylene-2,6-benzobisoxazole); fluororesin such as polyvinylidene fluoride and polytetrafluoroethylene; Call; polyurethane; polyvinyl chloride, and the like. Two or more of these constituent materials may be used in combination. Of these, polyesters or aromatic polyamides are preferred because of their high melting points and high resistance to electrolytes used in batteries.

無機粒子の塗工液を塗工する方法に特に制限はなく、例えば、エアドクターコーター、ブレードコーター、ナイフコーター、ロッドコーター、スクイズコーター、含浸コーター、グラビアコーター、キスロールコーター、ダイコーター、リバースロールコーター、トランスファーロールコーター、スプレーコーター、ローターダンプニング等を用いた方法が挙げられる。   There are no particular restrictions on the method of coating the inorganic particle coating solution, such as air doctor coater, blade coater, knife coater, rod coater, squeeze coater, impregnation coater, gravure coater, kiss roll coater, die coater, reverse roll. Examples thereof include a method using a coater, transfer roll coater, spray coater, rotor dampening and the like.

本発明において、塗工後に乾燥する方法は、特に限定されないが、特に熱風を吹きつける方法、赤外線を照射する方法など、加熱により乾燥する方法は、生産性が良く好ましく用いられる。   In the present invention, the method of drying after coating is not particularly limited, but a method of drying by heating, such as a method of blowing hot air or a method of irradiating infrared rays, is preferably used with good productivity.

上記の方法において、より均一な多孔質体を作製するために、必要に応じて、増粘剤、消泡剤、ぬれ剤、防腐剤等を適宜使用することができる。   In the above method, in order to produce a more uniform porous body, a thickener, an antifoaming agent, a wetting agent, a preservative, and the like can be appropriately used as necessary.

本発明において、セパレータの坪量は10.0〜40.0g/mが好ましく、15.0〜37.5g/mがより好ましい。また、セパレータの厚みは10.0〜40.0μmが好ましく、15.0〜35.0μmがより好ましい。セパレータの密度としては0.4〜1.2g/cmが好ましく、0.6〜1.0g/cmがより好ましい。In this invention, 10.0-40.0 g / m < 2 > is preferable and the basic weight of a separator has more preferable 15.0-37.5 g / m < 2 >. Moreover, 10.0-40.0 micrometers is preferable and, as for the thickness of a separator, 15.0-35.0 micrometers is more preferable. Preferably 0.4~1.2g / cm 3 as the density of the separator, 0.6~1.0g / cm 3 is more preferable.

本発明において、多孔質体の量としては、乾燥固形分で、1.0〜20.0g/mが好ましく、さらに4.0〜17.5g/mがより好ましい。多孔質体の量が1.0g/m未満であると、細孔径が大きくなり、ショートが発生するなどして、良好な電池特性が発現しなくなる場合がある。一方、多孔質体の量が20.0g/mを超えると、セパレータの薄膜化が困難となる場合がある。In the present invention, the amount of the porous body is preferably 1.0 to 20.0 g / m 2 , more preferably 4.0 to 17.5 g / m 2 in terms of dry solid content. When the amount of the porous material is less than 1.0 g / m 2 , the pore diameter becomes large and a short circuit may occur, so that good battery characteristics may not be exhibited. On the other hand, if the amount of the porous body exceeds 20.0 g / m 2 , it may be difficult to reduce the thickness of the separator.

本発明において、多孔質体表面の平坦化や厚みをコントロールする目的で、カレンダー処理や熱カレンダー処理により、セパレータの表面を平滑化してもよい。   In the present invention, the surface of the separator may be smoothed by calendering or thermal calendering for the purpose of controlling the flatness and thickness of the porous body surface.

本発明のセパレータが、多孔質フィルム、織布、不織布、編物等の基材を含有する場合、ハンドリング性に優れていること、性能が均一なセパレータが得られやすいこと、引っ張り強度を高くできることなどの理由から、不織布基材を含有させたセパレータ(5)であることがより好ましい。   When the separator of the present invention contains a substrate such as a porous film, woven fabric, non-woven fabric, or knitted fabric, it has excellent handling properties, can easily obtain a separator with uniform performance, can have high tensile strength, etc. For this reason, a separator (5) containing a nonwoven fabric base material is more preferable.

不織布基材としては、例えば、スパンボンド法、メルトブロー法、その他の乾式法;湿式法;エレクトロスピニング法などの方法によって製造した不織布基材を使用することができる。   As a nonwoven fabric base material, the nonwoven fabric base material manufactured by methods, such as a spun bond method, a melt blow method, other dry methods; wet methods; electrospinning method, can be used, for example.

本発明において、不織布基材表面の平坦化や厚みをコントロールする目的で、カレンダー処理や熱カレンダー処理により不織布基材を平滑化してもよい。   In the present invention, the nonwoven fabric substrate may be smoothed by calendaring or thermal calendaring for the purpose of controlling the surface and thickness of the nonwoven fabric substrate.

本発明のリチウムイオン電池用セパレータに用いる不織布基材としては、目付が5.0〜20.0g/mであるのが好ましい。目付が20.0g/mを超えると、不織布基材だけでセパレータの大半を占めることとなり、多孔質体による効果が得られにくい場合がある。5.0g/m未満であると、不織布基材としての均一性を得ることが難しい場合がある。不織布基材の目付としては、7.0〜20.0g/mがより好ましい。なお、目付はJIS P 8124(紙及び板紙−坪量測定法)に規定された方法に基づく坪量を意味する。As a nonwoven fabric base material used for the separator for lithium ion batteries of this invention, it is preferable that a fabric weight is 5.0-20.0 g / m < 2 >. When the basis weight exceeds 20.0 g / m 2 , the nonwoven fabric base material alone occupies most of the separator, and the effect of the porous body may be difficult to obtain. If it is less than 5.0 g / m 2 , it may be difficult to obtain uniformity as a nonwoven fabric substrate. As a fabric weight of a nonwoven fabric base material, 7.0-20.0 g / m < 2 > is more preferable. The basis weight means the basis weight based on the method defined in JIS P 8124 (paper and paperboard—basis weight measurement method).

本発明のセパレータが不織布基材を含有してなる場合、多孔質体は、不織布基材の表面に独立して存在しても良いし、不織布基材の内部に浸透して不織布基材と混然一体になって存在しても良い。また、多孔質体の一部が不織布基材の内部に浸透し、多孔質体の残りの部分が不織布基材の表面に独立して存在しても良い。   When the separator of the present invention contains a nonwoven fabric substrate, the porous body may exist independently on the surface of the nonwoven fabric substrate, or penetrates into the nonwoven fabric substrate and mixes with the nonwoven fabric substrate. However, they may exist together. Further, a part of the porous body may penetrate into the inside of the nonwoven fabric base, and the remaining part of the porous body may exist independently on the surface of the nonwoven fabric base.

本発明のセパレータが不織布基材を含有してなる場合、好ましくは、少なくともその1面において、不織布基材の繊維が、表面に露出してなるセパレータ(6)であることが好ましい。「不織布基材の繊維が露出してなる」とは、走査型電子顕微鏡で観察したときに、観察野の面積の80%以下が多孔質体で被覆されていることを言う。不織布基材の両面が多孔質体によって被覆されている場合、漏れ電流を小さくすることが難しくなる場合がある。このような現象の理由は不明であるが、多孔質体で被覆されている面近傍での細孔径が相対的に小さく、反対面近傍での細孔径が相対的に大きいことが、漏れ電流を抑制する何らかの作用を及ぼすものと推定される。また、不織布基材の繊維が両面の表面に露出しているセパレータでも、多くの場合、両面の露出度合いには差が生じることから、このことによって生じる両面の細孔径差が、漏れ電流を抑制する何らかの作用を及ぼすものと推定される。   When the separator of this invention contains a nonwoven fabric base material, it is preferable that it is a separator (6) by which the fiber of a nonwoven fabric base material is exposed to the surface at least in the 1 surface preferably. “The fibers of the nonwoven fabric substrate are exposed” means that 80% or less of the area of the observation field is covered with a porous body when observed with a scanning electron microscope. When both surfaces of the nonwoven fabric substrate are covered with a porous body, it may be difficult to reduce the leakage current. The reason for this phenomenon is unknown, but the leakage current is reduced because the pore diameter near the surface covered with the porous body is relatively small and the pore diameter near the opposite surface is relatively large. It is presumed to have some action to suppress. Even in the case of separators where the fibers of the nonwoven fabric substrate are exposed on both surfaces, in many cases there is a difference in the degree of exposure on both surfaces, so the difference in pore diameter on both surfaces suppresses leakage current. It is presumed to have some effect.

図7〜図11は、不織布基材を含有してなるセパレータ(5)の断面構造を示す概念図である。図7の(A)では、不織布基材1の内部に多孔質体3が浸透して、不織布基材1と多孔質体3とが混然一体となって存在している。そして、不織布基材1の両面において、不織布基材1の繊維が露出している。   FIGS. 7-11 is a conceptual diagram which shows the cross-section of the separator (5) formed by containing a nonwoven fabric base material. In FIG. 7A, the porous body 3 penetrates into the nonwoven fabric base material 1, and the nonwoven fabric base material 1 and the porous body 3 are mixed together. And the fiber of the nonwoven fabric base material 1 is exposed on both surfaces of the nonwoven fabric base material 1.

(B)では、不織布基材1の片面に多孔質体3が独立して存在している。(C)では、多孔質体3の一部が不織布基材1の内部に浸透し、多孔質体3の残りの部分が不織布基材1の片面に独立して存在している。(B)及び(C)では、多孔質体3が独立して存在している面とは反対面では、不織布基材1の繊維が露出している。   In (B), the porous body 3 exists independently on one side of the nonwoven fabric substrate 1. In (C), a part of the porous body 3 penetrates into the inside of the nonwoven fabric substrate 1, and the remaining part of the porous body 3 exists independently on one side of the nonwoven fabric substrate 1. In (B) and (C), the fiber of the nonwoven fabric substrate 1 is exposed on the surface opposite to the surface on which the porous body 3 exists independently.

図8の(D)では、多孔質体3の一部が不織布基材1の内部全体に浸透し、多孔質体3の残りの部分が不織布基材1の片面に独立して存在している。(D)では、不織布基材1の繊維は露出していない。   In FIG. 8D, a part of the porous body 3 penetrates the entire inside of the nonwoven fabric substrate 1, and the remaining part of the porous body 3 exists independently on one side of the nonwoven fabric substrate 1. . In (D), the fibers of the nonwoven fabric substrate 1 are not exposed.

図9の(E)では、多孔質体3の一部が不織布基材1の内部全体に浸透し、多孔質体3の残りの部分が不織布基材1の両面に独立して存在している。(F)では、不織布基材1の両面に多孔質体3が独立して存在している。(G)では、多孔質体3の一部が不織布基材1の内部に浸透し、多孔質体3の残りの部分が不織布基材1の両面に独立して存在している。不織布基材1の断面中央部には、多孔質体3が浸透していない領域が存在している。   In (E) of FIG. 9, a part of the porous body 3 permeates the entire inside of the nonwoven fabric substrate 1, and the remaining part of the porous body 3 exists independently on both surfaces of the nonwoven fabric substrate 1. . In (F), the porous body 3 exists independently on both surfaces of the nonwoven fabric substrate 1. In (G), a part of the porous body 3 penetrates into the inside of the nonwoven fabric substrate 1, and the remaining part of the porous body 3 exists independently on both surfaces of the nonwoven fabric substrate 1. In the central portion of the cross section of the nonwoven fabric substrate 1, there is a region where the porous body 3 has not penetrated.

