JP5876375B2 - Metal ion secondary battery separator - Google Patents

Metal ion secondary battery separator Download PDF

Info

Publication number
JP5876375B2
JP5876375B2 JP2012130407A JP2012130407A JP5876375B2 JP 5876375 B2 JP5876375 B2 JP 5876375B2 JP 2012130407 A JP2012130407 A JP 2012130407A JP 2012130407 A JP2012130407 A JP 2012130407A JP 5876375 B2 JP5876375 B2 JP 5876375B2
Authority
JP
Japan
Prior art keywords
metal ion
ion secondary
secondary battery
inorganic pigment
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012130407A
Other languages
Japanese (ja)
Other versions
JP2013254677A (en
JP2013254677A5 (en
Inventor
信子 高濱
信子 高濱
敬生 増田
敬生 増田
貴仁 落合
貴仁 落合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2012130407A priority Critical patent/JP5876375B2/en
Publication of JP2013254677A publication Critical patent/JP2013254677A/en
Publication of JP2013254677A5 publication Critical patent/JP2013254677A5/ja
Application granted granted Critical
Publication of JP5876375B2 publication Critical patent/JP5876375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、金属イオン二次電池セパレータに関する。   The present invention relates to a metal ion secondary battery separator.

電気化学素子の一つである金属イオン二次電池は、エネルギー密度が高いという特徴を有し、例えば、そのうちの一つであるリチウムイオン二次電池は携帯電話、携帯型音楽プレーヤー、ノート型パーソナルコンピューター等の携帯型電気機器の電源として広く利用されている。また、電気自転車、ハイブリッド自動車、電気自動車等の大型機器にも、リチウムイオン二次電池を利用する動きが広がっている。また、ナトリウムイオン二次電池等その他の金属イオン二次電池も注目されている。そのため、金属イオン二次電池には高容量化、ハイレートでの放電特性(ハイレート特性)といった性能が求められているが、金属イオン二次電池は一般に非水系電池であるため、水系電池と比較して、発煙、発火、破裂等の危険性が高いことが知られており、安全性の向上も要求されている。   A metal ion secondary battery, which is one of electrochemical elements, has a feature of high energy density. For example, a lithium ion secondary battery, which is one of them, is a mobile phone, a portable music player, a notebook personal computer. Widely used as a power source for portable electric devices such as computers. In addition, the movement to use lithium ion secondary batteries is spreading in large equipment such as electric bicycles, hybrid cars, and electric cars. In addition, other metal ion secondary batteries such as sodium ion secondary batteries have attracted attention. Therefore, metal ion secondary batteries are required to have high capacity and high rate discharge characteristics (high rate characteristics). However, since metal ion secondary batteries are generally non-aqueous batteries, they are compared with aqueous batteries. Therefore, it is known that there is a high risk of smoking, ignition, rupture, etc., and improvement in safety is also required.

金属イオン二次電池では、外熱による温度上昇、過充電、内部短絡、外部短絡等によって発煙等の危険性が高まる。これらは、外部保護回路によってある程度防ぐことが可能である。また、金属イオン二次電池セパレータとして使用されているポリオレフィン系樹脂の多孔質フィルムが120℃付近で溶融し、孔が閉塞して電流やイオンの流れを遮断することによって、電池の温度上昇が抑制される。これは、シャットダウン機能と呼ばれている。しかし、外熱によって温度が上昇した場合や温度上昇によって電池内部で化学反応が起きた場合には、シャットダウン機能が働いても電池温度はさらに上昇し、電池温度が150℃以上にまで達すると、多孔質フィルムが収縮して内部短絡が起こり、発火等が起きることがあった。   In a metal ion secondary battery, the risk of smoke generation increases due to temperature rise due to external heat, overcharge, internal short circuit, external short circuit, and the like. These can be prevented to some extent by an external protection circuit. In addition, the polyolefin resin porous film used as a metal ion secondary battery separator melts at around 120 ° C, and the pores are blocked to block current and ion flow, thereby suppressing battery temperature rise. Is done. This is called a shutdown function. However, when the temperature rises due to external heat or when a chemical reaction occurs inside the battery due to the temperature rise, the battery temperature further rises even if the shutdown function works, and when the battery temperature reaches 150 ° C or higher, The porous film contracted, causing an internal short circuit, which could cause ignition.

このように、セパレータのシャットダウン機能では電池の発火を抑制することができ難くなっている。そのため、ポリオレフィン系樹脂の多孔質フィルムよりも熱収縮温度を上げることによって、内部短絡を起こり難くして電池の発火を抑制することを目的として、ポリエステル系繊維で構成した不織布セパレータ、ポリエステル系繊維に耐熱繊維であるアラミド繊維を配合した不織布セパレータが提案されている(例えば、特許文献1〜3参照)しかしこれら不織布セパレータは熱収縮性には優れるものの孔径が大きく、両極活物質の接触による内部短絡、あるいは負極上に生成するデンドライトによる微小短絡が発生しやすく、実用的とは言い難かった。これら短絡を抑制し、また、耐熱性を更に向上させるため、不織布や織布に、顔料や樹脂を塗工することで担持させる例が開示されている(例えば、特許文献4〜5参照)。しかしながら、顔料や樹脂を塗工しても、基材の孔が大きいため、塗液の裏抜けや、ピンホールと呼ばれる塗工欠陥が生じやすく、微小短絡の防止効果は不十分であった。また、微小短絡を防止するために顔料や樹脂を厚く塗工することで、金属イオン通過性が低下し、ハイレート特性が損なわれるという課題があった。 As described above, it is difficult to suppress the ignition of the battery by the shutdown function of the separator. Therefore, by increasing the heat shrinkage temperature more than the polyolefin resin porous film, it is difficult to cause an internal short circuit and suppresses the ignition of the battery. Nonwoven fabric separators containing aramid fibers, which are heat resistant fibers, have been proposed (see, for example, Patent Documents 1 to 3) . However, although these nonwoven fabric separators are excellent in heat shrinkability, the pore diameter is large, and internal short circuit due to contact of the bipolar active material or micro short circuit due to dendrite generated on the negative electrode is likely to occur, and it is difficult to say that it is practical. In order to suppress these short circuits and to further improve the heat resistance, examples in which a non-woven fabric or a woven fabric is supported by applying a pigment or a resin are disclosed (for example, see Patent Documents 4 to 5). However, even when a pigment or resin is applied, the substrate has a large hole, so that the coating liquid is easily exposed and a coating defect called a pinhole is likely to occur, and the effect of preventing a micro short circuit is insufficient. Moreover, in order to prevent a micro short circuit, there existed a subject that a metal ion permeability fell by applying a pigment and resin thickly, and a high rate characteristic was impaired.

特開2003−123728号公報JP 2003-123728 A 特開2007−317675号公報JP 2007-317675 A 特開2006−19191号公報JP 2006-19191 A 特表2005−536857号公報JP 2005-536857 A 特開2007−157723号公報JP 2007-157723 A

本発明の課題は、耐熱性の高い金属イオン二次電池セパレータを製造するにあたり、ハイレート特性に優れる金属イオン二次電池セパレータを提供する。   An object of the present invention is to provide a metal ion secondary battery separator that is excellent in high rate characteristics when producing a metal ion secondary battery separator having high heat resistance.

