JP2016162538A - Separator for lithium ion secondary battery and lithium ion secondary battery including the same - Google Patents

Separator for lithium ion secondary battery and lithium ion secondary battery including the same Download PDF

Info

Publication number
JP2016162538A
JP2016162538A JP2015038424A JP2015038424A JP2016162538A JP 2016162538 A JP2016162538 A JP 2016162538A JP 2015038424 A JP2015038424 A JP 2015038424A JP 2015038424 A JP2015038424 A JP 2015038424A JP 2016162538 A JP2016162538 A JP 2016162538A
Authority
JP
Japan
Prior art keywords
ion secondary
lithium ion
secondary battery
separator
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015038424A
Other languages
Japanese (ja)
Inventor
誉子 笠井
Takako Kasai
誉子 笠井
兵頭 建二
Kenji Hyodo
建二 兵頭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2015038424A priority Critical patent/JP2016162538A/en
Publication of JP2016162538A publication Critical patent/JP2016162538A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a separator for a lithium ion secondary battery contributing to the reduced size/increased capacity and safety of a battery, and a lithium ion secondary battery in which the separator for a lithium ion secondary battery is used.SOLUTION: A separator for a lithium ion secondary battery is formed by coating a negative electrode active material on one surface of a nonwoven fabric or a film base material. The negative electrode active material may contain lithium titanium oxide. A lithium ion secondary battery includes a positive electrode, an electrolyte, a negative electrode collector and the separator for a lithium ion secondary battery.SELECTED DRAWING: None

Description

本発明は、リチウムイオン二次電池用セパレータ及びそれを用いてなるリチウムイオン二次電池に関する。   The present invention relates to a separator for a lithium ion secondary battery and a lithium ion secondary battery using the separator.

リチウムイオン二次電池は、通常、正極活物質を集電体に塗工した正極と、負極活物質を集電体に塗工した負極と、正極と負極の接触を防ぐリチウムイオン二次電池用セパレータとを積層して筐体に入れ、電解液を注入した後、封をして製造される。近年の高エネルギー密度化の要求に伴い、リチウムイオン二次電池は小型化が求められるが、体積あたりの容量を上げるためにリチウムイオン二次電池用セパレータを薄くすると、積層や捲回の際の強度不足や異物混入による短絡など、生産性や安全性の面で問題があった。   Lithium ion secondary batteries are usually used for a positive electrode in which a positive electrode active material is applied to a current collector, a negative electrode in which a negative electrode active material is applied to a current collector, and a lithium ion secondary battery that prevents contact between the positive electrode and the negative electrode It is manufactured by laminating a separator and placing it in a casing, injecting an electrolyte, and then sealing. In response to the recent demand for higher energy density, lithium ion secondary batteries are required to be smaller. However, if the lithium ion secondary battery separator is made thinner in order to increase the capacity per volume, There were problems in terms of productivity and safety, such as a shortage due to insufficient strength and contamination.

特許文献1では、電極上に多孔質層を形成することで、電極とリチウムイオン二次電池用セパレータを一体化させ、リチウムイオン二次電池用セパレータを薄膜化できるとしているが、有機溶媒に溶かしたポリマーを塗工する工程に加えて、溶媒を除いて多孔質化する工程が必要となるため、工数が多くなること、有機溶媒回収のためのコストがかかることなどの問題があった。   In Patent Document 1, it is said that by forming a porous layer on an electrode, the electrode and the lithium ion secondary battery separator can be integrated, and the lithium ion secondary battery separator can be thinned. In addition to the process of coating the polymer, a process of removing the solvent to make the film porous is necessary, which increases the number of processes and costs for recovering the organic solvent.

特許文献2では、基板(セパレータ)の表面に凹部を設けて電極材を充填することで、リチウムイオン二次電池用セパレータと電極を一体化させ、正極と負極の距離を短絡の危険性なく近づけることができるとしているが、凹部を設けることのできる多孔質材料の素材に制限があるという問題があった。   In Patent Document 2, a concave portion is provided on the surface of a substrate (separator) and filled with an electrode material, so that a separator for a lithium ion secondary battery and an electrode are integrated, and the distance between the positive electrode and the negative electrode is reduced without risk of short circuit. However, there is a problem that the material of the porous material that can be provided with the recess is limited.

特開2012−212692号公報JP 2012-212692 A 特開2013−200962号公報JP 2013-200962 A

本発明は、上記実情を鑑みたものであって、電池の小型化・高容量化と安全性に寄与するリチウムイオン二次電池用セパレータと、それを用いてなるリチウムイオン二次電池を提供することにある。   The present invention has been made in view of the above circumstances, and provides a separator for a lithium ion secondary battery that contributes to miniaturization / high capacity and safety of the battery, and a lithium ion secondary battery using the separator. There is.

上記課題を解決するために鋭意研究した結果、
(1)不織布又はフィルム基材の片面に負極活物質を塗工してなるリチウムイオン二次電池用セパレータ、
(2)基材が不織布である上記(1)記載のリチウムイオン二次電池用セパレータ、
(3)負極活物質がリチウムチタン酸化物を含む上記(1)又は(2)記載のリチウムイオン二次電池用セパレータ、
(4)正極、電解液、負極集電体と上記(1)〜(3)のいずれかに記載のリチウムイオン二次電池用セパレータとを含有してなるリチウムイオン二次電池、
を見出した。
As a result of earnest research to solve the above problems,
(1) A separator for a lithium ion secondary battery formed by coating a negative electrode active material on one side of a nonwoven fabric or a film substrate,
(2) The separator for a lithium ion secondary battery according to the above (1), wherein the substrate is a nonwoven fabric,
(3) The separator for a lithium ion secondary battery according to the above (1) or (2), wherein the negative electrode active material contains lithium titanium oxide,
(4) A lithium ion secondary battery comprising a positive electrode, an electrolytic solution, a negative electrode current collector, and the lithium ion secondary battery separator according to any one of (1) to (3),
I found.

