JP2014160580A - Cell separator - Google Patents

Cell separator Download PDF

Info

Publication number
JP2014160580A
JP2014160580A JP2013030644A JP2013030644A JP2014160580A JP 2014160580 A JP2014160580 A JP 2014160580A JP 2013030644 A JP2013030644 A JP 2013030644A JP 2013030644 A JP2013030644 A JP 2013030644A JP 2014160580 A JP2014160580 A JP 2014160580A
Authority
JP
Japan
Prior art keywords
battery
separator
particles
mass
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013030644A
Other languages
Japanese (ja)
Inventor
Kazuchiyo Takaoka
和千代 高岡
Kenji Hyodo
建二 兵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2013030644A priority Critical patent/JP2014160580A/en
Publication of JP2014160580A publication Critical patent/JP2014160580A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thinned separator whose resistivity is low.SOLUTION: The cell separator includes a porous film layer containing inorganic particles on a porous support, wherein the inorganic particles are inorganic salt particles, and the porous film layer contains a water-soluble cellulose derivative. It is preferable that a solubility product of the inorganic salt particles is equal to or less than 10.

Description

本発明は、電池用セパレータに関するものである。   The present invention relates to a battery separator.

従来、リチウム電池に使用される電池用セパレータ(以下、「セパレータ」と略記する場合がある)としては、貫通した微細孔を有するポリオレフィンフィルムが用いられてきた。これらのセパレータは、電池が異常を起こして発熱した場合に、貫通した微細孔が溶融して閉塞し、電池の内部抵抗を高めることで、発熱を抑制し、電極剤であるコバルト酸リチウムの熱暴走による電池の爆発を抑制する仕組みを担ってきた。   Conventionally, as a battery separator (hereinafter sometimes abbreviated as “separator”) used in a lithium battery, a polyolefin film having fine pores has been used. These separators suppress heat generation by increasing the internal resistance of the battery when the battery malfunctions and generate heat, and the through-holes are melted and closed. It has been responsible for suppressing battery explosion due to runaway.

しかし、ハイブリッド自動車用電池や無停電電源など、大電流による充放電が必要な用途では、電極剤組成の研究によって、熱暴走爆発の抑制が可能となったことや、逆に、急激な電池内温度の上昇によって、セパレータの熱収縮による電極接触を避けるために、耐熱性の高い、かつ内部抵抗の小さなセパレータの要望が高まっている。   However, in applications that require charging and discharging with a large current, such as batteries for hybrid vehicles and uninterruptible power supplies, research on electrode composition has made it possible to suppress thermal runaway explosions, and conversely, rapid battery internal Due to the increase in temperature, in order to avoid electrode contact due to thermal contraction of the separator, there is an increasing demand for a separator having high heat resistance and low internal resistance.

この要望に、特許文献1〜3には、孔の開いた柔軟な支持体と孔を塞ぐ多孔質セラミック材料からなるセパレータが提案されている。孔の開いた柔軟な支持体として多孔質フィルム、不織布を用い、耐熱性に優れたセラミック材料を多孔質膜層として用いることによって、電池が熱暴走を起こした場合でも、収縮による電極の接触を抑制できることから、注目を集めている。多孔質セラミック材料には、酸化アルミニウム、酸化マグネシウム、酸化ケイ素、酸化チタン、酸化亜鉛、酸化ジルコニウムなどの酸化物の他、チタン酸バリウム、チタン酸鉛などのチタン酸塩などが提案されているが、基本的に酸化物であり、材料的に限定されている。   In order to meet this demand, Patent Documents 1 to 3 propose a separator made of a flexible support having a hole and a porous ceramic material that closes the hole. By using a porous film or non-woven fabric as a flexible support with holes, and using a ceramic material with excellent heat resistance as the porous membrane layer, even if the battery runs out of heat, the electrode contacts due to shrinkage. It is attracting attention because it can be suppressed. In addition to oxides such as aluminum oxide, magnesium oxide, silicon oxide, titanium oxide, zinc oxide and zirconium oxide, titanates such as barium titanate and lead titanate have been proposed as porous ceramic materials. Basically, it is an oxide and is limited in material.

