JP5788062B1 - Negative electrode current collector for all solid state battery and all solid state battery - Google Patents

Negative electrode current collector for all solid state battery and all solid state battery Download PDF

Info

Publication number
JP5788062B1
JP5788062B1 JP2014127653A JP2014127653A JP5788062B1 JP 5788062 B1 JP5788062 B1 JP 5788062B1 JP 2014127653 A JP2014127653 A JP 2014127653A JP 2014127653 A JP2014127653 A JP 2014127653A JP 5788062 B1 JP5788062 B1 JP 5788062B1
Authority
JP
Japan
Prior art keywords
current collector
negative electrode
electrode current
solid
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014127653A
Other languages
Japanese (ja)
Other versions
JP2016009526A (en
Inventor
健作 篠崎
健作 篠崎
健 繪面
健 繪面
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD. filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2014127653A priority Critical patent/JP5788062B1/en
Application granted granted Critical
Publication of JP5788062B1 publication Critical patent/JP5788062B1/en
Publication of JP2016009526A publication Critical patent/JP2016009526A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Electroplating Methods And Accessories (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】本発明は、負極集電体として用いられる銅箔にニッケルめっきを施すことにより、銅の硫化物の生成を抑え、なおかつ導電性に優れた全固体電池用負極集電体及び全固体電池を提供する。【解決手段】電解銅箔、圧延銅箔又は銅合金箔の両面に、ニッケル皮膜を形成した全固体電池用負極集電体であって、前記ニッケル皮膜の片面における厚みが単位面積当たりの質量換算で4.5g/m2〜18g/m2であり、前記電解銅箔、圧延銅箔及び合金箔の残留応力が−40MPa以上であることを特徴とする全固体電池用負極集電体を提供する。【選択図】なしAn object of the present invention is to provide a negative electrode current collector for an all solid state battery and an all solid state, which suppresses the formation of copper sulfide and is excellent in conductivity by applying nickel plating to a copper foil used as a negative electrode current collector. Provide batteries. A negative electrode current collector for an all-solid-state battery in which a nickel film is formed on both surfaces of an electrolytic copper foil, a rolled copper foil or a copper alloy foil, wherein the thickness of one surface of the nickel film is converted to mass per unit area. And 4.5 g / m2 to 18 g / m2, and the electrolytic copper foil, the rolled copper foil and the alloy foil have a residual stress of −40 MPa or more. [Selection figure] None

Description

本発明は、全固体電池用負極集電体及び全固体電池に関し、さらに詳しくは充放電時の電池特性の低下を抑制し得る全固体電池用負極集電体及びその負極集電体を用いた全固体電池に関する。   The present invention relates to a negative electrode current collector for an all solid state battery and an all solid state battery, and more particularly, to use a negative electrode current collector for an all solid state battery and its negative electrode current collector capable of suppressing deterioration of battery characteristics during charge and discharge. It relates to an all-solid-state battery.

近年、高電圧および高エネルギー密度を有する電池としてリチウムイオン電池が実用化されている。リチウムイオン電池の用途が広い分野に拡大していることおよび高性能化の要求から、リチウムイオン電池について様々な観点から研究が行われている。
その中で、従来用いられてきた非水電解液系のリチウムイオン電池に比べて、電解液を使用しない全固体電池の実用化が期待されている。全固体電池は、安全性向上のために必要なシステムを簡略化することができ、電極と電解質を直接並べて直列化した構造を持つ電池を製造できる。現行のリチウムイオン電池モジュールでは、負極−電解液−正極から構成される電池セルを、銅線やバスバーなどを使って直列接続している。一方、全固体電池ではこれらを1個の電池セルの中で実現できるようになる。そのため、電池セルを封止する金属パッケージ、電池セルをつなぐ銅線やバスバーを省略できるので、電池のエネルギー密度が大幅に高められる。
In recent years, lithium ion batteries have been put into practical use as batteries having high voltage and high energy density. Due to the widespread use of lithium ion batteries in a wide range of fields and the demand for higher performance, research has been conducted on lithium ion batteries from various viewpoints.
Among them, compared to the conventionally used non-aqueous electrolyte type lithium ion batteries, practical application of an all-solid battery that does not use an electrolyte is expected. The all-solid-state battery can simplify a system necessary for improving safety, and can manufacture a battery having a structure in which electrodes and an electrolyte are directly arranged in series. In current lithium ion battery modules, battery cells composed of a negative electrode, an electrolyte, and a positive electrode are connected in series using a copper wire, a bus bar, or the like. On the other hand, in an all-solid battery, these can be realized in one battery cell. Therefore, since the metal package for sealing the battery cell, the copper wire and the bus bar for connecting the battery cell can be omitted, the energy density of the battery can be greatly increased.

特許文献1には、Liから構成されるイオン伝導体と、LiIとを含有する硫化物固体電解質ガラスについて記載されている。この中でリチウム固体電池の負極集電体には、銅、カーボン、ニッケル、ステンレス鋼(SUS)が使用でき、とりわけSUSの使用が好ましいとの記載がある。 Patent Document 1 describes a sulfide solid electrolyte glass containing an ion conductor composed of Li 4 P 2 S 6 and LiI. Among them, there is a description that copper, carbon, nickel, stainless steel (SUS) can be used for the negative electrode current collector of the lithium solid state battery, and SUS is particularly preferable.

特許文献2には、全固体電池の特性を向上させる為に、圧縮力が付与された場合に集電体よりも変形しやすい(凹みやすい)導電層を、第1活物質層と集電体との間に介在させることが記載されている。この構成により、第1活物質層と導電層との接触面積を、導電層を介在させない場合における第1活物質層と集電体との接触面積よりも大きくすることができるとされている。かかる形態とすることにより、導電層を介在させない場合と比較して、集電効率を高めやすくなり、放電容量を増大すること及び電池抵抗を低減することが可能になる。これにより全固体電池の性能を向上させることできることが記載されている。   In Patent Document 2, in order to improve the characteristics of an all-solid-state battery, a conductive layer that is more easily deformed (more easily dented) than a current collector when a compressive force is applied, and a first active material layer and a current collector Between the two. According to this configuration, the contact area between the first active material layer and the conductive layer can be made larger than the contact area between the first active material layer and the current collector when no conductive layer is interposed. By adopting such a configuration, it becomes easier to increase the current collection efficiency, increase the discharge capacity, and reduce the battery resistance as compared with the case where no conductive layer is interposed. It is described that the performance of the all-solid battery can be improved thereby.

