JP2018067407A - Lithium ion battery - Google Patents

Lithium ion battery Download PDF

Info

Publication number
JP2018067407A
JP2018067407A JP2016204121A JP2016204121A JP2018067407A JP 2018067407 A JP2018067407 A JP 2018067407A JP 2016204121 A JP2016204121 A JP 2016204121A JP 2016204121 A JP2016204121 A JP 2016204121A JP 2018067407 A JP2018067407 A JP 2018067407A
Authority
JP
Japan
Prior art keywords
lithium ion
positive electrode
nonwoven fabric
ion battery
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016204121A
Other languages
Japanese (ja)
Other versions
JP2018067407A5 (en
JP6765277B2 (en
Inventor
信子 高濱
Nobuko Takahama
信子 高濱
誉子 笠井
Takako Kasai
誉子 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2016204121A priority Critical patent/JP6765277B2/en
Publication of JP2018067407A publication Critical patent/JP2018067407A/en
Publication of JP2018067407A5 publication Critical patent/JP2018067407A5/ja
Application granted granted Critical
Publication of JP6765277B2 publication Critical patent/JP6765277B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Separators (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium ion battery containing a positive electrode material high in ratio of nickel and having a high energy density, which is high in safety and excellent in battery cycle life.SOLUTION: A lithium ion battery includes a positive electrode material having a composition formula: LiNiMnCoO, and a separator in which inorganic particles are supported on a nonwoven fabric substrate. In the positive electrode material, x+y+z=1 and x≥0.3 are satisfied. Aramid fibers are contained as constituent fibers of the nonwoven fabric substrate.SELECTED DRAWING: None

Description

本発明は、リチウムイオン電池に関する。   The present invention relates to a lithium ion battery.

近年、リチウムイオン電池(以下、「電池」と略記する場合がある)の用途が携帯電子機器から車載用途や定地用電源用途へと拡大するに伴い、リチウムイオン電池の高エネルギー密度化の要望が高まっている。ニッケル系の正極材料は容量密度が高く、このような高エネルギー密度化要望に適した材料ではあるが、一方で、充電状態での熱安定性が低く、安全性に劣るといった課題や、充放電に伴う電極の体積変化が大きく、セパレータの膨張・圧縮が繰り返されることでセパレータが劣化し、電池寿命が短くなるといった課題もあり、ニッケル比率の高い正極材料の、車載用途や定地用電源用途に適した大型リチウムイオン電池での実用化は進んでいないのが現状である。   In recent years, as the use of lithium-ion batteries (hereinafter sometimes abbreviated as “battery”) has expanded from portable electronic devices to in-vehicle applications and land-use power supply applications, demands for higher energy density of lithium-ion batteries Is growing. Nickel-based positive electrode materials have a high capacity density and are suitable for such high energy density demands, but on the other hand, there are problems such as low thermal stability in the charged state and poor safety, and charge / discharge There is a problem that the volume change of the electrode accompanying the expansion, the expansion and compression of the separator is repeated, the separator deteriorates, and the battery life is shortened. Currently, large-sized lithium-ion batteries suitable for use are not being put into practical use.

従来、リチウムイオン電池用セパレータ(以下、「セパレータ」と略記する場合がある)としては、貫通した微細孔を有するポリオレフィン多孔フィルムが用いられてきた。ポリオレフィン多孔フィルムのセパレータは、リチウムイオン電池が異常を起こして発熱した場合に、ポリオレフィンが溶融して貫通した微細孔が閉塞し、電池の内部抵抗を高めることで、電池の温度上昇が抑制される。しかし、外熱によって温度が上昇した場合や、温度上昇により電池内部で化学反応が起きた場合には、多孔フィルムが収縮して内部短絡が起こり、発火・破裂等の重大な事象に至ることがある。また、電池の充放電に伴う発熱環境下で、電極の収縮・膨張に伴うセパレータの膨張・圧縮が繰り返されることで、一部熱可塑化したポリオレフィンの劣化が起こり、電池寿命が短くなるといった課題があった。   Conventionally, as a separator for a lithium ion battery (hereinafter sometimes abbreviated as “separator”), a polyolefin porous film having fine pores that have penetrated has been used. The separator of the polyolefin porous film suppresses the battery temperature rise by increasing the internal resistance of the battery by melting and penetrating the fine pores through which the polyolefin melted when the lithium ion battery generates heat . However, when the temperature rises due to external heat, or when a chemical reaction occurs inside the battery due to the temperature rise, the porous film contracts, causing an internal short circuit, which can lead to serious events such as ignition and rupture. is there. In addition, in the heat generation environment accompanying charging / discharging of the battery, the separator is repeatedly expanded / compressed due to the contraction / expansion of the electrode, which causes degradation of the partially thermoplasticized polyolefin, resulting in a short battery life. was there.

このようにな課題に対し、ポリエチレンテレフタレート(PET)等の耐熱性の高い繊維を含む不織布に無機粒子を担持してなるセパレータが提案されている(例えば特許文献1〜4参照)。PET等の耐熱性の高い繊維では、電池の充放電に伴う発熱による繊維の一部熱可塑化が発生しにくく、膨張・圧縮が繰り返されても劣化が発生しにくいという利点がある。また、繊維の耐熱性に無機粒子の耐熱性が加わるため、耐熱性に優れ、このような不織布に無機粒子を担持してなるセパレータを使用した電池は安全性に優れるという利点がある。一方で正極材料のニッケル比率をさらに高めた場合には、電極の収縮・膨張が激しくなり、セパレータの過剰な体積変化が繰り返されることで、熱可塑化の起こりにくいPET等の繊維であっても、繰り返しの使用のうちには繊維形状が復元しにくくなり、電極−セパレータ界面の密着性が低下することで局所的な電解液枯渇等が発生し、十分な電池のサイクル寿命が得られにくくなる場合があった。   In order to solve such problems, a separator is proposed in which inorganic particles are supported on a nonwoven fabric containing fibers having high heat resistance such as polyethylene terephthalate (PET) (see, for example, Patent Documents 1 to 4). A fiber having high heat resistance such as PET has an advantage that the fiber is hardly partially plasticized due to heat generated by charging / discharging of the battery, and is hardly deteriorated even if it is repeatedly expanded and compressed. Further, since the heat resistance of the inorganic particles is added to the heat resistance of the fibers, the battery is excellent in heat resistance, and a battery using a separator formed by supporting inorganic particles on such a nonwoven fabric has an advantage of excellent safety. On the other hand, when the nickel ratio of the positive electrode material is further increased, the contraction / expansion of the electrode becomes violent, and the excessive volume change of the separator is repeated, so that even a fiber such as PET that hardly undergoes thermoplasticization can be obtained. During repeated use, the fiber shape is difficult to restore, and the adhesiveness at the electrode-separator interface decreases, causing local electrolyte depletion and the like, making it difficult to obtain a sufficient battery cycle life. There was a case.