本発明者らは鋭意研究した結果、課題を解決できる金属イオン二次電池セパレータを発明するに至った。即ち、
(1)不織布基材に無機顔料及び接着剤を担持させた金属イオン二次電池セパレータにおいて、該不織布基材が、密度0.55〜0.75g/cm、且つ、フラジール通気度5.5〜13.5cc/cm・secであり、また、該無機顔料が粒子径0.4〜1.0μmの一次粒子が凝集してなる平均粒子径1.5〜5.0μmの二次粒子であり、セパレータに含有される無機顔料の量がセパレータの全固形分中の30〜70質量%であり、無機顔料及び接着剤を含有する塗層の塗工量が5〜30g/m であり、塗層中の接着剤量が固形分中3〜15質量%であることを特徴とする金属イオン二次電池セパレータ、
(2)前記無機顔料がαアルミナもしくはベーマイトであることを特徴とする(1)記載の金属イオン二次電池セパレータ、
である。
As a result of intensive studies, the present inventors have invented a metal ion secondary battery separator that can solve the problem. That is,
(1) In a metal ion secondary battery separator in which an inorganic pigment and an adhesive are supported on a nonwoven fabric base material, the nonwoven fabric base material has a density of 0.55 to 0.75 g / cm 3 and a fragile air permeability of 5.5. ~13.5cc / cm is 2 · sec, also, an average particle size 1.5~5.0μm secondary particles inorganic pigment is formed by agglomerating primary particles of particle size 0.4~1.0μm Ah is, 30 to 70% by weight of the total solid content amount of the separator of inorganic pigment contained in the separator, the coating weight of the coating layer containing an inorganic pigment and adhesive in 5 to 30 g / m 2 There, the metal-ion secondary battery separators amount of adhesive coating layer is characterized by 3-15% by mass Rukoto in solids,
(2) The metal ion secondary battery separator according to (1), wherein the inorganic pigment is α-alumina or boehmite,
It is.

不織布基材に無機顔料及び接着剤を担持させた金属イオン二次電池セパレータにおいて、該不織布基材が、密度0.55〜0.75g/cm、且つ、フラジール通気度5.5〜13.5cc/cm・secであり、また、該無機顔料が粒子径0.4〜1.0μmの一次粒子が凝集してなる平均粒子径1.5〜5.0μmの二次粒子であることにより、内部短絡抑止に優れ、且つ、ハイレート特性に優れる、安全性の高い金属イオン二次電池セパレータを製造することができる。 In a metal ion secondary battery separator in which an inorganic pigment and an adhesive are supported on a nonwoven fabric substrate, the nonwoven fabric substrate has a density of 0.55 to 0.75 g / cm 3 and a fragile permeability of 5.5 to 13. 5 cc / cm 2 · sec, and the inorganic pigment is a secondary particle having an average particle size of 1.5 to 5.0 μm formed by agglomerating primary particles having a particle size of 0.4 to 1.0 μm. It is possible to produce a highly safe metal ion secondary battery separator that is excellent in suppressing internal short circuit and excellent in high-rate characteristics.

また、該無機顔料をαアルミナ又はベーマイトとすることで、ハイレート特性を更に高めることができる。   Moreover, the high rate characteristic can be further enhanced by using α-alumina or boehmite as the inorganic pigment.

本発明に係る不織布基材は、密度0.55〜0.75g/cm、且つ、フラジール通気度5.5〜13.5cc/cm・secである。不織布基材への塗液の浸透性及びセパレータ内部のイオン通過性には、不織布基材の空隙率やポア径、ポア分布等が複合的に影響するが、不織布基材の密度及び通気度の双方を制御することで、内部短絡抑止、ハイレート特性の両立に適した不織布基材を得ることが可能である。基材密度0.55g/cm以上、且つ、フラジール通気度13.5cc/cm・sec以下とすることで、塗工時の塗液の裏抜けが抑えられ、ピンホール発生が抑制される結果、内部短絡が起きにくくなる。また、基材密度0.75g/cm以下、且つ、フラジール通気度5.5cc/cm・sec以上とすることで、イオン通過性の良好な、ハイレート特性に優れた金属イオン二次電池セパレータ(以下、「セパレータ」と略記する場合がある)が得られる。不織布基材の密度は0.57〜0.73g/cmであることがより好ましく、0.59〜0.71g/cmであることがさらに好ましい。また、フラジール通気度は6.0〜13.0cc/cm・secであることがより好ましく、6.5〜12.5cc/cm・secであることがさらに好ましい。 The nonwoven fabric substrate according to the present invention has a density of 0.55 to 0.75 g / cm 3 and a fragile air permeability of 5.5 to 13.5 cc / cm 2 · sec. The porosity, pore diameter, pore distribution, etc. of the nonwoven fabric substrate have a complex effect on the permeability of the coating liquid to the nonwoven fabric substrate and the ion permeability inside the separator. By controlling both, it is possible to obtain a nonwoven fabric base material suitable for achieving both internal short circuit suppression and high rate characteristics. By setting the substrate density to 0.55 g / cm 3 or more and the Frazier air permeability to 13.5 cc / cm 2 · sec or less, the back-through of the coating liquid during coating can be suppressed, and the occurrence of pinholes can be suppressed. As a result, an internal short circuit is less likely to occur. In addition, by setting the substrate density to 0.75 g / cm 3 or less and the fragile air permeability to 5.5 cc / cm 2 · sec or more, a metal ion secondary battery separator having good ion permeability and excellent high-rate characteristics. (Hereinafter sometimes abbreviated as “separator”). More preferably the density of the nonwoven substrate is 0.57~0.73g / cm 3, further preferably 0.59~0.71g / cm 3. Moreover, Frazier air permeability is more preferably from 6.0~13.0cc / cm 2 · sec, more preferably from 6.5~12.5cc / cm 2 · sec.

本発明において、フラジール通気度は、JIS L 1096に規定されたフラジール形法に基づく通気性を意味する。   In the present invention, fragile air permeability means air permeability based on the fragile method defined in JIS L 1096.

不織布基材の密度及びフラジール通気度を調整する方法は任意により選択されるが、例えば、繊維種及び繊維径の選択、乾燥温度調整、抄造・乾燥後にカレンダー又は熱カレンダーにて処理することで任意の値に調整可能である。   The method for adjusting the density and fragile air permeability of the nonwoven fabric substrate is arbitrarily selected. For example, the fiber type and fiber diameter can be selected, the drying temperature can be adjusted, and the paper can be processed by calendering or heat calendering after drying. Can be adjusted.

本発明に用いる不織布基材としては、従来公知の方法によって製造したものを用いることができる。例えば、スパンボンド法、メルトブロー法、乾式法、湿式法、エレクトロスピニング法などの方法によって製造したものを使用することができる。   As the nonwoven fabric substrate used in the present invention, those produced by a conventionally known method can be used. For example, what was manufactured by methods, such as the spun bond method, the melt blow method, the dry method, the wet method, and the electrospinning method, can be used.