本発明によれば、不織布又はフィルム基材の片面に負極活物質を塗工してなるリチウムイオン二次電池用セパレータを用いることにより、負極活物質を負極集電体に塗工する必要がなくなるため、体積当たりの電池の高容量化が可能になる。また、負極活物質塗工によってリチウムイオン二次電池用セパレータの耐熱性が上がるため、安全性の高いリチウムイオン二次電池を得ることができる。   According to the present invention, it is not necessary to apply a negative electrode active material to a negative electrode current collector by using a separator for a lithium ion secondary battery formed by applying a negative electrode active material to one side of a nonwoven fabric or a film substrate. Therefore, the capacity of the battery per volume can be increased. In addition, since the heat resistance of the lithium ion secondary battery separator is increased by applying the negative electrode active material, a highly safe lithium ion secondary battery can be obtained.

以下、本発明のリチウムイオン二次電池用セパレータと、それを用いてなるリチウムイオン二次電池について詳説する。   Hereinafter, the lithium ion secondary battery separator of the present invention and the lithium ion secondary battery using the same will be described in detail.

本発明のリチウムイオン二次電池用セパレータは、不織布又はフィルム基材の片面に負極活物質を塗工してなる。不織布又はフィルム基材と負極活物質とが一体化するため、負極活物質を負極集電体に塗工する必要がなくなる。これにより集電体金属箔を薄くすることができる他、蒸着法やスパッタリング法などの薄膜形成法で負極集電体を形成することも可能になるため、リチウムイオン電池に組んだ際、体積当たりの容量が高くなる。また、金属酸化物や炭素材料である負極活物質を不織布又はフィルム基材に塗工することで、不織布又はフィルム基材のみの場合よりも、リチウムイオン二次電池用セパレータの耐熱性が上がる。これにより熱暴走を起こしにくい安全なリチウムイオン電池を得ることができる。   The separator for a lithium ion secondary battery of the present invention is formed by coating a negative electrode active material on one side of a nonwoven fabric or a film substrate. Since the nonwoven fabric or film substrate and the negative electrode active material are integrated, it is not necessary to apply the negative electrode active material to the negative electrode current collector. As a result, the current collector metal foil can be thinned, and the negative electrode current collector can be formed by a thin film formation method such as vapor deposition or sputtering. The capacity of becomes higher. Moreover, the heat resistance of the separator for lithium ion secondary batteries is increased by applying a negative electrode active material, which is a metal oxide or a carbon material, to the nonwoven fabric or the film substrate, as compared with the case of only the nonwoven fabric or the film substrate. This makes it possible to obtain a safe lithium ion battery that is unlikely to cause thermal runaway.

不織布の構成材料としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びそれらの誘導体、芳香族ポリエステル、全芳香族ポリエステル等のポリエステル、ポリオレフィン、アクリル、ポリアセタール、ポリカーボネート、脂肪族ポリケトン、芳香族ポリケトン、脂肪族ポリアミド、芳香族ポリアミド、全芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンスルフィド、ポリベンゾイミダゾール、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリ(パラ−フェニレンベンゾビスチアゾール)、ポリ(パラ−フェニレン−2,6−ベンゾビスオキサゾール)、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルアルコール、ポリウレタン及びポリ塩化ビニル等の樹脂からなる繊維並びにセルロース繊維等が挙げられる。該不織布は、これらの構成材料の2種以上を含有していても構わない。   As the constituent material of the nonwoven fabric, polyethylene terephthalate, polybutylene terephthalate and derivatives thereof, polyester such as aromatic polyester, wholly aromatic polyester, polyolefin, acrylic, polyacetal, polycarbonate, aliphatic polyketone, aromatic polyketone, aliphatic polyamide, Aromatic polyamide, wholly aromatic polyamide, polyimide, polyamideimide, polyphenylene sulfide, polybenzimidazole, polyetheretherketone, polyethersulfone, poly (para-phenylenebenzobisthiazole), poly (para-phenylene-2,6- Fibers made of resins such as benzobisoxazole), polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol, polyurethane, and polyvinyl chloride Cellulose fibers and the like each time. The nonwoven fabric may contain two or more of these constituent materials.

不織布の製造方法には制限がなく、例えば、スパンボンド法、メルトブロー法、乾式法、湿式法、エレクトロスピニング法等の方法によって製造したものを使用することができる。得られたリチウムイオン二次電池用セパレータは、必要に応じて、カレンダー処理、熱カレンダー処理、熱処理などが施される。   There is no restriction | limiting in the manufacturing method of a nonwoven fabric, For example, what was manufactured by methods, such as a spun bond method, a melt blow method, a dry method, a wet method, an electrospinning method, can be used. The obtained separator for a lithium ion secondary battery is subjected to calendering, thermal calendering, heat treatment and the like as necessary.

フィルム基材としては、ポリプロピレン、ポリエチレンなどのオレフィン系の多孔質フィルムが挙げられる。   Examples of the film substrate include olefin-based porous films such as polypropylene and polyethylene.

負極活物質を含有する塗工液を、不織布又はフィルム基材に塗工する方法に特に制限はなく、例えば、従来公知のエアドクターコーター、ブレードコーター、ナイフコーター、ロッドコーター、スクイズコーター、含浸コーター、グラビアコーター、キスロールコーター、ダイコーター、リバースロールコーター、トランスファーロールコーター、スプレーコーター等が挙げられる。   There is no particular limitation on the method for coating the coating liquid containing the negative electrode active material on the nonwoven fabric or the film substrate. For example, conventionally known air doctor coater, blade coater, knife coater, rod coater, squeeze coater, impregnation coater , Gravure coater, kiss roll coater, die coater, reverse roll coater, transfer roll coater, spray coater and the like.

