JP2009295470A - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP2009295470A
JP2009295470A JP2008149071A JP2008149071A JP2009295470A JP 2009295470 A JP2009295470 A JP 2009295470A JP 2008149071 A JP2008149071 A JP 2008149071A JP 2008149071 A JP2008149071 A JP 2008149071A JP 2009295470 A JP2009295470 A JP 2009295470A
Authority
JP
Japan
Prior art keywords
secondary battery
ion secondary
lithium ion
negative electrode
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008149071A
Other languages
Japanese (ja)
Inventor
Takao Tsujimura
太佳夫 辻村
Takeshi Shimizu
剛 清水
Setsuko Koura
節子 小浦
Koichi Ui
幸一 宇井
Satoru Sasaki
悟 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwate University
Nippon Steel Nisshin Co Ltd
Original Assignee
Iwate University
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwate University, Nisshin Steel Co Ltd filed Critical Iwate University
Priority to JP2008149071A priority Critical patent/JP2009295470A/en
Publication of JP2009295470A publication Critical patent/JP2009295470A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition for a battery which can greatly contribute to capacity increase, productivity enhancement and furthermore cost reduction in a lithium ion secondary battery. <P>SOLUTION: The lithium ion secondary battery provided with at least a positive electrode, nonaqueous electrolyte and a negative electrode uses steel foil which is covered by aluminum or aluminum based alloy as a negative electrode collector and the negative electrode operates at a potential which is 0.5 V or more and 2.5 V or less (v. s. Li/Li+) inside the lithium secondary battery. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、リチウムイオン二次電池に関する。   The present invention relates to a lithium ion secondary battery.

近年、環境保護のため石油などの化石燃料に代わる新エネルギーの開発やエネルギーの効率的な利用技術の開発が進められている。2003年4月、「電気事業者による新エネルギー等の利用に関する特別措置法」の施行などにより、二酸化炭素の排出削減とエネルギー源多様化を目指し、太陽光発電や風力発電などの新エネルギーのさらなる普及を推進している。しかし、これらの新エネルギーは、自然の影響を受けやすく出力が不安定な電源である。すなわち、電力系統に大量に連系した場合、周波数の維持だけでなく、火力発電などの集中型電源の運用にも大きな支障が発生し、電力系統の運用が困難になることが予想される。従って、大量の新エネルギーが導入される際には、蓄電技術による出力の平滑化や、夜間のような軽負荷時の新エネルギー発電電力の蓄電などが必要になる。   In recent years, new energy alternatives to fossil fuels such as petroleum and development of efficient energy utilization technologies have been promoted for environmental protection. In April 2003, with the enforcement of the Act on Special Measures Regarding the Use of New Energy by Electric Power Companies, etc., further reduction of carbon dioxide emissions and diversification of energy sources, further increase of new energy such as solar power generation and wind power generation Promotion of dissemination. However, these new energies are easily affected by nature and are unstable power supplies. That is, when a large number of power systems are connected, it is expected that not only the maintenance of the frequency but also the operation of a centralized power source such as thermal power generation will cause a great trouble, and the operation of the power system will be difficult. Therefore, when a large amount of new energy is introduced, it is necessary to smooth the output by the power storage technology, to store the new energy generated power at light loads such as at night.

したがって、蓄電池本体及び蓄電システム等の技術開発を行うことにより、新エネルギーの出力変動に伴う電力系統への悪影響を回避することが可能となる。これらに適用する蓄電池技術として、ナトリウム硫黄電池(NAS電池)、レドックスフロー電池、及び鉛蓄電池はNEDOの実証試験研究に適用されている。一方、近年の急速な開発により、リチウムイオン二次電池やニッケル水素二次電池の性能向上は著しく、大型化による適用の期待も大きい。   Therefore, by developing technologies such as the storage battery main body and the power storage system, it is possible to avoid adverse effects on the power system due to output fluctuations of new energy. As storage battery technologies applied to these, sodium-sulfur batteries (NAS batteries), redox flow batteries, and lead storage batteries are applied to NEDO demonstration test research. On the other hand, due to the rapid development in recent years, the performance of lithium ion secondary batteries and nickel metal hydride secondary batteries has been remarkably improved, and there is great expectation for application due to the increase in size.

現在、我が国において、携帯電話やノートパソコンなどの携帯型電子機器に搭載されている二次電池の大部分は、民生用小型リチウムイオン二次電池である。また、リチウムイオン二次電池は、今後、上記のような系統連系用蓄電池のみならず、ハイブリッド自動車などの車載搭載向けの大型電池としても実用化されるものと予測されており、その重要性はますます高まっている。そのため、リチウムイオン二次電池の開発においては、軽量化、高容量化、高入出力化及び安全性が高い次元で求められている。   At present, most of the secondary batteries installed in portable electronic devices such as mobile phones and notebook computers in Japan are small lithium-ion secondary batteries for consumer use. In addition, lithium-ion secondary batteries are expected to be put into practical use not only for grid-connected storage batteries as described above, but also for large-scale batteries for in-vehicle use such as hybrid vehicles. Is growing more and more. Therefore, in the development of lithium ion secondary batteries, weight reduction, high capacity, high input / output and high safety are required.