図10〜図11の(H)〜(M)は、多孔質体3、不織布基材1の他に、別の多孔質体2を含有してなるセパレータである。別の多孔質体2(以下、「多孔質体2」と略記する場合がある)は、セパレータ(1)〜(4)における無機粒子とは異なる無機粒子を主体とする多孔質体である。   (H) to (M) in FIGS. 10 to 11 are separators containing another porous body 2 in addition to the porous body 3 and the nonwoven fabric substrate 1. Another porous body 2 (hereinafter sometimes abbreviated as “porous body 2”) is a porous body mainly composed of inorganic particles different from the inorganic particles in the separators (1) to (4).

(H)では、多孔質体2が不織布基材1の内部に浸透して、不織布基材1と混然一体になって存在している。多孔質体3の一部は不織布基材1の内部に浸透し、多孔質体3の残りの部分が不織布基材1の片面に独立して存在している。(I)では、多孔質体2と多孔質体3の両方が、この順で不織布基材1の片面に独立して存在している。(J)では、多孔質体2の一部が不織布基材1の内部に浸透し、多孔質体2の残りの部分が不織布基材1の片面に独立して存在している。多孔質体3は、不織布基材1の片面において、多孔質体2上に独立して存在している。(H)〜(J)において、多孔質体3が最表面に独立して存在している面とは反対面では、不織布基材1の繊維が露出している。   In (H), the porous body 2 permeates into the nonwoven fabric substrate 1 and is mixed with the nonwoven fabric substrate 1 and exists. Part of the porous body 3 penetrates into the nonwoven fabric substrate 1, and the remaining part of the porous body 3 exists independently on one side of the nonwoven fabric substrate 1. In (I), both the porous body 2 and the porous body 3 are present independently on one side of the nonwoven fabric substrate 1 in this order. In (J), a part of the porous body 2 penetrates into the inside of the nonwoven fabric substrate 1, and the remaining part of the porous body 2 exists independently on one side of the nonwoven fabric substrate 1. The porous body 3 exists independently on the porous body 2 on one side of the nonwoven fabric substrate 1. In (H) to (J), the fibers of the nonwoven fabric substrate 1 are exposed on the surface opposite to the surface on which the porous body 3 exists independently on the outermost surface.

(K)では、多孔質体3が不織布基材1の内部に浸透して、不織布基材1と混然一体になって存在している。多孔質体2の一部は不織布基材1の内部に浸透し、多孔質体2の残りの部分が不織布基材1の片面に独立して存在している。(L)では、多孔質体3と多孔質体2の両方が、この順で不織布基材1の片面に独立して存在している。(M)では、多孔質体3の一部が不織布基材1の内部に浸透し、多孔質体3の残りの部分が不織布基材1の片面に独立して存在している。多孔質体2は、不織布基材1の片面において、多孔質体3上に独立して存在している。(K)〜(M)において、多孔質体2が最表面に独立して存在している面とは反対面では、不織布基材1の繊維が露出している。   In (K), the porous body 3 penetrates into the inside of the nonwoven fabric substrate 1 and is mixed with the nonwoven fabric substrate 1 and exists. Part of the porous body 2 penetrates into the nonwoven fabric substrate 1, and the remaining part of the porous body 2 exists independently on one side of the nonwoven fabric substrate 1. In (L), both the porous body 3 and the porous body 2 exist independently on one side of the nonwoven fabric substrate 1 in this order. In (M), a part of the porous body 3 penetrates into the inside of the nonwoven fabric substrate 1, and the remaining part of the porous body 3 exists independently on one side of the nonwoven fabric substrate 1. The porous body 2 exists independently on the porous body 3 on one side of the nonwoven fabric substrate 1. In (K)-(M), the fiber of the nonwoven fabric base material 1 is exposed on the surface opposite to the surface where the porous body 2 exists independently on the outermost surface.

多孔質体3、不織布基材1の他に、別の多孔質体2を含有してなるセパレータにおいて、より好ましい態様である本発明のセパレータ(7)を詳説する。   The separator (7) of this invention which is a more preferable aspect in the separator formed by containing another porous body 2 in addition to the porous body 3 and the nonwoven fabric substrate 1 will be described in detail.

セパレータ(7)では、不織布基材に、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体と、形状が不定形であり、凹みのある形状であり、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体とが、この順に積層されており、不織布基材の片面が実質的に第2の多孔質体によって被覆されており、反対面には不織布基材の繊維が露出してなる。セパレータ(7)によって、漏れ電流が小さく、厚みが薄く、かつ内部抵抗が低いという効果を達成することができる。なお、「第1の多孔質体」が「別の多孔質体2」に相当し、「第2の多孔質体」が「多孔質体3」に相当する。   In the separator (7), the nonwoven fabric substrate has a first porous body mainly composed of inorganic particles having a dispersed particle diameter of 1.0 μm or more and 3.0 μm or less and having an agglomerated structure. The second porous body mainly composed of inorganic particles having a regular shape, a concave shape, a dispersed particle diameter of less than 1.0 μm, and having no aggregate structure is laminated in this order, One surface of the nonwoven fabric substrate is substantially covered with the second porous body, and the fibers of the nonwoven fabric substrate are exposed on the opposite surface. The separator (7) can achieve the effects that the leakage current is small, the thickness is thin, and the internal resistance is low. The “first porous body” corresponds to “another porous body 2”, and the “second porous body” corresponds to the “porous body 3”.

「不織布基材の片面が実質的に第2の多孔質体によって被覆されている」とは、走査型電子顕微鏡で観察したときに、観察野の面積の95%以上が第2の多孔質体で被覆されていることを言う。「不織布基材の繊維が露出してなる」とは、走査型電子顕微鏡で観察したときに、観察野の面積の80%以下が第1の多孔質体及び第2の多孔質体のいずれかで被覆されていることを言う。   “One side of the nonwoven fabric substrate is substantially covered with the second porous body” means that 95% or more of the area of the observation field is the second porous body when observed with a scanning electron microscope. Say that it is covered with. “The fiber of the nonwoven fabric substrate is exposed” means that 80% or less of the area of the observation field is either the first porous body or the second porous body when observed with a scanning electron microscope. Say that it is covered with.

無機粒子の「分散粒子径」は、多孔質体の形成に用いられる塗工液を、レーザー回折型粒度分布計で測定し、その50%値を示す。   The “dispersed particle size” of the inorganic particles is a 50% value of the coating liquid used for the formation of the porous body as measured by a laser diffraction type particle size distribution meter.

第2の多孔質体における無機粒子の分散粒子径は、好ましくは0.80μm未満である。また、細孔径が小さすぎると、低い内部抵抗が得られない可能性があるので、0.10μm以上であることが好ましい。   The dispersed particle diameter of the inorganic particles in the second porous body is preferably less than 0.80 μm. Further, if the pore diameter is too small, a low internal resistance may not be obtained, and therefore it is preferably 0.10 μm or more.

無機粒子の凝集構造の有無は、走査型電子顕微鏡で観察される無機粒子の対角間距離の中央値が、上記分散粒子径の1/2未満である場合を「凝集構造あり」とし、1/2以上である場合を「凝集構造なし」として判断する。図3は、定形のキューブ状の無機粒子であるが、分散粒子径2.3μmであり、「凝集構造あり」の無機粒子である。図4は、不定形の平板状無機粒子であるが、分散粒子径は0.4μmであり、「凝集構造なし」の無機粒子である。   The presence / absence of the aggregate structure of the inorganic particles is defined as “having an aggregate structure” when the median of the distance between the diagonals of the inorganic particles observed with a scanning electron microscope is less than ½ of the dispersed particle diameter. The case of 2 or more is judged as “no aggregate structure”. FIG. 3 shows regular cube-shaped inorganic particles having a dispersed particle diameter of 2.3 μm and “with an agglomerated structure”. FIG. 4 shows irregular-shaped tabular inorganic particles having a dispersed particle diameter of 0.4 μm and “no aggregate structure”.

セパレータ(7)によって達成できる効果を得るためには、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体と、形状が不定形であり、凹みのある形状を有し、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体とが、この順に積層されてなることが必須である。第1の多孔質体及び第2の多孔質体のいずれかを単独で用いた場合、第1の多孔質体及び第2の多孔質体のいずれかが異なる構成のものであった場合、積層の順番が異なるものであった場合、第2の多孔質体により不織布基材の片面が実質的に被覆されていなかった場合、反対面に不織布基材の繊維が露出していなかった場合等では、セパレータ(7)によって達成できる効果を得ることが難しい。以下、この点について詳説する。   In order to obtain the effect that can be achieved by the separator (7), the first porous body mainly composed of inorganic particles having a dispersed particle diameter of 1.0 μm or more and 3.0 μm or less and having an aggregated structure; A second porous body mainly composed of inorganic particles having an irregular shape, a concave shape, a dispersed particle diameter of less than 1.0 μm, and having no agglomerated structure is laminated in this order. It is essential to be made. When any one of the first porous body and the second porous body is used alone, when either the first porous body or the second porous body has a different configuration, lamination is performed. In the case where one side of the nonwoven fabric substrate is not substantially covered by the second porous body, or when the fibers of the nonwoven fabric substrate are not exposed on the opposite surface, etc. It is difficult to obtain the effect that can be achieved by the separator (7). Hereinafter, this point will be described in detail.

不織布基材に、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体のみを設けた場合、漏れ電流を小さくするためには、厚みが10μmを超える第1の多孔質体を設ける必要がある。このため、厚みの薄いセパレータを製造することが難しい。また、不織布基材に、形状が不定形であり、凹みのある形状を有し、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体のみを設けた場合には、第2の多孔質体にピンホールが生じやすいことから、漏れ電流の小さなセパレータを製造するためには、不織布基材として、例えば微細な繊維を含有せしめる、厚みを厚くするなどにより、ピンホールを生じにくい不織布基材を選択する必要が生じる。そのため、ピンホールの生成しにくさ以外のコスト・強度等の観点から最適な不織布基材を選択することが難しくなる。   When only the first porous body mainly composed of inorganic particles having a dispersed particle diameter of 1.0 μm or more and 3.0 μm or less and having an aggregate structure is provided on the nonwoven fabric substrate, the leakage current is reduced. Therefore, it is necessary to provide a first porous body having a thickness exceeding 10 μm. For this reason, it is difficult to manufacture a thin separator. In addition, the nonwoven fabric base material has an irregular shape, a dent shape, a dispersed particle diameter of less than 1.0 μm, and a second porous material mainly composed of inorganic particles having no aggregated structure. When only the body is provided, pinholes are likely to be generated in the second porous body. Therefore, in order to produce a separator with a small leakage current, for example, a fine fiber is contained as a nonwoven fabric base material. For example, it is necessary to select a nonwoven fabric base material that does not easily generate pinholes. Therefore, it becomes difficult to select an optimal nonwoven fabric base material from the viewpoint of cost, strength, etc. other than the difficulty of generating pinholes.

不織布基材に、分散粒子径が1.0μm未満であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体と、形状が不定形であり、凹みのある形状を有し、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体とが、この順に積層された場合、内部抵抗の低いセパレータを製造することが難しい。   The nonwoven fabric substrate has a first porous body mainly composed of inorganic particles having a dispersed particle diameter of less than 1.0 μm and an agglomerated structure, and an irregular shape and a shape with a dent. When the second porous body mainly composed of inorganic particles having a dispersed particle diameter of less than 1.0 μm and not having an aggregate structure is laminated in this order, a separator having a low internal resistance is manufactured. Is difficult.

