JP2014241231A - Cell separator - Google Patents

Cell separator Download PDF

Info

Publication number
JP2014241231A
JP2014241231A JP2013123300A JP2013123300A JP2014241231A JP 2014241231 A JP2014241231 A JP 2014241231A JP 2013123300 A JP2013123300 A JP 2013123300A JP 2013123300 A JP2013123300 A JP 2013123300A JP 2014241231 A JP2014241231 A JP 2014241231A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
coating
mass
separator
fabric substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013123300A
Other languages
Japanese (ja)
Inventor
高岡 和千代
Kazuchiyo Takaoka
和千代 高岡
中島 敏充
Toshimitsu Nakajima
敏充 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2013123300A priority Critical patent/JP2014241231A/en
Publication of JP2014241231A publication Critical patent/JP2014241231A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cell separator that may be stably manufactured while preventing a part of a coating liquid from infiltrating to a back surface of a support body when a coating layer is provided on the porous support body.SOLUTION: The cell separator is composed of a porous layer containing an alumina based material and a non-woven fabric base material. The non-woven fabric base material is coated by a cationic polymer formed by cross-linking an acrylic resin containing an amino group or a quaternary ammonium salt, polyacrylamide, polyethylene glycol, polyvinyl alcohol, chitosan, modified chitosan, poly diallyl dimethyl ammonium salt, and such.

Description

本発明は、安定的に製造できる電池用セパレータに関するものである。   The present invention relates to a battery separator that can be stably manufactured.

従来、リチウム電池の電池用セパレータ(以下、「セパレータ」と略記する場合がある)としては、貫通した微細孔を有するポリオレフィンフィルムが用いられてきた。これらのセパレータは、電池が異常を起こして発熱した場合に、貫通した微細孔が溶融して閉塞し、電池の内部抵抗を高めることで、発熱を抑制し、電極剤であるコバルト酸リチウムの熱暴走による電池の爆発を抑制する仕組みを担ってきた。   Conventionally, as a battery separator for a lithium battery (hereinafter sometimes abbreviated as “separator”), a polyolefin film having fine pores that have penetrated has been used. These separators suppress heat generation by increasing the internal resistance of the battery when the battery malfunctions and generate heat, and the through-holes are melted and closed. It has been responsible for suppressing battery explosion due to runaway.

しかし、ハイブリッド自動車用電池や無停電電源など、大電流による充放電が必要な用途では、電極剤組成の研究によって、熱暴走爆発の抑制が可能となったことや、逆に、急激な電池内温度の上昇によって、セパレータの熱収縮による電極接触を避けるために、耐熱性が高く、かつ内部抵抗が小さいセパレータの要望が高まっている。   However, in applications that require charging and discharging with a large current, such as batteries for hybrid vehicles and uninterruptible power supplies, research on electrode composition has made it possible to suppress thermal runaway explosions, and conversely, rapid battery internals In order to avoid electrode contact due to thermal contraction of the separator due to an increase in temperature, there is an increasing demand for a separator having high heat resistance and low internal resistance.

この要望に対し、特許文献1では、孔の開いた柔軟な支持体と孔を塞ぐ多孔質セラミック材料からなるセパレータが提案されている。柔軟な支持体にはポリマー繊維が用いられており、多孔質セラミックにはジルコニウム、シリカ、アルミナが用いられている。低密度の支持体と多孔質セラミックとを併用することで、セパレータ内の空隙率の向上や耐熱性の向上が図れる。   In response to this demand, Patent Document 1 proposes a separator made of a flexible support having a hole and a porous ceramic material that closes the hole. Polymer fibers are used for the flexible support, and zirconium, silica, and alumina are used for the porous ceramic. By using a low density support and a porous ceramic in combination, the porosity in the separator and the heat resistance can be improved.

しかし、このようなセパレータは、柔軟な支持体上に多孔質セラミック材料の分散体を塗設して作製されるため、柔軟な支持体のポリマー繊維密度が低いと、支持体の強度が低下するほか、塗設した多孔質セラミック材料の分散体が支持体から脱離してしまい、面方向に均一な多孔質セラミック層が得られず、セパレータの欠点となり、内部ショートの原因となる場合があった。また、繊維密度が高すぎると、厚みが増加してしまうという問題が発生した。適当な繊維密度を付与し、厚みの増加を抑制するために、特許文献2では、繊維の分散性に優れた湿式抄造法によって製造され、極細の繊維を用い、強度と厚みのバランスがとれた不織布基材からなる支持体が提案されている。   However, since such a separator is prepared by coating a dispersion of a porous ceramic material on a flexible support, the strength of the support is reduced when the polymer fiber density of the flexible support is low. In addition, the dispersion of the coated porous ceramic material is detached from the support, and a uniform porous ceramic layer in the surface direction cannot be obtained, which may cause a separator and cause an internal short circuit. . Moreover, when the fiber density is too high, a problem that the thickness is increased occurs. In order to impart an appropriate fiber density and suppress an increase in thickness, Patent Document 2 is manufactured by a wet papermaking method excellent in fiber dispersibility, and uses an ultrafine fiber to balance strength and thickness. A support made of a nonwoven fabric substrate has been proposed.