特開2014−35865号公報JP 2014-35865 A 特開2014−35888号公報JP 2014-35888 A

従来のリチウムイオン二次電池では、電解液として、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジメチルカーボネート(DMC)等の非水系の有機電解液が用いられている。
これらの有機電解液は可燃性であることから、電池に短絡等が生じた場合に、電池が発火し燃える危険性がある。そこで上記の様な電解液を使わずに、固体電解質を用いた電池が開発されている。またこの固体電解質を用いた電池は、一つのケース中に複数の単電池を直列接続で入れるなど制御システムを簡素化でき、高エネルギー密度の電池パックが実現できると期待されている。
しかしながら、この固体電解質には硫化物が用いられている。そのため、リチウムイオン二次電池で負極集電体として使用されている従来の銅箔を用いると、電解質中の硫化物と集電体の銅が反応して硫化銅の副生成物が生じる。それによって、放電容量、初期容量などの電池特性が低下するという問題があった。
In a conventional lithium ion secondary battery, a nonaqueous organic electrolyte such as ethylene carbonate (EC), propylene carbonate (PC), dimethyl carbonate (DMC), or the like is used as the electrolyte.
Since these organic electrolytes are flammable, there is a risk that the battery will ignite and burn if a short circuit or the like occurs in the battery. Therefore, a battery using a solid electrolyte has been developed without using the above electrolytic solution. In addition, a battery using this solid electrolyte is expected to be able to simplify the control system, for example, by putting a plurality of single cells in series in one case, and to realize a battery pack with a high energy density.
However, sulfides are used for this solid electrolyte. Therefore, when a conventional copper foil used as a negative electrode current collector in a lithium ion secondary battery is used, a sulfide in the electrolyte reacts with copper in the current collector to produce a copper sulfide by-product. As a result, there is a problem that battery characteristics such as discharge capacity and initial capacity deteriorate.

また特許文献1に開示された負極集電体にステンレス鋼(SUS)を用いた場合は、SUSが硬いために薄くしにくい等の加工性の問題が生じる。他に、導電率が銅の1/10以下と低いため、電池のハイレート(大電流)特性で問題が生じる。またカーボンを電極集電体として用いた場合は、リチウムがカーボンと反応し、不可逆容量が大きくなるといった欠点がある。銅を集電体とした場合は、銅と硫化物の反応が生じ、抵抗の増加及びサイクル特性の低下が生じる。ニッケルを集電体とした場合は、導電率が銅箔より低めではあるものの耐硫化性としての特性は適する。しかし、ニッケルの価格が高いという欠点がある。
また特許文献2に開示された集電体に残留応力がある場合には、集電体にカール等の変形が生じ、上記の性能向上の効果は不十分となる。
Moreover, when stainless steel (SUS) is used for the negative electrode current collector disclosed in Patent Document 1, there are problems in workability such as difficulty in thinning because SUS is hard. In addition, since the conductivity is as low as 1/10 or less that of copper, there is a problem in the high rate (large current) characteristics of the battery. Further, when carbon is used as an electrode current collector, there is a disadvantage that lithium reacts with carbon and irreversible capacity increases. When copper is used as a current collector, a reaction between copper and sulfide occurs, resulting in an increase in resistance and a decrease in cycle characteristics. When nickel is used as the current collector, although the conductivity is lower than that of the copper foil, the characteristics as sulfidation resistance are suitable. However, there is a drawback that the price of nickel is high.
Further, when the current collector disclosed in Patent Document 2 has a residual stress, the current collector is deformed such as curl, and the above performance improvement effect becomes insufficient.

上記事情に鑑み、本発明の課題は、負極集電体として用いられる銅箔に銅の残留応力が少ないニッケルめっきを施すことにより、銅の硫化物の生成を抑え、かつ導電性に優れた全固体電池用負極集電体及び全固体電池を提供することにある。   In view of the above circumstances, the object of the present invention is to provide a copper foil used as a negative electrode current collector with nickel plating that has a low residual stress of copper, thereby suppressing the formation of copper sulfide and providing excellent conductivity. An object of the present invention is to provide a negative electrode current collector for a solid battery and an all solid state battery.

本発明の上記の課題は、下記の手段によって達成される。
(1)電解銅箔、圧延銅箔又は銅合金箔の両面に、ニッケル皮膜を形成した全固体電池用負極集電体であって、前記ニッケル皮膜の片面における厚みが単位面積当たりの質量換算で4.5g/m〜18g/mであり、前記電解銅箔、圧延銅箔及び銅合金箔の残留応力が−40MPa以上であることを特徴とする全固体電池用負極集電体。
(2)前記電解銅箔、圧延銅箔及び銅合金箔のそれぞれの厚みが5〜12μmである(1)に記載の全固体電池用負極集電体。
(3)前記全固体電池用負極集電体の両面の十点平均粗さRzが3.5μm以下であり、かつ前記全固体電池用負極集電体の両面の十点平均粗さRzの差が1.5μm以内であることを特徴とする(1)または(2)に記載の全固体電池用負極集電体。
(4)前記全固体電池用負極集電体の両面の十点平均粗さRzが3.5μm以下であり、かつ前記全固体電池用負極集電体の両面の十点平均粗さRzの差が1.0μm以内であることを特徴とする(1)〜(3)のいずれか1項に記載の全固体電池用負極集電体。
(5)前記電解銅箔、圧延銅箔又は銅合金箔の0.2%耐力が250MPa以上であることを特徴とする(1)〜(4)のいずれか1項に記載の全固体電池用負極集電体。
(6)硫黄を含む固体電解質を有し、負極集電体に、(1)〜(5)のいずれか1項に記載の全固体電池用負極集電体を用いたことを特徴とする全固体電池。
The above object of the present invention is achieved by the following means.
(1) A negative electrode current collector for an all-solid-state battery in which a nickel film is formed on both surfaces of an electrolytic copper foil, a rolled copper foil or a copper alloy foil, wherein the thickness on one side of the nickel film is in terms of mass per unit area. was 4.5g / m 2 ~18g / m 2 , the electrolytic copper foil, rolled copper foil and the negative electrode current collector for the all-solid-state battery residual stress is characterized in that at least -40MPa copper alloy foil.
(2) The negative electrode current collector for an all-solid-state battery according to (1), wherein each of the electrolytic copper foil, the rolled copper foil, and the copper alloy foil has a thickness of 5 to 12 μm.
(3) The ten-point average roughness Rz on both sides of the negative electrode current collector for an all-solid battery is 3.5 μm or less, and the difference between the ten-point average roughness Rz on both sides of the negative electrode current collector for an all-solid battery The negative electrode current collector for an all-solid-state battery according to (1) or (2), characterized in that is within 1.5 μm.
(4) The 10-point average roughness Rz of both surfaces of the negative electrode current collector for an all-solid battery is 3.5 μm or less, and the difference between the 10-point average roughness Rz of both surfaces of the negative electrode current collector for the all-solid battery The negative electrode current collector for an all-solid-state battery according to any one of (1) to (3), characterized in that is within 1.0 μm.
(5) The all-solid-state battery according to any one of (1) to (4), wherein the electrolytic copper foil, the rolled copper foil or the copper alloy foil has a 0.2% proof stress of 250 MPa or more. Negative electrode current collector.
(6) A solid electrolyte containing sulfur, wherein the negative electrode current collector according to any one of (1) to (5) is used as a negative electrode current collector. Solid battery.