不織布基材に、凝集構造を有さない無機粒子を主体とする第1の多孔質体と、形状が不定形であり、凹みのある形状を有し、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体とが、この順に積層された場合は、第1の多孔質体にピンホールが生じやすく、ピンホールの生成しにくさ以外のコスト・強度等の観点から最適な不織布基材を選択することが難しくなる。   The first porous body mainly composed of inorganic particles having no aggregated structure on the nonwoven fabric base material, the shape is irregular, the shape is concave, and the dispersed particle size is less than 1.0 μm When the second porous body mainly composed of inorganic particles having no agglomerated structure is laminated in this order, pinholes are likely to occur in the first porous body, and it is difficult to generate pinholes. It becomes difficult to select an optimal nonwoven fabric base material from the viewpoint of cost, strength, etc.

第1の多孔質体と第2の多孔質体の界面では、第2の多孔質体の無機粒子が第1の多孔質体の粒子間の空隙に進入する場合がある。不織布基材に、分散粒子径が3.0μmを超え、凝集構造を有してなる無機粒子を主体とする第1の多孔質体と、形状が不定形であり、凹みのある形状を有し、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体とが、この順に積層された場合、粒子間の空隙に進入する第2の多孔質体における無機粒子の量が多くなり過ぎて目詰まりし、内部抵抗の低いセパレータを製造することが難しくなる。   At the interface between the first porous body and the second porous body, the inorganic particles of the second porous body may enter the voids between the particles of the first porous body. The nonwoven fabric substrate has a first porous body mainly composed of inorganic particles having a dispersed particle diameter of more than 3.0 μm and an agglomerated structure, and an indefinite shape and a recessed shape. When the second porous body mainly composed of inorganic particles having a dispersed particle diameter of less than 1.0 μm and not having an agglomerated structure is laminated in this order, the second porous body enters the voids between the particles. The amount of inorganic particles in the porous body becomes too large and clogs, making it difficult to produce a separator with low internal resistance.

不織布基材に、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体と、分散粒子径が1.0μm以上の無機粒子を主体とする第2の多孔質体とが、この順に積層された場合、小さな漏れ電流を実現するためには、10.0g/mを超える塗工量が必要となる場合があり、厚みの薄いセパレータを製造することが難しくなる。不織布基材に、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体と、凝集構造を有する無機粒子を主体とする第2の多孔質体とが、この順に積層された場合も、同様に、小さな漏れ電流を実現するためには、10.0g/mを超える塗工量が必要となる場合があり、厚みの薄いセパレータを製造することが難しくなる。A first porous body mainly composed of inorganic particles having a dispersed particle diameter of 1.0 μm or more and 3.0 μm or less and having an agglomerated structure on a nonwoven fabric substrate, and a dispersed particle diameter of 1.0 μm or more When the second porous body mainly composed of inorganic particles is laminated in this order, a coating amount exceeding 10.0 g / m 2 may be required to realize a small leakage current. This makes it difficult to produce a thin separator. A non-woven fabric base material having a dispersed particle size of 1.0 μm or more and 3.0 μm or less, mainly composed of inorganic particles having an aggregated structure and mainly inorganic particles having an aggregated structure Similarly, when the second porous body is laminated in this order, a coating amount exceeding 10.0 g / m 2 may be required in order to realize a small leakage current, It becomes difficult to manufacture a thin separator.

不織布基材に、形状が不定形であり、凹みのある形状を有し、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第1の多孔質体と、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第2の多孔質体とが、この順に積層されてなるセパレータでは、第1の多孔質体にピンホールが生じやすく、このピンホールを閉塞して漏れ電流を小さくするために、10.0g/mを超える塗工量の第2の多孔質体を設ける必要があることから、厚みの薄いセパレータを製造することが難しくなる。A non-woven fabric base material having an irregular shape, a concave shape, a dispersed particle diameter of less than 1.0 μm, and a first porous body mainly composed of inorganic particles having no agglomerated structure; In the separator in which the dispersed particle diameter is 1.0 μm or more and 3.0 μm or less and the second porous body mainly composed of the inorganic particles having an aggregate structure is laminated in this order, Since it is easy to produce a pinhole in a porous body and in order to block this pinhole and to make a leakage current small, it is necessary to provide the 2nd porous body of the coating amount exceeding 10.0 g / m < 2 >. This makes it difficult to produce a thin separator.

不織布基材の片面が実質的に第2の多孔質体によって被覆されていないセパレータや、反対面において、不織布基材の繊維が露出していないセパレータでは、漏れ電流を小さくすることが難しくなる。このような現象の理由は不明であるが、実質的に第2の多孔質体で被覆されている面近傍での細孔径が相対的に小さく、反対面近傍での細孔径が相対的に大きいことが、漏れ電流を抑制する何らかの作用を及ぼすものと推定される。   In a separator in which one side of the nonwoven fabric substrate is not substantially covered with the second porous body, or in a separator in which the fibers of the nonwoven fabric substrate are not exposed on the opposite side, it is difficult to reduce the leakage current. The reason for this phenomenon is unknown, but the pore diameter in the vicinity of the surface substantially covered with the second porous body is relatively small, and the pore diameter in the vicinity of the opposite surface is relatively large. This is presumed to have some effect of suppressing the leakage current.

セパレータ(7)は、不織布基材に、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体の塗工液と、形状が不定形であり、凹みのある形状を有し、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体の塗工液を、この順に塗工することで製造される。第1の多孔質体の塗工液を塗工後、第1の多孔質体の塗工液を乾燥させてから、第2の多孔質体の塗工液を塗工後、第2の多孔質体の塗工液を乾燥することもできる。また、第1の多孔質体の塗工液を塗工後、第1の多孔質体の塗工液を乾燥させずに第2の多孔質体の塗工液を塗工し、第1の多孔質体の塗工液と第2の多孔質体の塗工液を一緒に乾燥することもできる。第1の多孔質体の塗工液と第2の多孔質体の塗工液が乾燥前に混合した場合、第1の多孔質体が目詰まりし、内部抵抗が高くなることがあるため、第1の多孔質体の塗工液の揮発分を少なくとも部分的には乾燥除去した後に、第2の多孔質体の塗工液を塗工することが好ましい。   The separator (7) is a nonwoven fabric base material having a dispersed particle diameter of 1.0 μm or more and 3.0 μm or less, and a first porous body coating liquid mainly composed of inorganic particles having an agglomerated structure; A coating liquid for a second porous body mainly composed of inorganic particles having an irregular shape, a concave shape, a dispersed particle diameter of less than 1.0 μm, and having no agglomerated structure It is manufactured by coating in this order. After the first porous body coating liquid is applied, the first porous body coating liquid is dried, the second porous body coating liquid is applied, and then the second porous body is coated. The material coating solution can also be dried. In addition, after the first porous body coating liquid is applied, the second porous body coating liquid is applied without drying the first porous body coating liquid. It is also possible to dry the coating liquid for the porous body and the coating liquid for the second porous body together. When the first porous body coating liquid and the second porous body coating liquid are mixed before drying, the first porous body may be clogged and the internal resistance may be increased. It is preferable to apply the coating liquid for the second porous body after at least partially removing the volatile components of the coating liquid for the first porous body by drying.

セパレータ(7)において、第1の多孔質体及び第2の多孔質体の塗工液を不織布基材に塗工する方法としては、上述した無機粒子の塗工液の塗工方法を用いることができる。より好ましい方法は、グラビアコーター、ダイコーター、ブレードコーター、ロッドコーター、ロールコーター等を用いる方法である。特に、第1の多孔質体の塗工液の塗工には、グラビアコーター、ダイコーターを用いる方法が好ましい。これら2つの塗工方式は、塗工液を不織布基材中に浸入させるような動圧を生じにくく、第1の多孔質体にピンホールが生じにくいからである。   In the separator (7), as a method of applying the first porous body and the second porous body coating liquid to the nonwoven fabric substrate, the above-described coating method of the inorganic particle coating liquid is used. Can do. A more preferable method is a method using a gravure coater, a die coater, a blade coater, a rod coater, a roll coater or the like. In particular, a method using a gravure coater or a die coater is preferable for coating the first porous body coating solution. This is because these two coating methods are unlikely to generate a dynamic pressure that causes the coating liquid to enter the nonwoven fabric substrate, and pinholes are unlikely to occur in the first porous body.

セパレータ(7)において、第1の多孔質体の塗工量は、乾燥固形分で、3.0g/m以上10.0g/m以下であることが好ましく、4.0g/m以上8.0g/m以下であることがより好ましい。第1の多孔質体の塗工量が少なすぎる場合、ピンホールが生じて漏れ電流が大きくなることがある。また、第1の多孔質体の塗工量が多すぎる場合、セパレータの厚みが厚くなり、また内部抵抗も高くなることがある。In the separator (7), the coating amount of the first porous body is preferably 3.0 g / m 2 or more and 10.0 g / m 2 or less in terms of dry solid content, and 4.0 g / m 2 or more. More preferably, it is 8.0 g / m 2 or less. When the coating amount of the first porous body is too small, pinholes may be generated and the leakage current may be increased. Moreover, when there is too much coating amount of a 1st porous body, the thickness of a separator may become thick and internal resistance may also become high.

セパレータ(7)において、第2の多孔質体の塗工量は、乾燥固形分で、2.0g/m以上8.0g/m以下であることが好ましく、3.0g/m以上6.0g/m以下であることがより好ましい。第2の多孔質体の塗工量が少なすぎる場合、漏れ電流が大きくなることがある。また、第2の多孔質体の塗工量が多すぎる場合、セパレータの厚みが厚くなり、また内部抵抗も高くなることがある。In the separator (7), the coating amount of the second porous body is preferably 2.0 g / m 2 or more and 8.0 g / m 2 or less, and 3.0 g / m 2 or more in terms of dry solid content. More preferably, it is 6.0 g / m 2 or less. When the coating amount of the second porous body is too small, the leakage current may increase. Moreover, when there is too much coating amount of a 2nd porous body, the thickness of a separator may become thick and internal resistance may also become high.

セパレータ(7)の厚みは、好ましくは30μm未満であり、より好ましくは25μm未満である。これよりも厚いセパレータについては、セパレータ(7)のような構成でなくても、不織布基材の選択が著しく制限されることなく、漏れ電流の小さいセパレータを製造することができる。   The thickness of the separator (7) is preferably less than 30 μm, more preferably less than 25 μm. About a separator thicker than this, even if it is not a structure like a separator (7), the selection of a nonwoven fabric base material is not restrict | limited remarkably, and a separator with small leakage current can be manufactured.

セパレータ(7)に用いる不織布基材は、その直径が3.5μm以下の繊維を50質量%以上含むことが好ましい。これによって、多孔質体にピンホールが生じることをより確実に防止することができる。また、セパレータ(7)に用いる不織布基材の厚みは、好ましくは10μm以上であり、より好ましくは15μm以上である。これによって、多孔質体にピンホールが生じることをより確実に防止することができる。一方、セパレータ(7)に用いる不織布基材の厚みが厚すぎる場合は、セパレータの厚みが厚くなり過ぎることから、不織布基材の厚みは好ましくは30μm以下であり、より好ましくは25μm以下である。   The nonwoven fabric substrate used for the separator (7) preferably contains 50% by mass or more of fibers having a diameter of 3.5 μm or less. Thereby, it can prevent more reliably that a pinhole arises in a porous body. Moreover, the thickness of the nonwoven fabric base material used for a separator (7) becomes like this. Preferably it is 10 micrometers or more, More preferably, it is 15 micrometers or more. Thereby, it can prevent more reliably that a pinhole arises in a porous body. On the other hand, when the thickness of the nonwoven fabric substrate used for the separator (7) is too thick, the thickness of the nonwoven fabric substrate is preferably 30 μm or less and more preferably 25 μm or less because the thickness of the separator is too thick.