一般的に、支持体上に塗工層を設ける方法としては、グラビアコート、リバースロールコート、ダイコート、ファウンテンコート法などが用いられるが、多孔性を有する支持体上にこのような方法を用いると、塗工液が支持体の裏面に浸透してしまい、安定した塗工膜が形成できないという問題を生じていた。   In general, as a method of providing a coating layer on a support, gravure coating, reverse roll coating, die coating, fountain coating, etc. are used. When such a method is used on a porous support, The coating solution penetrates into the back surface of the support, causing a problem that a stable coating film cannot be formed.

特許第4594098号公報Japanese Patent No. 4594098 特開2009−230975号公報JP 2009-230975 A

本発明の目的は、安定的に製造できる電池用セパレータを提供することである。   An object of the present invention is to provide a battery separator that can be stably produced.

鋭意検討をした結果、下記に示す本発明により上記課題を解決できることを見出した。
[1]アルミナ系材料を含有してなる多孔質膜層と不織布基材とから構成される電池用セパレータにおいて、不織布基材が架橋されたカチオン系高分子によって被覆されていることを特徴とする電池用セパレータ。
As a result of intensive studies, it has been found that the above-described problems can be solved by the present invention described below.
[1] In a battery separator composed of a porous membrane layer containing an alumina material and a nonwoven fabric substrate, the nonwoven fabric substrate is covered with a crosslinked cationic polymer. Battery separator.

本発明によって、安定的に製造できる電池用セパレータを得ることができる。   According to the present invention, a battery separator that can be stably produced can be obtained.

アルミナ系材料とは、酸化アルミナに代表されるα、β、γ−アルミナや、水酸化酸化アルミナに代表されるベーマイト、擬ベーマイトなどである。特に、ベーマイトは水熱合成法によって、板状、粒状、繊維状など多種の形態が得られるので、好ましい材料である。アルミナ系材料は、好ましくは微粒子として用いられる。粒子径は、好ましくは10nm〜10μmであり、更に好ましくは12nm〜5μmである。粒子径は、アルミナ系材料を水で充分に希釈し、これをレーザー散乱タイプの粒度測定機(マイクロトラック社製、商品名:3300EX2)によって測定し、得られた中心粒子径(D50、体積平均)を粒子径とした。   Examples of the alumina-based material include α, β, γ-alumina typified by alumina oxide, boehmite, pseudoboehmite typified by hydroxide alumina, and the like. In particular, boehmite is a preferable material because various forms such as a plate shape, a granular shape, and a fiber shape can be obtained by a hydrothermal synthesis method. The alumina-based material is preferably used as fine particles. The particle diameter is preferably 10 nm to 10 μm, more preferably 12 nm to 5 μm. The particle size is obtained by sufficiently diluting the alumina material with water and measuring this with a laser scattering type particle size measuring device (trade name: 3300EX2 manufactured by Microtrac Co., Ltd.), and the obtained center particle size (D50, volume average). ) As the particle size.

不織布基材は乾式又は湿式抄造法によって製造される。乾式法とは、繊維をノズルから吹き出してウェッブを作製するメルトブロー法、同じくノズルから得られる長繊維よりウェッブを構成するスパンボンド法、溶解された高分子を帯電させて、微細繊維のウェッブとするエレクトロスピニング法、30〜100mmの繊維を空気中で解繊しながらウェッブとする方法がある。一方、湿式抄造法では、短繊維を0.01〜0.2質量%程度の低濃度で水中に分散させた後、長網、短網、丸網などの網で水から抄き上げて、繊維ウェッブを形成し得ることができる。この場合、好ましい短繊維の長さは1〜30mmである。また、繊度1.0デシテックス(dt)以下の短繊維を含むことが好ましいが、より薄い電池用セパレータを作製する場合には、0.6dt以下の短繊維を含むことがより好ましい。   The nonwoven fabric substrate is produced by a dry or wet papermaking method. The dry method is a melt blow method in which fibers are blown from a nozzle to produce a web, a spunbond method in which the web is composed of long fibers obtained from the nozzle, and a dissolved polymer is charged to form a fine fiber web. There is an electrospinning method, a method of forming a web while defibrating 30 to 100 mm fibers in air. On the other hand, in the wet papermaking method, short fibers are dispersed in water at a low concentration of about 0.01 to 0.2% by mass, and then made from water with a net such as a long net, a short net, or a round net, A fiber web can be formed. In this case, the preferable short fiber length is 1 to 30 mm. Moreover, although it is preferable to contain the short fiber of a fineness 1.0 decitex (dt) or less, when producing a thinner battery separator, it is more preferable to contain the short fiber of 0.6 dt or less.