特開2007−294437号公報JP 2007-294437 A 特表2011−505663号公報Special table 2011-505663 gazette 特表2005−536658号公報JP 2005-536658 Gazette 国際公開第2013/176276号パンフレットInternational Publication No. 2013/176276 Pamphlet

本発明の課題は、ニッケル比率の高い正極材料を含む、高エネルギー密度を有するリチウムイオン電池に関し、安全性が高く、電池のサイクル寿命に優れるリチウムイオン電池を提供することである。   The subject of this invention is related with the lithium ion battery which has a high energy density containing the positive electrode material with a high nickel ratio, and is providing a lithium ion battery with high safety | security and excellent in the cycle life of a battery.

本発明者らは鋭意研究した結果、課題を解決できるリチウムイオン電池を発明するに至った。即ち、組成式LiNiMnCoを有する正極材料と、不織布基材に無機粒子が担持されてなるセパレータを含むリチウムイオン電池であり、該正極材料においてx+y+z=1且つ、x≧0.3であり、且つ該不織布基材の構成繊維としてアラミド繊維を含むことを特徴とするリチウムイオン電池である。 As a result of intensive studies, the present inventors have invented a lithium ion battery that can solve the problem. That is, a lithium ion battery including a positive electrode material having the composition formula LiNi x Mn y Co z O 2 and a separator in which inorganic particles are supported on a nonwoven fabric base material, where x + y + z = 1 and x ≧ 0. 3 and an aramid fiber as a constituent fiber of the nonwoven fabric base material.

本発明によれば、ニッケル比率の高い正極材料を含む、高エネルギー密度を有するリチウムイオン電池において、該リチウムイオン電池の安全性が高く、電池のサイクル寿命に優れるという効果が得られる。   According to the present invention, in a lithium ion battery having a high energy density that includes a positive electrode material having a high nickel ratio, the lithium ion battery is highly safe and has an excellent cycle life.

本発明のリチウムイオン電池は、組成式LiNiMnCoを有する正極材料と、不織布基材に無機粒子が担持されてなるセパレータを含むリチウムイオン電池であり、該正極材料においてx+y+z=1且つ、x≧0.3であり、且つ該不織布基材の構成繊維としてアラミド繊維を含む。 The lithium ion battery of the present invention is a lithium ion battery including a positive electrode material having the composition formula LiNi x Mn y Co z O 2 and a separator in which inorganic particles are supported on a non-woven fabric substrate. In the positive electrode material, x + y + z = 1 and x ≧ 0.3, and an aramid fiber is included as a constituent fiber of the nonwoven fabric substrate.

本発明における正極材料として組成式LiNiMnCoを有する活物質を含み、該正極材料においてx+y+z=1且つ、x≧0.3である。電池の高エネルギー密度化のためには、好ましくはx≧0.5であるが、ニッケル比率が上がると、電池のサイクル寿命が低下しやすくなるため、x≦0.95であることが好ましい。なお、y≧0、z≧0である。 In the present invention, the positive electrode material includes an active material having the composition formula LiNi x Mn y Co z O 2 , where x + y + z = 1 and x ≧ 0.3. In order to increase the energy density of the battery, x ≧ 0.5 is preferable. However, if the nickel ratio is increased, the cycle life of the battery is likely to be reduced. Therefore, x ≦ 0.95 is preferable. Note that y ≧ 0 and z ≧ 0.

本発明において、リチウムイオン電池用セパレータは、不織布基材に無機粒子が担持されてなり、該不織布基材の構成繊維としてアラミド繊維を含む。   In the present invention, the separator for a lithium ion battery is formed by supporting inorganic particles on a nonwoven fabric base material, and includes an aramid fiber as a constituent fiber of the nonwoven fabric base material.

本発明において、不織布基材に含まれるアラミド繊維の含有量としては、不織布基材の1〜10質量%であることが好ましく、より好ましくは3〜8質量%である。アラミド繊維の含有量を1質量%以上とすることで、耐圧縮復元性が良好となり、電池のサイクル寿命を良好としやすい。また、アラミド繊維の含有量を10質量%以下とすることで、不織布基材の強度やポア径といった性能バランスの調整が容易となりやすい。   In this invention, it is preferable that it is 1-10 mass% of a nonwoven fabric base material as content of the aramid fiber contained in a nonwoven fabric base material, More preferably, it is 3-8 mass%. By setting the content of the aramid fiber to 1% by mass or more, the compression recovery resistance is improved and the cycle life of the battery is easily improved. Moreover, by adjusting the content of the aramid fiber to 10% by mass or less, it is easy to easily adjust the performance balance such as strength and pore diameter of the nonwoven fabric substrate.