上記の塗工方法により、均一な塗工層を作製するために、必要に応じて、消泡剤、ぬれ
剤等を塗工液中に適宜添加することができる。
In order to produce a uniform coating layer by the above coating method, an antifoaming agent, a wetting agent, and the like can be appropriately added to the coating solution as necessary.

本発明のリチウムイオン二次電池用セパレータには、不織布を使用することがより好ましい。不織布は目の開きが大きく、塗工した負極活物質が孔に入り込むため、フィルム基材を用いた場合に比べて全体の厚みを薄くできる。また、ポリエチレンテレフタレート等の高融点の材料を用いることで、フィルム基材に比べて耐熱性が高くなる。さらに、フィルム基材に比べて電解液の保液性が高いため、リチウムイオン二次電池に組んだ際、良好なサイクル特性を得ることができる。   It is more preferable to use a nonwoven fabric for the separator for lithium ion secondary batteries of the present invention. Since the nonwoven fabric has a large opening and the coated negative electrode active material enters the pores, the overall thickness can be reduced as compared with the case where a film substrate is used. Moreover, heat resistance becomes high compared with a film base material by using materials with a high melting point such as polyethylene terephthalate. Furthermore, since the electrolyte solution retainability is higher than that of the film substrate, good cycle characteristics can be obtained when assembled in a lithium ion secondary battery.

不織布又はフィルム基材は、α−アルミナ、β−アルミナ、γ−アルミナ等のアルミナ、ベーマイト等のアルミナ水和物、酸化マグネシウム、水酸化マグネシウム、酸化カルシウムなどの無機顔料を含有していてもよい。無機顔料は塗工や含浸によって、不織布又はフィルム基材に付着させる方法、繊維材料やフィルム基材の材料と混合して不織布やフィルム基材を製造する方法等で、無機顔料を不織布又はフィルム基材に含有させることができる。本発明においては、リチウムイオン二次電池用セパレータの片面の一番上の層は、負極活物質を含有してなる塗工層である必要がある。   The nonwoven fabric or film base material may contain inorganic pigments such as alumina such as α-alumina, β-alumina and γ-alumina, hydrated alumina such as boehmite, magnesium oxide, magnesium hydroxide and calcium oxide. . Inorganic pigments can be applied to the nonwoven fabric or film substrate by coating or impregnation, mixed with fiber material or film substrate material to produce the nonwoven fabric or film substrate, etc. It can be contained in the material. In the present invention, the uppermost layer on one side of the separator for a lithium ion secondary battery needs to be a coating layer containing a negative electrode active material.

本発明におけるリチウムイオン二次電池用セパレータでは、負極活物質を塗工・乾燥後、塗工層表面の平坦化や厚みをコントロールする目的でカレンダー処理によって、リチウムイオン二次電池用セパレータを平滑化してもよい。   In the lithium ion secondary battery separator according to the present invention, after coating and drying the negative electrode active material, the lithium ion secondary battery separator is smoothed by a calendering treatment for the purpose of controlling the flatness and thickness of the coating layer surface. May be.

負極活物質としては、リチウムチタン酸化物、SiO、SnO、黒鉛やコークスなどの炭素材料等のリチウムイオンを挿入脱離することが可能な材料又はその組み合わせが挙げられる。 Examples of the negative electrode active material include materials capable of inserting and desorbing lithium ions, such as lithium titanium oxide, SiO 2 , SnO, carbon materials such as graphite and coke, or combinations thereof.

リチウムイオン二次電池用セパレータの負極活物質の塗工量は、電池の容量に応じて自由に設計できる。付着量を増やすため、塗工層を2層以上設けてもよい。   The coating amount of the negative electrode active material of the lithium ion secondary battery separator can be freely designed according to the capacity of the battery. In order to increase the adhesion amount, two or more coating layers may be provided.

負極活物質を不織布又はフィルム基材に付着させるためにバインダーポリマーを使用することができる。バインダーポリマーとしては、電気化学的に安定かつ非水電解液に対して安定であれば特に制限はない。具体的には、例えば、エチレン−酢酸ビニル共重合体(EVA)、アクリレート共重合体、スチレンブタジエンラテックス(SBR)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリウレタン、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、カルボキシメチルセルロースの塩、ヒドロキシメチルセルロースなどのセルロース誘導体等が挙げられる。また、これらの樹脂の一部に、非水電解液への溶解を防止するために架橋構造を導入したものも用いることができる。これらのバインダーポリマーは1種単独で使用してもよく、2種以上を併用してもよい。これらの中でも、スチレンブタジエンラテックス(SBR)、アクリレート共重合体が特に好ましい。   A binder polymer can be used to attach the negative electrode active material to the nonwoven fabric or film substrate. The binder polymer is not particularly limited as long as it is electrochemically stable and stable with respect to the non-aqueous electrolyte. Specifically, for example, ethylene-vinyl acetate copolymer (EVA), acrylate copolymer, styrene butadiene latex (SBR), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinyl pyrrolidone (PVP), polyurethane, Examples thereof include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), carboxymethylcellulose salts, and cellulose derivatives such as hydroxymethylcellulose. Moreover, what introduce | transduced the crosslinked structure in order to prevent the melt | dissolution to a non-aqueous electrolyte can also be used for some of these resin. These binder polymers may be used individually by 1 type, and may use 2 or more types together. Among these, styrene butadiene latex (SBR) and acrylate copolymer are particularly preferable.

バインダーポリマーの添加量としては、負極活物質に対し、2質量%以上25質量%以下が好ましい。負極活物質間及び負極活物質と不織布又はフィルム基材との接着性の点から、3質量%以上20質量%以下がより好ましい。   The addition amount of the binder polymer is preferably 2% by mass or more and 25% by mass or less with respect to the negative electrode active material. From the viewpoint of the adhesiveness between the negative electrode active materials and between the negative electrode active material and the nonwoven fabric or film substrate, 3% by mass or more and 20% by mass or less are more preferable.