本発明では全固体電池の負極集電体に銅の残留応力が少ないニッケルめっきを施すことで、硫化物を含む全固体電解質と集電体との反応を抑制でき、かつ集電体の電気抵抗の低減による導電性の向上が可能となる。   In the present invention, the negative electrode current collector of the all-solid-state battery is subjected to nickel plating with low copper residual stress, so that the reaction between the all-solid electrolyte containing sulfide and the current collector can be suppressed, and the electrical resistance of the current collector It is possible to improve the conductivity by reducing the above.

本発明の前記固体電池にかかる好ましい一実施形態を示した模式的断面図である。It is typical sectional drawing which showed preferable one Embodiment concerning the said solid battery of this invention. ニッケル皮膜を施した銅箔に対しX線解析装置を使用して銅の残留応力測定を行って得られた回折パターンの一例を示したX線回折パターン図である。It is the X-ray diffraction pattern figure which showed an example of the diffraction pattern obtained by performing the residual stress measurement of copper using the X-ray analyzer with respect to the copper foil which gave the nickel membrane | film | coat.

本発明に係る全固体電池の好ましい一実施形態について、図1を参照しながら、以下に説明する。
図1に示すように、全固体電池10は、全固体電解質層11と、この全固体電解質層11の一方の面に順に接続された正極活物質層12と正極集電体層13と、上記一方の面とは反対側の面に順に接続された負極活物質層14と負極集電体層15とを有する。
全固体電解質層11は、例えば、Li10GeP12、LiPSCl、Li11で構成されている。
正極活物質層12は、例えば、LiCoO、LiMn、LiNiO等で構成されている。
正極集電体層13は、例えば、アルミニウム等で構成されている。
負極活物質層14は、例えば、天然黒鉛、人造黒鉛、チタン酸リチウム等で構成されている。
負極集電体層15は、電解銅箔、圧延銅箔(以下、総称して銅箔ということがある)の両面にニッケルを主成分とするニッケル皮膜が形成され、ニッケル皮膜が形成された後の負極集電体層15における銅の残留応力が−40MPa以上であるものである。
A preferred embodiment of an all-solid battery according to the present invention will be described below with reference to FIG.
As shown in FIG. 1, the all-solid battery 10 includes an all-solid electrolyte layer 11, a positive electrode active material layer 12 and a positive electrode current collector layer 13 that are sequentially connected to one surface of the all-solid electrolyte layer 11, and The negative electrode active material layer 14 and the negative electrode current collector layer 15 are sequentially connected to a surface opposite to the one surface.
The all solid electrolyte layer 11 is made of, for example, Li 10 GeP 2 S 12 , Li 6 PS 5 Cl, or Li 7 P 3 S 11 .
The positive electrode active material layer 12 is made of, for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2 or the like.
The positive electrode current collector layer 13 is made of, for example, aluminum.
The negative electrode active material layer 14 is made of, for example, natural graphite, artificial graphite, lithium titanate, or the like.
The negative electrode current collector layer 15 is formed after a nickel film having nickel as a main component is formed on both surfaces of an electrolytic copper foil and a rolled copper foil (hereinafter sometimes collectively referred to as a copper foil). The residual stress of copper in the negative electrode current collector layer 15 is -40 MPa or more.

ニッケル皮膜を形成する前の銅箔としては、電解銅箔又は圧延銅箔を用いることができ、勿論、銅合金からなる銅合金箔であってもよい。この箔厚は5〜12μmが好ましく、6〜10μmがさらに好ましい。箔厚が薄すぎると銅箔のハンドリング性が難しい場合がある。また、電池を構成した際に電池の内部抵抗が増加する恐れがある。箔厚が厚すぎても、電池としての特性には問題ない。しかし箔厚が厚すぎると、体積エネルギー密度や質量エネルギー密度が低下する場合がある。   As the copper foil before forming the nickel film, an electrolytic copper foil or a rolled copper foil can be used, and of course, a copper alloy foil made of a copper alloy may be used. The foil thickness is preferably 5 to 12 μm, and more preferably 6 to 10 μm. If the foil thickness is too thin, handling of the copper foil may be difficult. In addition, when the battery is configured, the internal resistance of the battery may increase. Even if the foil thickness is too thick, there is no problem in the characteristics as a battery. However, if the foil thickness is too thick, the volume energy density and mass energy density may decrease.

銅箔の0.2%耐力は、250MPa以上であることが好ましく、400MPa以上がより好ましく、450MPa以上がさらに好ましい。0.2%耐力が低すぎる銅箔を用いた場合は、電池の充放電時に生じる応力により集電体層が塑性変形を生じやすくなり、充放電のサイクル中に集電体層が変形して短絡(ショート)する可能性がある。
なお、圧延銅箔の場合は機械的性質に異方性があり、圧延方向(MD方向)に対して45度をなす方向における引張強度や0.2%耐力が最も低い。本発明において上記0.2%耐力は、圧延銅箔の場合、圧延方向に対して45度をなす方向における値をいうものとする。
0.2%耐力を250MPa以上にすることは、電解銅箔の場合は製箔時の電解条件や添加剤等を調整することによる。また圧延銅箔の場合は成分を調整すること等により可能である。
0.2%耐力が250MPa以上である電解銅箔は、公知の方法、例えば、硫酸−硫酸銅電解液に、チオ尿素系の有機添加剤、ニカワやゼラチン等の高分子多糖類及び塩化物イオンを組み合わせて添加することにより得ることができる。
The 0.2% proof stress of the copper foil is preferably 250 MPa or more, more preferably 400 MPa or more, and further preferably 450 MPa or more. When copper foil with 0.2% proof stress is too low, the current collector layer is likely to be plastically deformed due to the stress generated during charge / discharge of the battery, and the current collector layer is deformed during the charge / discharge cycle. There is a possibility of short circuit.
In the case of a rolled copper foil, the mechanical properties are anisotropic, and the tensile strength and 0.2% yield strength in the direction of 45 degrees with respect to the rolling direction (MD direction) are the lowest. In the present invention, the 0.2% proof stress means a value in a direction forming 45 degrees with respect to the rolling direction in the case of a rolled copper foil.
The 0.2% proof stress is 250 MPa or more in the case of an electrolytic copper foil by adjusting the electrolysis conditions, additives, and the like during foil production. In the case of a rolled copper foil, this can be achieved by adjusting the components.
The electrolytic copper foil having a 0.2% proof stress of 250 MPa or more can be obtained by a known method, for example, a sulfate-copper sulfate electrolyte, a thiourea-based organic additive, a polymeric polysaccharide such as glue or gelatin, and chloride ion. It can obtain by adding in combination.