本発明において、不織布基材には、アラミド以外の繊維を含有させることができ、その構成材料としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート及びそれらの誘導体、半芳香族ポリエステル、全芳香族ポリエステルなどのポリエステル、ポリオレフィン、アクリル、ポリアセタール、ポリカーボネート、脂肪族ポリケトン、芳香族ポリケトン、脂肪族ポリアミド、半芳香族ポリアミド、ポリイミド、ポリアミドイミド、ポリフェニレンスルフィド、ポリベンゾイミダゾール、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリ(パラ−フェニレンベンゾビスチアゾール)、ポリ(パラ−フェニレン−2,6−ベンゾビスオキサゾール)、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリビニルアルコール、ポリウレタン及びポリ塩化ビニルなどの樹脂;セルロースなどが挙げられる。該不織布基材には、これらのアラミド以外の繊維の2種以上を併用していても構わない。耐熱性に優れるポリエチレンテレフタレートが特に好ましい。   In the present invention, the nonwoven fabric substrate can contain fibers other than aramid, and the constituent materials thereof include polyethylene terephthalate, polybutylene terephthalate and derivatives thereof, semi-aromatic polyester, wholly aromatic polyester, and the like. , Polyolefin, acrylic, polyacetal, polycarbonate, aliphatic polyketone, aromatic polyketone, aliphatic polyamide, semi-aromatic polyamide, polyimide, polyamideimide, polyphenylene sulfide, polybenzimidazole, polyetheretherketone, polyethersulfone, poly (para -Phenylenebenzobisthiazole), poly (para-phenylene-2,6-benzobisoxazole), polyvinylidene fluoride, polytetrafluoroethylene, polyvinyl alcohol Le, resins such as polyurethane and polyvinyl chloride; and cellulose. Two or more kinds of fibers other than these aramids may be used in combination in the nonwoven fabric substrate. Polyethylene terephthalate having excellent heat resistance is particularly preferable.

本発明において、不織布基材としては、湿式抄造法によって製造される湿式不織布であることが好ましい。湿式抄造法は、繊維を水に分散して均一な抄造用スラリーとし、この抄造スラリーを抄紙機で漉きあげて湿式不織布を製作する。抄紙機としては、円網抄紙機、長網抄紙機、傾斜型抄紙機、傾斜短網抄紙機、これらの複合機が挙げられる。抄造用スラリーには、繊維の他に必要に応じて、分散剤、増粘剤、消泡剤などを適宜添加することができ、0.001〜5質量%程度の固形分濃度に抄造用スラリーを調製する。この抄造用スラリーをさらに所定濃度に希釈して抄紙し、乾燥する。湿式不織布を製造する工程において、必要に応じて水流交絡処理を施しても良い。抄紙して得られた湿式不織布には、必要に応じて、カレンダー処理、熱カレンダー処理、熱処理などが施される。   In the present invention, the nonwoven fabric substrate is preferably a wet nonwoven fabric produced by a wet papermaking method. In the wet papermaking method, fibers are dispersed in water to form a uniform papermaking slurry, and this papermaking slurry is rolled up with a paper machine to produce a wet nonwoven fabric. Examples of the paper machine include a circular net paper machine, a long net paper machine, an inclined paper machine, an inclined short net paper machine, and a composite machine of these. A dispersing agent, a thickener, an antifoaming agent and the like can be appropriately added to the papermaking slurry, if necessary, in addition to the fibers, and the papermaking slurry has a solid content concentration of about 0.001 to 5% by mass. To prepare. The papermaking slurry is further diluted to a predetermined concentration to make paper, and then dried. In the process of manufacturing a wet nonwoven fabric, hydroentanglement treatment may be performed as necessary. The wet nonwoven fabric obtained by papermaking is subjected to calendering, thermal calendering, heat treatment and the like as necessary.

本発明において、不織布基材の目付は、好ましくは4〜30g/mであり、より好ましくは5〜20g/mである。目付が4g/m以上であることで、不織布基材としての均一性を得やすくなり、また、30g/m以下であることで、リチウムイオン電池用セパレータに適した厚みとなる。なお、目付はJIS P 8124に規定された方法に基づく坪量を意味する。 In the present invention, the basis weight of the nonwoven substrate is preferably 4~30g / m 2, more preferably from 5 to 20 g / m 2. When the basis weight is 4 g / m 2 or more, it is easy to obtain uniformity as a nonwoven fabric substrate, and when it is 30 g / m 2 or less, the thickness is suitable for a lithium ion battery separator. The basis weight means the basis weight based on the method defined in JIS P 8124.

本発明に用いることができる無機粒子としては、カオリン、焼成カオリン、重質炭酸カルシウム、軽質炭酸カルシウム、炭酸マグネシウム、酸化亜鉛、アルミナ、ベーマイト、水酸化アルミニウム、水酸化マグネシウム、二酸化チタン、硫酸バリウム、硫酸亜鉛、非晶質シリカ、ケイ酸カルシウムなどが挙げられる。これらを単独で用いても、2種以上併用して用いてもよい。なかでも熱安定性の点から、アルミナ、ベーマイト又は水酸化マグネシウムが好ましく用いられる。無機粒子は1種のみを使用しても良いし、2種以上を併用しても良い。また、熱安定性の点から本発明のセパレータに含有される無機粒子は、セパレータの全固形分中の30〜70質量%であるのが好ましい。   Examples of inorganic particles that can be used in the present invention include kaolin, calcined kaolin, heavy calcium carbonate, light calcium carbonate, magnesium carbonate, zinc oxide, alumina, boehmite, aluminum hydroxide, magnesium hydroxide, titanium dioxide, barium sulfate, Zinc sulfate, amorphous silica, calcium silicate and the like can be mentioned. These may be used alone or in combination of two or more. Of these, alumina, boehmite or magnesium hydroxide is preferably used from the viewpoint of thermal stability. Only one type of inorganic particles may be used, or two or more types may be used in combination. Moreover, it is preferable that the inorganic particle contained in the separator of this invention is 30-70 mass% in the total solid of a separator from the point of thermal stability.