負極活物質塗工液を形成するための媒体としては、負極活物質、バインダーポリマー、及び必要に応じて添加される分散剤、増粘剤、消泡剤、ぬれ剤を溶解又は分散できる溶媒であれば特に制限はない。具体的には、水、アルコール類、N−メチルピロリドン(NMP)、ジメチルホルムアミド、メチルエチルケトン、アセトン等が挙げられる。これらの溶媒は1種単独で使用してもよく、2種以上を併用してもよい。この中でも、塗工及び乾燥後の媒体回収の容易さや、環境負荷の問題から、水を用いることが好ましい。   As a medium for forming the negative electrode active material coating liquid, a negative electrode active material, a binder polymer, and a solvent that can dissolve or disperse a dispersant, a thickener, an antifoaming agent, and a wetting agent that are added as necessary. If there is no particular limitation. Specific examples include water, alcohols, N-methylpyrrolidone (NMP), dimethylformamide, methyl ethyl ketone, and acetone. These solvents may be used alone or in combination of two or more. Among these, it is preferable to use water from the viewpoint of ease of medium recovery after coating and drying and environmental load problems.

本発明におけるリチウムイオン二次電池用セパレータに使用する負極活物質としては、リチウムチタン酸化物を用いることが好ましい。不織布を用いる場合においては、特に好ましい。リチウムチタン酸化物は他の負極材料に比べ導電性が低いため、不織布に塗工して裏抜けし、正極と接触した場合でも短絡電流が流れ難いためである。リチウムチタン酸化物には、SiO、SnOや炭素材料に比べ、リチウムイオン挿入脱離時の体積変化が小さく、サイクル特性が良好である、リチウムイオンを吸蔵したときの電位がリチウム電極基準で1.55Vと高いため、リチウムデンドライトの析出による短絡を起こし難く、安全性が高い等の利点もある。 As a negative electrode active material used for the separator for lithium ion secondary batteries in this invention, it is preferable to use lithium titanium oxide. In the case of using a nonwoven fabric, it is particularly preferable. This is because lithium titanium oxide has a lower electrical conductivity than other negative electrode materials, and therefore, even when it is coated on a nonwoven fabric to penetrate through and contact with the positive electrode, a short-circuit current hardly flows. Compared to SiO 2 , SnO and carbon materials, the lithium titanium oxide has a small volume change at the time of lithium ion insertion / desorption and good cycle characteristics. The potential when occluded lithium ions is 1 with respect to the lithium electrode. Since it is as high as .55 V, it is difficult to cause a short circuit due to precipitation of lithium dendrite, and there are advantages such as high safety.

リチウムイオン二次電池の正極活物質としては、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム等の遷移金属とリチウムの複合酸化物、リチウムニッケルコバルトマンガンの複合酸化物、リチウムニッケルコバルトアルミニウム複合酸化物等の、複数の遷移金属とリチウムの複合酸化物、リン酸鉄リチウム又はリン酸鉄リチウムとマンガン、クロム、コバルト、銅、ニッケル、バナジウム、モリブデン、チタン、亜鉛、アルミニウム、ガリウム、マグネシウム、ホウ素、ニオブから選ばれる1種以上の金属を複合化した活物質等を用いることができる。   Examples of the positive electrode active material of the lithium ion secondary battery include lithium cobalt oxide, lithium manganate, lithium nickel oxide transition metal and lithium composite oxide, lithium nickel cobalt manganese composite oxide, lithium nickel cobalt aluminum composite oxide Multiple oxides of transition metals and lithium, lithium iron phosphate or lithium iron phosphate and manganese, chromium, cobalt, copper, nickel, vanadium, molybdenum, titanium, zinc, aluminum, gallium, magnesium, boron, etc. An active material in which one or more metals selected from niobium are combined can be used.

リチウムイオン二次電池の負極集電体としては、アルミニウム箔、銅箔、白金箔などの金属箔が挙げられる。また、蒸着法、スパッタリング法などの薄膜形成法により、リチウムイオン二次電池用セパレータの負極活物質を塗工した面にこれらの金属からなる負極集電体を形成させてもよい。   Examples of the negative electrode current collector of the lithium ion secondary battery include metal foils such as aluminum foil, copper foil, and platinum foil. Moreover, you may form the negative electrode collector which consists of these metals in the surface which coated the negative electrode active material of the separator for lithium ion secondary batteries by thin film formation methods, such as a vapor deposition method and sputtering method.

リチウムイオン二次電池の電解液には、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメトキシメタン、これらの混合溶媒などの有機溶媒にリチウム塩を溶解させたものが用いられる。リチウム塩としては、六フッ化リン酸リチウム(LiPF)や四フッ化ホウ酸リチウム(LiBF)等が挙げられる。 As an electrolytic solution for a lithium ion secondary battery, a solution obtained by dissolving a lithium salt in an organic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, dimethoxymethane, or a mixed solvent thereof is used. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).

本発明におけるリチウムイオン二次電池は、不織布又はフィルム基材の片面に負極活物質を塗工してなる本発明のリチウムイオン二次電池用セパレータと、上記の正極、電解液、負極集電体とを含有してなる。本発明のリチウムイオン二次電池用セパレータは、不織布又はフィルム基材と負極活物質とを一体化させた構造であるため、リチウムイオン二次電池用セパレータの負極活物質が塗工された面が負極集電体側に接するように配置する。   The lithium ion secondary battery according to the present invention includes a separator for a lithium ion secondary battery according to the present invention formed by coating a negative electrode active material on one side of a nonwoven fabric or a film substrate, the positive electrode, the electrolytic solution, and the negative electrode current collector. And containing. Since the separator for a lithium ion secondary battery of the present invention has a structure in which a nonwoven fabric or film substrate and a negative electrode active material are integrated, the surface on which the negative electrode active material of the separator for a lithium ion secondary battery is coated It arrange | positions so that the negative electrode collector side may be contact | connected.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は本実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a present Example.