以下、本発明の実施例を示す。なお、実施例において、百分率(%)及び部は、断りのない限り、全て質量基準である。()内に部数を示す場合は、液中の不揮発分(固形分)の部数を示す。また、塗工量は乾燥塗工量である。   Examples of the present invention will be described below. In the examples, all percentages (%) and parts are based on mass unless otherwise specified. When the number of parts is shown in (), the number of parts of the non-volatile content (solid content) in the liquid is shown. The coating amount is a dry coating amount.

≪第一の実験≫
<不織布基材1の作製>
繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維45部と繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維15部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET系短繊維(軟化点120℃、融点230℃)40部とを一緒に混合し、パルパーにより水中で離解させ、アジテーターによる撹拌のもと、濃度1%の均一な抄造用スラリーを調製した。円網抄紙機を用い、この抄造用スラリーを湿式法で抄き上げ、120℃のシリンダードライヤーによって、バインダー用PET系短繊維を接着させて不織布強度を発現させ、目付12.2g/mの不織布とした。さらに、この不織布を金属ロール−金属ロールからなる1ニップの熱カレンダーを使用して、ロール温度185℃、線圧740N/cm、搬送速度20m/分で加熱処理を実施し、厚み21μmの不織布基材1を作製した。
≪First experiment≫
<Preparation of nonwoven fabric substrate 1>
45 parts of oriented crystallized polyethylene terephthalate (PET) short fibers with a fineness of 0.06 dtex (average fiber diameter of 2.4 μm) and a fiber length of 3 mm, and oriented crystals with a fineness of 0.1 dtex (average fiber diameter of 3.0 μm) and a fiber length of 3 mm Together 15 parts of PET-based short fibers and 40 parts of PET-based short fibers (softening point 120 ° C., melting point 230 ° C.) for single component binder with a fineness of 0.2 dtex (average fiber diameter 4.3 μm) and a fiber length of 3 mm The mixture was disaggregated in water with a pulper, and a uniform papermaking slurry having a concentration of 1% was prepared under stirring by an agitator. Using a circular paper machine, this papermaking slurry is made up by a wet method, and a PET-based short fiber for a binder is adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength, with a basis weight of 12.2 g / m 2 . A non-woven fabric was used. Furthermore, this nonwoven fabric was heat-treated at a roll temperature of 185 ° C., a linear pressure of 740 N / cm, and a conveying speed of 20 m / min using a 1-nip thermal calendar composed of a metal roll and a metal roll, and a nonwoven fabric base having a thickness of 21 μm. Material 1 was produced.

(実施例1)
形状が不定形の無機粒子(図1、アルミナ水和物)を固形分換算で90部、カルボキシメチルセルロースナトリウム塩(1%水溶液B粘度200mPa・s、エーテル化度0.65)を固形分換算で0.2部をホモジナイザーにて混合、撹拌し、次いでカルボキシメチルセルロースナトリウム塩(1%水溶液B粘度7000mPa・s、エーテル化度0.7)を固形分換算で0.2部を混合、撹拌し、次にスチレンブタジエンゴムのラテックスを固形分換算で6部を混合、撹拌し、さらにイオン交換水を加えて、固形分濃度20%の多孔質体の塗工液を作製した。上記熱カレンダー処理後の不織布基材1に、グラビアコーターにて、乾燥固形分10.2g/mとなるように、不織布基材1の片面にこの塗工液を均一に塗工・乾燥して、厚み25.2μmのセパレータを得た。
Example 1
90 parts of amorphous particles having irregular shapes (FIG. 1, alumina hydrate) in terms of solids, and sodium carboxymethylcellulose (1% aqueous solution B viscosity 200 mPa · s, degree of etherification 0.65) in terms of solids 0.2 part was mixed and stirred with a homogenizer, then carboxymethylcellulose sodium salt (1% aqueous solution B viscosity 7000 mPa · s, etherification degree 0.7) was mixed and stirred with 0.2 part in terms of solid content. Next, 6 parts of styrene butadiene rubber latex in terms of solid content was mixed and stirred, and ion-exchanged water was further added to prepare a coating liquid for a porous material having a solid content concentration of 20%. The coating liquid is uniformly applied to one side of the nonwoven fabric substrate 1 and dried so as to have a dry solid content of 10.2 g / m 2 by a gravure coater on the nonwoven fabric substrate 1 after the thermal calendar treatment. Thus, a separator having a thickness of 25.2 μm was obtained.

(比較例1)
無機粒子として、定形の菱形柱状の無機粒子(図2、アルミナ水和物)を用いた以外は、実施例1と同様にして、塗工液を調製、塗工・乾燥し、多孔質体の乾燥固形分10.6g/m、厚み25.8μmのセパレータを得た。
(Comparative Example 1)
The coating liquid was prepared, coated and dried in the same manner as in Example 1 except that regular rhomboid-shaped inorganic particles (FIG. 2, alumina hydrate) were used as the inorganic particles. A separator having a dry solid content of 10.6 g / m 2 and a thickness of 25.8 μm was obtained.

(比較例2)
無機粒子として、定形のキューブ状の無機粒子(図3、アルミナ水和物)を用いた以外は、実施例1と同様にして、塗工液を調製、塗工・乾燥し、多孔質体の乾燥固形分10.1g/m、厚み25.2μmのセパレータを得た。
(Comparative Example 2)
The coating liquid was prepared, applied and dried in the same manner as in Example 1 except that regular cube-shaped inorganic particles (FIG. 3, alumina hydrate) were used as the inorganic particles. A separator having a dry solid content of 10.1 g / m 2 and a thickness of 25.2 μm was obtained.

<評価>
実施例及び比較例で得られたセパレータについて、下記の評価を行い、結果を表1に示した。
<Evaluation>
The separators obtained in Examples and Comparative Examples were evaluated as follows, and the results are shown in Table 1.

[粉落ち評価]
作製したセパレータについて、50mm幅×200mmの短冊状に切り、上端をテープにて固定し、その上を50gの重りを載せた黒色の布を滑らせて、その時の黒色の布及びセパレータについて目視にて確認し、次の度合いで評価した。
[Powder removal evaluation]
About the produced separator, it cuts into a strip shape of 50 mm width x 200 mm, the upper end is fixed with tape, and a black cloth on which a 50 g weight is placed is slid, and the black cloth and separator at that time are visually observed. The following degree was evaluated.

○:黒色の布への多孔質体の付着及び多孔質体に剥がれも見られない。
×:黒色の布の表面に多孔質体がついており、多孔質体に剥がれが見られる。
○: No adhesion of the porous body to the black cloth and no peeling of the porous body.
X: The porous body is attached to the surface of the black cloth, and peeling is seen in the porous body.

[ピンホール評価]
作製したセパレータについて、透過光を用いて、10cm×10cmのセパレータにおけるピンホールの発生状況を目視で確認し、次の度合いで評価した。
[Pinhole evaluation]
About the produced separator, the generation | occurrence | production state of the pinhole in a 10 cm x 10 cm separator was confirmed visually using the transmitted light, and it evaluated by the following degree.

○:全く透過光が観察されず、ピンホールの発生は見られない。
×:ピンホールの発生もしくはムラが見られる。
○: No transmitted light is observed, and no pinholes are observed.
X: Generation | occurrence | production or nonuniformity of a pinhole is seen.

実施例1は、少なくとも無機粒子を主体とする多孔質体を含有してなるセパレータにおいて、該無機粒子の形状が不定形であるため、ピンホール評価及び粉落ち評価ともに、良好な結果が得られた。比較例1及び2では、無機粒子が不定形ではないため、ピンホール評価又は粉落ち評価において、悪い結果となった。   In Example 1, in the separator containing at least a porous body mainly composed of inorganic particles, since the shape of the inorganic particles is indefinite, good results are obtained for both the pinhole evaluation and the powder fall evaluation. It was. In Comparative Examples 1 and 2, since the inorganic particles were not indefinite, poor results were obtained in the pinhole evaluation or the powder omission evaluation.

≪第二の実験≫
(実施例2)
無機粒子として、形状が不定形で、平板状で、凹みを有する無機粒子(図4、アルミナ水和物)を用いた以外は、実施例1と同様に塗工液を調製、塗工・乾燥し、多孔質体の乾燥固形分10.2g/m、厚み25.2μmのセパレータを得た。
≪Second experiment≫
(Example 2)
A coating solution was prepared, coated and dried in the same manner as in Example 1 except that inorganic particles having an irregular shape, a flat plate shape, and dents (FIG. 4, alumina hydrate) were used as the inorganic particles. Thus, a separator having a dry solid content of 10.2 g / m 2 and a thickness of 25.2 μm was obtained.

(実施例3)
無機粒子として、形状が不定形で、平板状で、凹みがない無機粒子(図5、アルミナ水和物)を用いた以外は、実施例1と同様にして塗工液を調製、塗工・乾燥し、多孔質体の乾燥固形分10.5g/m、厚み26.0μmのセパレータを得た。
(Example 3)
A coating solution was prepared in the same manner as in Example 1 except that inorganic particles having an irregular shape, a flat shape, and no dents (FIG. 5, alumina hydrate) were used as the inorganic particles. The separator was dried to obtain a separator having a dry solid content of 10.5 g / m 2 and a thickness of 26.0 μm.

(比較例3)
無機粒子として、定形の円柱状の無機粒子(図6、アルミナ水和物)を用いた以外は、実施例1と同様にして塗工液を調製、塗工・乾燥し、多孔質体の乾燥固形分10.2g/m、厚み25.4μmのセパレータを得た。
(Comparative Example 3)
The coating liquid was prepared, coated and dried in the same manner as in Example 1 except that regular cylindrical inorganic particles (FIG. 6, alumina hydrate) were used as the inorganic particles, and the porous body was dried. A separator having a solid content of 10.2 g / m 2 and a thickness of 25.4 μm was obtained.

<評価>
実施例及び比較例で得られたセパレータについて、下記の評価を行い、結果を表2に示した。
<Evaluation>
The separators obtained in Examples and Comparative Examples were evaluated as follows, and the results are shown in Table 2.

[リチウムイオン二次電池の作製]
正極活物質としてマンガン酸リチウム、負極活物質として人造黒鉛、電極液としてヘキサフルオロリン酸リチウム(LiPF)の炭酸エチレン/炭酸ジエチル/炭酸ジメチル混合溶媒(体積比1/1/1)溶液(1mol/L)、セパレータとして上記作製した各セパレータを用い、セパレータの塗工面を負極活物質側になるようにして、設計容量30mAhのパウチ型リチウムイオン電池を組み立てた。
[Production of lithium ion secondary battery]
Lithium manganate as positive electrode active material, artificial graphite as negative electrode active material, ethylene carbonate / diethyl carbonate / dimethyl carbonate mixed solvent (volume ratio 1/1/1) solution of lithium hexafluorophosphate (LiPF 6 ) as electrode solution (1 mol) / L) A pouch-type lithium ion battery having a design capacity of 30 mAh was assembled using each of the separators produced as described above, with the separator coated surface facing the negative electrode active material.

[漏れ電流評価]
上記作製した各リチウムイオン二次電池を用い、1C、4.2Vで定電流定電圧充電(1/10Cカット)を行った時の充電容量を計測し、設計容量との比を計算して次の度合いで評価した。
[Leakage current evaluation]
Using each of the lithium ion secondary batteries produced above, the charge capacity when performing constant current and constant voltage charge (1 / 10C cut) at 1C and 4.2V was measured, and the ratio with the design capacity was calculated and The degree of evaluation.