本発明において、不織布基材表面の平坦化や密度をコントロールする目的で、カレンダー処理や熱カレンダー処理により不織布基材を平滑化してもよい。   In the present invention, the nonwoven fabric substrate may be smoothed by calendering or thermal calendering for the purpose of controlling the surface and density of the nonwoven fabric substrate.

不織布基材の構成材料としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びそれらの誘導体、芳香族ポリエステル、全芳香族ポリエステルなどのポリエステル、ポリオレフィン、アクリル、ポリアセタール、ポリカーボネート、脂肪族ポリケトン、芳香族ポリケトン、脂肪族ポリアミド、芳香族ポリアミド、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンスルフィド、ポリベンゾイミダゾール、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリ(パラ−フェニレンベンゾビスチアゾール)、ポリ(パラ−フェニレン−2,6−ベンゾビスオキサゾール)、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルアルコール、ポリウレタン及びポリ塩化ビニルなどの樹脂からなる繊維並びにセルロース繊維などが挙げられる。該不織布基材はこれらの構成材料の2種以上を含有していても構わない。   Non-woven fabric base materials include polyethylene terephthalate, polybutylene terephthalate and derivatives thereof, polyesters such as aromatic polyester and wholly aromatic polyester, polyolefin, acrylic, polyacetal, polycarbonate, aliphatic polyketone, aromatic polyketone, aliphatic Polyamide, aromatic polyamide, wholly aromatic polyamide, polyimide, polyamideimide, polyphenylene sulfide, polybenzimidazole, polyetheretherketone, polyethersulfone, poly (para-phenylenebenzobisthiazole), poly (para-phenylene-2, 6-benzobisoxazole), polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, polyurethane and polyvinyl chloride Such that fibers and cellulose fibers, and the like. The non-woven fabric substrate may contain two or more of these constituent materials.

本発明の金属イオン二次電池セパレータに用いる不織布基材としては、目付が5〜30g/mであるのが好ましく、より好ましくは7〜20g/mである。目付を5g/m以上とすることで不織布としての均一性を得やすくなり、また、30g/m以下とすることで金属イオン二次電池セパレータに適した厚みとなる。なお、目付はJIS P 8124に規定された方法に基づく坪量を意味する。また、密度は目付を厚みで除した値である。 As a nonwoven fabric base material used for the metal ion secondary battery separator of this invention, it is preferable that a fabric weight is 5-30 g / m < 2 >, More preferably, it is 7-20 g / m < 2 >. By setting the basis weight to 5 g / m 2 or more, it becomes easy to obtain uniformity as a nonwoven fabric, and by setting it to 30 g / m 2 or less, the thickness is suitable for a metal ion secondary battery separator. The basis weight means the basis weight based on the method defined in JIS P 8124. The density is a value obtained by dividing the basis weight by the thickness.

本発明に係る無機顔料は粒子径0.4〜1.0μmの一次粒子が凝集してなる平均粒子径1.5〜5.0μmの二次粒子である。粒子の分散安定性、塗層の平坦性は、二次粒子の粒子径、ここで言う「平均粒子径」に依存するが、内部短絡抑制に影響するセパレータの孔径、ハイレート特性に大きく影響する塗層内の空隙率は、層構造及び一次粒子の粒子径に依存する。平均粒子径が1.5μm以上であることで、粒子の分散安定性が向上し、均一な塗層を形成することが可能となる。また、平均粒子径が5.0μm以下であることで、塗層の平坦性が得やすくなる。平均粒子径は1.7〜4.5μmであることがより好ましく、2.0〜4.0μmであることがさらに好ましい。   The inorganic pigment according to the present invention is a secondary particle having an average particle diameter of 1.5 to 5.0 μm formed by agglomerating primary particles having a particle diameter of 0.4 to 1.0 μm. The dispersion stability of the particles and the flatness of the coating layer depend on the particle size of the secondary particles, the “average particle size” referred to here, but the coating has a large effect on the separator pore size and high rate characteristics that affect internal short circuit suppression. The porosity in the layer depends on the layer structure and the particle size of the primary particles. When the average particle diameter is 1.5 μm or more, the dispersion stability of the particles is improved, and a uniform coating layer can be formed. Moreover, it becomes easy to obtain the flatness of a coating layer because an average particle diameter is 5.0 micrometers or less. The average particle diameter is more preferably 1.7 to 4.5 μm, and further preferably 2.0 to 4.0 μm.

粒子が二次形をとることで凝集粒子間に微細な空隙が生じ、また、平均粒子径が同一の一次粒子に比べ比表面積が増大し、塗層内の空隙が増加するため、ハイレート特性が得やすくなる。この際の一次粒子の粒子径が0.4〜1.0μmであると、セパレータ全体の孔径の制御が容易で、内部短絡抑止、ハイレート特性の双方に有効である。一次粒子の粒子径は、0.5〜0.9μmであることがより好ましく、0.6〜0.8μmであることがさらに好ましい。   Since the particles have a secondary shape, fine voids are formed between the agglomerated particles, and the specific surface area is increased compared to the primary particles having the same average particle diameter, and the voids in the coating layer are increased. It becomes easy to obtain. In this case, when the particle diameter of the primary particles is 0.4 to 1.0 μm, it is easy to control the pore diameter of the entire separator, which is effective for both internal short circuit suppression and high rate characteristics. The particle diameter of the primary particles is more preferably 0.5 to 0.9 μm, and further preferably 0.6 to 0.8 μm.

前記不織布基材に、この、均一、平坦、且つ空隙率の高い塗層を設けることで、電流密度が偏ることなく、金属イオンの通過の容易な、ハイレート特性に優れた金属イオン二次電池セパレータが得られる。なお、本発明で言う「一次粒子の粒子径」とは、無機顔料の粒子を電子顕微鏡により観察し、一次粒子各々の投影面積に等しい円の直径を粒子の粒径として、平均粒子径を求めたものである。「二次粒子の平均粒子径」とはレーザー回折散乱法により測定される平均粒子径(D50)である。   By providing this non-woven fabric base material with a uniform, flat, and high porosity coating layer, the metal ion secondary battery separator is excellent in high-rate characteristics, allowing easy passage of metal ions without biasing current density. Is obtained. The “particle size of primary particles” as used in the present invention refers to the observation of inorganic pigment particles with an electron microscope, and the average particle size is determined by using the diameter of a circle equal to the projected area of each primary particle as the particle size. It is a thing. The “average particle diameter of secondary particles” is an average particle diameter (D50) measured by a laser diffraction scattering method.

また、上記無機顔料のレーザー回折散乱法により測定される90%粒径(D90)が塗層の厚みの1/2〜1/4であるのが、内部短絡抑止、ハイレート特性の両立の点から望ましい。塗層の厚みは、セパレータの断面の任意の5箇所を走査型電子顕微鏡、あるいは光学顕微鏡等により観察して測定し、その平均値として算出する。なお、無機顔料の一部が不織布基材の内部に入り込んでいる場合であっても、無機顔料のみの層の厚みを塗層の厚みとする。   Further, the 90% particle diameter (D90) measured by the laser diffraction scattering method of the inorganic pigment is 1/2 to 1/4 of the thickness of the coating layer from the viewpoint of coexistence of internal short-circuit suppression and high-rate characteristics. desirable. The thickness of the coating layer is measured by observing and measuring an arbitrary five points in the cross section of the separator with a scanning electron microscope, an optical microscope, or the like, and is calculated as an average value thereof. In addition, even if it is a case where a part of inorganic pigment has penetrated the inside of a nonwoven fabric base material, let the thickness of the layer only of an inorganic pigment be the thickness of a coating layer.