不織布基材に用いられる繊維としては、セルロース、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミドなど各種あるが、特にセルロース、ポリプロピレン、ポリエステルなどが好ましい材料である。これらの繊維で構成された不織布基材は、熱圧処理を施して厚みを調整した後、繊維表面を架橋されたカチオン系高分子(以下、「架橋高分子」と略記する場合がある)によって被覆される。   As fibers used for the nonwoven fabric substrate, there are various types such as cellulose, polyethylene, polypropylene, polyester, and polyamide, and cellulose, polypropylene, polyester, and the like are particularly preferable materials. The nonwoven fabric base material composed of these fibers is subjected to a hot-pressure treatment to adjust the thickness, and then the cationic surface polymer (hereinafter sometimes abbreviated as “crosslinked polymer”) whose fiber surface is crosslinked. Covered.

被覆の方法としては、予めカチオン系高分子を水、溶剤などに溶解させておき、含浸法などによって処理するのが好ましい。このとき、乾式法によって製造された不織布基材では、繊維表面が疎水性となっており、水系での含浸法による被覆は困難なので、含浸法の前にコロナ処理などの親水化処理を施すのが好ましい。高分子の被覆量としては、固形分換算(乾燥質量)で、好ましくは0.01〜10.0g/mであり、更に好ましくは0.1〜2.0g/mである。 As a coating method, it is preferable that a cationic polymer is dissolved in water, a solvent or the like in advance and treated by an impregnation method or the like. At this time, in the nonwoven fabric substrate manufactured by the dry method, the fiber surface is hydrophobic, and it is difficult to coat with an aqueous impregnation method, so a hydrophilic treatment such as a corona treatment is performed before the impregnation method. Is preferred. The coating amount of the polymer, in terms of solid content (dry weight), preferably 0.01~10.0g / m 2, more preferably from 0.1 to 2.0 g / m 2.

カチオン系高分子としては、アミノ基や四級アンモニウム塩を含むアクリル樹脂、ポリアクリルアミド、ポリエチレングリコール、ポリビニルアルコールなど;キトサン、変性キトサン、ポリジアリルジメチルアンモニウム塩などが挙げられる。このうち、架橋が容易なアミノ基を有するアクリル樹脂、ポリアクリルアミド、ポリビニルアルコール;キトサンが好ましく、特に、耐酸化性が良好なキトサンがより好ましいカチオン系高分子である。架橋方法としては、アミノ基の窒素ロンペアーへの求核付加反応が容易に進行する、ビニルスルホン系架橋剤、トリアジン系架橋剤、ドーパミンなどのカテコール類、カルボジイミド、ハロゲン化アルキル、ウレタンなどを架橋剤とする方法が知られている。特に、室温雰囲気でも充分な反応速度を有するビニルスルホン系架橋剤、大気中の酸素で架橋を行うドーパミンは、副反応もなく、優れた架橋剤である。   Examples of the cationic polymer include acrylic resins containing amino groups and quaternary ammonium salts, polyacrylamide, polyethylene glycol, polyvinyl alcohol, and the like; chitosan, modified chitosan, polydiallyldimethylammonium salt, and the like. Among these, acrylic resins having an amino group that can be easily cross-linked, polyacrylamide, polyvinyl alcohol; chitosan is preferable, and chitosan having particularly good oxidation resistance is a more preferable cationic polymer. As a crosslinking method, a nucleophilic addition reaction of an amino group to a nitrogen lone pair proceeds easily. A vinylsulfone-based crosslinking agent, a triazine-based crosslinking agent, a catechol such as dopamine, a carbodiimide, an alkyl halide, or a urethane is used as a crosslinking agent. A method is known. In particular, a vinylsulfone-based crosslinking agent having a sufficient reaction rate even in a room temperature atmosphere and dopamine that performs crosslinking with oxygen in the atmosphere are excellent crosslinking agents without side reactions.