<不織布の作製>
繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維45質量部と繊度0.1dtex(平均繊維径3.0μm)、繊維長3mmの配向結晶化PET系短繊維15質量部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダー用PET系短繊維(軟化点120℃、融点230℃)40質量部とを一緒に混合し、パルパーにより水中で離解させ、アジテーターによる撹拌のもと、濃度1質量%の均一な抄造用スラリーを調製した。円網抄紙機を用い、この抄造用スラリーを湿式方式で抄き上げ、150℃のシリンダードライヤーによって、バインダー用PET系短繊維を接着させて不織布強度を発現させ、目付15.0g/mの不織布とした。さらに、この不織布を金属ロール−金属ロールからなる1ニップの熱カレンダーを使用して、ロール温度185℃、線圧740N/cm、搬送速度20m/分で加熱処理を実施し、厚み25μmの不織布を作製した。
<Production of non-woven fabric>
45 parts by mass of oriented crystallized polyethylene terephthalate (PET) short fibers having a fineness of 0.06 dtex (average fiber diameter of 2.4 μm) and a fiber length of 3 mm, an orientation of fineness of 0.1 dtex (average fiber diameter of 3.0 μm) and a fiber length of 3 mm 15 parts by mass of crystallized PET-based short fibers, a fine component of 0.2 dtex (average fiber diameter 4.3 μm), and a fiber length of 3 mm PET-based short fibers for a single-component binder (softening point 120 ° C., melting point 230 ° C.) 40 parts by mass Were mixed together, disintegrated in water with a pulper, and a uniform papermaking slurry having a concentration of 1% by mass was prepared under stirring by an agitator. Using a circular paper machine, this papermaking slurry is made up by a wet method, and a PET dryer short fiber is bonded to the binder with a cylinder dryer at 150 ° C. to develop a nonwoven fabric strength. The basis weight is 15.0 g / m 2 . A non-woven fabric was used. Furthermore, this nonwoven fabric was subjected to heat treatment at a roll temperature of 185 ° C., a linear pressure of 740 N / cm, and a conveyance speed of 20 m / min using a 1-nip thermal calendar composed of a metal roll and a metal roll, and a nonwoven fabric having a thickness of 25 μm was obtained. Produced.

<フィルム基材>
フィルムには、セルガード社製PPフィルム(厚み25μm)を使用した。
<Film base>
A PP film (thickness 25 μm) manufactured by Celgard was used as the film.

<塗工液1の作製>
負極活物質として平均粒子径0.6μmのリチウムチタン酸化物(LiTi12)を固形分換算で100質量部、花王社製ポイズ(登録商標)520を固形分換算で0.4質量部をホモジナイザーにて混合、撹拌し、次いでカルボキシメチルセルロースナトリウム塩(1質量%水溶液B粘度7000mPa・s、エーテル化度0.7)を固形分換算で1.5質量部を混合、撹拌し、次に、スチレンブタジエンラテックスを固形分換算で5.0質量部を混合、撹拌し、さらに、イオン交換水を加えて、固形分濃度25質量%の塗工液1を作製した。
<Preparation of coating liquid 1>
Lithium titanium oxide (Li 4 Ti 5 O 12 ) having an average particle size of 0.6 μm as a negative electrode active material is 100 parts by mass in terms of solid content, and Pois (registered trademark) 520 manufactured by Kao Corporation is 0.4 mass in terms of solid content. Parts were mixed and stirred with a homogenizer, and then 1.5 parts by weight of carboxymethylcellulose sodium salt (1% by weight aqueous solution B viscosity 7000 mPa · s, etherification degree 0.7) was mixed and stirred. Further, 5.0 parts by mass of styrene butadiene latex in terms of solid content was mixed and stirred, and further ion-exchanged water was added to prepare a coating liquid 1 having a solid content concentration of 25% by mass.

<塗工液2の作製>
負極活物質としてメソカーボンマイクロビーズ(MCMB)を固形分換算で100質量部、アセチレンブラックを固形分換算で3.0質量部、花王社製ポイズ(登録商標)520を固形分換算で0.4質量部をホモジナイザーにて混合、撹拌し、次いでカルボキシメチルセルロースナトリウム塩(1質量%水溶液B粘度7000mPa・s、エーテル化度0.7)を固形分換算で1.5質量部を混合、撹拌し、次に、スチレンブタジエンラテックスを固形分換算で5.0質量部を混合、撹拌し、さらに、イオン交換水を加えて、固形分濃度25質量%の塗工液2を作製した。
<Preparation of coating liquid 2>
As a negative electrode active material, mesocarbon microbeads (MCMB) are 100 parts by mass in terms of solids, acetylene black is 3.0 parts by mass in terms of solids, and Pois (registered trademark) 520 manufactured by Kao Corporation is 0.4 in terms of solids. A mass part is mixed and stirred with a homogenizer, and then 1.5 parts by mass of carboxymethylcellulose sodium salt (1 mass% aqueous solution B viscosity 7000 mPa · s, etherification degree 0.7) is mixed and stirred. Next, 5.0 parts by mass of styrene butadiene latex in terms of solid content was mixed and stirred, and ion exchange water was further added to prepare a coating liquid 2 having a solid content concentration of 25% by mass.

<実施例1>
上記不織布の片面に塗工液1を固形分付着量が40g/mとなるように塗工・乾燥して、リチウムイオン二次電池用セパレータとした。
<Example 1>
The coating liquid 1 was applied to one side of the nonwoven fabric so as to have a solid content of 40 g / m 2 and dried to obtain a lithium ion secondary battery separator.