本発明に用いる無機粒子の粒径としては0.02〜10.0μmが好ましく用いられ、より好ましくは0.1〜7.5μmである。粒径0.02μm以上とすることで、無機粒子を不織布基材に担持させる際に使用する塗液の安定性が高くなりやすく、また、粒径10.0μm以下とすることで平坦な塗面が得られやすくなる。なお、ここで言う平均粒子径とはレーザー回折散乱法により測定される平均粒子径(D50)を指す。   The particle size of the inorganic particles used in the present invention is preferably 0.02 to 10.0 μm, more preferably 0.1 to 7.5 μm. By setting the particle size to 0.02 μm or more, the stability of the coating liquid used when supporting the inorganic particles on the nonwoven fabric substrate is likely to be high, and by setting the particle size to 10.0 μm or less, a flat coating surface Becomes easier to obtain. In addition, the average particle diameter here refers to the average particle diameter (D50) measured by a laser diffraction scattering method.

本発明において、無機粒子が不織布基材に担持される際に、バインダを使用してもよい。バインダとしては、ラテックス高分子が好ましく用いられる。具体例としては、例えばスチレン/ブタジエン共重合体、アクリロニトリル/ブタジエン共重合体、アクリル酸メチル/ブタジエン共重合体、アクリロニトリル/ブタジエン/スチレン三元共重合体、ポリ酢酸ビニル、酢酸ビニル/アクリル酸エステル共重合体、エチレン/酢酸ビニル共重合体、ポリアクリル酸エステル、スチレン/アクリル酸エステル共重合体、ポリウレタン等のラテックス高分子が挙げられるが、これらに限定されるものではない。本発明においてはセパレータのハイレート特性及び無機粒子層強度の点から、無機粒子とバインダの総量に対するバインダ量は、固形分基準で2〜15質量%とするのが好ましい。   In the present invention, a binder may be used when the inorganic particles are supported on the nonwoven fabric substrate. As the binder, latex polymer is preferably used. Specific examples include, for example, styrene / butadiene copolymers, acrylonitrile / butadiene copolymers, methyl acrylate / butadiene copolymers, acrylonitrile / butadiene / styrene terpolymers, polyvinyl acetate, vinyl acetate / acrylate esters. Examples include, but are not limited to, latex polymers such as copolymers, ethylene / vinyl acetate copolymers, polyacrylates, styrene / acrylate copolymers, and polyurethanes. In the present invention, from the viewpoint of the high rate characteristics of the separator and the strength of the inorganic particle layer, the amount of the binder with respect to the total amount of the inorganic particles and the binder is preferably 2 to 15% by mass on a solid basis.

本発明においては、発明の効果を損ねない範囲で、無機粒子が不織布基材に担持される際に、分散剤、濡れ剤、増粘剤等の各種添加剤を用いることができる。   In the present invention, various additives such as a dispersant, a wetting agent, and a thickener can be used when the inorganic particles are supported on the nonwoven fabric substrate within a range that does not impair the effects of the invention.

本発明において、無機粒子が不織布基材に担持される方法に特に制限はない。例えば、エアドクターコーター、ブレードコーター、ナイフコーター、ロッドコーター、スクイズコーター、含浸コーター、グラビアコーター、キスロールコーター、ダイコーター、リバースロールコーター、トランスファーロールコーター、スプレーコーター等により、無機粒子を含む塗液を塗工し、乾燥することにより、無機粒子を不織布基材に担持させて、無機粒子層を形成することができる。   In this invention, there is no restriction | limiting in particular in the method by which an inorganic particle is carry | supported by the nonwoven fabric base material. For example, coating liquid containing inorganic particles by air doctor coater, blade coater, knife coater, rod coater, squeeze coater, impregnation coater, gravure coater, kiss roll coater, die coater, reverse roll coater, transfer roll coater, spray coater, etc. By coating and drying, the inorganic particles can be supported on the nonwoven fabric substrate to form an inorganic particle layer.

本発明において、無機粒子を含有する無機粒子層の塗工量(絶乾塗工量)としては、5〜30g/mが好ましく、さらに好ましくは10〜20g/mである。塗工量が5g/m以上であることで、不織布基材表面を十分に被覆しやすくなり、微小短絡を防止しやすくなる。また、塗工量が30g/m以下であることで、セパレータの厚み上昇を抑えやすくなる。 In the present invention, the coating amount (absolute dry coating amount) of the inorganic particle layer containing inorganic particles is preferably 5 to 30 g / m 2 , more preferably 10 to 20 g / m 2 . When the coating amount is 5 g / m 2 or more, it becomes easy to sufficiently cover the surface of the nonwoven fabric base material, and it is easy to prevent a minute short circuit. Moreover, when the coating amount is 30 g / m 2 or less, an increase in the thickness of the separator can be easily suppressed.

本発明のリチウムイオン電池用セパレータにおいて、セパレータの坪量は10〜50g/mが好ましく、より好ましくは17〜40g/mである。また、セパレータの厚みは10〜50μmが好ましく、より好ましくは15〜40μmである。セパレータの密度としては0.4〜1.2g/cmが好ましく、より好ましくは0.5〜1.0g/cmである。なお、坪量はJIS P 8124に規定された方法に基づく坪量を意味する。また、密度は坪量を厚みで除した値である。厚みはJIS B 7502に規定された外側マイクロメーターにより測定された値を意味する。 In the lithium ion battery separator of the present invention, the basis weight of the separator is preferably 10 to 50 g / m 2 , more preferably 17 to 40 g / m 2 . Moreover, 10-50 micrometers is preferable and, as for the thickness of a separator, More preferably, it is 15-40 micrometers. The density of the separator is preferably 0.4 to 1.2 g / cm 3 , more preferably 0.5 to 1.0 g / cm 3 . The basis weight means a basis weight based on the method defined in JIS P 8124. The density is a value obtained by dividing the basis weight by the thickness. The thickness means a value measured by an outer micrometer defined in JIS B 7502.

本発明におけるリチウムイオン電池の負極活物質としては、黒鉛やコークスなどの炭素材料、金属リチウム、アルミニウム、シリカ、スズ、ニッケル、鉛から選ばれる1種以上の金属とリチウムとの合金、SiO、SnO、Fe、WO、Nb、Li4/3Ti5/3等の金属酸化物、Li0.4CoNなどの窒化物が挙げられる。 The negative electrode active material of the lithium ion battery in the present invention includes carbon materials such as graphite and coke, metallic lithium, aluminum, silica, tin, nickel, an alloy of lithium and lithium, SiO, SnO , Fe 2 O 2 , WO 2 , Nb 2 O 5 , metal oxides such as Li 4/3 Ti 5/3 O 4 , and nitrides such as Li 0.4 CoN.