本発明に用いる無機顔料としては、カオリン、焼成カオリン、重質炭酸カルシウム、軽質炭酸カルシウム、炭酸マグネシウム、酸化亜鉛、アルミナ、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、二酸化チタン、硫酸バリウム、硫酸亜鉛、非晶質シリカ、ケイ酸カルシウムなどが挙げられる。これらを単独で用いても、2種以上併用して用いてもよい。なかでも熱安定性の点からαアルミナもしくはベーマイトが好ましく用いられる。また、熱安定性の点から本発明のセパレータに含有される無機顔料は、セパレータの全固形分中の30〜70質量%であるのが好ましい。   Examples of the inorganic pigment used in the present invention include kaolin, calcined kaolin, heavy calcium carbonate, light calcium carbonate, magnesium carbonate, zinc oxide, alumina, boehmite, aluminum hydroxide, magnesium hydroxide, titanium dioxide, barium sulfate, zinc sulfate, Examples thereof include amorphous silica and calcium silicate. These may be used alone or in combination of two or more. Of these, α-alumina or boehmite is preferably used from the viewpoint of thermal stability. Moreover, it is preferable that the inorganic pigment contained in the separator of this invention is 30-70 mass% in the total solid of a separator from the point of thermal stability.

本発明の無機顔料の吸油量としては40〜100ml/100gが、有効な比表面積及び塗層内の空隙が得やすく好ましい。   The oil absorption of the inorganic pigment of the present invention is preferably 40 to 100 ml / 100 g because an effective specific surface area and voids in the coating layer are easily obtained.

本発明に用いる無機顔料の一次粒子形状としては、板状、粒状、針状、キュービック状、球状、紡錘状、鱗片状などいずれの形状を用いてもよいが、なかでもキュービック状であるのが塗層内の空隙が得やすく好ましい。   As the primary particle shape of the inorganic pigment used in the present invention, any shape such as a plate shape, a granular shape, a needle shape, a cubic shape, a spherical shape, a spindle shape, and a scale shape may be used, and the cubic shape is particularly preferred. It is preferable because voids in the coating layer are easily obtained.

粒子径0.4〜1.0μmの一次粒子が凝集してなる平均粒子径1.5〜5.0μmの二次粒子である無機顔料としては、該当する市販品を用いてもよいし、既知の方法に従い合成してもよい。   As an inorganic pigment which is a secondary particle having an average particle diameter of 1.5 to 5.0 μm formed by agglomeration of primary particles having a particle diameter of 0.4 to 1.0 μm, a corresponding commercially available product may be used. It may be synthesized according to the method.

例えば、二次形を有するベーマイトの合成法としては、水酸化アルミニウムを、反応促進剤及び水などと共に水熱処理する方法などにより得ることができる。水酸化アルミニウムは、平均粒子径が0.1〜10.0μm程度のものが用いられる。ここで、粉砕により粒が調整された水酸化アルミニウムを用いるのが、二次凝集体が形成されやすく好ましい。反応促進剤としては、アルカリ金属やアルカリ土類金属の水酸化物、酸化物、塩化物、炭酸塩、硫酸塩、硝酸塩、リン酸塩、ホウ酸などの無機化合物や、アルカリ金属やアルカリ土類金属の酢酸塩、シュウ酸塩などの有機化合物を用いることができる。反応促進剤は、水酸化アルミニウム1モルに対し、0.0001〜1モル程度添加すればよい。結晶成長促進のため、ポリアクリル酸エステルなどを添加してもよい。 For example, as a method for synthesizing boehmite having a secondary form, aluminum hydroxide can be obtained by a hydrothermal treatment with a reaction accelerator and water. Aluminum hydroxide having an average particle size of about 0.1 to 10.0 μm is used. Here, it is preferable to use aluminum hydroxide whose particle size is adjusted by pulverization because secondary aggregates are easily formed. Reaction accelerators include alkali compounds and alkaline earth metal hydroxides, oxides, chlorides, carbonates, sulfates, nitrates, phosphates, boric acid, and other inorganic compounds, alkali metals and alkaline earths. Organic compounds such as metal acetates and oxalates can be used. What is necessary is just to add a reaction accelerator about 0.0001-1 mol with respect to 1 mol of aluminum hydroxide. A polyacrylic acid ester or the like may be added to promote crystal growth.

上記水酸化アルミニウム、反応促進剤及び水などを、オートクレーブなどの耐圧容器に封入し、140〜350℃程度の温度で1〜50時間程度反応させ、反応後の生成物を水洗、ろ過及び乾燥することにより、目的とするベーマイトを得ることができる。一次粒子又は二次粒子の粒径や形状などは、水酸化アルミニウムの粒径、反応促進剤の種類及びその量、反応温度、反応時間などを変えることにより、適宜調整することができる。また、得られたベーマイトはそのまま用いてもよいし、必要に応じて粒を調整して用いてもよい。 The above aluminum hydroxide, reaction accelerator and water are sealed in a pressure-resistant container such as an autoclave and reacted at a temperature of about 140 to 350 ° C. for about 1 to 50 hours, and the product after the reaction is washed, filtered and dried. Thus, the intended boehmite can be obtained. The particle size and shape of the primary particles or secondary particles can be appropriately adjusted by changing the particle size of aluminum hydroxide, the type and amount of reaction accelerator, reaction temperature, reaction time, and the like. Further, the obtained boehmite may be used as it is, or may be used after adjusting the particle diameter as necessary.

上記によって得られたベーマイトを、電気炉等で1200〜1500℃程度の温度で処理することにより、αアルミナを得ることも可能である。   It is also possible to obtain α-alumina by treating the boehmite obtained as described above with an electric furnace or the like at a temperature of about 1200 to 1500 ° C.

本発明における接着剤としては、ラテックス高分子が好ましく用いられる。具体例としては、例えばスチレン/ブタジエン共重合体、アクリロニトリル/ブタジエン共重合体、アクリル酸メチル/ブタジエン共重合体、アクリロニトリル/ブタジエン/スチレン三元共重合体、ポリ酢酸ビニル、酢酸ビニル/アクリル酸エステル共重合体、エチレン/酢酸ビニル共重合体、ポリアクリル酸エステル、スチレン/アクリル酸エステル共重合体、ポリウレタンなどのラテックス高分子が挙げられるが、これらに限定されるものではない。本発明においてはセパレータのハイレート特性及び塗層強度の点から、塗層中の接着剤量は固形分中3〜15質量%とするのが好ましい。
As the adhesive in the present invention, a latex polymer is preferably used. Specific examples include, for example, styrene / butadiene copolymers, acrylonitrile / butadiene copolymers, methyl acrylate / butadiene copolymers, acrylonitrile / butadiene / styrene terpolymers, polyvinyl acetate, vinyl acetate / acrylate esters. Examples include, but are not limited to, latex polymers such as copolymers, ethylene / vinyl acetate copolymers, polyacrylates, styrene / acrylate copolymers, and polyurethanes. In terms of high-rate characteristics及 beauty coating layer strength of the separator in the present invention, the adhesive of the coating layer is preferably in the solid content of 3 to 15 wt%.