ニッケル皮膜の厚みは、ニッケルの単位面積あたりの質量換算で4.5g/m〜18g/mであることが好ましく、6.0〜16.0g/mがより好ましく、9.0〜13.0g/mがさらに好ましい。厚みが薄すぎると、ニッケル皮膜にピンホールなどが生じて銅箔上に皮膜を均一な厚さに形成できないため、硫化銅の生成を抑えることができず、電池の特性低下につながる。厚みが厚すぎると、ニッケル皮膜によって硫化銅の生成は防げるものの、導電率の低下及び箔の溶接性低下などの不具合が生じるうえ、負極集電体層15における銅の残留応力が大きくなる。また、当然であるがニッケル皮膜の厚みを厚くすることは、材料費や加工費の上昇につながり、望ましくない。よって上述したように、ニッケル皮膜の厚みは、単位面積あたりの質量換算で4.5g/m〜18g/mにする。 The thickness of the nickel coating is preferably 4.5g / m 2 ~18g / m 2 in terms of the weight per unit area of the nickel, more preferably 6.0~16.0g / m 2, 9.0~ 13.0 g / m 2 is more preferable. If the thickness is too small, pinholes and the like are generated in the nickel film, and the film cannot be formed on the copper foil with a uniform thickness, so that the formation of copper sulfide cannot be suppressed, leading to deterioration in battery characteristics. If the thickness is too thick, the nickel film can prevent the formation of copper sulfide, but problems such as decrease in conductivity and weldability of the foil occur, and the residual stress of copper in the negative electrode current collector layer 15 increases. Naturally, increasing the thickness of the nickel coating leads to an increase in material costs and processing costs, which is not desirable. Therefore, as described above, the thickness of the nickel coating is to 4.5g / m 2 ~18g / m 2 in terms of the weight per unit area.

ニッケル皮膜の厚みは、原子吸光法、高周波誘導結合プラズマ(ICP:Inductively Coupled Plasma)発光分光分析法、蛍光X線分析法、重量測定法などにより測定することができる。   The thickness of the nickel film can be measured by atomic absorption, high frequency inductively coupled plasma (ICP) emission spectroscopy, fluorescent X-ray analysis, gravimetry, or the like.

本発明の負極集電体における銅(Cu)箔の残留応力は、−40MPa以上であることが好ましく、−30MPa以上であることがより好ましく、−20MPa以上であることがさらに好ましい。ここで、Cu箔の残留応力とは、外部からの影響でCu箔の結晶格子に歪が導入されて生じる内部応力をいう。残留応力値の符号は、正の場合は引張応力、負の場合は圧縮応力であることを示す。Cu箔の残留応力が−40MPa以上(すなわち、絶対値で40MPa以下)であれば、集電体に湾曲(カール)が生じることによる電池特性の悪化を防ぐことができる。   The residual stress of the copper (Cu) foil in the negative electrode current collector of the present invention is preferably −40 MPa or more, more preferably −30 MPa or more, and further preferably −20 MPa or more. Here, the residual stress of the Cu foil refers to an internal stress generated by introducing strain into the crystal lattice of the Cu foil due to an external influence. The sign of the residual stress value indicates a tensile stress when positive and a compressive stress when negative. If the residual stress of the Cu foil is −40 MPa or more (that is, an absolute value of 40 MPa or less), it is possible to prevent deterioration of battery characteristics due to curving of the current collector.

銅の残留応力を調整するには、ニッケル皮膜(例えば、ニッケルめっき皮膜)の厚さを制御すること等が有効である。   In order to adjust the residual stress of copper, it is effective to control the thickness of a nickel film (for example, nickel plating film).

ニッケル皮膜を形成した後の十点平均粗さ(Rz)については特に制限はない。それぞれの面で3.5μm以下であることが好ましく、かつ両面の十点平均粗さ(Rz)の差は1.5μm以下であることが好ましく、1.0μm以下であることがより好ましい。十点平均粗さが大き過ぎると、活物質が集電体の凹凸部に均一に入り込むこと難しくなり、反応に寄与できない活物質層が生じることがある。また、両面での十点平均粗さの差が大きいと、集電体の両面に同量の活物質を均一に塗工することが難しくなる場合がある。   There is no restriction | limiting in particular about the ten-point average roughness (Rz) after forming a nickel membrane | film | coat. It is preferably 3.5 μm or less on each surface, and the difference in 10-point average roughness (Rz) of both surfaces is preferably 1.5 μm or less, and more preferably 1.0 μm or less. If the ten-point average roughness is too large, it becomes difficult for the active material to uniformly enter the uneven portions of the current collector, and an active material layer that cannot contribute to the reaction may be generated. Moreover, if the difference in ten-point average roughness on both sides is large, it may be difficult to uniformly apply the same amount of active material on both sides of the current collector.

以下に、実施例に基づき本発明をさらに詳細に説明する。本発明はこれに限定されるものではない。   Below, based on an Example, this invention is demonstrated further in detail. The present invention is not limited to this.

ニッケル皮膜を形成する方法としては、例えばニッケルめっき処理により形成する方法があり、好ましいニッケル浴及びめっき条件の一例を下記に示す。   As a method of forming the nickel film, for example, there is a method of forming by nickel plating, and examples of preferable nickel bath and plating conditions are shown below.