一方、特許文献4〜6では、従来のオレフィンフィルムのセパレータに無機微粒子を充填剤として熱収縮を抑制しようという提案がなされている。用いられている無機微粒子の充填剤としては、炭酸カルシウム、炭酸マグネシウムなどの炭酸塩、タルク、クレー、マイカなどのケイ酸アルミニウム或いはケイ酸マグネシウム及びこれら複合体である粘土鉱物、硫酸マグネシウム、硫酸バリウムなどの硫酸塩、及び水酸化物や酸化物などである。特許文献4〜6では、リチウム電池中で不活性なポリオレフィンフィルム中にこれらの無機微粒子が分散された状態で用いられている点に特徴がある。特許文献4〜6に記載されている無機微粒子を、特許文献1〜3に記載されている孔の開いた柔軟な支持体と組み合わせて、該支持体の表面に無機微粒子が存在している状態で用いられている態様については、充分に検討されているとは言い難かった。   On the other hand, in Patent Documents 4 to 6, proposals have been made to suppress thermal shrinkage by using inorganic fine particles as fillers in conventional olefin film separators. As fillers of inorganic fine particles used, carbonates such as calcium carbonate and magnesium carbonate, aluminum silicates such as talc, clay and mica, or magnesium silicates and clay minerals which are composites thereof, magnesium sulfate, barium sulfate Such as sulfates, hydroxides and oxides. Patent Documents 4 to 6 are characterized in that these inorganic fine particles are used in a dispersed state in a polyolefin film that is inactive in a lithium battery. A state in which the inorganic fine particles described in Patent Documents 4 to 6 are combined with the perforated flexible support described in Patent Documents 1 to 3, and the inorganic fine particles are present on the surface of the support. It was difficult to say that the mode used in the above has been fully studied.

特許第4594098号公報Japanese Patent No. 4594098 特表2008−503049号公報Special table 2008-503049 gazette 特開2011−113770号公報JP 2011-113770 A 特許第4563008号公報Japanese Patent No. 4563008 特許第4929593号公報Japanese Patent No. 4929593 特開2012−43629号公報JP 2012-43629 A

本発明の目的は、低抵抗でかつ薄膜化された電池用セパレータを提供することである。   An object of the present invention is to provide a battery separator having a low resistance and a reduced thickness.

本発明者らは、鋭意検討をした結果、下記に示す本発明により上記課題を解決できることを見出した。   As a result of intensive studies, the present inventors have found that the above-described problems can be solved by the present invention described below.

[1]多孔性支持体上に無機粒子を含有してなる多孔質膜層を有する電池用セパレータにおいて、無機粒子が無機塩粒子であり、多孔質膜層が水溶性セルロース誘導体を含有してなることを特徴とする電池用セパレータ、
[2]無機塩粒子の溶解度積が10−9以下である[1]記載の電池用セパレータ。
[1] In a battery separator having a porous membrane layer containing inorganic particles on a porous support, the inorganic particles are inorganic salt particles, and the porous membrane layer contains a water-soluble cellulose derivative. Battery separator, characterized by
[2] The battery separator according to [1], wherein the solubility product of the inorganic salt particles is 10 −9 or less.

本発明では、本発明の電池用セパレータを用いた電池の内部抵抗が小さくなり、かつ薄膜化された電池用セパレータを得ることができる。   In the present invention, the battery internal resistance of the battery using the battery separator of the present invention is reduced, and a battery separator with a reduced thickness can be obtained.

本発明の電池用セパレータは、多孔性支持体上に無機粒子を含有してなる多孔質膜層を有する電池用セパレータであり、無機粒子が無機塩粒子であり、多孔質膜層が水溶性セルロース誘導体を含有してなることを特徴としている。   The battery separator of the present invention is a battery separator having a porous membrane layer containing inorganic particles on a porous support, the inorganic particles are inorganic salt particles, and the porous membrane layer is water-soluble cellulose. It is characterized by containing a derivative.