<実施例2>
上記不織布の片面に塗工液2を固形分付着量が20g/mとなるように塗工・乾燥してリチウムイオン二次電池用セパレータとした。
<Example 2>
The coating liquid 2 was applied to one side of the nonwoven fabric so that the solid content was 20 g / m 2 and dried to obtain a separator for a lithium ion secondary battery.

<実施例3>
上記フィルム基材の片面に塗工液1を固形分付着量が40g/mとなるように塗工・乾燥してリチウムイオン二次電池用セパレータとした。
<Example 3>
The coating liquid 1 was applied to one side of the film base material and dried so that the solid content was 40 g / m 2 to obtain a lithium ion secondary battery separator.

<実施例4>
上記フィルム基材の片面に塗工液2を固形分付着量が20g/mとなるように塗工・乾燥してリチウムイオン二次電池用セパレータとした。
<Example 4>
The coating liquid 2 was applied to one side of the film base material and dried so that the solid content was 20 g / m 2 to obtain a lithium ion secondary battery separator.

<比較例1>
上記不織布をそのままリチウムイオン二次電池用セパレータとして使用した。
<Comparative Example 1>
The nonwoven fabric was used as it was as a separator for a lithium ion secondary battery.

<比較例2>
上記フィルム基材をそのままリチウムイオン二次電池用セパレータとして使用した。
<Comparative example 2>
The said film base material was used as a separator for lithium ion secondary batteries as it was.

<比較例3>
上記不織布の両面に塗工液1を固形分付着量が合計40g/mとなるように塗工・乾燥してリチウムイオン二次電池用セパレータとした。
<Comparative Example 3>
The separator 1 for a lithium ion secondary battery was prepared by coating and drying the coating liquid 1 on both surfaces of the non-woven fabric so that the total solid adhesion amount was 40 g / m 2 .

<正極>
過マンガン酸リチウム(LiMn)、導電助剤のアセチレンブラック、結着剤のポリフッ化ビニリデンを質量比率で95:2:3に混合し、N−メチル−2−ピロリドンに分散させたスラリーを厚さ20μmのアルミニウム箔集電体に塗工・乾燥して、正極とした。
<Positive electrode>
Slurry in which lithium permanganate (LiMn 2 O 4 ), acetylene black as a conductive auxiliary agent, and polyvinylidene fluoride as a binder are mixed at a mass ratio of 95: 2: 3 and dispersed in N-methyl-2-pyrrolidone. Was coated and dried on an aluminum foil current collector with a thickness of 20 μm to obtain a positive electrode.

<負極1>
厚さ20μmのアルミニウム箔を負極1とした。
<Negative electrode 1>
A negative electrode 1 was made of an aluminum foil having a thickness of 20 μm.

<負極2>
平均粒子径0.6μmのリチウムチタン酸化物(LiTi12)、導電助剤のアセチレンブラック、結着剤のスチレンブタジエンラテックスを質量比率で94:3:3に混合しに混合し、水に分散させたスラリーを厚さ20μmのアルミニウム箔集電体に塗工・乾燥して負極2とした。
<Negative electrode 2>
Lithium titanium oxide (Li 4 Ti 5 O 12 ) having an average particle diameter of 0.6 μm, acetylene black as a conductive aid, and styrene butadiene latex as a binder are mixed in a mass ratio of 94: 3: 3, and mixed. The slurry dispersed in water was applied to an aluminum foil current collector with a thickness of 20 μm and dried to obtain a negative electrode 2.

<電解液>
電解液には、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネートを体積比1:1:1で混合した溶媒に、六フッ化リン酸リチウム(LiPF)を1.0Mとなるように溶解させたものを用いた。
<Electrolyte>
The electrolytic solution is a solution in which lithium hexafluorophosphate (LiPF 6 ) is dissolved in a solvent in which ethylene carbonate, diethyl carbonate, and dimethyl carbonate are mixed at a volume ratio of 1: 1: 1 so as to be 1.0 M. Using.

<リチウムイオン二次電池>
表1に示した、リチウムイオン二次電池用セパレータ、負極の組み合わせに、上記正極と電解液を使用して設計容量10mAhのリチウムイオン二次電池を作製した。このとき、リチウムイオン二次電池用セパレータ1〜4の塗工面は、負極1に接するようにした。
<Lithium ion secondary battery>
A lithium ion secondary battery having a design capacity of 10 mAh was produced by using the positive electrode and the electrolytic solution in the combination of the separator for lithium ion secondary battery and the negative electrode shown in Table 1. At this time, the coated surfaces of the lithium ion secondary battery separators 1 to 4 were in contact with the negative electrode 1.

Figure 2016162538
Figure 2016162538

実施例1〜4及び比較例1〜3について、下記評価を行い、結果を表2に示した。   About Examples 1-4 and Comparative Examples 1-3, the following evaluation was performed and the result was shown in Table 2.

[リチウムイオン二次電池用セパレータと負極の合計厚み]
リチウムイオン二次電池用セパレータと負極を重ね合わせた状態で厚みを測定した。なお、本発明の厚みはJISB7502に規定された方法により測定した値、つまり、5N荷重時の外側マイクロメーターにより測定された値を意味する。
[Total thickness of lithium ion secondary battery separator and negative electrode]
The thickness was measured in a state where the separator for the lithium ion secondary battery and the negative electrode were overlapped. In addition, the thickness of this invention means the value measured by the method prescribed | regulated to JISB7502, ie, the value measured with the outside micrometer at the time of 5N load.

[リチウムイオン二次電池用セパレータの耐熱性]
実施例1〜4、比較例1〜3の各リチウムイオン二次電池用セパレータを10cm角にカットし、MD方向(機械的送り方向)の長さを0.1mm単位まで計測した後、180℃で2時間処理した。下記式で熱収縮率を算出し、次の基準で評価して表2に示した。
[Heat resistance of lithium ion secondary battery separator]
The separators for lithium ion secondary batteries of Examples 1 to 4 and Comparative Examples 1 to 3 were cut into 10 cm squares, and the length in the MD direction (mechanical feed direction) was measured to the 0.1 mm unit, and then 180 ° C. For 2 hours. The thermal contraction rate was calculated by the following formula, and evaluated according to the following criteria and shown in Table 2.