○:設計容量の125%未満
△:設計容量の125以上150%以下
×:設計容量の150%より多い
○: Less than 125% of the design capacity Δ: 125 to 150% of the design capacity ×: More than 150% of the design capacity

[内部抵抗評価]
上記作製した各リチウムイオン二次電池を用い、1Cで3サイクルのエイジング(慣らし充放電)を行った後、1C、4.2Vで定電流定電圧充電(1/10Cカット)を行い、次に0.2C及び1Cにて放電を行い、下記の式(1)から内部抵抗値(Ω)を算出した。
[Internal resistance evaluation]
Using each of the lithium ion secondary batteries produced above, aging (break-in / discharge) for 3 cycles at 1C, followed by constant current and constant voltage charge (1 / 10C cut) at 1C and 4.2V, Discharge was performed at 0.2 C and 1 C, and the internal resistance value (Ω) was calculated from the following formula (1).

式(1) 内部抵抗値(Ω)=(A−B)/C Formula (1) Internal resistance value (Ω) = (A−B) / C

A=0.2Cで放電し、1Cでの放電容量の9割の容量になる電圧
B=1Cで放電し、1Cでの放電容量の9割の容量になる電圧
C=(0.2Cの電流値)−(1Cの電流値)
Discharge at A = 0.2C, voltage B = 90% of the discharge capacity at 1C, discharge B = 1C, voltage C = (current of 0.2C) at 90% of the discharge capacity at 1C Value)-(1C current value)

実施例2のセパレータは、少なくとも無機粒子を主体とする多孔質体を含有してなり、該無機粒子が、不定形で凹みのある形状を有するため、漏れ電流及び内部抵抗の評価ともに、良好な結果が得られた。   The separator of Example 2 contains a porous body mainly composed of at least inorganic particles, and the inorganic particles have an indeterminate shape and a concave shape, so that both the leakage current and the evaluation of internal resistance are good. Results were obtained.

実施例3のセパレータは、形状が不定形であるが、凹みがない無機粒子であるため、実施例2のセパレータと比較すると、内部抵抗が上昇する傾向が見られたが、漏れ電流の評価では良好な結果が得られた。比較例1〜3では、無機粒子は定形で凹みのない形状を有しているため、漏れ電流の評価において悪化する傾向が見られた。また、内部抵抗の評価でも、比較例1及び3のセパレータでは、実施例2のセパレータと比較して、内部抵抗値が高かった。   Although the separator of Example 3 is an amorphous particle having an indeterminate shape, there is a tendency to increase the internal resistance as compared with the separator of Example 2 because of the non-dented inorganic particles. Good results were obtained. In Comparative Examples 1 to 3, since the inorganic particles had a regular shape with no dents, there was a tendency to deteriorate in the evaluation of leakage current. In the evaluation of internal resistance, the separators of Comparative Examples 1 and 3 had higher internal resistance values than the separator of Example 2.

≪第3の実験≫
<不織布基材2の作製>
繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化PET系短繊維45部と繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維15部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET系短繊維(軟化点120℃、融点230℃)40部とを一緒に混合し、パルパーにより水中で離解させ、アジテーターによる撹拌のもと、濃度1%の均一な抄造用スラリーを調製した。円網抄紙機を用い、この抄造用スラリーを湿式法で抄き上げ、120℃のシリンダードライヤーによって、バインダー用PET系短繊維を接着させて不織布強度を発現させ、目付15.2g/mの不織布とした。さらに、この不織布を金属ロール−金属ロールからなる1ニップの熱カレンダーを使用して、ロール温度185℃、線圧740N/cm、搬送速度20m/分で加熱処理を実施し、厚み27μmの不織布基材2を作製した。
≪Third experiment≫
<Preparation of Nonwoven Fabric Base 2>
45 parts of oriented crystallized PET short fibers with a fineness of 0.06 dtex (average fiber diameter of 2.4 μm) and fiber length of 3 mm, and short of oriented crystallized PET with a fineness of 0.1 dtex (average fiber diameter of 3.0 μm) and fiber length of 3 mm 15 parts of fiber and 40 parts of PET short fiber (softening point 120 ° C., melting point 230 ° C.) for single-component binder having a fineness of 0.2 dtex (average fiber diameter 4.3 μm) and a fiber length of 3 mm are mixed together, It was disaggregated in water with a pulper, and a uniform papermaking slurry having a concentration of 1% was prepared under stirring by an agitator. Using a circular paper machine, this papermaking slurry is made up by a wet method, and a PET-based short fiber for a binder is adhered by a cylinder dryer at 120 ° C. to develop a nonwoven fabric strength. The basis weight is 15.2 g / m 2 . A non-woven fabric was used. Further, this nonwoven fabric was subjected to heat treatment at a roll temperature of 185 ° C., a linear pressure of 740 N / cm, and a conveyance speed of 20 m / min using a 1-nip thermal calendar composed of a metal roll and a metal roll, and a nonwoven fabric base having a thickness of 27 μm. Material 2 was produced.

(実施例4)
無機粒子として、pH7.8、粘度348mPa・sのアルミナ水和物(ベーマイト、ナバルテック(Nabaltec)社製、商品名:APYRAL(登録商標)−AOH100XP)を固形分換算で90部、カルボキシメチルセルロースナトリウム塩(1%水溶液B粘度200mPa・s、エーテル化度0.65)を固形分換算で0.2部をホモジナイザーにて混合、撹拌し、次いでカルボキシメチルセルロースナトリウム塩(1%水溶液B粘度7000mPa・s、エーテル化度0.7)を固形分換算で0.2部を混合、撹拌し、次にスチレンブタジエンゴムのラテックスを固形分換算で9部を混合、撹拌し、さらにイオン交換水を加えて、固形分濃度20%の塗工液を作製した。上記熱カレンダー処理後の不織布基材2の片面に、グラビアコーターにて、多孔質体の乾燥固形分が10.2g/mとなるように、この塗工液を均一に塗工・乾燥して、厚み30.2μmのセパレータを得た。
Example 4
As inorganic particles, alumina hydrate having a pH of 7.8 and a viscosity of 348 mPa · s (boehmite, manufactured by Nabaltec Co., Ltd., trade name: APYRAL (registered trademark) -AOH100XP), 90 parts in terms of solid content, sodium carboxymethylcellulose Salt (1% aqueous solution B viscosity 200 mPa · s, etherification degree 0.65) 0.2 parts in terms of solid content was mixed and stirred with a homogenizer, then carboxymethylcellulose sodium salt (1% aqueous solution B viscosity 7000 mPa · s) In addition, 0.2 part of etherification degree 0.7) is mixed and stirred, and then 9 parts of styrene butadiene rubber latex is mixed and stirred, and ion-exchanged water is added. A coating solution having a solid content concentration of 20% was prepared. This coating solution is uniformly applied and dried on one side of the nonwoven fabric substrate 2 after the thermal calendering treatment with a gravure coater so that the dry solid content of the porous body is 10.2 g / m 2. Thus, a separator having a thickness of 30.2 μm was obtained.

(比較例4)
無機粒子として、pH8.4、粘度2750mPa・sのアルミナ水和物(ベーマイト、ナバルテック社製、商品名:ACTILOX(登録商標)−200SM)を用いた以外は、実施例4と同様にして、塗工液を調製、塗工・乾燥し、多孔質体の乾燥固形分10.7g/m、厚み31.2μmのセパレータを得た。
(Comparative Example 4)
As inorganic particles, except that alumina hydrate (boehmite, manufactured by Naval Tech, trade name: ACTILOX (registered trademark) -200SM) having a pH of 8.4 and a viscosity of 2750 mPa · s was used, A coating solution was prepared, coated and dried to obtain a separator having a dry solid content of 10.7 g / m 2 and a thickness of 31.2 μm.

(比較例5)
無機粒子として、pH7.9、粘度6mPa・sのアルミナ水和物(ベーマイト、ナバルテック社製、商品名:APYRAL(登録商標)−AOH60)を用いた以外は、実施例4と同様にして、塗工液を調製、塗工・乾燥し、多孔質体の乾燥固形分10.5g/m、厚み31.0μmのセパレータを得た。
(Comparative Example 5)
As inorganic particles, except that alumina hydrate having a pH of 7.9 and a viscosity of 6 mPa · s (boehmite, manufactured by Naval Tech Co., Ltd., trade name: APYRAL (registered trademark) -AOH60) was used, the same as in Example 4, A coating solution was prepared, applied and dried to obtain a separator having a dry solid content of 10.5 g / m 2 and a thickness of 31.0 μm.

(比較例6)
無機粒子として、pH8.4、粘度47mPa・sのアルミナ水和物(ベーマイト、大明化学工業社製、商品名:C20)を用いた以外は、実施例4と同様にして、塗工液を調製、塗工・乾燥し、多孔質体の乾燥固形分10.1g/m、厚み30.7μmのセパレータを得た。
(Comparative Example 6)
A coating solution was prepared in the same manner as in Example 4 except that alumina hydrate (boehmite, manufactured by Daimei Chemical Industry Co., Ltd., trade name: C20) having a pH of 8.4 and a viscosity of 47 mPa · s was used as the inorganic particles. Coating and drying were performed to obtain a separator having a dry solid content of 10.1 g / m 2 and a thickness of 30.7 μm.

(比較例7)
無機粒子として、pH9.3、粘度1720mPa・sのアルミナ水和物(ベーマイト、大明化学工業社製、商品名:C06)を用いた以外は、実施例4と同様にして、塗工液を調製、塗工・乾燥し、多孔質体2の乾燥固形分10.4g/m、厚み31.0μmのセパレータを得た。
(Comparative Example 7)
A coating solution was prepared in the same manner as in Example 4 except that alumina hydrate having a pH of 9.3 and a viscosity of 1720 mPa · s (boehmite, manufactured by Daimei Chemical Co., Ltd., trade name: C06) was used as the inorganic particles. Coating and drying were performed to obtain a separator having a dry solid content of 10.4 g / m 2 and a thickness of 31.0 μm.

(比較例8)
無機粒子として、pH4.0、粘度9mPa・sのアルミナ水和物(ベーマイト、サソール(SASOL)社製、商品名:DISPERAL(登録商標)−8F4)を用いた以外は、実施例4と同様にして、塗工液を調製、塗工・乾燥し、多孔質体の乾燥固形分10.7g/m、厚み31.2μmのセパレータを得た。
(Comparative Example 8)
Example 4 was the same as Example 4 except that alumina hydrate (boehmite, manufactured by SASOL, trade name: DISPERAL (registered trademark) -8F4) having a pH of 4.0 and a viscosity of 9 mPa · s was used as the inorganic particles. Then, a coating solution was prepared, coated and dried to obtain a separator having a dry solid content of 10.7 g / m 2 and a thickness of 31.2 μm.

<評価>
実施例及び比較例で作製したセパレータについて、下記の評価を行い、結果を表3に示した。
<Evaluation>
The separators prepared in Examples and Comparative Examples were evaluated as follows, and the results are shown in Table 3.

[ピンホール評価]
作製したセパレータのピンホールの状態について、透過光を用いて、A4サイズ1枚を目視にて確認し、次の度合いで評価した。
[Pinhole evaluation]
About the state of the pinhole of the produced separator, one A4 size sheet was visually confirmed using transmitted light, and evaluated according to the following degree.

○:目視でのピンホールの発生は見られない。
△:うっすらと透過光が観察される部分が存在する。
×:明らかに透過光が多数観察される。
○: No visual pinhole is observed.
(Triangle | delta): The part in which transmitted light is observed slightly exists.
X: Many transmitted light is clearly observed.