本発明においては、発明の効果を損ねない範囲で分散剤、濡れ剤、増粘剤等の各種添加剤を用いることができる。   In the present invention, various additives such as a dispersant, a wetting agent, and a thickener can be used as long as the effects of the invention are not impaired.

本発明において、無機顔料及び接着剤を不織布基材に担持させる方法に特に制限はなく、公知の方法を用いることができるが、例えば、エアドクターコーター、ブレードコーター、ナイフコーター、ロッドコーター、スクイズコーター、含浸コーター、グラビアコーター、キスロールコーター、ダイコーター、リバースロールコーター、トランスファーロールコーター、スプレーコーター等により塗液を塗工し、乾燥により担持させることができる。   In the present invention, the method for supporting the inorganic pigment and the adhesive on the nonwoven fabric substrate is not particularly limited, and a known method can be used. For example, an air doctor coater, a blade coater, a knife coater, a rod coater, a squeeze coater The coating liquid can be applied with an impregnation coater, a gravure coater, a kiss roll coater, a die coater, a reverse roll coater, a transfer roll coater, a spray coater, etc., and supported by drying.

本発明において、無機顔料及び接着剤を含有する塗層の塗工量としては、5〜30g/mが好ましく、さらに好ましくは10〜20g/mである。塗工量5g/m以上とすることで、不織布表面を十分に被覆しやすくなり、内部短絡を防止しやすくなる。また、塗工量30g/m以下とすることで、セパレータの厚み上昇を抑えることができる。 In this invention, as a coating amount of the coating layer containing an inorganic pigment and an adhesive agent, 5-30 g / m < 2 > is preferable, More preferably, it is 10-20 g / m < 2 >. By setting the coating amount to 5 g / m 2 or more, it becomes easy to sufficiently cover the nonwoven fabric surface, and internal short circuit is easily prevented. Moreover, the raise of the thickness of a separator can be suppressed by setting it as the coating amount 30g / m < 2 > or less.

本発明の金属イオン二次電池セパレータにおいて、セパレータの坪量は10〜50g/mが好ましく、より好ましくは、17〜40g/mである。また、セパレータの厚みは10〜50μmが好ましく、より好ましくは15〜40μmである。セパレータの密度としては0.4〜1.2g/cmが好ましく、より好ましくは0.5〜1.0g/cmである。 In the metal ion secondary battery separator of the present invention, the basis weight of the separator is preferably 10 to 50 g / m 2 , and more preferably 17 to 40 g / m 2 . Moreover, 10-50 micrometers is preferable and, as for the thickness of a separator, More preferably, it is 15-40 micrometers. The density of the separator is preferably 0.4 to 1.2 g / cm 3 , more preferably 0.5 to 1.0 g / cm 3 .

本発明において、塗工、乾燥後、塗工層表面の平坦化や厚みをコントロールする目的で、カレンダー処理により金属イオン二次電池セパレータを平滑化してもよい。   In the present invention, after coating and drying, the metal ion secondary battery separator may be smoothed by calendaring for the purpose of controlling the flatness and thickness of the coating layer surface.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例において、%及び部は、特にことわりのない限り、すべて質量基準である。また塗工量は絶乾塗工量である。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In Examples,% and parts are based on mass unless otherwise specified. The coating amount is an absolutely dry coating amount.

実施例1
(1)不織布基材の作製
繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維40質量部と繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維20質量部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET系短繊維(軟化点120℃、融点230℃)40質量部とを一緒に混合し、パルパーにより水中で離解させ、アジテーターによる攪拌のもと、濃度1質量%の均一な抄造用スラリーを調製した。傾斜型抄紙機を用い、この抄造用スラリーを湿式方式で抄き上げ、140℃のシリンダードライヤーによって、バインダー用PET系短繊維を接着させて不織布強度を発現させ、目付12g/mの不織布とした。さらに、この不織布を誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダーを使用して、熱ロール温度200℃、線圧100kN/m、処理速度80m/分の条件で熱カレンダー処理し、厚み22μm、密度0.55g/cm、フラジール通気度13.2cc/cm・secの不織布基材を作製した。
Example 1
(1) Production of Nonwoven Fabric Base Material 40 parts by mass of oriented crystallized polyethylene terephthalate (PET) short fibers having a fineness of 0.06 dtex (average fiber diameter of 2.4 μm) and a fiber length of 3 mm and a fineness of 0.1 dtex (average fiber diameter of 3. 0 μm), 20 mass parts of oriented crystallized PET short fibers with a fiber length of 3 mm, a fineness of 0.2 dtex (average fiber diameter 4.3 μm), and a fiber length of 3 mm PET short fibers for a single-component binder (softening point 120 ° C. , Melting point 230 ° C.) and 40 parts by mass were mixed together, disaggregated in water by a pulper, and a uniform papermaking slurry having a concentration of 1% by mass was prepared under stirring by an agitator. Using an inclined paper machine, this papermaking slurry is made up by a wet method, and a PET dryer short fiber for a binder is adhered to the nonwoven fabric with a cylinder dryer at 140 ° C. to develop a nonwoven fabric strength, and a nonwoven fabric having a basis weight of 12 g / m 2 did. Furthermore, this nonwoven fabric was used under the conditions of a heat roll temperature of 200 ° C., a linear pressure of 100 kN / m, and a processing speed of 80 m / min, using a 1-nip heat calender consisting of a dielectric heating jacket roll (metal heat roll) and an elastic roll. Thermal calendar treatment was performed to prepare a nonwoven fabric substrate having a thickness of 22 μm, a density of 0.55 g / cm 3 , and a fragile air permeability of 13.2 cc / cm 2 · sec.

(2)塗液の作製
無機顔料として、粒子径0.7μmの一次粒子が凝集してなる平均粒子径2.3μmのベーマイトの二次粒子100部を、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩0.3%水溶液120部に分散し、よく攪拌してベーマイト分散液を作製した。次いで、その1質量%水溶液の25℃における粘度が7000mPa・sのカルボキシメチルセルロースナトリウム塩0.5%水溶液300部を混合、攪拌し、更に、接着剤として45%スチレン/ブタジエン共重合体のラテックス高分子15部を混合、攪拌して、塗液を作製した。
(2) Preparation of coating liquid As an inorganic pigment, 100 parts of boehmite secondary particles having an average particle diameter of 2.3 μm formed by agglomeration of primary particles having a particle diameter of 0.7 μm were mixed with a 1 mass% aqueous solution at 25 ° C. Was dispersed in 120 parts of a 0.3% aqueous solution of sodium carboxymethylcellulose having a concentration of 200 mPa · s and stirred well to prepare a boehmite dispersion. Subsequently, 300 parts of a 0.5% aqueous solution of carboxymethylcellulose sodium salt having a viscosity of 7000 mPa · s at 25 ° C. in a 1% by mass aqueous solution was mixed and stirred, and further a latex of 45% styrene / butadiene copolymer was used as an adhesive. 15 parts of molecules were mixed and stirred to prepare a coating solution.