熱収縮率(%)=[(180℃保存前のリチウムイオン二次電池用セパレータ長さ)−(180℃保存後のリチウムイオン二次電池用セパレータ長さ)]/(180℃保存前のリチウムイオン二次電池用セパレータ長さ)×100 Thermal shrinkage (%) = [(Separator length for lithium ion secondary battery before storage at 180 ° C.) − (Separator length for lithium ion secondary battery after storage at 180 ° C.)] / (Lithium before storage at 180 ° C.) Ion secondary battery separator length) x 100

◎:熱収縮率が2.0%未満である。
○:熱収縮率が2.0%以上5.0%未満である。
△:熱収縮率が5.0%以上である。
A: The heat shrinkage rate is less than 2.0%.
○: Thermal shrinkage is 2.0% or more and less than 5.0%.
Δ: Thermal contraction rate is 5.0% or more.

[サイクル特性(100サイクル後の容量維持率)]
実施例1及び3並びに比較例1〜3のリチウムイオン二次電池用セパレータを用いてなるリチウムイオン二次電池について、10mA定電流、2.7Vで定電圧充電30分した後、10mA定電流放電試験(1.5Vカット)を繰り返して行った。
[Cycle characteristics (capacity retention rate after 100 cycles)]
About the lithium ion secondary battery which uses the separator for lithium ion secondary batteries of Examples 1 and 3 and Comparative Examples 1 to 3, 10 mA constant current discharge after 10 mA constant current and 2.7 V constant voltage charge for 30 minutes The test (1.5V cut) was repeated.

実施例2及び4のリチウムイオン二次電池用セパレータを用いてなるリチウムイオン二次電池について、10mA定電流、4.2V定電圧充電30分した後、10mA定電流放電試験(2.8Vカット)を繰り返して行った。   About the lithium ion secondary battery which uses the separator for lithium ion secondary batteries of Examples 2 and 4, 10 mA constant current, 4.2 V constant voltage charge, and after 30 minutes, 10 mA constant current discharge test (2.8 V cut) Was repeated.

100サイクル繰り返した後での容量維持率(100サイクル後/1サイクル容量)を算出し、次の基準で評価した。   The capacity retention ratio after 100 cycles was repeated (after 100 cycles / 1 capacity) and evaluated according to the following criteria.

◎:100サイクル後の容量維持率が、90%以上である。
○:100サイクル後の容量維持率が、80%以上90%未満である。
△:100サイクル後の容量維持率が、80%未満である。
A: Capacity retention after 100 cycles is 90% or more.
○: The capacity retention rate after 100 cycles is 80% or more and less than 90%.
Δ: Capacity retention after 100 cycles is less than 80%.

Figure 2016162538
Figure 2016162538

表2に示したように、実施例1〜4のリチウムイオン二次電池用セパレータは、不織布又はフィルム基材の片面に負極活物質を塗工しているため、リチウムイオン二次電池用セパレータと負極の合計厚みが薄く、耐熱性が高く、リチウムイオン二次電池に組んだ際のサイクル特性が良好であった。   As shown in Table 2, since the separators for lithium ion secondary batteries of Examples 1 to 4 were coated with the negative electrode active material on one side of the nonwoven fabric or film substrate, the separators for lithium ion secondary batteries and The total thickness of the negative electrode was thin, the heat resistance was high, and the cycle characteristics when assembled in a lithium ion secondary battery were good.

一方、比較例1及び2のリチウムイオン二次電池用セパレータは、不織布又はフィルム基材をそのままリチウムイオン二次電池用セパレータとして使用し、負極集電体に負極活物質を塗工しているため、リチウムイオン二次電池用セパレータと負極の合計厚みが厚くなっていた。比較例3のリチウムイオン二次電池用セパレータは、不織布の両面に負極活物質を塗工しているため、正極側の負極活物質と正極との間で反応が起き、サイクル特性が悪くなっていた。   On the other hand, since the separator for lithium ion secondary batteries of Comparative Examples 1 and 2 uses a nonwoven fabric or a film substrate as it is as a separator for lithium ion secondary batteries and coats the negative electrode current collector on the negative electrode current collector. The total thickness of the separator for a lithium ion secondary battery and the negative electrode was thick. Since the separator for the lithium ion secondary battery of Comparative Example 3 is coated with the negative electrode active material on both surfaces of the nonwoven fabric, a reaction occurs between the negative electrode active material on the positive electrode side and the positive electrode, resulting in poor cycle characteristics. It was.

実施例1〜4を比較すると、実施例1及び2は不織布を使用しているため、フィルム基材を使用した実施例3及び4と比較して、リチウムイオン二次電池用セパレータと負極の合計厚みが薄く、耐熱性も良好だった。これは不織布自体の耐熱性がフィルムと比較して高いこと、不織布の孔に負極活物質が入り込むことで、塗工層の厚みが薄くなったことが要因である。また、実施例1は、保液性の高い不織布を用いているのに加え、負極活物質にリチウムの挿入脱離時の体積変化が小さいリチウムチタン酸化物を使用しているため、負極活物質にMCMBを使用した実施例2やフィルム基材を使用した実施例3及び4と比較して、良好なサイクル特性を示していた。   Comparing Examples 1 to 4, since Examples 1 and 2 use a nonwoven fabric, the total of the separator for a lithium ion secondary battery and the negative electrode compared to Examples 3 and 4 using a film substrate Thin thickness and good heat resistance. This is because the heat resistance of the nonwoven fabric itself is higher than that of the film and the thickness of the coating layer is reduced due to the negative electrode active material entering the pores of the nonwoven fabric. In addition, since Example 1 uses a non-woven fabric having a high liquid retention property, the negative electrode active material uses a lithium titanium oxide that has a small volume change when lithium is inserted and desorbed. Compared with Example 2 using MCMB and Examples 3 and 4 using a film substrate, good cycle characteristics were exhibited.