ニッケル皮膜を施す前の銅箔としては、古河電気工業株式会社製の両面光沢箔NC−WS、日本製箔株式会社製のTPC箔及び日本製箔株式会社製の合金銅箔を用いた。また一部の例においては、強度を調整するため、加熱処理により熱軟化させた銅箔を使用した。
・ニッケル皮膜生成条件
前処理:メルテックス社製 銅箔にクリーナー160S(60g/L)により60℃にて2.5A/dmで30秒間電解処理を施した後、10g/Lの硫酸中で60秒処理した。
ニッケルめっき処理:ニッケル皮膜を下記条件で施した。下記に示したニッケル皮膜の製膜条件は一例であり、本発明は下記の方法に限定されるものではない。
(例1)スルファミン酸ニッケル浴:
スルファミン酸ニッケル500g/L、ホウ酸30g/L、塩化ニッケル(II)6水和物30g/L、pH3.5〜4.0、浴温50℃の浴中で電流密度10A/dmにて形成する。膜厚は通電時間により制御する。
(例2)硫酸ニッケル浴1:
硫酸ニッケル六水和物250g/L、ホウ酸30g/L、pH3.5〜4.0、浴温50℃の浴中で電流密度10A/dmにて形成する。膜厚は通電時間により制御する。
(例3)硫酸ニッケル浴2:
硫酸ニッケル六水和物250g/L、ホウ酸30g/L、次亜リン酸Na10g/L、pH3.5〜4.0、浴温50℃の浴中で電流密度10A/dmにて形成する。膜厚は通電時間により制御する。
As the copper foil before the nickel film was applied, double-sided glossy foil NC-WS manufactured by Furukawa Electric Co., Ltd., TPC foil manufactured by Nippon Foil Co., Ltd., and alloy copper foil manufactured by Nippon Foil Co., Ltd. were used. In some examples, a copper foil heat-softened by heat treatment was used to adjust the strength.
Nickel film generation conditions Pretreatment: Meltex manufactured copper foil was subjected to electrolytic treatment at 60 ° C. and 2.5 A / dm 2 for 30 seconds with a cleaner 160S (60 g / L), and then in 10 g / L sulfuric acid. Processed for 60 seconds.
Nickel plating treatment: A nickel film was applied under the following conditions. The film formation conditions of the nickel film shown below are examples, and the present invention is not limited to the following method.
(Example 1) Nickel sulfamate bath:
Nickel sulfamate 500 g / L, boric acid 30 g / L, nickel (II) chloride hexahydrate 30 g / L, pH 3.5 to 4.0, at a current density of 10 A / dm 2 in a bath at 50 ° C. Form. The film thickness is controlled by the energization time.
(Example 2) Nickel sulfate bath 1:
It is formed at a current density of 10 A / dm 2 in a bath of nickel sulfate hexahydrate 250 g / L, boric acid 30 g / L, pH 3.5 to 4.0, bath temperature 50 ° C. The film thickness is controlled by the energization time.
(Example 3) Nickel sulfate bath 2:
Nickel sulfate hexahydrate 250 g / L, boric acid 30 g / L, hypophosphorous acid Na 10 g / L, pH 3.5 to 4.0, formed at a current density of 10 A / dm 2 in a bath temperature of 50 ° C. . The film thickness is controlled by the energization time.

また上記ニッケル皮膜は、ニッケルを主成分とするものである。ニッケルを主成分とするとは、好ましくはニッケルを99.0%以上、より好ましくはニッケルを99.5%以上、さらに好ましくはニッケルを99.7%以上含むことである。
ニッケル皮膜の形成方法や形成条件によっては、リン(P)、硫黄(S)、炭素(C)、窒素(N)、酸素(O)がニッケル皮膜中に取り込まれたものも、本発明においてはニッケル皮膜として許容される。これらの元素は、含まれないことが最も好ましく、めっき後の外観、耐食性、応力などの観点から、含まれるとしても、1.0%以下が好ましく、0.5%以下がより好ましく、0.3%以下がさらに好ましい。
The nickel coating is mainly composed of nickel. The main component of nickel preferably includes 99.0% or more of nickel, more preferably 99.5% or more of nickel, and still more preferably 99.7% or more of nickel.
Depending on the formation method and conditions of the nickel coating, phosphorus (P), sulfur (S), carbon (C), nitrogen (N), and oxygen (O) may be incorporated into the nickel coating. Acceptable as a nickel coating. Most preferably, these elements are not included, and even if included from the viewpoint of appearance after plating, corrosion resistance, stress, etc., 1.0% or less is preferable, 0.5% or less is more preferable, and 3% or less is more preferable.

なお、ニッケルめっき以外の方法でニッケル皮膜を形成してもよい。   Note that the nickel film may be formed by a method other than nickel plating.

<銅の残留応力測定>
実施例及び比較例に記載のニッケル皮膜を施した銅箔に対し、D8 DISCOVER X線解析装置(ブルカーエイベックス社製)を使用して銅の残留応力測定を行った。この装置は2次元検出器(VANTEC−500)を使用しており、試料−検出器間の距離を200mm、検出器の2θ角を95°とすることで、2θ:80〜110°のX線回折パターンを同時に測定可能である。試料傾斜角ψを15°、45°とし、それぞれに対して試料回転角φを0〜180°の範囲で30°おきに測定して、計14フレームの回折パターンを測定した。
<Measurement of residual stress in copper>
The residual stress of copper was measured using a D8 DISCOVER X-ray analyzer (manufactured by Bruker Avex Co., Ltd.) on the copper foil having the nickel film described in Examples and Comparative Examples. This apparatus uses a two-dimensional detector (VANTEC-500). The distance between the sample and the detector is 200 mm, and the 2θ angle of the detector is 95 °. The diffraction pattern can be measured simultaneously. The sample inclination angle ψ was set to 15 ° and 45 °, and the sample rotation angle φ was measured every 30 ° in the range of 0 to 180 °, respectively, and the diffraction pattern of a total of 14 frames was measured.

得られた回折パターンの一例を図2に示す。
図2に示すように、Cu(311)面からの回折ピークであるピーク1、Cu(222)面からの回折ピークであるピーク3、試料によってはNi(311)面からの回折ピークであるピーク2、Ni(222)面からの回折ピークであるピーク4が見られる。
Cu残留応力測定にはCu(311)面からの回折ピークであるピーク1を使用した。ピーク1をx方向に均等に10分割し、各点における試料傾斜角ψ、ピーク1が存在する位置2θを求めた。これにより1枚の回折パターン(回折ピークマップ)から10点の情報が得られる。これら14枚の回折パターンから得られた140点の情報を積算することで残留応力を求める。残留応力σの算出には下記式(1)を使用し、得られた計140点の(ψ,θ)を最小二乗法でフィッティングすることにより、入射X線と平行な方向に働く残留応力σ1と入射X線と垂直な方向に働く残留応力σ2を求めた。本明細書ではσ1とσ2の平均値を銅の残留応力として示している。
An example of the obtained diffraction pattern is shown in FIG.
As shown in FIG. 2, peak 1 which is a diffraction peak from the Cu (311) plane, peak 3 which is a diffraction peak from the Cu (222) plane, and a peak which is a diffraction peak from the Ni (311) plane depending on the sample. 2. Peak 4 which is a diffraction peak from the Ni (222) plane is observed.
For measurement of Cu residual stress, peak 1 which is a diffraction peak from the Cu (311) plane was used. Peak 1 was equally divided into 10 in the x direction, and the sample tilt angle ψ at each point and the position 2θ where peak 1 exists were obtained. Thus, 10 points of information can be obtained from one diffraction pattern (diffraction peak map). The residual stress is obtained by integrating 140 points of information obtained from these 14 diffraction patterns. The following equation (1) is used to calculate the residual stress σ, and a total of 140 obtained (ψ, θ) is fitted by the least square method, so that the residual stress σ1 acting in the direction parallel to the incident X-ray is obtained. And the residual stress σ2 acting in the direction perpendicular to the incident X-ray. In this specification, the average value of σ1 and σ2 is shown as the residual stress of copper.