(3)セパレータの作製
(1)にて作製した不織布上に、(2)で作製した塗液を絶乾塗工量が15g/mとなるように塗工、乾燥し、金属イオン二次電池セパレータを得た。
(3) Production of Separator On the nonwoven fabric produced in (1), the coating liquid produced in (2) was applied and dried so that the absolutely dry coating amount was 15 g / m 2, and the metal ion secondary. A battery separator was obtained.

(4)電池の作製
(3)で作製したセパレータを用い、正極活物質がマンガン酸リチウム、負極活物質が人造黒鉛、正負極面積が15cm、電解液がリチウムヘキサフルオロフォスフェートのエチレンカーボネートとジエチルカーボネートの7/3(容量比)混合溶媒溶液(1mol/L)である設計容量が30mAhのラミネート型リチウムイオン電池を作製した。
(4) Production of Battery Using the separator produced in (3), the positive electrode active material is lithium manganate, the negative electrode active material is artificial graphite, the positive and negative electrode area is 15 cm 2 , and the electrolyte is lithium hexafluorophosphate. A laminate type lithium ion battery having a design capacity of 30 mAh, which is a 7/3 (capacity ratio) mixed solvent solution (1 mol / L) of diethyl carbonate, was produced.

実施例2
実施例1の(1)不織布基材の作製において、熱カレンダー処理速度を30m/minとして、厚み16μm、密度0.75g/cm、フラジール通気度5.7cc/cm・secの不織布基材を作製した以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Example 2
In the production of the nonwoven fabric substrate of Example 1 (1), the nonwoven fabric substrate having a thickness of 16 μm, a density of 0.75 g / cm 3 , and a fragile air permeability of 5.7 cc / cm 2 · sec, with a thermal calendar treatment speed of 30 m / min. A metal ion secondary battery separator and a lithium ion battery were produced in the same manner as in Example 1 except that was produced.

実施例3
実施例1の(2)塗液の作製において、無機顔料として粒子径0.4μmの一次粒子が凝集してなる平均粒子径1.6μmのベーマイトの二次粒子を用いた以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Example 3
Example 1 (2) In preparation of the coating liquid, Example 1 was used except that boehmite secondary particles having an average particle diameter of 1.6 μm formed by agglomerating primary particles having a particle diameter of 0.4 μm were used as inorganic pigments. Similarly, a metal ion secondary battery separator and a lithium ion battery were produced.

実施例4
実施例1の(2)塗液の作製において、無機顔料として粒子径1.0μmの一次粒子が凝集してなる平均粒子径4.8μmのベーマイトの二次粒子を用いた以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Example 4
Example 1 (2) In the preparation of the coating liquid, Example 1 was used except that boehmite secondary particles having an average particle diameter of 4.8 μm formed by agglomerating primary particles having a particle diameter of 1.0 μm were used as the inorganic pigment. Similarly, a metal ion secondary battery separator and a lithium ion battery were produced.

実施例5
実施例1の(2)塗液の作製において、無機顔料として粒子径0.7μmの一次粒子が凝集してなる平均粒子径2.3μmのαアルミナの二次粒子を用いた以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Example 5
Example 1 (2) In the preparation of the coating liquid, Example 1 was used except that α-alumina secondary particles having an average particle size of 2.3 μm formed by agglomeration of primary particles having a particle size of 0.7 μm were used as the inorganic pigment. In the same manner, a metal ion secondary battery separator and a lithium ion battery were produced.

実施例6
実施例1の(2)塗液の作製において、無機顔料として粒子径0.7μmの一次粒子が凝集してなる平均粒子径2.3μmの炭酸カルシウムの二次粒子を用いた以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Example 6
Example 1 (2) In the preparation of the coating liquid, Example 1 was used except that calcium carbonate secondary particles having an average particle size of 2.3 μm formed by agglomerating primary particles of 0.7 μm in particle size were used as inorganic pigments. In the same manner, a metal ion secondary battery separator and a lithium ion battery were produced.

比較例1
実施例1の(1)不織布基材の作製において、繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維を30質量部、繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維30質量部とし、更に熱カレンダー処理速度を70m/minとして、厚み22μm、密度0.55g/cm、フラジール通気度14.3cc/cm・secの不織布基材を作製した以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Comparative Example 1
In preparation of the nonwoven fabric substrate of Example 1 (1), 30 parts by mass of oriented crystallized polyethylene terephthalate (PET) short fibers having a fineness of 0.06 dtex (average fiber diameter of 2.4 μm) and a fiber length of 3 mm, and a fineness of 0. 1 dtex (average fiber diameter: 3.0 μm), 30 mass parts of oriented crystallized PET short fibers having a fiber length of 3 mm, thermal calendering speed of 70 m / min, thickness of 22 μm, density of 0.55 g / cm 3 , Frazier ventilation A metal ion secondary battery separator and a lithium ion battery were produced in the same manner as in Example 1 except that a nonwoven fabric substrate having a degree of 14.3 cc / cm 2 · sec was produced.

比較例2
実施例1の(1)不織布基材の作製において、繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維を50質量部、繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維10質量部とし、更に熱カレンダー処理速度を100m/minとして、厚み24μm、密度0.50g/cm、フラジール通気度13.5cc/cm・secの不織布基材を作製した以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Comparative Example 2
In preparation of the nonwoven fabric substrate of Example 1 (1), 50 parts by mass of oriented crystallized polyethylene terephthalate (PET) short fibers having a fineness of 0.06 dtex (average fiber diameter of 2.4 μm) and a fiber length of 3 mm, and a fineness of 0. 1 dtex (average fiber diameter: 3.0 μm), 10 mass parts of oriented crystallized PET short fibers having a fiber length of 3 mm, thermal calendering speed of 100 m / min, thickness of 24 μm, density of 0.50 g / cm 3 , Frazier ventilation A metal ion secondary battery separator and a lithium ion battery were produced in the same manner as in Example 1 except that a nonwoven fabric substrate having a degree of 13.5 cc / cm 2 · sec was produced.

比較例3
実施例1の(1)不織布基材の作製において、繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維を50質量部、繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維10質量部とし、更に熱カレンダー処理速度を40m/minとして、厚み16μm、密度0.75g/cm、フラジール通気度5.0cc/cm・secの不織布基材を作製した以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Comparative Example 3
In preparation of the nonwoven fabric substrate of Example 1 (1), 50 parts by mass of oriented crystallized polyethylene terephthalate (PET) short fibers having a fineness of 0.06 dtex (average fiber diameter of 2.4 μm) and a fiber length of 3 mm, and a fineness of 0. 1 dtex (average fiber diameter: 3.0 μm), 10 mass parts of oriented crystallized PET short fibers having a fiber length of 3 mm, thermal calendering speed of 40 m / min, thickness of 16 μm, density of 0.75 g / cm 3 , Frazier ventilation A metal ion secondary battery separator and a lithium ion battery were produced in the same manner as in Example 1 except that a nonwoven fabric substrate having a degree of 5.0 cc / cm 2 · sec was produced.