本発明における水溶性セルロース誘導体とは、グリコシド結合によって直鎖に結合したβ−グルコース分子の水酸基の一部を変性し、水溶性化が可能として合成されたセルロース誘導体であって、水酸基の一部が、カルボキシメトキシ基、メトキシ基、ヒドロキシエトキシ基、ヒドロキシプロキシ基に変性されている化合物を示す。カルボキシメトキシ基で置換された誘導体はカルボキシメチルセルロース(CMC)と呼ばれ、ナトリウム塩等にして水溶性化できる。メトキシ基のみを含有するメチルセルロースは、低温水にのみ溶解し、温度が上昇すると、水溶液をゲル化する熱ゲル性を有する。また、起泡性・発泡性にも優れており、ノニオン性の高分子界面活性剤的な挙動が得られる。一般的にメトキシ基に、ヒドロキシエトキシ基やヒドロキシプロポキシ基を組み合わせることによって、水溶性や熱ゲル性をコントロールすることができる。その他、酢酸セルロース、エチルセルロースなどのセルロース誘導体が知られているが、酢酸セルロースやエチルセルロースは水には溶解しない。   The water-soluble cellulose derivative in the present invention is a cellulose derivative synthesized by modifying a part of hydroxyl group of β-glucose molecule bonded linearly by a glycosidic bond to enable water-solubilization. Represents a compound modified with a carboxymethoxy group, a methoxy group, a hydroxyethoxy group, or a hydroxyproxy group. A derivative substituted with a carboxymethoxy group is called carboxymethylcellulose (CMC) and can be water-solubilized with sodium salt or the like. Methylcellulose containing only methoxy groups dissolves only in low-temperature water and has a thermal gel property that gels an aqueous solution when the temperature rises. Moreover, it is excellent in foaming property and foaming property, and can behave like a nonionic polymer surfactant. In general, by combining a methoxy group with a hydroxyethoxy group or a hydroxypropoxy group, water solubility and thermal gel properties can be controlled. In addition, cellulose derivatives such as cellulose acetate and ethyl cellulose are known, but cellulose acetate and ethyl cellulose do not dissolve in water.

水溶性セルロース誘導体は、無機塩粒子と併用されて、多孔質膜層を形成する。無機塩は予め微粒子化されて分散され多孔質膜層を構成してもよいが、イオン状態で混合して、塩を析出させて、この時点で微粒子とし、多孔質膜化しても構わない。このとき、pHや温度、水溶性セルロース誘導体、界面活性剤等で、析出する無機塩の粒子のサイズをコントロールすることができる。水中における分散、析出の工程が入ること、及び、多孔質膜層が製造工程で崩壊しないことなどから、無機塩の溶解度積は小さい方がよく、25℃の水における溶解度積が好ましくは10−9以下であり、より好ましくは10−10以下である。 The water-soluble cellulose derivative is used in combination with inorganic salt particles to form a porous membrane layer. The inorganic salt may be finely divided and dispersed in advance to form a porous film layer. However, the inorganic salt may be mixed in an ionic state to precipitate a salt, and at this point, the fine particles may be formed into a porous film. At this time, the size of the precipitated inorganic salt particles can be controlled by pH, temperature, water-soluble cellulose derivative, surfactant and the like. Since the steps of dispersion and precipitation in water are included and the porous membrane layer does not collapse in the production process, the solubility product of the inorganic salt is preferably small, and the solubility product in water at 25 ° C. is preferably 10 −. 9 or less, more preferably 10 −10 or less.

また、電池中では酸性またはアルカリ性物質に晒されるために、無機塩にはある程度の耐酸性かつ耐アルカリ性が必要である。このような性質を付与できるアニオンは硫酸イオン、リン酸イオン、ピロリン酸イオンなどである。より具体的には、好ましい塩としてはリン酸カルシウム、リン酸マグネシウム、リン酸アルミニウム、リン酸ニッケル、リン酸亜鉛等のリン酸塩、ピロリン酸カルシウム、ピロリン酸マグネシウム、ピロリン酸アルミニウム、ピロリン酸亜鉛等のピロリン酸塩、硫酸バリウム等の硫酸塩等である。特に硫酸バリウムは、絶縁性に優れ、熱酸以外には安定であり、優れた材料である。   Further, since the battery is exposed to an acidic or alkaline substance, the inorganic salt needs to have a certain degree of acid resistance and alkali resistance. Anions capable of imparting such properties are sulfate ion, phosphate ion, pyrophosphate ion and the like. More specifically, preferable salts include phosphates such as calcium phosphate, magnesium phosphate, aluminum phosphate, nickel phosphate, and zinc phosphate, and pyrophosphates such as calcium pyrophosphate, magnesium pyrophosphate, aluminum pyrophosphate, and zinc pyrophosphate. And sulfates such as acid salts and barium sulfate. In particular, barium sulfate is an excellent material that has excellent insulating properties and is stable except for thermal acid.