<0.2%耐力の測定>
国際標準IPC−TM−650に準じて測定した。
<初期容量の測定方法>
初回条件
充電:0.1C相当電流で定電流充電し、0.02V(対Li/Li+)到達後、定電位充電し、充電電流が0.05C相当になった時点で終了した。
放電:0.1C相当電流で定電流放電し、1.5Vになった時点で終了した。
<サイクル特性>
サイクル特性とは、初期容量を100%として、電池を0.5Cのレートにて放電終止電圧までの放電と充電終止電圧までの充電とを100回繰り返した後の電池容量の割合を%で示した値である。
<ハイレート特性>
ハイレート特性とは、初期容量を100%として、電池を5Cのレートで放電終止電圧までの放電と充電終止電圧までの充電とを100回繰り返した後の電池容量の割合を%で示した値である。
<Measurement of 0.2% yield strength>
It measured according to international standard IPC-TM-650.
<Measurement method of initial capacity>
Initial conditions Charging: Constant current charging at a current equivalent to 0.1 C. After reaching 0.02 V (vs. Li / Li +), charging at a constant potential was completed when the charging current was equivalent to 0.05 C.
Discharge: A constant current was discharged at a current equivalent to 0.1 C, and the discharge was terminated when the voltage reached 1.5V.
<Cycle characteristics>
Cycle characteristics indicate the ratio of battery capacity in% after repeating the discharge to the end-of-discharge voltage and the charge to the end-of-charge voltage 100 times at a rate of 0.5 C, assuming the initial capacity as 100%. Value.
<High rate characteristics>
The high rate characteristic is a value indicating the ratio of the battery capacity in% after repeating the discharge to the end-of-discharge voltage and the charge to the end-of-charge voltage 100 times at an initial capacity of 100% and charging to the end-of-charge voltage. is there.

<実験条件>
正極活物質:LiCoO
負極活物質:天然黒鉛
全固体電解質:Li10GeP12
を用い積層型電池を作製し、レート特性0.5C(ハイレート試験5C)、サイクル数100サイクルの試験を行った。なお、CはCレートであり、電池の全容量を1時間で放電させる電流量を1Cレートという。
<初期容量の評価基準>
天然黒鉛を用いた場合の初期容量は372mA/gである。初期容量350mA/g以上を優れているとして「A」、340mA/g以上350mA/g未満を良好であるとして「B」、340mA/g未満を劣っているとして「C」で表した。
<サイクル特性及びハイレート特性の評価基準>
サイクル特性及びハイレート特性(5Cレートで評価)については、100サイクル後の容量が初期容量の80%以上を優れているとして「A」、70%以上80%未満を良好であるとして「B」、70%未満を劣っているとして「C」で表した。
上記の評価結果を表1に示す。
<Experimental conditions>
Positive electrode active material: LiCoO 2
Negative electrode active material: natural graphite All solid electrolyte: Li 10 GeP 2 S 12
A stack type battery was manufactured using the above and tested with a rate characteristic of 0.5 C (high rate test 5 C) and a cycle number of 100 cycles. C is the C rate, and the amount of current that discharges the entire capacity of the battery in one hour is referred to as the 1C rate.
<Evaluation criteria for initial capacity>
The initial capacity when natural graphite is used is 372 mA / g. The initial capacity of 350 mA / g or more is indicated as “A”, 340 mA / g or more and less than 350 mA / g is indicated as “B”, and less than 340 mA / g is indicated as “C”.
<Evaluation criteria for cycle characteristics and high-rate characteristics>
Regarding the cycle characteristics and the high rate characteristics (evaluated at 5C rate), the capacity after 100 cycles is “A”, assuming that 80% or more of the initial capacity is excellent, and “B”, where 70% or more and less than 80% are good. Less than 70% was expressed as “C” as inferior.
The evaluation results are shown in Table 1.

実施例1〜7より明らかなように、片面の単位面積あたりのNi質量が4.5g/m以上18g/m以下であり、銅の残留応力が−40MPa以上であれば、初期容量が350mA/g以上の評価「A」、サイクル特性が80%以上の評価「A」、ハイレート特性が80%以上の評価「A」又は70%以上の評価「B」という良好以上の結果が得られた。また、銅箔の0.2%耐力が250MPa以上となった。そのため、電池の充放電時に生じる応力により集電体層の変形が起きにくくなったことから、充放電のサイクル中に集電体層が変形して短絡を起こしにくくなる。よって、集電体層の面積を大きくすることができ、充放電容量の増加が可能になる。
これに対し、比較例1は、初期容量が348mA/gであり、評価「B」であった。しかし、片面の単位面積あたりのNi質量が本発明の上限値の18g/mを超え21g/m、銅の残留応力が本発明の下限値の−40MPaより低い−43MPaであった。そのため、サイクル特性が70%未満、ハイレート特性が70%未満の評価「C」となり劣る結果となった。
比較例2は、初期容量が350mA/g以上の評価「A」であった。しかし、片面の単位面積あたりのNi質量が本発明の上限値の18g/mを超え36g/m、銅の残留応力が本発明の下限値の−40MPaより低い−70MPaであった。そのため、サイクル特性が70%未満、ハイレート特性が60%未満の評価「C」となり劣る結果となった。
比較例3は、片面の単位面積あたりのNi質量が本発明の下限値の4.5g/m以下の2g/mであった。そのため、初期容量が350mA/g以下、サイクル特性が70%未満、ハイレート特性が60%未満となり、いずれも評価「C」となり劣る結果となった。
比較例4及び5は、初期容量が350mA/g以上の評価「A」であり優れていた。しかし、銅の残留応力が本発明の下限値の−40MPaより低い−50MPa及び−45MPaであった。そのため、サイクル特性が70%未満、ハイレート特性が60%未満となり、いずれも評価「C」となり劣る結果となった。また、銅箔の0.2%耐力が200MPaと低い値となった。
As is clear from Examples 1 to 7, if the Ni mass per unit area on one side is 4.5 g / m 2 or more and 18 g / m 2 or less and the residual stress of copper is −40 MPa or more, the initial capacity is An evaluation “A” of 350 mA / g or higher, an evaluation “A” of 80% or higher of the cycle characteristics, an evaluation “A” of 80% or higher of the high rate characteristics, or an evaluation “B” of 70% or higher is obtained. It was. Moreover, the 0.2% yield strength of the copper foil was 250 MPa or more. For this reason, the current collector layer is less likely to be deformed due to the stress generated during charging / discharging of the battery. Therefore, the current collector layer is deformed during the charge / discharge cycle, and short circuit is less likely to occur. Therefore, the area of the current collector layer can be increased, and the charge / discharge capacity can be increased.
In contrast, Comparative Example 1 had an initial capacity of 348 mA / g and an evaluation “B”. However, the Ni mass per unit area on one side exceeded the upper limit of 18 g / m 2 of the present invention and was 21 g / m 2 , and the residual stress of copper was −43 MPa lower than the lower limit of −40 MPa of the present invention. Therefore, the evaluation was “C” with a cycle characteristic of less than 70% and a high rate characteristic of less than 70%, resulting in inferior results.
Comparative Example 2 was evaluated “A” with an initial capacity of 350 mA / g or more. However, the Ni mass per unit area on one side exceeded the upper limit of 18 g / m 2 of the present invention and was 36 g / m 2 , and the residual stress of copper was −70 MPa lower than the lower limit of −40 MPa of the present invention. Therefore, the evaluation was “C” with a cycle characteristic of less than 70% and a high rate characteristic of less than 60%, resulting in inferior results.
In Comparative Example 3, the Ni mass per unit area on one side was 2 g / m 2 which is 4.5 g / m 2 or less, which is the lower limit of the present invention. For this reason, the initial capacity was 350 mA / g or less, the cycle characteristics were less than 70%, and the high rate characteristics were less than 60%.
Comparative Examples 4 and 5 were excellent with an evaluation “A” having an initial capacity of 350 mA / g or more. However, the residual stress of copper was −50 MPa and −45 MPa which are lower than the lower limit value of −40 MPa of the present invention. Therefore, the cycle characteristics were less than 70% and the high rate characteristics were less than 60%, both of which were evaluated as “C”, resulting in inferior results. Moreover, the 0.2% yield strength of the copper foil was as low as 200 MPa.