ビニルスルホン系架橋剤としては、例えば以下の化合物を使用することができる。   As the vinyl sulfone-based crosslinking agent, for example, the following compounds can be used.

Figure 2014241231
Figure 2014241231

Figure 2014241231
Figure 2014241231

Figure 2014241231
Figure 2014241231

本発明の電池用セパレータを製造するには、不織布基材としては、厚み10〜25μmであることが好ましく、空隙率は30〜80%であることが好ましい。より好ましくは、厚み12〜18μmであり、空隙率40〜70%である。目付量は5〜18g/mであることが好ましく、更に好ましくは8〜15g/mである。熱圧処理時の加熱温度は、好ましくは180〜250℃であり、更に好ましくは200〜245℃である。また、平滑性を付与するためには、ロール間のニップ圧は好ましくは190〜1800N/cmであり、更に好ましくは400〜1500N/cmである。 In order to produce the battery separator of the present invention, the nonwoven fabric base material preferably has a thickness of 10 to 25 μm, and the porosity is preferably 30 to 80%. More preferably, the thickness is 12 to 18 μm and the porosity is 40 to 70%. Preferably the weight per unit area is 5~18g / m 2, more preferably from 8~15g / m 2. The heating temperature at the time of the hot-press treatment is preferably 180 to 250 ° C, more preferably 200 to 245 ° C. In order to impart smoothness, the nip pressure between the rolls is preferably 190 to 1800 N / cm, and more preferably 400 to 1500 N / cm.

本発明では、不織布基材に、アルミナ系材料を含有してなる多孔質膜層を設ける。アルミナ系材料が不織布基材の内部にまで入り込んでもよい。アルミナ系材料は、まず、界面活性剤などを併用した分散液を作製し、これに高分子ラテックスなどの結着剤及び増粘剤を複合させて塗液を作製し、不織布基材上に塗布される。   In the present invention, a porous membrane layer containing an alumina material is provided on the nonwoven fabric substrate. The alumina-based material may penetrate into the nonwoven fabric substrate. For alumina-based materials, first, a dispersion using a surfactant or the like is prepared, and a coating solution is prepared by combining a binder such as a polymer latex and a thickener, and then applied onto the nonwoven fabric substrate. Is done.

好ましい分散剤としては、ポリアクリル酸ナトリウムなどのアニオン系界面活性剤、メタリン酸ナトリウム、リン酸水素ナトリウムなどのリン酸塩、酢酸、乳酸、グルコン酸などの有機酸及びこの塩類などが好ましく、特に好ましい分散剤としては、酢酸である。好ましい結着剤としては、アクリル樹脂、スチレン−アクリル樹脂、スチレンブタジエンゴム(SBR)樹脂、変性ポリオレフィン樹脂及びこれらのラテックスなどである。好ましい増粘剤は、ポリカルボン酸、カルボキシメチルセルロース、その他セルロース誘導体、ガム系増粘剤などであるが、特に好ましい増粘剤としては、電解液に不溶であるカルボキシメチルセルロースのナトリウム塩である。   Preferred dispersing agents include anionic surfactants such as sodium polyacrylate, phosphates such as sodium metaphosphate and sodium hydrogenphosphate, organic acids such as acetic acid, lactic acid and gluconic acid, and salts thereof, in particular. A preferred dispersant is acetic acid. Preferred binders include acrylic resins, styrene-acrylic resins, styrene butadiene rubber (SBR) resins, modified polyolefin resins, and latexes thereof. Preferred thickeners are polycarboxylic acid, carboxymethylcellulose, other cellulose derivatives, gum thickeners and the like, and particularly preferred thickener is sodium salt of carboxymethylcellulose which is insoluble in the electrolytic solution.

分散方法としては、濃度が低い場合では、撹拌器による混合などで充分であるが、濃度が数%を超えると、全体の粘度などが上がるので、ホモジナイザーやビーズミルなどを利用するのが好ましい。好ましい撹拌混合時間は数分から40時間程度、更に好ましくは1時間から20時間程度である。   As a dispersion method, mixing with a stirrer is sufficient when the concentration is low. However, when the concentration exceeds several percent, the overall viscosity is increased, and therefore, it is preferable to use a homogenizer or a bead mill. A preferable stirring and mixing time is about several minutes to 40 hours, more preferably about 1 hour to 20 hours.