本発明において、多孔質膜層には、無機塩粒子間の接着性、無機塩粒子と多孔性支持体との接着性を改善させるために、各種高分子結着剤を併用することができる。特に接着が難しいポリエステル繊維やポリプロピレン繊維を多孔質支持体に用いる場合は、高分子結着剤としてラテックス系の高分子結着剤を使用することが好ましい。高分子結着剤としては、ポリオレフィン系、スチレン−ブタジエン系、アクリル系などを用いることができる。高分子結着剤の含有量は多孔質膜層の0.5〜20質量%が好ましく、より好ましくは1〜8質量%である。   In the present invention, various polymer binders can be used in combination with the porous membrane layer in order to improve the adhesion between the inorganic salt particles and the adhesion between the inorganic salt particles and the porous support. In particular, when polyester fibers or polypropylene fibers that are difficult to bond are used for the porous support, it is preferable to use a latex polymer binder as the polymer binder. As the polymer binder, polyolefin, styrene-butadiene, acrylic, or the like can be used. The content of the polymer binder is preferably 0.5 to 20% by mass of the porous membrane layer, and more preferably 1 to 8% by mass.

本発明では、電池用セパレータとしての強度を向上させるために、多孔質膜層と共に、多孔性支持体を有していてもよい。多孔性支持体としては、多孔フィルム、織布、不織布、編物等が挙げられる。多孔性支持体の材質としては、ポリエステル、ポリオレフィン、ポリアミド、アラミド、セルロース等を挙げることができる。多孔性支持体としては、電池内での化学的及び熱的安定性の点から、ポリエステルを用いた多孔性支持体を用いるのが好ましく、取扱い性や強度に優れていることから、不織布を用いるのが好ましい。不織布は、湿式法、乾式、静電紡糸法等で製造することができる。多孔性支持体としては、厚み10〜25μmであることが好ましく、空隙率は30〜80%であることが好ましい。より好ましくは、厚み12〜18μmであり、空隙率40〜70%である。   In this invention, in order to improve the intensity | strength as a battery separator, you may have a porous support body with the porous membrane layer. Examples of the porous support include a porous film, a woven fabric, a nonwoven fabric, and a knitted fabric. Examples of the material for the porous support include polyester, polyolefin, polyamide, aramid, and cellulose. As the porous support, it is preferable to use a porous support using polyester from the viewpoint of chemical and thermal stability in the battery, and a nonwoven fabric is used because of excellent handling and strength. Is preferred. The nonwoven fabric can be manufactured by a wet method, a dry method, an electrostatic spinning method, or the like. As a porous support body, it is preferable that it is 10-25 micrometers in thickness, and it is preferable that a porosity is 30-80%. More preferably, the thickness is 12 to 18 μm and the porosity is 40 to 70%.

多孔質膜層は、多孔性支持体に塗布または流延し、ゲル化させた後、乾燥させて得ることができる。塗布または流延の方法としては、エアドクターコーター、ブレードコーター、ナイフコーター、ロッドコーター、スクイズコーター、含浸コーター、グラビアコーター、キスロールコーター、ダイコーター、リバースロールコーター、トランスファーロールコーター、スプレーコーター等を用いた方法を使用することができる。多孔質膜層の塗工量は、乾燥質量で0.5〜50g/mであることが好ましく、より好ましくは1〜30g/mである。乾燥後、別に熱カレンダー処理を施して、得られた電池用セパレータの厚みを調整することも可能である。多孔質支持体を有する電池用セパレータの好ましい厚みは10〜30μmであり、より好ましくは12〜25μmである。 The porous membrane layer can be obtained by coating or casting on a porous support, gelling, and drying. As an application or casting method, an air doctor coater, blade coater, knife coater, rod coater, squeeze coater, impregnation coater, gravure coater, kiss roll coater, die coater, reverse roll coater, transfer roll coater, spray coater, etc. The method used can be used. The coating amount of the porous membrane layer is preferably 0.5 to 50 g / m 2 by dry weight, more preferably from 1 to 30 g / m 2. It is also possible to adjust the thickness of the obtained battery separator by performing another heat calendering process after drying. The preferable thickness of the battery separator having a porous support is 10 to 30 μm, more preferably 12 to 25 μm.

得られた電池用セパレータは、裁断されてリチウム電池用の電極材料間に挟み込まれて、電解液を注入し、電池を封止して、リチウム電池となる。正極を構成する材料は主に、活物質とカーボンブラック等の導電剤、ポリフッ化ビニリデンやスチレンブタジエンゴム等のバインダーであって、活物質としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、ニッケルマンガンコバルト酸リチウム(NMC)やアルミニウムマンガン酸リチウム(AMO)などのリチウムマンガン複合酸化物、鉄リン酸リチウムなどが用いられる。これらは、混合されて集電体であるアルミニウム箔上に塗布されて正極となる。   The obtained battery separator is cut and sandwiched between electrode materials for a lithium battery, an electrolyte is injected, the battery is sealed, and a lithium battery is formed. The material constituting the positive electrode is mainly an active material and a conductive agent such as carbon black, a binder such as polyvinylidene fluoride and styrene butadiene rubber, and as the active material, lithium cobaltate, lithium nickelate, lithium manganate, A lithium manganese composite oxide such as lithium nickel manganese cobaltate (NMC) or lithium aluminum manganate (AMO), lithium iron phosphate, or the like is used. These are mixed and applied onto an aluminum foil as a current collector to form a positive electrode.