次に表面粗度の影響として十点平均粗さ(Rz)とサイクル特性の関係を表2に示す。
表2に示す十点平均粗さ(Rz)はJIS B 0601‐1994に準拠して測定した。
十点平均粗さについては、銅箔厚み10μm、片面のNi重量9g/dm、Cu残留応力−20MPa±10MPaとなるようにし、銅箔の十点平均粗さのみを変更した電極を作製し評価した。
サイクル特性については、100サイクル後の容量が初期容量の80%以上を評価「A」、70%以上80%未満を評価「B」とした。
Next, Table 2 shows the relationship between the ten-point average roughness (Rz) and the cycle characteristics as an influence of the surface roughness.
Ten-point average roughness (Rz) shown in Table 2 was measured according to JIS B 0601-1994.
For the 10-point average roughness, the copper foil thickness was 10 μm, the Ni weight on one side was 9 g / dm 2 , the Cu residual stress was −20 MPa ± 10 MPa, and an electrode in which only the 10-point average roughness of the copper foil was changed was prepared. evaluated.
Regarding the cycle characteristics, the capacity after 100 cycles was evaluated as “A” when 80% or more of the initial capacity was evaluated and “B” when 70% or more and less than 80%.

表2の実施例11(表1の実施例1)〜16より明らかなように、銅箔の両面の十点平均粗さが3.5μm以下でかつ両面の十点平均粗さの差が1.5μm以下であれば、100サイクル後のサイクル特性が78%以上という良好な結果が得られた。すなわち、サイクル特性が評価「A」または評価「B」という良好な結果が得られた。特に、銅箔の両面の十点平均粗さが3.5μm以下でかつ両面の十点平均粗さの差が1.0μm以下である実施例11〜15は100サイクル後のサイクル特性が82%以上という極めて優れた評価結果が得られた。
また、実施例18〜22は、銅箔の片面の十点平均粗さが規定の3.5μmより粗く、もしくは両面の十点平均粗さの差が規定の1.5μmより大きい。しかし、片面の単位面積あたりのNi質量が4.5〜18g/mの規定の範囲内であり、銅の残留応力が−40MPa以上の規定の範囲内である。このような実施例18〜22であれば、100サイクル後のサイクル特性が70%以上の良好な評価「B」となることがわかった。
このように、夫々の面の十点平均粗さが小さく、両面の十点平均粗さの差が小さい集電体を用いることで、サイクル特性が特に良好となることが分かる。
As is clear from Example 11 (Example 1 in Table 1) to Table 16 in Table 2, the 10-point average roughness on both sides of the copper foil is 3.5 μm or less, and the difference in 10-point average roughness on both sides is 1. When the thickness was 0.5 μm or less, good results were obtained that the cycle characteristics after 100 cycles were 78% or more. That is, good results were obtained in which the cycle characteristics were evaluated as “A” or “B”. In particular, Examples 11 to 15 in which the 10-point average roughness on both sides of the copper foil is 3.5 μm or less and the difference in the 10-point average roughness on both sides is 1.0 μm or less have a cycle characteristic of 82% after 100 cycles. An extremely excellent evaluation result as described above was obtained.
In Examples 18 to 22, the 10-point average roughness of one side of the copper foil is rougher than the specified 3.5 μm, or the difference between the 10-point average roughness of both sides is larger than the specified 1.5 μm. However, the Ni mass per unit area on one side is within the specified range of 4.5 to 18 g / m 2 , and the residual stress of copper is within the specified range of −40 MPa or more. In Examples 18 to 22, it was found that the cycle characteristics after 100 cycles were good evaluation “B” of 70% or more.
Thus, it can be seen that the cycle characteristics are particularly good by using a current collector having a small 10-point average roughness on each surface and a small difference in the 10-point average roughness on both surfaces.

10 全固体電池
11 全固体電解質層
12 正極活物質層
13 正極集電体層
14 負極活物質層
15 負極集電体層
DESCRIPTION OF SYMBOLS 10 All-solid-state battery 11 All-solid-state electrolyte layer 12 Positive electrode active material layer 13 Positive electrode collector layer 14 Negative electrode active material layer 15 Negative electrode collector layer

Claims (6)