多孔質膜層は、不織布基材にアルミナ系材料を含有する塗液を塗布又は流延し、乾燥させて得ることができる。塗布又は流延の方法としては、エアドクターコーター、ブレードコーター、ナイフコーター、ロッドコーター、スクイズコーター、含浸コーター、グラビアコーター、キスロールコーター、ダイコーター、リバースロールコーター、トランスファーロールコーター、スプレーコーターなどを用いた方法を使用することができる。多孔質膜層の塗工量は、乾燥質量で0.5〜50g/mであることが好ましく、より好ましくは1〜30g/mである。乾燥後、更に熱カレンダー処理を施して、得られた電池用セパレータの厚みを調整することも可能である。電池用セパレータの好ましい厚みは10〜30μmであり、より好ましくは12〜25μmである。 The porous membrane layer can be obtained by applying or casting a coating liquid containing an alumina-based material on a nonwoven fabric substrate and drying it. As an application or casting method, air doctor coater, blade coater, knife coater, rod coater, squeeze coater, impregnation coater, gravure coater, kiss roll coater, die coater, reverse roll coater, transfer roll coater, spray coater, etc. The method used can be used. The coating amount of the porous membrane layer is preferably 0.5 to 50 g / m 2 by dry weight, more preferably from 1 to 30 g / m 2. It is also possible to adjust the thickness of the obtained battery separator by further applying a heat calendering treatment after drying. The preferable thickness of the battery separator is 10 to 30 μm, and more preferably 12 to 25 μm.

得られたセパレータは裁断されてリチウム電池用の電極材料間に挟み込まれて、電解液を注入し、電池を封止して、リチウム電池となる。正極を構成する材料は、主に、活物質とカーボンブラックなどの導電剤、ポリフッ化ビニリデンやスチレンブタジエンゴムなどのバインダーであって、活物質としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、ニッケルマンガンコバルト酸リチウム(NMC)やアルミニウムマンガン酸リチウム(AMO)などのリチウムマンガン複合酸化物、鉄リン酸リチウムなどが用いられる。これらは、混合されて集電体であるアルミニウム箔上に塗布されて、正極となる。   The obtained separator is cut and sandwiched between electrode materials for a lithium battery, an electrolyte is injected, the battery is sealed, and a lithium battery is obtained. The material constituting the positive electrode is mainly an active material and a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride and styrene butadiene rubber. The active material includes lithium cobaltate, lithium nickelate, and lithium manganate. In addition, lithium manganese composite oxides such as lithium nickel manganese cobaltate (NMC) and lithium aluminum manganate (AMO), and lithium iron phosphate are used. These are mixed and apply | coated on the aluminum foil which is a collector, and become a positive electrode.

負極を構成する材料は、主に、活物質と導電剤、バインダーであって、活物質としては、黒鉛、非晶質炭素材料、珪素、リチウム、リチウム合金などが用いられる。これらは混合されて集電体である銅箔上に塗布されて、負極となる。リチウム電池は、正極、負極間にセパレータを挟み込み、ここに電解液を含浸させて、イオン伝導性を持たせて、導通させる。リチウム電池では非水系電解液が用いられるが、一般的に、これは溶媒と支持電解質で構成させる。溶媒としても用いられるのは、エチレンカーボネイト(EC)、プロピレンカーボネイト(PC)、ジエチルカーボネイト(DEC)、ジメチルカーボネイト(DMC)、エチルメチルカーボネイト(EMC)及び添加剤的な働きを有するビニレンカーボネイト、ビニルエチレンカーボネイトなどのカーボネイト系である。支持電解質としては、六フッ化リン酸リチウム、四フッ化ホウ酸リチウムのほかに、LiN(SOCFなどの有機リチウム塩なども用いられる。イオン液体も利用できる。 The material constituting the negative electrode is mainly an active material, a conductive agent, and a binder. As the active material, graphite, amorphous carbon material, silicon, lithium, lithium alloy and the like are used. These are mixed and applied onto a copper foil as a current collector to form a negative electrode. In a lithium battery, a separator is sandwiched between a positive electrode and a negative electrode, and an electrolytic solution is impregnated therein to provide ionic conductivity and conduct. In a lithium battery, a non-aqueous electrolyte solution is used. Generally, this is composed of a solvent and a supporting electrolyte. As the solvent, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and vinylene carbonate having an additive function, vinyl Carbonate system such as ethylene carbonate. As the supporting electrolyte, in addition to lithium hexafluorophosphate and lithium tetrafluoroborate, an organic lithium salt such as LiN (SO 2 CF 3 ) 2 is also used. Ionic liquids can also be used.