負極を構成する材料は主に、活物質と導電剤、バインダーであって、活物質としては、黒鉛、非晶質炭素材料、珪素、リチウム、リチウム合金などが用いられる。これらは混合されて、集電体である銅箔上に塗布されて負極となる。リチウム電池は、正極、負極間にセパレータを挟み込み、ここに電解液を含浸させて、イオン伝導性を持たせて、導通させる。リチウム電池では非水系電解液が用いられるが、一般的に、これは溶媒と支持電解質で構成させる。溶媒としても用いられるのは、エチレンカーボネイト(EC)、プロピレンカーボネイト(PC)、ジエチルカーボネイト(DEC)、ジメチルカーボネイト(DMC)、エチルメチルカーボネイト(EMC)及び添加剤的な働きを有するビニレンカーボネイト、ビニルエチレンカーボネイトなどのカーボネイト系である。支持電解質としては、六フッ化リン酸リチウム、四フッ化ホウ酸リチウムの他に、LiN(SOCFなどの有機リチウム塩なども用いられる。イオン液体も利用できる。 The material constituting the negative electrode is mainly an active material, a conductive agent, and a binder. As the active material, graphite, amorphous carbon material, silicon, lithium, lithium alloy, or the like is used. These are mixed and applied onto a copper foil as a current collector to form a negative electrode. In a lithium battery, a separator is sandwiched between a positive electrode and a negative electrode, and an electrolytic solution is impregnated therein to provide ionic conductivity and conduct. In a lithium battery, a non-aqueous electrolyte solution is used. Generally, this is composed of a solvent and a supporting electrolyte. As the solvent, ethylene carbonate (EC), propylene carbonate (PC), diethyl carbonate (DEC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC) and vinylene carbonate having an additive function, vinyl Carbonate system such as ethylene carbonate. As the supporting electrolyte, an organic lithium salt such as LiN (SO 2 CF 3 ) 2 is used in addition to lithium hexafluorophosphate and lithium tetrafluoroborate. Ionic liquids can also be used.

外装体としては、アルミニウムやステンレススチール等の金属円筒缶や角形缶、アルミニウム箔をポリプロピレン、ポリエチレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート等でラミ加工したラミネートフィルムを用いたシート型の外装体が利用できる。また、積層化してスタッキングして用いることや、円柱状に回旋して用いることもできる。   As the exterior body, a metal cylindrical can such as aluminum or stainless steel, a rectangular can, a sheet-type exterior body using a laminate film obtained by laminating aluminum foil with polypropylene, polyethylene, polyethylene terephthalate, polybutylene terephthalate, or the like can be used. Further, it can be used by stacking and stacking, or it can be used by rotating in a cylindrical shape.

次に、本発明を実施例によって更に詳細に説明するが、本発明はこれらに何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited to these at all.

(実施例1)
下記の材料をホモジナイザー(プライミクス製、T.K.HOMODISPER Model 2.5、回転数2500rpm)で三時間撹拌して、分散液(1)を作製した。
Example 1
The following materials were stirred for 3 hours with a homogenizer (manufactured by PRIMIX, TK HODISPER Model 2.5, rotation speed 2500 rpm) to prepare dispersion (1).

沈降性硫酸バリウム
(堺化学工業製、商品名:BARIACE(バリエース)(登録商標)B−54)
100質量部
メタリン酸ナトリウム 0.1質量部
特殊カルボン酸型高分子活性剤
(花王製、商品名:デモール(登録商標)P) 0.5質量部
蒸留水 80質量部
Precipitated barium sulfate (product name: BARIACE (registered trademark) B-54, manufactured by Sakai Chemical Industry)
100 parts by mass sodium metaphosphate 0.1 parts by mass special carboxylic acid type polymer activator (trade name: Demol (registered trademark) P manufactured by Kao) 0.5 parts by mass distilled water