本発明の活用例としては、リチウムイオン二次電池用セパレータ及びこれを利用したリチウムイオン二次電池が好適である。   As a utilization example of the present invention, a separator for a lithium ion secondary battery and a lithium ion secondary battery using the separator are suitable.

Claims (4)

不織布又はフィルム基材の片面に負極活物質を塗工してなるリチウムイオン二次電池用セパレータ。   A separator for a lithium ion secondary battery obtained by coating a negative electrode active material on one surface of a nonwoven fabric or a film substrate. 基材が不織布である請求項1記載のリチウムイオン二次電池用セパレータ。   The separator for a lithium ion secondary battery according to claim 1, wherein the substrate is a nonwoven fabric. 負極活物質がリチウムチタン酸化物を含む請求項1又は2記載のリチウムイオン二次電池用セパレータ。   The separator for lithium ion secondary batteries according to claim 1 or 2, wherein the negative electrode active material contains lithium titanium oxide. 正極、電解液、負極集電体と請求項1〜3のいずれか記載のリチウムイオン二次電池用セパレータとを含有してなるリチウムイオン二次電池。   A lithium ion secondary battery comprising a positive electrode, an electrolytic solution, a negative electrode current collector, and the lithium ion secondary battery separator according to claim 1.
JP2015038424A 2015-02-27 2015-02-27 Separator for lithium ion secondary battery and lithium ion secondary battery including the same Pending JP2016162538A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015038424A JP2016162538A (en) 2015-02-27 2015-02-27 Separator for lithium ion secondary battery and lithium ion secondary battery including the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015038424A JP2016162538A (en) 2015-02-27 2015-02-27 Separator for lithium ion secondary battery and lithium ion secondary battery including the same

Publications (1)

Publication Number Publication Date
JP2016162538A true JP2016162538A (en) 2016-09-05

Family

ID=56847175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015038424A Pending JP2016162538A (en) 2015-02-27 2015-02-27 Separator for lithium ion secondary battery and lithium ion secondary battery including the same

Country Status (1)

Country Link
JP (1) JP2016162538A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110364662A (en) * 2018-04-11 2019-10-22 宁德新能源科技有限公司 Isolation film and electrochemical appliance
JP2021535553A (en) * 2018-08-20 2021-12-16 キャボット コーポレイションCabot Corporation Compositions containing conductive additives, related electrodes and related batteries
US11205797B2 (en) 2017-05-12 2021-12-21 Lg Chem, Ltd. Method for manufacturing negative electrode for lithium secondary battery
US11664485B2 (en) 2017-05-12 2023-05-30 Lg Energy Solution, Ltd. Method for manufacturing lithium secondary battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11205797B2 (en) 2017-05-12 2021-12-21 Lg Chem, Ltd. Method for manufacturing negative electrode for lithium secondary battery
US11664485B2 (en) 2017-05-12 2023-05-30 Lg Energy Solution, Ltd. Method for manufacturing lithium secondary battery
CN110364662A (en) * 2018-04-11 2019-10-22 宁德新能源科技有限公司 Isolation film and electrochemical appliance
CN110364662B (en) * 2018-04-11 2022-07-05 宁德新能源科技有限公司 Separator and electrochemical device
JP2021535553A (en) * 2018-08-20 2021-12-16 キャボット コーポレイションCabot Corporation Compositions containing conductive additives, related electrodes and related batteries
JP7159452B2 (en) 2018-08-20 2022-10-24 キャボット コーポレイション Compositions containing conductive additives, related electrodes and related batteries

Similar Documents

Publication Publication Date Title
JP5834322B2 (en) Separator, method for producing the same, and electrochemical device including the same
US8821593B2 (en) Method for manufacturing electrode for electrochemical element
JP6208663B2 (en) Separator manufacturing method, separator formed by the method, and electrochemical device including the same
CN106716680B (en) Electro chemical elements use spacer and use electrochemical element made of it
WO2009151054A1 (en) Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery
JP6972000B2 (en) Non-porous separator and its use
JP6576358B2 (en) Separator manufacturing method, separator formed by the method, and electrochemical device including the same
WO2008018656A1 (en) Heat resisting ultrafine fibrous separator and secondary battery using the same
JP2009032677A (en) Porous membrane for separator and its manufacturing method; separator for battery and its manufacturing method; electrode for battery and its manufacturing method, and lithium secondary cell
KR20200030491A (en) A separator for an electrochemical device and a method for preparing the same
KR20210156334A (en) Binder for lithium ion batteries, and electrode and separator using same
JP2009076410A (en) Manufacturing method of multilayer porous membrane, separator for electrochemical element, and electrochemical element
JP2010121029A (en) Fiber-containing polymer film and method of manufacturing the same, and electrochemical device and method of manufacturing the same
JP4812266B2 (en) Separator for electronic parts and method for manufacturing the same
JP2016162538A (en) Separator for lithium ion secondary battery and lithium ion secondary battery including the same
WO2016043142A1 (en) Electrochemical element separator and electrochemical element obtained using same
JP2006338918A (en) Electronic component and separator therefor
JP2008004439A (en) Separator for battery, and lithium secondary battery
JP2006338917A (en) Electronic component and separator therefor
KR20200020644A (en) Preparation method of separator, and separator formed therefrom
JP4495516B2 (en) Separator for electronic parts and method for manufacturing the same
KR20140060799A (en) Separator for electrochemical cell and method for making the same
JP2018170215A (en) Lithium ion battery separator
JP2006351365A (en) Separator for electronic components, and the electronic component
JP2013218926A (en) Separator and lithium-ion secondary battery using the same