実施例4のセパレータでは、無機粒子がその20質量%水分散物のpHが7.0以上8.3以下であり、粘度が50mPa・s以上2000mPa・s以下であるアルミナ水和物であるため、ピンホールが少ないという良好な結果が得られた。   In the separator of Example 4, the inorganic particles are alumina hydrate having a 20 mass% aqueous dispersion having a pH of 7.0 or more and 8.3 or less and a viscosity of 50 mPa · s or more and 2000 mPa · s or less. Good results with few pinholes were obtained.

水分散物のpHが8.3を超え、粘度も2000mPa・sを超える比較例4のセパレータ、粘度が50mPa・s未満である比較例5及び6のセパレータでは、ピンホールが実施例4のセパレータよりも多かった。また、pHが8.3を大きく超える比較例7のセパレータ、pHが7.0を大きく下回り、粘度も50mPa・s未満である比較例8のセパレータでは、ピンホールが著しく増加した。   In the separator of Comparative Example 4 in which the pH of the aqueous dispersion exceeds 8.3 and the viscosity exceeds 2000 mPa · s, and in the separators of Comparative Examples 5 and 6 in which the viscosity is less than 50 mPa · s, the pinhole is the separator of Example 4. It was more than. Further, in the separator of Comparative Example 7 whose pH greatly exceeded 8.3, the separator of Comparative Example 8 whose pH was much lower than 7.0 and the viscosity was less than 50 mPa · s, the pinholes were remarkably increased.

≪第4の実験≫
<不織布基材3の作製>
繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維60部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET系短繊維(軟化点120℃、融点230℃)40部とをパルパーにより水中に分散し、濃度1%の均一な抄造用スラリーを調製した。この抄造用スラリーを、円網型抄紙機にて、湿式法で抄き上げ、135℃のシリンダードライヤーによって、バインダー用PET系短繊維同士の交点及びバインダー用PET系短繊維と配向結晶化PET系短繊維の交点を接着させて不織布強度を発現させ、目付11g/mの不織布を得た。さらに、この不織布を、誘導加熱ロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダーを使用して、熱ロール温度200℃、線圧100kN/m、処理速度30m/分の条件で熱カレンダー処理し、厚み15μmの不織布基材3を作製した。
≪Fourth experiment≫
<Preparation of Nonwoven Fabric Base 3>
For single component binder with fineness of 0.1 dtex (average fiber diameter of 3.0 μm), 60 parts of oriented crystallized PET short fibers with a fiber length of 3 mm, fineness of 0.2 dtex (average fiber diameter of 4.3 μm) and fiber length of 3 mm 40 parts of PET short fibers (softening point 120 ° C., melting point 230 ° C.) were dispersed in water by a pulper to prepare a uniform papermaking slurry having a concentration of 1%. This papermaking slurry is made by a wet method on a circular net type paper machine, and the intersection of PET short fibers for binders and the PET short fibers for binders and oriented crystallized PET systems by a cylinder dryer at 135 ° C. The intersection point of the short fibers was bonded to develop the strength of the nonwoven fabric, and a nonwoven fabric having a basis weight of 11 g / m 2 was obtained. Furthermore, this nonwoven fabric was used under the conditions of a heat roll temperature of 200 ° C., a linear pressure of 100 kN / m, and a processing speed of 30 m / min using a 1-nip heat calender consisting of an induction heating roll (metal heat roll) and an elastic roll. The nonwoven fabric substrate 3 having a thickness of 15 μm was prepared by heat calendering.

<第1の多孔質体の塗工液(第1塗工液)の調製>
無機粒子として、分散粒子径2.3μm、比表面積3m/gのアルミナ水和物100部を、1%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩0.3%水溶液(0.4部)に混合して十分撹拌した。次いで、1%水溶液の25℃における粘度が7000mPa・sのカルボキシメチルセルロースナトリウム塩0.5%水溶液(0.3部)及び、バインダーとして、ガラス転移点−18℃、分散粒子径0.2μmのアクリル酸エステル樹脂エマルション(固形分濃度50%)(6部)を混合して撹拌し、第1の多孔質体の塗工液を作製した。
<Preparation of first porous body coating liquid (first coating liquid)>
As inorganic particles, 100 parts of an alumina hydrate having a dispersed particle size of 2.3 μm and a specific surface area of 3 m 2 / g was added to a 0.3% aqueous solution of carboxymethylcellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. in a 1% aqueous solution (0 4 parts) and stirred well. Next, a 0.5% aqueous solution (0.3 parts) of carboxymethylcellulose sodium salt having a viscosity of 7000 mPa · s at 25 ° C. in a 1% aqueous solution, and acrylic having a glass transition point of −18 ° C. and a dispersed particle size of 0.2 μm as a binder. An acid ester resin emulsion (solid content concentration 50%) (6 parts) was mixed and stirred to prepare a coating solution for the first porous body.

なお、図3は、使用したアルミナ水和物の走査型電子顕微鏡写真である。この走査型電子顕微鏡写真で観察される無機粒子の対角間距離の中央値は、上記分散粒子径の1/2よりも明らかに小さく、このアルミナ水和物は「凝集構造を有する」と判断される。表4には、無機粒子が「凝集構造を有する」場合、「凝集」と記した。   FIG. 3 is a scanning electron micrograph of the used alumina hydrate. The median of the diagonal distance of the inorganic particles observed in this scanning electron micrograph is clearly smaller than ½ of the dispersed particle diameter, and this alumina hydrate is judged to have “aggregated structure”. The In Table 4, when the inorganic particles have “aggregation structure”, “aggregation” is described.

<第2の多孔質体の塗工液(第2塗工液)の調製>
無機粒子として、形状が不定形で、凹みを有し、分散粒子径0.4μm、比表面積11m/gのアルミナ水和物100部を、1%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩0.3%水溶液(0.4部)に混合して十分撹拌した。次いで、1%水溶液の25℃における粘度が7000mPa・sのカルボキシメチルセルロースナトリウム塩0.5%水溶液(0.3部)、バインダーとして、ガラス転移点−18℃、不揮発分濃度50%・分散粒子径0.2μmのアクリル酸エステル樹脂エマルション(6部)を混合して撹拌し、第2の多孔質体の塗工液を作製した。
<Preparation of second porous body coating liquid (second coating liquid)>
As an inorganic particle, 100 parts of an alumina hydrate having an irregular shape, a dent, a dispersed particle diameter of 0.4 μm, and a specific surface area of 11 m 2 / g is used. A 1% aqueous solution has a viscosity at 25 ° C. of 200 mPa · s. It mixed with 0.3% aqueous solution (0.4 part) of carboxymethylcellulose sodium salt, and stirred sufficiently. Next, a 0.5% aqueous solution (0.3 parts) of carboxymethylcellulose sodium salt having a viscosity of 7000 mPa · s at 25 ° C. in a 1% aqueous solution, a glass transition point of −18 ° C., a non-volatile content concentration of 50%, and a dispersed particle size as a binder A 0.2 μm acrylate resin emulsion (6 parts) was mixed and stirred to prepare a coating solution for the second porous body.

なお、図4は、使用したアルミナ水和物の走査型電子顕微鏡写真である。この走査型電子顕微鏡写真で観察される無機粒子の対角間距離の中央値は、上記分散粒子径の1/2よりも明らかに大きく、このアルミナ水和物は「凝集構造を有さない」と判断される。表4には、無機粒子が「凝集構造を有さない」場合、「非凝集」と記した。   FIG. 4 is a scanning electron micrograph of the used alumina hydrate. The median of the diagonal distance of the inorganic particles observed in this scanning electron micrograph is clearly larger than ½ of the dispersed particle diameter, and this alumina hydrate has “no aggregate structure”. To be judged. In Table 4, when the inorganic particles have “no aggregate structure”, “non-aggregate” is described.

(実施例5)
キスリバース方式のグラビアコーターを用い、前記の不織布基材3上に、第1塗工液を塗工量が6.0g/mとなるように塗工し、熱風乾燥機で乾燥して、第1の多孔質体を形成した。次いで、キスリバース方式のグラビアコーターを用い、第1多孔質体の表面に、第2塗工液を塗工量が4.0g/mとなるように塗工し、熱風乾燥機で乾燥して、厚み(マイクロメーターで測定)22μmのセパレータを作製した。
(Example 5)
Using a kiss reverse gravure coater, the first coating solution was applied onto the nonwoven fabric substrate 3 so that the coating amount was 6.0 g / m 2 and dried with a hot air dryer. A first porous body was formed. Next, using a kiss reverse type gravure coater, the surface of the first porous body is coated with the second coating solution so that the coating amount is 4.0 g / m 2 and dried with a hot air dryer. A separator having a thickness (measured with a micrometer) of 22 μm was prepared.

(実施例6〜9、比較例9〜18)
第1塗工液及び第2塗工液の無機粒子の凝集構造、分散粒子径、各多孔質体の塗工量を表1のように変更した以外は、実施例5と同様にして、セパレータを作製した。表4には、各セパレータの厚みも示す。
(Examples 6-9, Comparative Examples 9-18)
A separator was prepared in the same manner as in Example 5 except that the aggregated structure of inorganic particles, the dispersed particle diameter, and the coating amount of each porous material in the first coating liquid and the second coating liquid were changed as shown in Table 1. Was made. Table 4 also shows the thickness of each separator.

(比較例19)
グラビアコーターの代わりにスクイズコーターを用いて第1塗工液、第2塗工液の塗工を行った以外は、実施例5と同様にして、厚み20μmのセパレータを作製した。
(Comparative Example 19)
A separator having a thickness of 20 μm was produced in the same manner as in Example 5 except that the first coating liquid and the second coating liquid were applied using a squeeze coater instead of the gravure coater.

(比較例20)
実施例5のセパレータの第2塗工液が塗工された面と反対面に、もう1回第2塗工液を塗工量が6.0g/mとなるように塗工して第3の多孔質体を形成した以外は、実施例5と同様にして、厚み32μmのセパレータを作製した。
(Comparative Example 20)
The second coating liquid is applied once more on the surface opposite to the surface coated with the second coating liquid of the separator of Example 5, so that the coating amount is 6.0 g / m 2 . A separator having a thickness of 32 μm was produced in the same manner as in Example 5 except that the porous body 3 was formed.

(比較例21)
実施例5のセパレータの第2塗工液が塗工された面と反対面に、もう1回第1塗工液を塗工量が6.0g/mとなるように塗工して第3の多孔質体を形成した以外は、実施例5と同様にして、厚み32μmのセパレータを作製した。
(Comparative Example 21)
The surface of the separator of Example 5 opposite to the surface coated with the second coating solution is coated with the first coating solution once more so that the coating amount is 6.0 g / m 2 . A separator having a thickness of 32 μm was produced in the same manner as in Example 5 except that the porous body 3 was formed.