外装体としては、アルミニウムやステンレススチールなどの金属円筒缶や角形缶、アルミニウム箔をポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレートなどでラミ加工したラミネートフィルムを用いたシート型の外装体が利用できる。また、積層化してスタッキングして用いることもできるし、円柱状に回旋して用いることもできる。   As the exterior body, a metal cylindrical can such as aluminum or stainless steel, a rectangular can, a sheet-type exterior body using a laminate film obtained by laminating aluminum foil with polypropylene, polyethylene, polyethylene terephthalate, polybutylene terephthalate, or the like can be used. Further, it can be used by stacking and stacking, or it can be used by rotating in a cylindrical shape.

次に、本発明を実施例によって、更に詳細に説明するが、本発明はこれらに何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these at all.

(実施例1)
[不織布基材の製造]
以下の構成で、繊維を水に分散した。
延伸ポリエチレンテレフタレート(PET)短繊維
(繊度0.1dt、繊維長3mm) 60.0質量部
未延伸PET短繊維(繊度0.2dt、繊維長4mm) 40.0質量部
抄紙用粘剤
(第一工業製薬製、商品名:セロゲン(登録商標)BSH−12) 0.1質量部
Example 1
[Manufacture of nonwoven fabric substrate]
The fiber was dispersed in water with the following configuration.
Stretched polyethylene terephthalate (PET) short fiber (fineness 0.1 dt, fiber length 3 mm) 60.0 parts by mass Unstretched PET short fiber (fineness 0.2 dt, fiber length 4 mm) 40.0 parts by weight Papermaking adhesive (first Product name: Serogen (registered trademark) BSH-12, manufactured by Kogyo Seiyaku Co., Ltd.

これを円網で漉き上げて、目付量9g/mのウェッブを作製し、220℃で熱カレンダー処理を施し、15μm厚とした。 This was rolled up with a circular net to produce a web having a basis weight of 9 g / m 2 and subjected to a heat calendar treatment at 220 ° C. to a thickness of 15 μm.

次に、カチオン系高分子として、キトサン(甲陽ケミカル製、商品名:コーヨーキトサン SK−200)とビニルスルホン化合物(化合物2)を質量部比率で100/3とした混合塗液で、乾燥質量で0.3g/mとなるように含浸させて繊維を被覆し、不織布基材(1)を得た。 Next, as a cationic polymer, a mixed coating liquid in which chitosan (manufactured by Koyo Chemical Co., Ltd., trade name: Koyo Chitosan SK-200) and a vinyl sulfone compound (compound 2) in a mass part ratio of 100/3 is obtained by dry mass. The nonwoven fabric substrate (1) was obtained by impregnating to 0.3 g / m 2 to coat the fibers.

[アルミナ系材料含有塗液の製造]
ベーマイト(大明化学製、商品名:C20) 80.0質量部
純水 100.0質量部
メタリン酸ナトリウム 0.1質量部
以上の混合液を、ホモミキサーで分散して、分散液(1)を得た。
[Production of coating liquid containing alumina material]
Boehmite (manufactured by Daimei Chemical Co., Ltd., trade name: C20) 80.0 parts by mass pure water 100.0 parts by mass sodium metaphosphate 0.1 part by mass The above mixture is dispersed with a homomixer, and dispersion (1) is prepared. Obtained.

次に、以下の処方で結着剤(ラテックス)及び増粘剤と分散液(1)とを複合化して、塗液(1)を作製した。   Next, the binder (latex) and thickener and the dispersion liquid (1) were combined with the following formulation to prepare a coating liquid (1).

分散液(1) 180.0質量部
0.6質量%カルボキシメチルセルロース水溶液
(日本製紙ケミカル製、商品名:MAC500HC) 100.0質量部
40質量%結着剤分散液
(JSR製、アクリルラテックス、商品名:TDR202A) 5.0質量部
Dispersion (1) 180.0 parts by mass 0.6 mass% carboxymethylcellulose aqueous solution (manufactured by Nippon Paper Chemicals, trade name: MAC500HC) 100.0 parts by mass 40% by mass binder dispersion (manufactured by JSR, acrylic latex, commodity Name: TDR202A) 5.0 parts by mass

[電池用セパレータの製造]
得られた塗液(1)を不織布基材(1)の片面にグラビアコート法で塗工を行った。塗布工程は安定しており、厚み25μmの電池用セパレータが問題なく得られた。
[Manufacture of battery separators]
The obtained coating liquid (1) was applied to one side of the nonwoven fabric substrate (1) by a gravure coating method. The coating process was stable, and a battery separator having a thickness of 25 μm was obtained without problems.