得られた分散液(1)100質量部に、濃度0.9質量%のカルボキシメチルセルロースナトリウム水溶液(日本製紙ケミカル製、MAC500LC)100質量部とスチレン−ブタジエンゴム(SBR)ラテックス(日本エイアンドエル製、商品名:AL−2001、濃度48.3質量%)を6.2質量部添加して、塗工液(1)を作製した。   100 parts by mass of the obtained dispersion (1), 100 parts by mass of 0.9% by mass aqueous carboxymethylcellulose solution (manufactured by Nippon Paper Chemicals Co., Ltd., MAC500LC) and styrene-butadiene rubber (SBR) latex (manufactured by Nippon A & L, products) 6.2 parts by mass of name: AL-2001, concentration 48.3% by mass) was added to prepare a coating liquid (1).

次に、延伸レギュラーポリエチレンテレフタレート(PET)繊維(0.1dtex、長さ3mm)60質量部、未延伸PET繊維(0.2dtex、長さ4mm)40質量部の構成で、湿式抄紙法により目付量10g/mのウェッブを作製した。この時の乾燥温度は130℃であった。次に、220℃で熱カレンダー処理を施し、厚み15μmの多孔性支持体(1)を作製した。得られた塗工液(1)を多孔性支持体に含浸させて、100℃で乾燥させて、厚み25μmのセパレータ(1)を得た。 Next, with a constitution of 60 parts by mass of stretched regular polyethylene terephthalate (PET) fiber (0.1 dtex, length 3 mm) and 40 parts by mass of unstretched PET fiber (0.2 dtex, length 4 mm), the basis weight is obtained by a wet papermaking method. A web of 10 g / m 2 was produced. The drying temperature at this time was 130 ° C. Next, a thermal calendar process was performed at 220 ° C. to prepare a porous support (1) having a thickness of 15 μm. The obtained coating liquid (1) was impregnated into a porous support and dried at 100 ° C. to obtain a separator (1) having a thickness of 25 μm.

(実施例2)
濃度1.2質量%のカルボキシメチルセルロースナトリウム水溶液(日本製紙ケミカル製、MAC500LC)100質量部を、塩化バリウム二水和物(式量244.26g/mol)24質量部、メタリン酸ナトリウム0.03質量部、特殊カルボン酸型高分子活性剤(花王製、商品名:デモール(登録商標)P)0.4質量部を添加して溶解させた。次にホモジナイザー(プライミクス製、T.K.HOMODISPER Model 2.5)でゆっくり撹拌しているところに、硫酸ナトリウム(式量142.04g/mol)14質量部を徐々に加えながら、回転数を2000rpmまで上げて、硫酸バリウムの分散液(2)を作製した。
(Example 2)
100 parts by mass of a sodium carboxymethylcellulose aqueous solution having a concentration of 1.2% by mass (manufactured by Nippon Paper Chemicals Co., Ltd., MAC500LC), 24 parts by mass of barium chloride dihydrate (formula weight 244.26 g / mol), 0.03 mass of sodium metaphosphate Part, 0.4 parts by mass of a special carboxylic acid type polymer activator (trade name: Demol (registered trademark) P, manufactured by Kao) was added and dissolved. Next, while slowly stirring with a homogenizer (Primics, TK HODISPER Model 2.5), 14 parts by mass of sodium sulfate (formula weight 142.04 g / mol) was gradually added, and the rotational speed was 2000 rpm. To a barium sulfate dispersion (2).

作製した分散液(2)100質量部に、スチレン−ブタジエンゴム(SBR)ラテックス(日本エイアンドエル製、商品名:AL−2001、濃度48.3質量%)を2質量部添加して、塗工液(2)を作製した。次に塗工液(2)を実施例1で作製した多孔性支持体(1)に含浸させ、80℃で乾燥後、水洗して余剰の塩化ナトリウムを除去し、厚み21μmのセパレータ(2)を得た。   2 parts by mass of styrene-butadiene rubber (SBR) latex (manufactured by Nippon A & L, trade name: AL-2001, concentration 48.3% by mass) is added to 100 parts by mass of the prepared dispersion (2), and the coating liquid is added. (2) was produced. Next, the porous support (1) produced in Example 1 was impregnated with the coating liquid (2), dried at 80 ° C., washed with water to remove excess sodium chloride, and a separator (2) having a thickness of 21 μm. Got.

(実施例3)
実施例1における沈降性硫酸バリウムを、硫酸カルシウムに変更して、セパレータ(3)を得た。
(Example 3)
The separator (3) was obtained by changing the precipitated barium sulfate in Example 1 to calcium sulfate.