<評価>
[顕微鏡観察]
作製した各セパレータの表面を走査型電子顕微鏡で観察した結果、実施例5〜9、比較例9〜18のセパレータについては、不織布基材の片面が第2の多孔質体で被覆されており、反対面には不織布基材の繊維が露出していた。比較例19のセパレータについては、いずれの面にも不織布基材の繊維が露出していた。比較例20のセパレータについては、片面が第2の多孔質体で被覆されており、反対面が第3の多孔質体(実施例5の第2塗工液使用)で被覆されており、いずれの面にも不織布基材の繊維は露出していなかった。比較例21のセパレータについては、片面が第2の多孔質体で被覆されており、反対面が第3の多孔質体(実施例5の第1塗工液使用)で被覆されており、いずれの面にも不織布基材の繊維は露出していなかった。
<Evaluation>
[Microscopic observation]
As a result of observing the surface of each produced separator with a scanning electron microscope, for the separators of Examples 5 to 9 and Comparative Examples 9 to 18, one side of the nonwoven fabric substrate was covered with the second porous body, The fiber of the nonwoven fabric substrate was exposed on the opposite surface. For the separator of Comparative Example 19, the fibers of the nonwoven fabric substrate were exposed on either side. About the separator of Comparative Example 20, one surface is coated with the second porous body, and the opposite surface is coated with the third porous body (using the second coating liquid of Example 5). The fibers of the nonwoven fabric substrate were not exposed on this surface. About the separator of Comparative Example 21, one surface is coated with the second porous body, and the opposite surface is coated with the third porous body (using the first coating liquid of Example 5). The fibers of the nonwoven fabric substrate were not exposed on this surface.

[評価用電池の作製]
正極活物質にマンガン酸リチウム、負極活物質にメソカーボンマイクロビーズ、電解液にヘキサフルオロリン酸リチウム(LiPF)の1mol/L炭酸ジエチル/炭酸エチレン(体積比7/3)混合溶媒溶液をそれぞれ用い、セパレータとして上記で作製した各セパレータを第2の多孔質体が負極に対向するようにして、設計容量30mAhのパウチ型のリチウムイオン電池を作製した。
[Production of evaluation battery]
Lithium manganate as the positive electrode active material, mesocarbon microbeads as the negative electrode active material, and 1 mol / L diethyl carbonate / ethylene carbonate (volume ratio 7/3) mixed solvent solution of lithium hexafluorophosphate (LiPF 6 ) as the electrolyte As a separator, a pouch-type lithium ion battery having a design capacity of 30 mAh was produced by using each separator produced as described above with the second porous body facing the negative electrode.

[漏れ電流の評価]
各評価用電池について、「30mA定電流充電→4.2V定電圧充電(終止電流3mA)」のシーケンスで初回充電を行った際の充電容量を測定した。各セパレータを、充電容量により下記の3水準に区分した。充電容量が設計容量である30mAhを大幅に超過することは、電池内部で漏れ電流が生じていることを意味する。
[Evaluation of leakage current]
About each battery for evaluation, the charge capacity at the time of performing the first charge in the sequence of “30 mA constant current charge → 4.2 V constant voltage charge (end current 3 mA)” was measured. Each separator was classified into the following three levels according to the charge capacity. If the charging capacity greatly exceeds the designed capacity of 30 mAh, it means that a leakage current is generated inside the battery.

○:初回充電容量35mAh未満
△:初回充電容量35mAh以上40mAh未満
×:初回充電容量40mAh以上
○: Initial charge capacity of less than 35 mAh Δ: Initial charge capacity of 35 mAh or more and less than 40 mAh ×: Initial charge capacity of 40 mAh or more

[内部抵抗の評価]
漏れ電流評価後の各評価用電池について、「30mA定電流充電→4.2V定電圧充電(1時間)→30mAで定電流放電(終止電圧2.8V)」のシーケンスで、2サイクルのエイジング(慣らし充放電)を行った。次いで「30mA定電流充電→4.2V定電圧充電(1時間)」で充電後、90mAで定電流放電を行った。放電開始480秒後(計算上の残り充電率60%)の電圧Eから、次の式(2)で内部抵抗を求めた。
[Evaluation of internal resistance]
For each evaluation battery after leakage current evaluation, a cycle of “30 mA constant current charge → 4.2 V constant voltage charge (1 hour) → constant current discharge at 30 mA (end voltage 2.8 V)” (2 cycles of aging ( Break-in charge / discharge). Next, after charging with “30 mA constant current charging → 4.2 V constant voltage charging (1 hour)”, constant current discharging was performed at 90 mA. From the voltage E 480 seconds after the start of discharge (remaining charge rate 60% in calculation), the internal resistance was obtained by the following equation (2).

式(2) 内部抵抗=(3.88V−E)/90mA Formula (2) Internal resistance = (3.88V-E) / 90 mA

なお、3.88Vは、本評価用電池の残り充電率50%時の電池の開回路電圧であり、セパレータに依存せず、一定な値であることが確認されている。   In addition, 3.88V is the open circuit voltage of the battery when the remaining charge rate of the battery for this evaluation is 50%, and it has been confirmed that it is a constant value regardless of the separator.

○:内部抵抗4.0Ω未満
△:内部抵抗4.0Ω以上5.0Ω未満
×:内部抵抗5.0Ω以上
○: Internal resistance less than 4.0Ω Δ: Internal resistance of 4.0Ω to less than 5.0Ω ×: Internal resistance of 5.0Ω or more

表4に記すように、不織布基材に、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体と、形状が不定形であり、凹みのある形状であり、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体とが、この順に積層されており、不織布基材の片面が実質的に第2の多孔質体によって被覆されており、反対面には不織布基材の繊維が露出してなる実施例5〜9のセパレータは、漏れ電流が小さく、厚みが薄く、内部抵抗が低い。   As shown in Table 4, the nonwoven fabric substrate has a first porous body mainly composed of inorganic particles having a dispersed particle diameter of 1.0 μm or more and 3.0 μm or less and having an aggregated structure, A second porous body mainly composed of inorganic particles having an indeterminate shape, a dent shape, a dispersed particle diameter of less than 1.0 μm, and having no aggregate structure is laminated in this order. The separators of Examples 5 to 9, in which one side of the nonwoven fabric substrate is substantially covered with the second porous body and the fibers of the nonwoven fabric substrate are exposed on the opposite side, the leakage current is small, Thin thickness and low internal resistance.

これに対し、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする多孔質体のみを積層してなる比較例9のセパレータは漏れ電流が大きかった。また、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする多孔質体を厚くして、積層してなる比較例10のセパレータでは、漏れ電流を抑制することができたが、厚みが厚く、内部抵抗も高かった。形状が不定形であり、凹みのある形状であり、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする多孔質体のみを積層してなる比較例11のセパレータは漏れ電流が大きかった。   On the other hand, the separator of Comparative Example 9 in which the dispersed particle diameter is 1.0 μm or more and 3.0 μm or less and only the porous body mainly composed of inorganic particles having an aggregated structure is laminated has a leakage current. It was big. In the separator of Comparative Example 10 in which the dispersed particle size is 1.0 μm or more and 3.0 μm or less and the porous body mainly composed of inorganic particles having an aggregated structure is thickened and laminated, leakage occurs. Although the current could be suppressed, the thickness was thick and the internal resistance was high. In Comparative Example 11, the shape is irregular, has a dent, has a dispersed particle diameter of less than 1.0 μm, and is formed by laminating only porous bodies mainly composed of inorganic particles having no aggregated structure. The separator had a large leakage current.

第1の多孔質体が凝集構造を有さない無機粒子を主体とする比較例12のセパレータも、漏れ電流が大きかった。第1の多孔質体が、分散粒子径が1.0μm未満であり、凝集構造を有してなる無機粒子を主体としてなる比較例13のセパレータは、内部抵抗が高かった。第1の多孔質体が、分散粒子径が3.0μmを超える凝集構造を有してなる無機粒子を主体としてなる比較例14のセパレータも、内部抵抗が高かった。   The separator of Comparative Example 12 in which the first porous body was mainly composed of inorganic particles having no agglomerated structure also had a large leakage current. The first porous body had a dispersed particle size of less than 1.0 μm, and the separator of Comparative Example 13 mainly composed of inorganic particles having an aggregated structure had high internal resistance. The separator of Comparative Example 14 in which the first porous body was mainly composed of inorganic particles having an agglomerated structure with a dispersed particle diameter exceeding 3.0 μm also had high internal resistance.

第2の多孔質体が凝集構造を有してなる無機粒子を主体としてなる比較例15のセパレータは、漏れ電流が大きかった。凝集構造を有してなる無機粒子を主体とする第2の多孔質体を厚くした比較例16のセパレータは、漏れ電流を抑制することができたが、厚みが厚く、内部抵抗も高かった。   The separator of Comparative Example 15 in which the second porous body was mainly composed of inorganic particles having an agglomerated structure had a large leakage current. The separator of Comparative Example 16 in which the second porous body mainly composed of inorganic particles having an agglomerated structure was thick could suppress the leakage current, but was thick and high in internal resistance.

第1の多孔質体が、形状が不定形であり、凹みのある形状であり、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体としてなり、第2の多孔質体が、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体としてなる比較例17のセパレータは、漏れ電流が大きかった。第1の多孔質体が、形状が不定形であり、凹みのある形状であり、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体としてなり、第2の多孔質体が、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体としてなり、各多孔質体を厚くした比較例18のセパレータは、漏れ電流を抑制することができたが、厚みが厚く、内部抵抗も高かった。   The first porous body has an irregular shape, a dent shape, a dispersed particle diameter of less than 1.0 μm, mainly composed of inorganic particles having no aggregated structure, and the second porous body. The separator of Comparative Example 17 mainly composed of inorganic particles having a dispersed particle size of 1.0 μm or more and 3.0 μm or less and having an aggregated structure had a large leakage current. The first porous body has an irregular shape, a dent shape, a dispersed particle diameter of less than 1.0 μm, mainly composed of inorganic particles having no aggregated structure, and the second porous body. The separator of Comparative Example 18 in which the porous body has a dispersed particle diameter of 1.0 μm or more and 3.0 μm or less, mainly composed of inorganic particles having an agglomerated structure, and each porous body is thickened has a leakage current. Although it could be suppressed, the thickness was thick and the internal resistance was also high.

分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体と、形状が不定形であり、凹みのある形状であり、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体とが、この順に積層されているが、不織布基材の片面が実質的に第2の多孔質体によって被覆されておらず、セパレータの両面とも繊維が露出している比較例19のセパレータ、セパレータの両面が多孔質体によって被覆されていて、不織布基材の繊維が露出していないセパレータ20及び21では、漏れ電流が大きかった。   The first porous body mainly composed of inorganic particles having a dispersed particle diameter of 1.0 μm or more and 3.0 μm or less and having an aggregated structure, the shape is irregular, and a shape having a dent, The second porous body mainly composed of inorganic particles having a dispersed particle diameter of less than 1.0 μm and not having an agglomerated structure is laminated in this order. The separator of Comparative Example 19 is not covered with the porous body 2 and the fibers are exposed on both sides of the separator, both sides of the separator are covered with the porous body, and the fibers of the nonwoven fabric substrate are exposed. With the separators 20 and 21, the leakage current was large.

本発明のリチウムイオン電池用セパレータは、リチウムイオン電池用途に用いられるものであるが、これ以外にも、マンガン乾電池、アルカリマンガン電池、酸化銀電池、リチウム一次電池、鉛蓄電池、ニッケル−カドミウム蓄電池、ニッケル−水素蓄電池、ニッケル−亜鉛蓄電池、酸化銀−亜鉛蓄電池、リチウムポリマー電池、各種のゲル電解質電池、亜鉛−空気蓄電池、鉄−空気蓄電池、アルミニウム−空気蓄電池、燃料電池、太陽電池、ナトリウム硫黄電池、ポリアセン電池、電解コンデンサー、電気二重層キャパシター、リチウムイオンキャパシター等に利用できる。   The lithium ion battery separator of the present invention is used for lithium ion battery applications, but besides this, a manganese dry battery, an alkaline manganese battery, a silver oxide battery, a lithium primary battery, a lead storage battery, a nickel-cadmium storage battery, Nickel-hydrogen battery, nickel-zinc battery, silver oxide-zinc battery, lithium polymer battery, various gel electrolyte batteries, zinc-air battery, iron-air battery, aluminum-air battery, fuel cell, solar battery, sodium sulfur battery It can be used for polyacene batteries, electrolytic capacitors, electric double layer capacitors, lithium ion capacitors and the like.