(実施例2)
[不織布基材の製造]
以下の構成で、繊維を水に分散した。
延伸ポリエチレンテレフタレート(PET)短繊維
(繊度0.1dt、繊維長3mm) 60.0質量部
未延伸PET短繊維(繊度0.2dt、繊維長4mm) 40.0質量部
抄紙用粘剤
(明成化学工業製、商品名:アルコックス(登録商標) R−400) 0.1質量部
(Example 2)
[Manufacture of nonwoven fabric substrate]
The fiber was dispersed in water with the following configuration.
Stretched polyethylene terephthalate (PET) short fibers (fineness 0.1 dt, fiber length 3 mm) 60.0 parts by mass Unstretched PET short fibers (fineness 0.2 dt, fiber length 4 mm) 40.0 parts by weight Product name: Alcox (registered trademark) R-400) 0.1 part by mass

これを円網で漉き上げて、目付量10g/mのウェッブを作製し、220℃で熱カレンダー処理を施し、15μm厚とした。 This was rolled up with a circular net to produce a web having a basis weight of 10 g / m 2 and heat calendered at 220 ° C. to a thickness of 15 μm.

次に、カチオン系高分子として、キトサン(甲陽ケミカル製、商品名:コーヨーキトサン SK−200)とドーパミンを質量部比率で100/4とした混合塗液で、乾燥質量で0.3g/mとなるように含浸させて繊維を被覆し、不織布基材(2)を得た。 Next, as a cationic polymer, a mixed coating liquid containing chitosan (manufactured by Koyo Chemical Co., Ltd., trade name: Koyo Chitosan SK-200) and dopamine in a mass part ratio of 100/4, with a dry mass of 0.3 g / m 2. The nonwoven fabric base material (2) was obtained by impregnating so as to cover the fibers.

[アルミナ系材料含有塗液の製造]
ベーマイト(大明化学製、商品名:C20) 80.0質量部
純水 100.0質量部
酢酸 0.8質量部
以上の混合液を、ホモジナイザーで分散して、分散液(2)を得た。
[Manufacture of coating liquid containing alumina material]
Boehmite (manufactured by Daimei Chemicals, trade name: C20) 80.0 parts by mass Pure water 100.0 parts by mass Acetic acid 0.8 parts by mass The above mixture was dispersed with a homogenizer to obtain dispersion (2).

次に、以下の処方で結着剤(ラテックス)及び増粘剤と分散液(2)とを複合化して、塗液(2)を作製した。   Next, the binder (latex) and thickener and the dispersion liquid (2) were combined with the following formulation to prepare a coating liquid (2).

分散液(2) 180.0質量部
0.6質量%カルボキシメチルセルロース水溶液
(日本製紙ケミカル製、商品名:MAC500LC) 100.0質量部
40質量%結着剤分散液
(JSR製、アクリルラテックス、商品名:TDR202A) 5.0質量部
Dispersion (2) 180.0 parts by mass 0.6 mass% carboxymethyl cellulose aqueous solution (manufactured by Nippon Paper Chemicals, trade name: MAC500LC) 100.0 parts by mass 40% by mass binder dispersion (manufactured by JSR, acrylic latex, commodity Name: TDR202A) 5.0 parts by mass

[電池用セパレータの製造]
得られた塗液(2)を不織布基材(2)の片面にグラビアコート法で塗工を行った。塗布工程は安定しており、厚み23μmの電池用セパレータが問題なく得られた。
[Manufacture of battery separators]
The obtained coating liquid (2) was applied to one side of the nonwoven fabric substrate (2) by a gravure coating method. The coating process was stable, and a battery separator having a thickness of 23 μm was obtained without problems.

(比較例1)
実施例1における不織布基材(1)の製造時に、架橋されたカチオン系高分子による被覆を行わずに、塗液(1)を同様な方法で塗工した。塗工時に、塗液が裏面にしみ出し、ロール上にアルミナ系材料が蓄積して、連続塗工ができなかった。
(Comparative Example 1)
The coating liquid (1) was applied in the same manner without coating with a crosslinked cationic polymer during the production of the nonwoven fabric substrate (1) in Example 1. At the time of coating, the coating liquid oozed out to the back surface, and alumina-based material accumulated on the roll, so that continuous coating could not be performed.