(比較例1)
実施例1のカルボキシメチルセルロースナトリウムを、ポリビニルアルコール(クラレ製、商品名:ポバール PVA124)に変更して比較セパレータ(1)を作製した。
(Comparative Example 1)
A comparative separator (1) was produced by changing the sodium carboxymethylcellulose of Example 1 to polyvinyl alcohol (Kuraray, trade name: Poval PVA124).

(比較例2)
実施例2のカルボキシメチルセルロースナトリウムを、ポリビニルアルコール(クラレ製、商品名:ポバール PVA217)に変更して、比較セパレータ(2)を得た。
(Comparative Example 2)
The carboxymethylcellulose sodium of Example 2 was changed to polyvinyl alcohol (manufactured by Kuraray, trade name: POVAL PVA217) to obtain a comparative separator (2).

(比較例3)
多孔性支持体(1)を比較セパレータ(3)とした。
(Comparative Example 3)
The porous support (1) was used as a comparative separator (3).

[透気度と平均細孔径の測定]
得られたセパレータの透気度は東洋精機製ガーレー式デンソメーターで測定した。また、平均細孔径はPorous Materials Inc.製Capiillary Flow Porometer CEP−1500Aで測定した。結果を表1に与えた。
[Measurement of air permeability and average pore diameter]
The air permeability of the obtained separator was measured with a Gurley densometer manufactured by Toyo Seiki. In addition, the average pore diameter was measured by Porous Materials Inc. Measured with a Capillary Flow Porometer CEP-1500A. The results are given in Table 1.

[電池特性の評価]
アルミニウム箔上に、マンガン酸リチウム、アセチレンブラック、ポリフッ化ビニリデンを100/5/3の質量比で200g/m塗工し、溶剤を乾燥して更にプレスをかけて正極を作製した。一方、銅箔上に、球状人造黒鉛、アセチレンブラック、ポリフッ化ビニリデンを85/15/5の質量比で100g/m塗工し、乾燥後プレスをかけて負極を作製した。
[Evaluation of battery characteristics]
On the aluminum foil, 200 g / m 2 of lithium manganate, acetylene black and polyvinylidene fluoride were applied at a mass ratio of 100/5/3, and the solvent was dried and further pressed to prepare a positive electrode. On the other hand, spherical artificial graphite, acetylene black, and polyvinylidene fluoride were coated at a mass ratio of 85/15/5 on a copper foil at a rate of 100 g / m 2 , dried and pressed to prepare a negative electrode.

得られた両電極間に実施例で得られたセパレータを挟み込み、キシダ化学製のリチウム電池用電解液(溶媒:EC/DEC=3/7(体積比)、支持電解質:六フッ化リン酸リチウム1mol/l)を滴下し、減圧化でアルミニウム箔ラミネートフィルム中に封止して、リチウム電池を作製した。次に作製したリチウム電池を0.2Cで4.2Vまで充電し、その後0.2Cで放電を行った。この時、最初に0.2Cの条件で行った放電容量の充電容量に対する比率を測定した。また、0.2C(300分の放電時間)の条件での放電開始から30分後の電圧時を電圧降下値として内部抵抗を測定した。結果を表1に与えた。   The separator obtained in the example was sandwiched between the obtained electrodes, and the electrolyte solution for lithium batteries (solvent: EC / DEC = 3/7 (volume ratio)) manufactured by Kishida Chemical, supporting electrolyte: lithium hexafluorophosphate 1 mol / l) was dropped and sealed in an aluminum foil laminate film under reduced pressure to produce a lithium battery. Next, the produced lithium battery was charged to 4.2 V at 0.2 C, and then discharged at 0.2 C. At this time, the ratio of the discharge capacity initially performed under the condition of 0.2 C to the charge capacity was measured. Further, the internal resistance was measured with the voltage drop value taken as the voltage 30 minutes after the start of discharge under the condition of 0.2 C (discharge time of 300 minutes). The results are given in Table 1.

Figure 2014160580
Figure 2014160580

以上の結果から、実施例1〜3より、多孔性支持体上に無機粒子を含有してなる多孔質膜層を有する電池用セパレータであり、無機粒子が無機塩粒子であり、多孔質膜層が水溶性セルロース誘導体を含有してなる電池用セパレータでは、リチウム電池に使用される電池用セパレータとして有効に機能した。しかし、比較例1及び2から、水溶性セルロース誘導体の代わりにポリビニルアルコールを用いた場合は、その特性が大幅に低下した。   From the above results, from Examples 1 to 3, it is a battery separator having a porous membrane layer containing inorganic particles on a porous support, the inorganic particles are inorganic salt particles, and the porous membrane layer The battery separator containing water-soluble cellulose derivative functioned effectively as a battery separator used for lithium batteries. However, from Comparative Examples 1 and 2, when polyvinyl alcohol was used instead of the water-soluble cellulose derivative, the characteristics were greatly reduced.