本発明のリチウムイオン電池の電解液としては、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、ジメトキシメタン、これらの混合溶媒などの有機溶媒にリチウム塩を溶解させた液が挙げられる。リチウム塩としては、六フッ化リン酸リチウムや四フッ化ホウ酸リチウムが挙げられる。固体電解質としては、ポリエチレングリコールやその誘導体、ポリメタクリル酸誘導体、ポリシロキサンやその誘導体、ポリフッ化ビニリデンなどのゲル状ポリマーにリチウム塩を溶解させたものが挙げられる。   Examples of the electrolytic solution of the lithium ion battery of the present invention include a solution obtained by dissolving a lithium salt in an organic solvent such as propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, dimethoxyethane, dimethoxymethane, and a mixed solvent thereof. Examples of the lithium salt include lithium hexafluorophosphate and lithium tetrafluoroborate. Examples of the solid electrolyte include those obtained by dissolving a lithium salt in a gel polymer such as polyethylene glycol and derivatives thereof, polymethacrylic acid derivatives, polysiloxane and derivatives thereof, and polyvinylidene fluoride.

本発明のリチウムイオン電池の正極は正極集電体の上に正極活物質層を設けることにより作製される。負極についても同様に、負極集電体の上に負極活物質層を設けることにより作製される。集電体については、導電性を有するものであれば特に限定されないが、正極については、例えばアルミニウム(Al)などの金属や、Alなどの金属を含む合金、負極については、例えばAlや銅(Cu)などの金属やAlやCuなどの金属を含む合金を挙げることができる。   The positive electrode of the lithium ion battery of the present invention is produced by providing a positive electrode active material layer on a positive electrode current collector. Similarly, the negative electrode is produced by providing a negative electrode active material layer on a negative electrode current collector. The current collector is not particularly limited as long as it has conductivity, but for the positive electrode, for example, a metal such as aluminum (Al), an alloy containing a metal such as Al, for the negative electrode, for example, Al or copper ( An alloy containing a metal such as Cu) or a metal such as Al or Cu can be given.

以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。なお、実施例において、%及び部は、特にことわりのない限り、すべて質量基準である。   EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples. In Examples,% and parts are based on mass unless otherwise specified.

不織布基材Aの作製
繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維56部と繊度0.2dtex(平均繊維径4.3μm)、繊維長3mmの単一成分型バインダ用PET系短繊維40.0部とアラミド繊維のパルプ状物(平均繊維長1.7mm、平均繊維径10μm)を高圧ホモジナイザーによりフィブリル化させた1%スラリー400部とを、パルパーにより水中に分散し、濃度1%の均一な抄造用スラリーを調製した。この抄造用スラリーを湿式抄造法で抄き上げ、130℃のヤンキードライヤーによって乾燥した後、誘電発熱ジャケットロール(金属製熱ロール)及び弾性ロールからなる1ニップ式熱カレンダーを使用して、熱ロール温度100℃、線圧100kN/m、処理速度40m/分の条件で熱カレンダー処理し、坪量10g/m、厚み15μmの不織布基材Aを作製した。
Production of Non-woven Fabric Base A Fineness 0.06 dtex (average fiber diameter 2.4 μm), 56 parts of oriented crystallized polyethylene terephthalate (PET) short fibers having a fiber length of 3 mm and fineness 0.2 dtex (average fiber diameter 4.3 μm), 1% slurry 400 obtained by fibrillating 40.0 parts of PET short fibers for a single-component binder with a fiber length of 3 mm and an aramid fiber pulp (average fiber length of 1.7 mm, average fiber diameter of 10 μm) with a high-pressure homogenizer The slurry was dispersed in water with a pulper to prepare a uniform papermaking slurry having a concentration of 1%. This slurry for paper making is made by a wet paper making method, dried by a 130 ° C. Yankee dryer, and then heated using a 1 nip heat calender comprising a dielectric heating jacket roll (metal hot roll) and an elastic roll. Thermal calendering was performed under the conditions of a temperature of 100 ° C., a linear pressure of 100 kN / m, and a processing speed of 40 m / min to prepare a nonwoven fabric substrate A having a basis weight of 10 g / m 2 and a thickness of 15 μm.

不織布基材Bの作製
繊度0.06dtex(平均繊維径2.4μm)、繊維長3mmの配向結晶化ポリエチレンテレフタレート(PET)系短繊維を53部、アラミド繊維のパルプ状物(平均繊維長1.7mm、平均繊維径10μm)を高圧ホモジナイザーによりフィブリル化させた1%スラリーを700部とした以外は、不織布基材Aと同様にして不織布基材Bを作製した。
Production of Non-woven Fabric Base B 53 parts of oriented crystallized polyethylene terephthalate (PET) short fibers having a fineness of 0.06 dtex (average fiber diameter of 2.4 μm) and a fiber length of 3 mm, and a pulp of aramid fibers (average fiber length of 1. Nonwoven fabric substrate B was prepared in the same manner as nonwoven fabric substrate A, except that 700 parts of 1% slurry obtained by fibrillating 7 mm and an average fiber diameter of 10 μm with a high-pressure homogenizer was used.

不織布基材Cの作製
アラミド繊維(平均繊維長1.7mm、平均繊維径10μm)を高圧ホモジナイザーによりフィブリル化させた1%スラリー400部の代わりに、繊度0.5dtex(平均繊維径20μm)、繊維長3mmのポリプロピレン系短繊維4部とした以外は、不織布基材Aと同様にして不織布基材Cを作製した。
Fabrication of nonwoven fabric substrate C Instead of 400 parts of 1% slurry in which aramid fibers (average fiber length 1.7 mm, average fiber diameter 10 μm) were fibrillated by a high-pressure homogenizer, fineness 0.5 dtex (average fiber diameter 20 μm), fiber A nonwoven fabric substrate C was prepared in the same manner as the nonwoven fabric substrate A, except that 4 parts of polypropylene fibers having a length of 3 mm were used.