(比較例2)
実施例2における不織布基材(2)の製造時に、カチオン系高分子としてキトサン(甲陽ケミカル製、商品名:コーヨーキトサン SK−200)を乾燥質量で0.3g/mとなるように含浸させて繊維を被覆し、比較不織布基材(2)を得た。次に、塗液(2)を同様な方法で塗工した。塗工時初期は良好な塗面が得られた。しかし、次第に塗液がゲル化して、塗面に多量の筋状の欠点が発生して、長時間の連続塗工が難しくなった。
(Comparative Example 2)
During the production of the nonwoven fabric substrate (2) in Example 2, chitosan (manufactured by Koyo Chemical Co., Ltd., trade name: Koyo Chitosan SK-200) as a cationic polymer was impregnated so as to have a dry mass of 0.3 g / m 2. Then, the fibers were coated to obtain a comparative nonwoven fabric substrate (2). Next, the coating liquid (2) was applied by the same method. A good coated surface was obtained at the initial stage of coating. However, the coating solution gradually gelled, causing a lot of streaks on the coated surface, making it difficult to apply continuously for a long time.

以上から、アルミナ系材料を含有してなる多孔質膜層と不織布基材とから構成される電池用セパレータにおいて、不織布基材が架橋されたカチオン系高分子によって被覆されている本発明の電池用セパレータは、安定的に製造できることがわかった。   As described above, in the battery separator composed of the porous membrane layer containing the alumina-based material and the nonwoven fabric base material, the nonwoven fabric base material is coated with the crosslinked cationic polymer. It was found that the separator can be manufactured stably.

本発明の電池用セパレータは、リチウム電池用のセパレータとして使用できるほか、キャパシター用セパレータとして利用できる。   The battery separator of the present invention can be used as a separator for a lithium battery or a separator for a capacitor.

Claims (1)

アルミナ系材料を含有してなる多孔質膜層と不織布基材とから構成される電池用セパレータにおいて、不織布基材が架橋されたカチオン系高分子によって被覆されていることを特徴とする電池用セパレータ。   A battery separator comprising a porous membrane layer containing an alumina material and a nonwoven fabric substrate, wherein the nonwoven fabric substrate is coated with a crosslinked cationic polymer. .
JP2013123300A 2013-06-12 2013-06-12 Cell separator Pending JP2014241231A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013123300A JP2014241231A (en) 2013-06-12 2013-06-12 Cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013123300A JP2014241231A (en) 2013-06-12 2013-06-12 Cell separator

Publications (1)

Publication Number Publication Date
JP2014241231A true JP2014241231A (en) 2014-12-25

Family

ID=52140382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013123300A Pending JP2014241231A (en) 2013-06-12 2013-06-12 Cell separator

Country Status (1)

Country Link
JP (1) JP2014241231A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015096A (en) * 2013-07-03 2015-01-22 旭化成株式会社 Battery separator and nonaqueous electrolyte battery
JP2017139086A (en) * 2016-02-02 2017-08-10 日本電気株式会社 Battery separator, manufacturing method thereof, and secondary battery
CN107369799A (en) * 2017-06-27 2017-11-21 华南理工大学 A kind of functionalization lithium ion battery separator and preparation method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015015096A (en) * 2013-07-03 2015-01-22 旭化成株式会社 Battery separator and nonaqueous electrolyte battery
JP2017139086A (en) * 2016-02-02 2017-08-10 日本電気株式会社 Battery separator, manufacturing method thereof, and secondary battery
CN107369799A (en) * 2017-06-27 2017-11-21 华南理工大学 A kind of functionalization lithium ion battery separator and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4832430B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP5753657B2 (en) Insulating layer forming slurry, electrochemical element separator manufacturing method, and electrochemical element
CN108807819B (en) Diaphragm, preparation method thereof and lithium-sulfur battery
JP6292625B2 (en) Lithium ion battery separator
JP2014175232A (en) Cell separator
JP4994054B2 (en) Battery separator and lithium secondary battery
JP2008179903A (en) Porous membrane, separator for electrochemical element, method for producing porous membrane, nonaqueous electrolyte battery, and method for producing nonaqueous electrolyte battery
JP2016062689A (en) Battery separator
JP2014207059A (en) Secondary battery
JP2016012548A (en) Battery separator
JP2010056037A (en) Electrode sheet for non-aqueous electrolyte battery,method of manufacturing the same, and non-aqueous electrolyte secondary battery using the sheet
JP2015053180A (en) Battery separator
JP2015115132A (en) Battery separator
JP2014241231A (en) Cell separator
JP2015156342A (en) battery separator
JP2015056263A (en) Separator for batteries
JP2014116131A (en) Battery separator
JP2013218926A (en) Separator and lithium-ion secondary battery using the same
JP2015156341A (en) battery separator
JP5829552B2 (en) Method for producing separator for metal ion secondary battery
JP2015005420A (en) Cell separator
JP2015050090A (en) Separator for battery
JP2014225372A (en) Separator for battery
JP2014160580A (en) Cell separator
JP2016062723A (en) Battery separator