電解銅箔、圧延銅箔又は銅合金箔の両面に、ニッケル皮膜を形成した全固体電池用負極集電体であって、
前記ニッケル皮膜の片面における厚みが単位面積当たりの質量換算で4.5g/m〜18g/mであり、
前記電解銅箔、圧延銅箔及び合金箔の残留応力が−40MPa以上であることを特徴とする全固体電池用負極集電体。
A negative electrode current collector for an all solid state battery in which a nickel film is formed on both surfaces of an electrolytic copper foil, a rolled copper foil or a copper alloy foil,
Wherein a 4.5g / m 2 ~18g / m 2 by weight in terms of per a unit area thickness at one side of the nickel coating,
The negative electrode current collector for an all-solid-state battery, wherein the residual stress of the electrolytic copper foil, the rolled copper foil and the alloy foil is -40 MPa or more.
前記電解銅箔、圧延銅箔及び銅合金箔のそれぞれの厚みが5〜12μmであることを特徴とする請求項1に記載の全固体電池用負極集電体。   2. The all-solid-state battery negative electrode current collector according to claim 1, wherein each of the electrolytic copper foil, the rolled copper foil, and the copper alloy foil has a thickness of 5 to 12 μm. 前記全固体電池用負極集電体の両面の十点平均粗さRzが3.5μm以下であり、かつ前記全固体電池用負極集電体の両面の十点平均粗さRzの差が1.5μm以内であることを特徴とする請求項1または2に記載の全固体電池用負極集電体。   The 10-point average roughness Rz on both sides of the all-solid battery negative electrode current collector is 3.5 μm or less, and the difference between the 10-point average roughness Rz on both sides of the all-solid battery negative electrode current collector is 1. The negative electrode current collector for an all-solid battery according to claim 1 or 2, wherein the current collector is within 5 µm. 前記全固体電池用負極集電体の両面の十点平均粗さRzが3.5μm以下であり、かつ前記全固体電池用負極集電体の両面の十点平均粗さRzの差が1.0μm以内であることを特徴とする請求項1〜3のいずれか1項に記載の全固体電池用負極集電体。   The 10-point average roughness Rz on both sides of the all-solid battery negative electrode current collector is 3.5 μm or less, and the difference between the 10-point average roughness Rz on both sides of the all-solid battery negative electrode current collector is 1. The anode current collector for an all solid state battery according to any one of claims 1 to 3, wherein the anode current collector is within 0 µm. 前記電解銅箔、圧延銅箔又は銅合金箔の0.2%耐力が250MPa以上であることを特徴とする請求項1〜4のいずれか1項に記載の全固体電池用負極集電体。   The negative electrode current collector for an all-solid-state battery according to any one of claims 1 to 4, wherein the electrolytic copper foil, the rolled copper foil, or the copper alloy foil has a 0.2% proof stress of 250 MPa or more. 硫黄を含む固体電解質を有し、負極集電体に、請求項1〜5のいずれか1項に記載の全固体電池用負極集電体を用いたことを特徴とする全固体電池。
An all-solid battery comprising a solid electrolyte containing sulfur and using the negative electrode current collector for an all-solid battery according to claim 1 as the negative electrode current collector.
JP2014127653A 2014-06-20 2014-06-20 Negative electrode current collector for all solid state battery and all solid state battery Active JP5788062B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014127653A JP5788062B1 (en) 2014-06-20 2014-06-20 Negative electrode current collector for all solid state battery and all solid state battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014127653A JP5788062B1 (en) 2014-06-20 2014-06-20 Negative electrode current collector for all solid state battery and all solid state battery

Publications (2)

Publication Number Publication Date
JP5788062B1 true JP5788062B1 (en) 2015-09-30
JP2016009526A JP2016009526A (en) 2016-01-18

Family

ID=54207186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014127653A Active JP5788062B1 (en) 2014-06-20 2014-06-20 Negative electrode current collector for all solid state battery and all solid state battery

Country Status (1)

Country Link
JP (1) JP5788062B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525176A (en) * 2019-02-01 2020-08-11 长春石油化学股份有限公司 Copper foil for negative electrode current collector of lithium ion secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7085394B2 (en) 2018-04-13 2022-06-16 東洋鋼鈑株式会社 Laminated electrolytic foil
JP7054456B2 (en) * 2019-01-22 2022-04-14 トヨタ自動車株式会社 Secondary battery
TW202118908A (en) 2019-10-16 2021-05-16 日商東洋鋼鈑股份有限公司 Electrolytic foil and battery current collector
JP7376396B2 (en) * 2020-03-10 2023-11-08 トヨタ自動車株式会社 All-solid-state battery manufacturing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3393243B2 (en) * 1995-04-28 2003-04-07 ソニー株式会社 Non-aqueous electrolyte secondary battery
JPH09259866A (en) * 1996-03-15 1997-10-03 Fuji Elelctrochem Co Ltd Lithium secondary battery
JP2001313037A (en) * 2000-04-28 2001-11-09 Sony Corp Anode and nonaqueous electrolyte cell and manufacyuring method of the same
JP4360022B2 (en) * 2000-09-20 2009-11-11 日立電線株式会社 Li-ion battery electrode material and Li-ion battery
JP5437155B2 (en) * 2009-05-08 2014-03-12 古河電気工業株式会社 Secondary battery negative electrode, electrode copper foil, secondary battery, and method for producing secondary battery negative electrode
JP2014060015A (en) * 2012-09-17 2014-04-03 Toyota Industries Corp Collector for secondary battery, method for manufacturing the same, and secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111525176A (en) * 2019-02-01 2020-08-11 长春石油化学股份有限公司 Copper foil for negative electrode current collector of lithium ion secondary battery
US11145867B2 (en) 2019-02-01 2021-10-12 Chang Chun Petrochemical Co., Ltd. Surface treated copper foil
US11283080B2 (en) 2019-02-01 2022-03-22 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil, current collector, electrode, and lithium ion secondary battery comprising the same
US11362337B2 (en) 2019-02-01 2022-06-14 Chang Chun Petrochemical Co., Ltd. Electrodeposited copper foil and electrode, and lithium-ion secondary battery comprising the same

Also Published As

Publication number Publication date
JP2016009526A (en) 2016-01-18

Similar Documents

Publication Publication Date Title
JP7030239B2 (en) Electroplated copper foil and electrodes and lithium-ion secondary batteries containing them
US9603245B2 (en) Lithium-ion secondary battery, electrode for the secondary battery, and electrolytic copper foil for electrode for the secondary battery
TWI526578B (en) An electrolytic copper foil and a lithium ion secondary battery using the electrolytic copper foil as a current collector
TWI516642B (en) Electrolytic copper foil and secondary battery with negative current collector
JP5718476B2 (en) Electrolytic copper foil for lithium ion secondary battery, negative electrode of lithium ion secondary battery, and lithium ion secondary battery
KR101081616B1 (en) Cable-Type Secondary Battery
KR101279409B1 (en) Cable-Type Secondary Battery
JP5788062B1 (en) Negative electrode current collector for all solid state battery and all solid state battery
KR101404061B1 (en) Cable-Type Secondary Battery
KR20110089584A (en) Cable-type secondary battery
US9048503B2 (en) Cable-type secondary battery and method for manufacturing the same
KR20120103515A (en) Cable-type secondary battery
KR102244477B1 (en) Electrolytic copper foil and electrode and lithium-ion cell comprising the same
JP2013133514A (en) Copper foil, electrode for secondary battery, secondary battery, and printed circuit board
WO2013080988A1 (en) Collector for electrodes, electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US20120100408A1 (en) Cable-type secondary battery and method for manufacturing the same
US8980462B2 (en) Cable-type secondary battery and method for manufacturing the same
JP6067256B2 (en) Electrolytic copper foil, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013151730A (en) Copper foil, negative pole electrode of secondary battery, secondary battery, and printed circuit board
JP5873711B2 (en) Copper foil, secondary battery electrode, secondary battery, and printed circuit board
JP2009295470A (en) Lithium ion secondary battery
JP2013012450A (en) Metal foil for collector of lithium ion secondary battery electrode, method of manufacturing the metal foil, and lithium ion secondary battery using the metal foil as collector
CN114914452A (en) Current collector, pole piece and secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150728

R151 Written notification of patent or utility model registration

Ref document number: 5788062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350