塗液の作製
無機粒子として、平均粒子径2.0μmの水酸化マグネシウム100部を、その1質量%水溶液の25℃における粘度が200mPa・sのカルボキシメチルセルロースナトリウム塩0.3%水溶液120部に分散し、よく攪拌して水酸化マグネシウム分散液を作製した。次いで、その1質量%水溶液の25℃における粘度が7000mPa・sのカルボキシメチルセルロースナトリウム塩0.5%水溶液300部を混合、攪拌し、さらに、バインダとして45%スチレン/ブタジエン共重合体のラテックス高分子15部を混合、攪拌して、塗液を作製した。
Preparation of coating liquid As inorganic particles, 100 parts of magnesium hydroxide having an average particle diameter of 2.0 μm is dispersed in 120 parts of a 0.3% aqueous solution of carboxymethyl cellulose sodium salt having a viscosity of 200 mPa · s at 25 ° C. And stirred well to prepare a magnesium hydroxide dispersion. Subsequently, 300 parts of a 0.5% aqueous solution of carboxymethylcellulose sodium salt having a viscosity of 7000 mPa · s at 25 ° C. in a 1% by mass aqueous solution is mixed and stirred, and a latex polymer of 45% styrene / butadiene copolymer is used as a binder. 15 parts were mixed and stirred to prepare a coating solution.

セパレータAの作製
不織布基材Aの片面上に、塗液を絶乾塗工量が10g/mとなるように塗工、乾燥してセパレータAを作製した。
Production of Separator A On one side of the nonwoven fabric substrate A, a coating liquid was applied and dried so that the dry coating amount was 10 g / m 2 , thereby producing a separator A.

セパレータBの作製
不織布基材Bの片面上に、塗液を絶乾塗工量が10g/mとなるように塗工、乾燥してセパレータBを作製した。
Production of Separator B A separator B was produced on one side of the nonwoven fabric substrate B by coating and drying the coating solution so that the dry coating amount was 10 g / m 2 .

セパレータCの作製
不織布基材Cの片面上に、塗液を絶乾塗工量が10g/mとなるように塗工、乾燥してセパレータCを作製した。
Production of Separator C A separator C was produced on one side of the nonwoven fabric substrate C by coating and drying the coating solution so that the dry coating amount was 10 g / m 2 .

正極Aの作製
正極活物質として、LiNi1/3Mn1/3Co1/3粉末100部、導電材としてアセチレンブラック3部、グラファイト3部及びポリフッ化ビニリデン4部を混合し、これをNメチル−2−ピロリドンに分散させたスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布して圧延した後、150℃で2時間真空乾燥して、厚さ100μmのリチウムイオン電池用正極Aを作製した。
Preparation of Positive Electrode A As a positive electrode active material, LiNi 1/3 Mn 1/3 Co 1/3 O 2 powder 100 parts, conductive material 3 parts acetylene black 3 parts graphite 3 parts polyvinylidene fluoride 4 parts A slurry dispersed in N-methyl-2-pyrrolidone was prepared. The slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 μm and rolled, and then vacuum-dried at 150 ° C. for 2 hours to prepare a positive electrode A for a lithium ion battery having a thickness of 100 μm.

正極Bの作製
正極活物質として、LiNi0.5Mn0.3Co0.2粉末100部、導電材としてアセチレンブラック3部、グラファイト3部及びポリフッ化ビニリデン4部を混合し、これをNメチル−2−ピロリドンに分散させたスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布して圧延した後、150℃で2時間真空乾燥して、厚さ100μmのリチウムイオン電池用正極Bを作製した。
Production of Positive Electrode B As a positive electrode active material, 100 parts of LiNi 0.5 Mn 0.3 Co 0.2 O 2 powder, 3 parts of acetylene black, 3 parts of graphite and 4 parts of polyvinylidene fluoride as a conductive material were mixed. A slurry dispersed in N-methyl-2-pyrrolidone was prepared. The slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 μm and rolled, and then vacuum-dried at 150 ° C. for 2 hours to prepare a positive electrode B for a lithium ion battery having a thickness of 100 μm.

正極Cの作製
正極活物質として、LiNi0.6Mn0.2Co0.2粉末100部、導電材としてアセチレンブラック3部、グラファイト3部及びポリフッ化ビニリデン4部を混合し、これをNメチル−2−ピロリドンに分散させたスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布して圧延した後、150℃で2時間真空乾燥して、厚さ100μmのリチウムイオン電池用正極Cを作製した。
Preparation of Positive Electrode C As a positive electrode active material, 100 parts of LiNi 0.6 Mn 0.2 Co 0.2 O 2 powder, 3 parts of acetylene black, 3 parts of graphite and 4 parts of polyvinylidene fluoride as a conductive material were mixed. A slurry dispersed in N-methyl-2-pyrrolidone was prepared. The slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 μm and rolled, and then vacuum-dried at 150 ° C. for 2 hours to prepare a positive electrode C for a lithium ion battery having a thickness of 100 μm.

正極Dの作製
正極活物質として、LiNi0.8Mn0.1Co0.1粉末100部、導電材としてアセチレンブラック3部、グラファイト3部及びポリフッ化ビニリデン4部を混合し、これをNメチル−2−ピロリドンに分散させたスラリーを調製した。このスラリーを厚さ15μmのアルミニウム箔からなる集電体の両面に塗布して圧延した後、150℃で2時間真空乾燥して、厚さ100μmのリチウムイオン電池用正極Dを作製した。
Production of Positive Electrode D As a positive electrode active material, 100 parts of LiNi 0.8 Mn 0.1 Co 0.1 O 2 powder, 3 parts of acetylene black, 3 parts of graphite and 4 parts of polyvinylidene fluoride as a conductive material were mixed. A slurry dispersed in N-methyl-2-pyrrolidone was prepared. The slurry was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 μm and rolled, and then vacuum-dried at 150 ° C. for 2 hours to produce a positive electrode D for a lithium ion battery having a thickness of 100 μm.