比較例4
実施例1の(1)不織布基材の作製において、繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維を30質量部、繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維30質量部とし、更に熱カレンダー処理速度を20m/minとして、厚み15μm、密度0.80g/cm、フラジール通気度5.8cc/cm・secの不織布基材を作製した以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Comparative Example 4
In preparation of the nonwoven fabric substrate of Example 1 (1), 30 parts by mass of oriented crystallized polyethylene terephthalate (PET) short fibers having a fineness of 0.06 dtex (average fiber diameter of 2.4 μm) and a fiber length of 3 mm, and a fineness of 0. 1 dtex (average fiber diameter: 3.0 μm), 30 mass parts of oriented crystallized PET short fibers having a fiber length of 3 mm, thermal calendering speed of 20 m / min, thickness of 15 μm, density of 0.80 g / cm 3 , Frazier ventilation A metal ion secondary battery separator and a lithium ion battery were produced in the same manner as in Example 1 except that a nonwoven fabric substrate having a degree of 5.8 cc / cm 2 · sec was produced.

比較例5
実施例1の(2)塗液の作製において、無機顔料として単粒子形状の平均粒子径2.0μmのベーマイトを用いた以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Comparative Example 5
A metal ion secondary battery separator and a lithium ion battery were prepared in the same manner as in Example 1 except that boehmite having a single particle shape and an average particle diameter of 2.0 μm was used as the inorganic pigment in the preparation of the coating liquid of Example 1 (2). Was made.

比較例6
実施例1の(2)塗液の作製において、無機顔料として0.7μmの一次粒子が凝集してなる平均粒子径6.1μmのベーマイトの二次粒子を用いた以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Comparative Example 6
In the preparation of the coating liquid of Example 1 (2), the same procedure as in Example 1 was used, except that boehmite secondary particles having an average particle size of 6.1 μm formed by agglomerating primary particles of 0.7 μm were used as the inorganic pigment. Thus, a metal ion secondary battery separator and a lithium ion battery were produced.

比較例7
実施例1の(2)塗液の作製において、無機顔料として0.3μmの一次粒子が凝集してなる平均粒子径1.3μmのベーマイトの二次粒子を用いた以外は実施例1と同様にして金属イオン二次電池セパレータ及びリチウムイオン電池を作製した。
Comparative Example 7
In the preparation of the coating liquid in Example 1 (2), the same procedure as in Example 1 was used, except that boehmite secondary particles having an average particle diameter of 1.3 μm formed by agglomerating primary particles of 0.3 μm were used as the inorganic pigment. Thus, a metal ion secondary battery separator and a lithium ion battery were produced.

<評価>
実施例及び比較例で得られた塗液、金属イオン二次電池セパレータ、及びリチウムイオン電池について、下記の評価を行い、結果を表1に示した。
<Evaluation>
The following evaluation was performed about the coating liquid obtained by the Example and the comparative example, the metal ion secondary battery separator, and the lithium ion battery, and the result was shown in Table 1.

[初回充放電時のクーロン効率]
作製した電池について、30mA定電流充電→4.3V定電圧充電→充電電流3mAになったら30mAで2.8Vまで定電流放電を行い、充電容量及び放電容量を測定し、(クーロン効率)=(放電容量)/(充電容量)を算出した。クーロン効率が小さいものは微小短絡が発生していると考えられる。
[Coulomb efficiency during initial charge / discharge]
About the produced battery, when it becomes 30mA constant current charge-> 4.3V constant voltage charge-> charge current 3mA, it carries out constant current discharge to 2.8V at 30mA, A charge capacity and discharge capacity are measured, (Coulomb efficiency) = ( Discharge capacity) / (charge capacity) was calculated. Those with low Coulomb efficiency are considered to have a micro short circuit.

[電池のハイレート特性]
作製した電池について、30mA定電流充電→4.2V定電圧充電→充電電流3mAになったら30mAで2.8Vまで定電流放電→30mA定電流充電→4.2V定電圧充電→充電電流3mAになったら90mAで2.8Vまで定電流放電を行い、[(90mAにおける放電容量)/(30mAにおける放電容量)]×100(%)として放電容量比を求めハイレート特性とした。
[High-rate battery characteristics]
About the produced battery, when 30 mA constant current charge → 4.2 V constant voltage charge → charge current 3 mA, 30 mA constant current discharge to 2.8 V → 30 mA constant current charge → 4.2 V constant voltage charge → charge current 3 mA Then, a constant current discharge was performed at 2.8 V at 90 mA, and the discharge capacity ratio was determined as [(discharge capacity at 90 mA) / (discharge capacity at 30 mA)] × 100 (%) to obtain high rate characteristics.

Figure 0005876375
Figure 0005876375

表1から明らかなように不織布基材が密度0.55〜0.75g/cm、且つ、フラジール通気度5.5〜13.5cc/cm・secであり、また、無機顔料が粒子径0.4〜1.0μmの一次粒子が凝集してなる平均粒子径1.5〜5.0μmの二次粒子である実施例1〜6は、初回充放電時のクーロン効率に優れ、且つハイレート特性に優れる。 As is apparent from Table 1, the nonwoven fabric substrate has a density of 0.55 to 0.75 g / cm 3 and a fragile permeability of 5.5 to 13.5 cc / cm 2 · sec, and the inorganic pigment has a particle size of Examples 1 to 6, which are secondary particles having an average particle diameter of 1.5 to 5.0 μm formed by agglomeration of primary particles of 0.4 to 1.0 μm, are excellent in coulomb efficiency at the first charge / discharge and are high rate. Excellent characteristics.

不織布基材のフラジール通気度が13.5cc/cm・secを超えている比較例1と不織布基材の密度が0.55g/cm未満である比較例2では初回充放電時のクーロン効率が小さい。不織布基材のフラジール通気度が5.5cc/cm ・sec未満である比較例3と不織布基材の密度が0.75g/m超である比較例4では、ハイレート特性が悪い。無機顔料として単粒子形状のベーマイトを使用した比較例5と無機顔料の粒子径が0.4μm未満で、二次粒子の平均粒子径が1.5μm未満である比較例7ではハイレート特性が悪く、無機顔料の二次粒子における平均粒子径が5.0μm超の比較例6では、初回充放電時のクーロン効率が小さい。 In Comparative Example 1 in which the fragile air permeability of the nonwoven fabric substrate exceeds 13.5 cc / cm 2 · sec and in Comparative Example 2 in which the density of the nonwoven fabric substrate is less than 0.55 g / cm 3 , the Coulomb efficiency at the first charge / discharge Is small. In Comparative Example 3 in which the fragile air permeability of the nonwoven fabric substrate is less than 5.5 cc / cm 2 · sec and Comparative Example 4 in which the density of the nonwoven fabric substrate is more than 0.75 g / m 3 , the high rate characteristics are poor. In Comparative Example 5 using single particle boehmite as the inorganic pigment and Comparative Example 7 in which the particle diameter of the inorganic pigment is less than 0.4 μm and the average particle diameter of the secondary particles is less than 1.5 μm, the high rate characteristics are poor, In Comparative Example 6 in which the average particle diameter of the secondary particles of the inorganic pigment exceeds 5.0 μm, the Coulomb efficiency at the first charge / discharge is small.