また、実施例1と実施例3の比較から、無機塩粒子が硫酸バリウム(溶解度積1.1×10−10)である場合、硫酸カルシウム(溶解度積9.1×10−6)である場合よりも、電池セパレータ製造工程において、多孔性に優れた多孔質膜層が得られ、良好な電池用セパレータを得ることができた。 From the comparison between Example 1 and Example 3, when the inorganic salt particles are barium sulfate (solubility product 1.1 × 10 −10 ), calcium sulfate (solubility product 9.1 × 10 −6 ) In the battery separator manufacturing process, a porous membrane layer having excellent porosity was obtained, and a good battery separator could be obtained.

本発明の電池用セパレータは、リチウム電池やキャパシター用セパレータとして利用できる。   The battery separator of the present invention can be used as a lithium battery or a capacitor separator.

Claims (2)

多孔性支持体上に無機粒子を含有してなる多孔質膜層を有する電池用セパレータにおいて、無機粒子が無機塩粒子であり、多孔質膜層が水溶性セルロース誘導体を含有してなることを特徴とする電池用セパレータ。   In a battery separator having a porous membrane layer containing inorganic particles on a porous support, the inorganic particles are inorganic salt particles, and the porous membrane layer contains a water-soluble cellulose derivative. Battery separator. 無機塩粒子の溶解度積が10−9以下である請求項1記載の電池用セパレータ。 The battery separator according to claim 1, wherein the solubility product of the inorganic salt particles is 10 −9 or less.
JP2013030644A 2013-02-20 2013-02-20 Cell separator Pending JP2014160580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030644A JP2014160580A (en) 2013-02-20 2013-02-20 Cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030644A JP2014160580A (en) 2013-02-20 2013-02-20 Cell separator

Publications (1)

Publication Number Publication Date
JP2014160580A true JP2014160580A (en) 2014-09-04

Family

ID=51612139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030644A Pending JP2014160580A (en) 2013-02-20 2013-02-20 Cell separator

Country Status (1)

Country Link
JP (1) JP2014160580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155248A (en) * 2019-03-19 2020-09-24 帝人株式会社 Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2022004148A1 (en) * 2020-07-01 2022-01-06 東レ株式会社 Separator for batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020155248A (en) * 2019-03-19 2020-09-24 帝人株式会社 Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP7416522B2 (en) 2019-03-19 2024-01-17 帝人株式会社 Separators for non-aqueous secondary batteries and non-aqueous secondary batteries
WO2022004148A1 (en) * 2020-07-01 2022-01-06 東レ株式会社 Separator for batteries

Similar Documents

Publication Publication Date Title
CN105470523B (en) A kind of high safety performance lithium-ion-power cell
CN108807819B (en) Diaphragm, preparation method thereof and lithium-sulfur battery
JP2014175232A (en) Cell separator
JP2016062689A (en) Battery separator
JPWO2006123811A1 (en) Lithium ion secondary battery separator and lithium ion secondary battery
JP2016012548A (en) Battery separator
JP2006331759A (en) Separator for electronic component and method of manufacturing the same
JP2015053180A (en) Battery separator
JP2015115132A (en) Battery separator
JP2016162538A (en) Separator for lithium ion secondary battery and lithium ion secondary battery including the same
JP2016182817A (en) Laminate
JP2015156342A (en) battery separator
JP2014116131A (en) Battery separator
JP2014160580A (en) Cell separator
JP2015156341A (en) battery separator
JP2015056263A (en) Separator for batteries
JP6061735B2 (en) Battery separator and battery separator manufacturing method
JP2013218926A (en) Separator and lithium-ion secondary battery using the same
JP2006351365A (en) Separator for electronic components, and the electronic component
JP2014241231A (en) Cell separator
JP2015046230A (en) Separator for lithium ion secondary battery and method of manufacturing separator for lithium ion secondary battery
JP2016062723A (en) Battery separator
JP7107809B2 (en) Positive electrode for secondary battery
JP2014086407A (en) Battery separator
JP2015005420A (en) Cell separator