負極の作製
負極活物質として、黒鉛粉末100部を1%カルボキシメチルセルロースナトリウム塩水溶液100部に分散した後、45%スチレン/ブタジエン共重合体のラテックス高分子6部を混合し、これを厚さ8μmの銅箔からなる集電体の両面に塗布して圧延した後、150℃で2時間真空乾燥して、厚さ100μmのリチウムイオン電池用負極を作製した。
Production of Negative Electrode As a negative electrode active material, 100 parts of graphite powder was dispersed in 100 parts of a 1% carboxymethylcellulose sodium salt aqueous solution, and then mixed with 6 parts of a 45% styrene / butadiene copolymer latex polymer, and this was 8 μm thick. After applying and rolling on both sides of a current collector made of copper foil, the electrode was dried in a vacuum at 150 ° C. for 2 hours to prepare a negative electrode for a lithium ion battery having a thickness of 100 μm.

実施例1
作製したセパレータA、正極A、負極、また、電解液としてはリチウムヘキサフルオロフォスフェートのエチレンカーボネートとジエチルカーボネートとジメチルカーボネートの1/1/1(容量比)混合溶媒溶液(1mol/L)を用い、セパレータAの塗工側の面が負極側となるように積層し、設計容量が100mAhのラミネート型リチウムイオン電池Aを作製した。
Example 1
The produced separator A, positive electrode A, negative electrode, and an electrolyte solution was a mixed solvent solution (1 mol / L) of 1/1/1 (volume ratio) of lithium hexafluorophosphate ethylene carbonate, diethyl carbonate, and dimethyl carbonate. The laminated lithium ion battery A having a design capacity of 100 mAh was prepared by laminating the separator A so that the coating side surface was the negative electrode side.

実施例2
正極として、正極Bを用いた以外は、実施例1と同様にしてリチウムイオン電池Bを作製した。
Example 2
A lithium ion battery B was produced in the same manner as in Example 1 except that the positive electrode B was used as the positive electrode.

実施例3
正極として、正極Cを用いた以外は、実施例1と同様にしてリチウムイオン電池Cを作製した。
Example 3
A lithium ion battery C was produced in the same manner as in Example 1 except that the positive electrode C was used as the positive electrode.

実施例4
正極として、正極Dを用いた以外は、実施例1と同様にしてリチウムイオン電池Dを作製した。
Example 4
A lithium ion battery D was produced in the same manner as in Example 1 except that the positive electrode D was used as the positive electrode.

実施例5
セパレータとして、セパレータB、正極として、正極Dを用いた以外は、実施例1と同様にしてリチウムイオン電池Eを作製した。
Example 5
A lithium ion battery E was produced in the same manner as in Example 1 except that the separator B was used as the separator and the positive electrode D was used as the positive electrode.

比較例1
セパレータとして、セパレータCを用いた以外は、実施例1と同様にしてリチウムイオン電池Fを作製した。
Comparative Example 1
A lithium ion battery F was produced in the same manner as in Example 1 except that the separator C was used as the separator.

<評価> <Evaluation>

[セパレータの耐熱性]
作製した各セパレータから50mm×50mmのシートサンプルを切り出し、シートサンプルのCD(クロスディレクション、横方向)辺をクリップで固定して耐熱ガラス板に挟んで、150℃及び180℃の恒温槽中に1時間ずつ保持した後に取り出してサンプルの幅を測定し、加熱前後での収縮率を算出した。評価は以下に従った。
[Separator heat resistance]
A sheet sample of 50 mm × 50 mm is cut out from each separator produced, and the CD (cross direction, lateral direction) side of the sheet sample is fixed with a clip and sandwiched between heat resistant glass plates, and 1 in a thermostatic chamber at 150 ° C. and 180 ° C. After holding for each time, the sample was taken out, the width of the sample was measured, and the shrinkage before and after heating was calculated. The evaluation was as follows.

◎:収縮率が2%未満でほとんど収縮は見られない。
○:収縮率が2〜5%で実用上問題ないレベルである。
△:収縮率が5〜8%で局所過熱による収縮がやや懸念される。
×:収縮率が8%超で局所過熱時収縮が懸念される。
A: The shrinkage rate is less than 2% and almost no shrinkage is observed.
○: The shrinkage rate is 2 to 5%, which is a practically acceptable level.
(Triangle | delta): A shrinkage rate is 5 to 8%, and there is some concern about shrinkage by local overheating.
X: The shrinkage rate exceeds 8%, and there is a concern about shrinkage during local overheating.

[サイクル寿命]
作製した各リチウムイオン電池について、55℃条件下で、100mA定電流充電→4.2V定電圧充電→充電電流10mAになったら100mAで定電流放電→2.8Vになったら次のサイクルのシーケンスにて、500サイクルの充放電を行い、[1−(500サイクル目の放電容量/4サイクル目の放電容量)]×100(%)として容量低下率を求めた。評価は以下に従った。
[Cycle life]
For each lithium ion battery produced, under 55 ° C., 100 mA constant current charge → 4.2 V constant voltage charge → charge current 10 mA, 100 mA constant current discharge → 2.8 V Then, charge / discharge of 500 cycles was performed, and the capacity reduction rate was determined as [1- (discharge capacity at 500th cycle / discharge capacity at 4th cycle)] × 100 (%). The evaluation was as follows.

◎:容量低下率が10%未満。
○:容量低下率が10〜15%で実用上問題ないレベルである。
△:容量低下率が15〜25%で長期使用時の容量低下が懸念される。
×:容量低下率が25%超で比較的短期での容量低下が懸念される。
A: Capacity reduction rate is less than 10%.
◯: The capacity reduction rate is 10 to 15%, which is a level that is not problematic in practice.
(Triangle | delta): A capacity | capacitance fall rate is 15 to 25%, and we are anxious about the capacity | capacitance fall at the time of long-term use.
X: The capacity reduction rate exceeds 25%, and there is a concern about capacity reduction in a relatively short time.