また、実施例1、5及び6の比較から、無機顔料がαアルミナ又はベーマイトである場合、クーロン効率及びハイレート特性がより優れる。   From the comparison of Examples 1, 5 and 6, when the inorganic pigment is α-alumina or boehmite, the Coulomb efficiency and the high rate characteristics are more excellent.

本発明の金属イオン二次電池セパレータは、金属イオン二次電池用途以外にも、金属イオンポリマー電池、金属イオンキャパシター等にも利用できる。   The metal ion secondary battery separator of the present invention can be used for metal ion polymer batteries, metal ion capacitors and the like in addition to metal ion secondary battery applications.

Claims (2)

不織布基材に無機顔料及び接着剤を担持させた金属イオン二次電池セパレータにおいて、該不織布基材が密度0.55〜0.75g/cm、且つ、フラジール通気度5.5〜13.5cc/cm・secであり、また、該無機顔料が粒子径0.4〜1.0μmの一次粒子が凝集してなる平均粒子径1.5〜5.0μmの二次粒子であり、セパレータに含有される無機顔料の量がセパレータの全固形分中の30〜70質量%であり、無機顔料及び接着剤を含有する塗層の塗工量が5〜30g/m であり、塗層中の接着剤量が固形分中3〜15質量%であることを特徴とする金属イオン二次電池セパレータ。 In a metal ion secondary battery separator in which an inorganic pigment and an adhesive are supported on a nonwoven fabric substrate, the nonwoven fabric substrate has a density of 0.55 to 0.75 g / cm 3 and a fragile air permeability of 5.5 to 13.5 cc. / cm is 2 · sec, also, Ri Oh an average particle size 1.5~5.0μm secondary particles inorganic pigment is formed by agglomerating primary particles of particle size 0.4~1.0Myuemu, separator The amount of the inorganic pigment contained in the separator is 30 to 70% by mass in the total solid content of the separator, the coating amount of the coating layer containing the inorganic pigment and the adhesive is 5 to 30 g / m 2 , and the coating layer metal ion secondary battery separators amount adhesive is characterized 3-15% by mass Rukoto in solids in. 前記無機顔料がαアルミナ又はベーマイトである請求項1記載の金属イオン二次電池セパレータ。   The metal ion secondary battery separator according to claim 1, wherein the inorganic pigment is α-alumina or boehmite.
JP2012130407A 2012-06-08 2012-06-08 Metal ion secondary battery separator Active JP5876375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012130407A JP5876375B2 (en) 2012-06-08 2012-06-08 Metal ion secondary battery separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012130407A JP5876375B2 (en) 2012-06-08 2012-06-08 Metal ion secondary battery separator

Publications (3)

Publication Number Publication Date
JP2013254677A JP2013254677A (en) 2013-12-19
JP2013254677A5 JP2013254677A5 (en) 2014-09-18
JP5876375B2 true JP5876375B2 (en) 2016-03-02

Family

ID=49952011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012130407A Active JP5876375B2 (en) 2012-06-08 2012-06-08 Metal ion secondary battery separator

Country Status (1)

Country Link
JP (1) JP5876375B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6710920B2 (en) * 2015-09-15 2020-06-17 東レ株式会社 Ceramic slurry and battery separator using the same
JP6579383B2 (en) * 2016-08-10 2019-09-25 荒川化学工業株式会社 Lithium ion secondary battery separator, method for producing lithium ion secondary battery separator, and lithium ion secondary battery
JP7191135B2 (en) * 2021-02-10 2022-12-16 三菱製紙株式会社 Method for producing nonwoven fabric base material for electromagnetic wave shielding material

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002343329A (en) * 2001-05-16 2002-11-29 Tonen Tapyrus Co Ltd Separator
JP4584702B2 (en) * 2004-12-24 2010-11-24 日本バイリーン株式会社 Nonwoven fabric and method for producing nonwoven fabric, and separator for electric double layer capacitor, separator for lithium ion secondary battery, electric double layer capacitor or lithium ion secondary battery using nonwoven fabric
JP2008143005A (en) * 2006-12-08 2008-06-26 Kasai Kogyo Co Ltd Method for molding laminated molding
US8822082B2 (en) * 2007-03-15 2014-09-02 Hitachi Maxwell, Ltd. Separator for electrochemical device, electrode for electrochemical device, and electrochemical device
JP5334281B2 (en) * 2008-02-20 2013-11-06 日立マクセル株式会社 Lithium secondary battery
JP5334282B2 (en) * 2008-02-20 2013-11-06 日立マクセル株式会社 Lithium secondary battery
KR101702693B1 (en) * 2009-10-15 2017-02-06 미쓰비시 세이시 가부시키가이샤 Substrate for lithium secondary battery, and separator for lithium secondary battery
KR101471795B1 (en) * 2010-10-13 2014-12-10 도요타지도샤가부시키가이샤 Nonaqueous electrolyte lithium secondary battery

Also Published As

Publication number Publication date
JP2013254677A (en) 2013-12-19

Similar Documents

Publication Publication Date Title
JP5829557B2 (en) Method for producing metal ion secondary battery separator
US8741489B2 (en) Separator for lithium ion secondary battery, method for manufacture thereof, and lithium ion secondary battery
JP6148331B2 (en) Method for producing porous / separated porous membrane for lithium secondary battery using aqueous coating solution
JP6292625B2 (en) Lithium ion battery separator
JP6576358B2 (en) Separator manufacturing method, separator formed by the method, and electrochemical device including the same
WO2009096451A1 (en) Slurry for forming insulating layer, separator for electrochemical device, method for producing the same, and electrochemical device
CN102640329A (en) Porous membrane for secondary battery, and secondary battery
JP6268811B2 (en) Porous film composition for lithium ion secondary battery, separator with protective layer for lithium ion secondary battery, electrode with protective layer for lithium ion secondary battery, lithium ion secondary battery, and separator with protective layer for lithium ion secondary battery Manufacturing method
KR20110111416A (en) Electrode mixture, electrode, and nonaqueous electrolyte secondary cell
TW201834307A (en) Inorganic particles for nonaqueous electrolyte battery
JP5750033B2 (en) Lithium ion battery separator
JP5876375B2 (en) Metal ion secondary battery separator
JP5926619B2 (en) Coating liquid for lithium ion battery separator and method for producing lithium ion battery separator
JP2023174884A (en) Composite separation film for electrochemical element and electrochemical element containing them
JP5841510B2 (en) Metal ion secondary battery separator coating liquid and metal ion secondary battery separator
JP2013084367A (en) Coating liquid for lithium ion battery separator, and lithium ion battery separator
CN111615765B (en) Coating liquid for lithium ion battery separator and lithium ion battery separator
JP2014116186A (en) Lithium ion battery separator and coating liquid for lithium ion battery separator
JP2014241231A (en) Cell separator
JP2018067407A (en) Lithium ion battery
JP6018526B2 (en) Metal ion secondary battery separator
JP6581533B2 (en) Lithium ion battery separator
JP2019175703A (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP2019212490A (en) Base material for lithium ion battery separator and lithium ion battery separator
JP5850687B2 (en) Electrochemical element separator and electrochemical element

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160121

R150 Certificate of patent or registration of utility model

Ref document number: 5876375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250