1 不織布基材
2 別の多孔質体
3 多孔質体
DESCRIPTION OF SYMBOLS 1 Nonwoven fabric base material 2 Another porous body 3 Porous body

Claims (7)

少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータにおいて、該無機粒子の形状が不定形であることを特徴とするリチウムイオン電池用セパレータ。   A lithium ion battery separator comprising a porous body mainly composed of at least inorganic particles, wherein the inorganic particles have an indefinite shape. 無機粒子が凹みのある形状を有する請求項1記載のリチウムイオン電池用セパレータ。   The lithium ion battery separator according to claim 1, wherein the inorganic particles have a concave shape. 無機粒子がアルミナ水和物である請求項1又は2記載のリチウムイオン電池用セパレータ。   The separator for lithium ion batteries according to claim 1 or 2, wherein the inorganic particles are hydrated alumina. 少なくとも無機粒子を主体とする多孔質体を含有してなるリチウムイオン電池用セパレータにおいて、無機粒子が、その20質量%水分散物のpHが7.0以上8.3以下であり、該水分散物の粘度が50mPa・s以上2000mPa・s以下であるアルミナ水和物であることを特徴とするリチウムイオン電池用セパレータ。   In a lithium ion battery separator comprising a porous body mainly composed of at least inorganic particles, the inorganic particles have a pH of 7.0 to 8.3 in a 20% by mass aqueous dispersion, and the aqueous dispersion A separator for a lithium ion battery, wherein the separator is an alumina hydrate having a viscosity of 50 mPa · s to 2000 mPa · s. 不織布基材を含有してなる請求項1〜4のいずれか記載のリチウムイオン電池用セパレータ。   The separator for lithium ion batteries according to any one of claims 1 to 4, comprising a nonwoven fabric substrate. 少なくとも片面に不織布基材の繊維が露出してなる請求項5記載のリチウムイオン電池用セパレータ。   The separator for a lithium ion battery according to claim 5, wherein the fibers of the nonwoven fabric substrate are exposed on at least one side. 不織布基材に、分散粒子径が1.0μm以上3.0μm以下であり、凝集構造を有してなる無機粒子を主体とする第1の多孔質体と、形状が不定形であり、凹みのある形状であり、分散粒子径が1.0μm未満であり、凝集構造を有さない無機粒子を主体とする第2の多孔質体とが、この順に積層されており、不織布基材の片面が実質的に第2の多孔質体によって被覆されており、反対面には不織布基材の繊維が露出してなることを特徴とするリチウムイオン電池用セパレータ。   A non-woven fabric substrate having a dispersed particle diameter of 1.0 μm or more and 3.0 μm or less, a first porous body mainly composed of inorganic particles having an aggregated structure, an irregular shape, and a dent A second porous body mainly composed of inorganic particles having a certain shape and a dispersed particle diameter of less than 1.0 μm and having no aggregate structure is laminated in this order, and one side of the nonwoven fabric substrate is A separator for a lithium ion battery, which is substantially covered with a second porous body, and the fibers of the nonwoven fabric substrate are exposed on the opposite surface.
JP2014521393A 2012-06-12 2013-06-06 Lithium ion battery separator Active JP6292625B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014521393A JP6292625B2 (en) 2012-06-12 2013-06-06 Lithium ion battery separator

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP2012132591 2012-06-12
JP2012132591 2012-06-12
JP2013047947 2013-03-11
JP2013048301 2013-03-11
JP2013048301 2013-03-11
JP2013047947 2013-03-11
JP2013052923 2013-03-15
JP2013052923 2013-03-15
PCT/JP2013/066288 WO2013187458A1 (en) 2012-06-12 2013-06-06 Separator for lithium ion cell
JP2014521393A JP6292625B2 (en) 2012-06-12 2013-06-06 Lithium ion battery separator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017241786A Division JP2018073842A (en) 2012-06-12 2017-12-18 Separator for lithium ion battery

Publications (2)

Publication Number Publication Date
JPWO2013187458A1 true JPWO2013187458A1 (en) 2016-02-08
JP6292625B2 JP6292625B2 (en) 2018-03-14

Family

ID=49758276

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014521393A Active JP6292625B2 (en) 2012-06-12 2013-06-06 Lithium ion battery separator
JP2017241786A Pending JP2018073842A (en) 2012-06-12 2017-12-18 Separator for lithium ion battery

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017241786A Pending JP2018073842A (en) 2012-06-12 2017-12-18 Separator for lithium ion battery

Country Status (3)

Country Link
JP (2) JP6292625B2 (en)
CN (2) CN107834009B (en)
WO (1) WO2013187458A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6033933B2 (en) * 2014-09-17 2016-11-30 三菱製紙株式会社 Electrochemical element separator and electrochemical element using the same
CN105576177B (en) * 2016-03-18 2019-03-12 东华理工大学 A kind of lithium ion battery reinforced inorganic diaphragm and preparation method thereof
JP2018125272A (en) * 2016-03-24 2018-08-09 三菱製紙株式会社 Lithium ion battery separator
JP6579383B2 (en) * 2016-08-10 2019-09-25 荒川化学工業株式会社 Lithium ion secondary battery separator, method for producing lithium ion secondary battery separator, and lithium ion secondary battery
JP6872726B2 (en) 2017-03-31 2021-05-19 パナソニックIpマネジメント株式会社 Secondary battery
CN107204422A (en) * 2017-06-13 2017-09-26 四川大学 A kind of preparation method of carbon/nickel ferrite based magnetic loaded nanometer composite fiber material
JP6822366B2 (en) * 2017-09-28 2021-01-27 トヨタ自動車株式会社 Lithium-ion secondary battery and its manufacturing method
KR102263460B1 (en) * 2018-01-05 2021-06-11 주식회사 엘지에너지솔루션 Separator Comprising Binders Having Different Glass Transition Temperature and Method for Preparing the Same
JP6999671B2 (en) * 2018-01-25 2022-01-18 三菱製紙株式会社 Lithium-ion battery separator coating liquid and lithium-ion battery separator
JP7193829B2 (en) 2018-02-07 2022-12-21 株式会社ロゴスコーポレーション Bedding and table with bedding provided with this
CN108841025B (en) * 2018-06-20 2021-06-18 中航锂电技术研究院有限公司 Low-moisture ceramic coating, ceramic slurry, preparation method of ceramic slurry, ceramic diaphragm and lithium ion battery cell
CN109004231A (en) * 2018-08-28 2018-12-14 武汉理工大学 Lithium-sulfur cell binder and corresponding lithium sulfur battery anode material, lithium-sulfur cell

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078828A1 (en) * 2004-02-18 2005-08-25 Matsushita Electric Industrial Co., Ltd. Secondary battery
WO2005124899A1 (en) * 2004-06-22 2005-12-29 Matsushita Electric Industrial Co., Ltd. Secondary battery and method for producing same
JP2007246389A (en) * 2006-03-15 2007-09-27 Nabaltec Ag Method for the production of finely crystalline boehmite and application of the boehmite as flame retardant in plastics
WO2009151054A1 (en) * 2008-06-09 2009-12-17 日立マクセル株式会社 Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10238943B4 (en) * 2002-08-24 2013-01-03 Evonik Degussa Gmbh Separator-electrode unit for lithium-ion batteries, method for their production and use in lithium batteries and a battery, comprising the separator-electrode unit
KR100659820B1 (en) * 2004-11-17 2006-12-19 삼성에스디아이 주식회사 Lithium ion secondary battery
CN102460773A (en) * 2009-06-10 2012-05-16 日立麦克赛尔株式会社 Separator for electrochemical element, and electrochemical element including same
JP2011018589A (en) * 2009-07-10 2011-01-27 Hitachi Maxell Ltd Slurry for insulating layer forming, separator for lithium ion secondary battery and manufacturing method thereof, and lithium ion secondary battery
KR101125013B1 (en) * 2009-07-29 2012-03-27 한양대학교 산학협력단 Cross-linked ceramic-coated separators containing ionic polymers and rechargeable lithium batteries using them
CN103201878B (en) * 2010-08-19 2015-06-24 丰田自动车株式会社 Non-aqueous electrolyte secondary battery
JP2013084367A (en) * 2011-10-06 2013-05-09 Mitsubishi Paper Mills Ltd Coating liquid for lithium ion battery separator, and lithium ion battery separator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005078828A1 (en) * 2004-02-18 2005-08-25 Matsushita Electric Industrial Co., Ltd. Secondary battery
WO2005124899A1 (en) * 2004-06-22 2005-12-29 Matsushita Electric Industrial Co., Ltd. Secondary battery and method for producing same
JP2007246389A (en) * 2006-03-15 2007-09-27 Nabaltec Ag Method for the production of finely crystalline boehmite and application of the boehmite as flame retardant in plastics
WO2009151054A1 (en) * 2008-06-09 2009-12-17 日立マクセル株式会社 Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery

Also Published As

Publication number Publication date
JP2018073842A (en) 2018-05-10
WO2013187458A1 (en) 2013-12-19
CN104521029B (en) 2018-05-22
CN107834009A (en) 2018-03-23
CN104521029A (en) 2015-04-15
CN107834009B (en) 2021-10-12
JP6292625B2 (en) 2018-03-14

Similar Documents

Publication Publication Date Title
JP6292625B2 (en) Lithium ion battery separator
JP5470255B2 (en) Lithium ion secondary battery separator, method for producing the same, and lithium ion secondary battery
JP5829557B2 (en) Method for producing metal ion secondary battery separator
KR20130026444A (en) Separator for electrochemical device, electrochemical device using same, and method for producing the separator for electrochemical device
JP5750033B2 (en) Lithium ion battery separator
JP2009064566A (en) Separator for battery and nonaqueous electrolyte battery
JP2017517834A (en) Separator manufacturing method, separator formed by the method, and electrochemical device including the same
EP2605311A1 (en) Separator
JP2014186857A (en) Separator base material for lithium ion secondary batteries, and separator for lithium ion secondary batteries
JP5926619B2 (en) Coating liquid for lithium ion battery separator and method for producing lithium ion battery separator
JP2018006258A (en) Lead-acid battery separator and lead-acid battery using the same
JP2013084367A (en) Coating liquid for lithium ion battery separator, and lithium ion battery separator
JP5841510B2 (en) Metal ion secondary battery separator coating liquid and metal ion secondary battery separator
JP5876375B2 (en) Metal ion secondary battery separator
JP7331692B2 (en) Porous film, secondary battery separator and secondary battery
JP6765277B2 (en) Lithium ion battery
JP2019212490A (en) Base material for lithium ion battery separator and lithium ion battery separator
JP2015005420A (en) Cell separator
JP2012134135A (en) Base material for lithium secondary battery, and separator for lithium secondary battery
JP5840990B2 (en) Electrochemical element separator and electrochemical element
JP5850687B2 (en) Electrochemical element separator and electrochemical element
JP5690222B2 (en) Lithium secondary battery substrate and lithium secondary battery separator
JP7176249B2 (en) Porous film, secondary battery separator and secondary battery
JP6018526B2 (en) Metal ion secondary battery separator
JP2014154527A (en) Lithium ion battery separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170410

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171003

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20171121

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20171124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180207

R150 Certificate of patent or registration of utility model

Ref document number: 6292625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250