Figure 2018067407
Figure 2018067407

表1から明らかなように、実施例1〜5のリチウムイオン電池は、ニッケル比率の高い正極材料を含んでいるが、不織布基材に無機粒子が担持されてなるセパレータにおける不織布基材が構成繊維としてアラミド繊維を含んでいるので、セパレータの耐熱性に優れ、また電池のサイクル寿命に優れる。   As is clear from Table 1, the lithium ion batteries of Examples 1 to 5 include a positive electrode material having a high nickel ratio, but the nonwoven fabric substrate in the separator in which inorganic particles are supported on the nonwoven fabric substrate is a constituent fiber. Since the aramid fiber is included, the heat resistance of the separator is excellent and the cycle life of the battery is also excellent.

Claims (1)

組成式LiNiMnCoを有する正極材料と、不織布基材に無機粒子が担持されてなるセパレータを含むリチウムイオン電池であり、該正極材料においてx+y+z=1且つ、x≧0.3であり、且つ該不織布基材の構成繊維としてアラミド繊維を含むことを特徴とするリチウムイオン電池。 A lithium ion battery including a positive electrode material having a composition formula LiNi x Mn y Co z O 2 and a separator in which inorganic particles are supported on a nonwoven fabric base material, wherein x + y + z = 1 and x ≧ 0.3. And a lithium ion battery comprising an aramid fiber as a constituent fiber of the nonwoven fabric substrate.
JP2016204121A 2016-10-18 2016-10-18 Lithium ion battery Active JP6765277B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016204121A JP6765277B2 (en) 2016-10-18 2016-10-18 Lithium ion battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016204121A JP6765277B2 (en) 2016-10-18 2016-10-18 Lithium ion battery

Publications (3)

Publication Number Publication Date
JP2018067407A true JP2018067407A (en) 2018-04-26
JP2018067407A5 JP2018067407A5 (en) 2019-08-29
JP6765277B2 JP6765277B2 (en) 2020-10-07

Family

ID=62086256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016204121A Active JP6765277B2 (en) 2016-10-18 2016-10-18 Lithium ion battery

Country Status (1)

Country Link
JP (1) JP6765277B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112351A (en) * 2019-05-21 2019-08-09 清华大学 A kind of preparation method of p-aramid fiber lithium ion battery separator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231700A1 (en) * 2006-03-30 2007-10-04 Kozo Watanabe Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2013235810A (en) * 2012-04-11 2013-11-21 Mitsubishi Paper Mills Ltd Separator for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
US20140322587A1 (en) * 2013-04-25 2014-10-30 Dongguan Amperex Technology Limited Separator of lithium-ion-battery preparation and method thereof
WO2016093246A1 (en) * 2014-12-11 2016-06-16 日本電気株式会社 Lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070231700A1 (en) * 2006-03-30 2007-10-04 Kozo Watanabe Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2007273123A (en) * 2006-03-30 2007-10-18 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and method of manufacturing same
JP2013235810A (en) * 2012-04-11 2013-11-21 Mitsubishi Paper Mills Ltd Separator for lithium secondary battery, method for manufacturing the same, and lithium secondary battery
US20140322587A1 (en) * 2013-04-25 2014-10-30 Dongguan Amperex Technology Limited Separator of lithium-ion-battery preparation and method thereof
WO2016093246A1 (en) * 2014-12-11 2016-06-16 日本電気株式会社 Lithium ion secondary battery
US20180013169A1 (en) * 2014-12-11 2018-01-11 Nec Corporation Lithium ion secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112351A (en) * 2019-05-21 2019-08-09 清华大学 A kind of preparation method of p-aramid fiber lithium ion battery separator

Also Published As

Publication number Publication date
JP6765277B2 (en) 2020-10-07

Similar Documents

Publication Publication Date Title
US8741489B2 (en) Separator for lithium ion secondary battery, method for manufacture thereof, and lithium ion secondary battery
TWI437749B (en) Non-aqueous battery separator, manufacturing method thereof, and nonaqueous battery
JP6292625B2 (en) Lithium ion battery separator
JP6292626B2 (en) Nonwoven fabric substrate for lithium ion secondary battery separator and lithium ion secondary battery separator
JP5829557B2 (en) Method for producing metal ion secondary battery separator
WO2008018656A1 (en) Heat resisting ultrafine fibrous separator and secondary battery using the same
JP6953413B2 (en) Base material for lithium-ion battery separator and lithium-ion battery separator
CN106716680B (en) Electro chemical elements use spacer and use electrochemical element made of it
JP5750033B2 (en) Lithium ion battery separator
WO2016043142A1 (en) Electrochemical element separator and electrochemical element obtained using same
JP2016012548A (en) Battery separator
JP5841510B2 (en) Metal ion secondary battery separator coating liquid and metal ion secondary battery separator
JP2013084367A (en) Coating liquid for lithium ion battery separator, and lithium ion battery separator
JP2016162538A (en) Separator for lithium ion secondary battery and lithium ion secondary battery including the same
JP5876375B2 (en) Metal ion secondary battery separator
JP2018067407A (en) Lithium ion battery
JP6962924B2 (en) Thin high-density non-woven fabric separator for energy storage equipment and its manufacturing method
JP2019212490A (en) Base material for lithium ion battery separator and lithium ion battery separator
JP6018526B2 (en) Metal ion secondary battery separator
JP5850687B2 (en) Electrochemical element separator and electrochemical element
JP7482935B2 (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
JP5840990B2 (en) Electrochemical element separator and electrochemical element
JP6581533B2 (en) Lithium ion battery separator
WO2020189597A1 (en) Separator for lithium ion batteries
JP2020161473A (en) Separator for lithium-ion battery

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190717

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190717

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200407

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200915

R150 Certificate of patent or registration of utility model

Ref document number: 6765277

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250