このような状況において、リチウムイオン二次電池の出力特性を向上させる手法の一つとして、例えば、特定の平均粒子径及びBET比表面積を有する活物質と導電助剤とを所定の割合で含有する活物質層を集電体上に形成してなる電極を用いることが提案されている(例えば、特許文献1を参照)。また、この特許文献1には、集電体として、アルミニウム箔、銅箔、ステンレス鋼箔等を用いてもよいことが記載されている。   In such a situation, as one of the techniques for improving the output characteristics of the lithium ion secondary battery, for example, an active material having a specific average particle diameter and a BET specific surface area and a conductive auxiliary agent are contained in a predetermined ratio. It has been proposed to use an electrode in which an active material layer is formed on a current collector (see, for example, Patent Document 1). Moreover, this patent document 1 describes that an aluminum foil, a copper foil, a stainless steel foil or the like may be used as a current collector.

特開2008−21614号公報JP 2008-21614 A

集電体に用いられる金属箔は、薄ければ薄いほど高容量化及び軽量化に寄与するため、近年ますます金属箔の薄化が進んでいる。しかしながら、アルミニウム箔や銅箔の場合、活物質を塗布する工程において箔が薄く強度が低くなるとコーティングラインを通す際にライン内で切れやすくなり、安定した連続生産に支障をきたすという問題がある。さらに、負極用集電体として銅箔を用いると、過放電状態になった場合は、負極の電位上昇により集電体の銅表面が溶解してしまうという問題もある。特に、高温環境下ではこの現象が顕著となり、集電効率の低下等により、容量が劣化するという問題を抱えている。一方、ステンレス鋼箔の場合は、箔強度は得られるものの、軽量化、薄膜化及び柔軟性に課題があるのみならず、素材コストが高価である。
従って、本発明は、上記のような課題に鑑みてなされたものであり、リチウムイオン二次電池の高容量化、生産性向上、さらにはコスト低減に大きく寄与することが可能な電池構成、特に負極を提供することを目的とする。
The thinner metal foil used for the current collector contributes to higher capacity and lighter weight, and the metal foil has been increasingly thinned in recent years. However, in the case of aluminum foil or copper foil, there is a problem that if the foil is thin and the strength is low in the process of applying the active material, the foil easily breaks in the line when passing through the coating line, which hinders stable continuous production. Furthermore, when a copper foil is used as the current collector for the negative electrode, there is also a problem that the copper surface of the current collector is dissolved due to an increase in potential of the negative electrode when an overdischarge state occurs. In particular, this phenomenon becomes conspicuous under a high temperature environment, and there is a problem that the capacity is deteriorated due to a decrease in current collection efficiency. On the other hand, in the case of stainless steel foil, although foil strength is obtained, there are not only problems in weight reduction, film thickness reduction and flexibility, but also material costs are high.
Therefore, the present invention has been made in view of the above problems, and a battery configuration that can greatly contribute to increase in capacity, productivity, and cost reduction of a lithium ion secondary battery, particularly An object is to provide a negative electrode.

そこで、本発明者らは、上記課題を解決すべく、負極に必要な特性を鋭意検討し、様々な材料について負極としての適性について調査を重ねた結果、アルミニウム又はアルミニウム基合金で被覆した鋼箔(以下、アルミニウムめっき鋼箔と略記することがある)を負極集電体として用い、負極が、リチウムイオン二次電池内において0.5V以上2.5V以下(v.s.Li/Li+)の電位で作動する場合に、負極用集電体として十分な耐食性と強度を有することを見出したことにより本発明に至ったものである。
すなわち、本発明は、少なくとも正極、非水電解質及び負極を備えたリチウムイオン二次電池であって、アルミニウム又はアルミニウム基合金で被覆した鋼箔を負極集電体として用い、負極が、リチウムイオン二次電池内において0.5V以上2.5V以下(v.s.Li/Li+)の電位で作動することを特徴とするリチウムイオン二次電池である。
Therefore, the present inventors diligently studied the characteristics necessary for the negative electrode in order to solve the above-mentioned problems, and as a result of repeatedly investigating the suitability as a negative electrode for various materials, a steel foil coated with aluminum or an aluminum-based alloy. (Hereinafter sometimes abbreviated as aluminized steel foil) is used as a negative electrode current collector, and the negative electrode is 0.5 V or more and 2.5 V or less (vs. Li / Li + ) in a lithium ion secondary battery. The present invention has been achieved by finding that it has sufficient corrosion resistance and strength as a current collector for a negative electrode when it is operated at a potential of 5%.
That is, the present invention is a lithium ion secondary battery having at least a positive electrode, a non-aqueous electrolyte, and a negative electrode, wherein a steel foil coated with aluminum or an aluminum-based alloy is used as a negative electrode current collector, and the negative electrode is a lithium ion secondary battery. The lithium ion secondary battery is characterized in that it operates at a potential of 0.5 V or more and 2.5 V or less (vs Li / Li + ) in the secondary battery.

本発明によれば、リチウムイオン二次電池の高容量化、生産性向上、さらにはコスト低減に大きく寄与することが可能な電池構成を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the battery structure which can contribute greatly to the increase in capacity | capacitance of lithium ion secondary battery, productivity improvement, and also cost reduction can be provided.

本発明のリチウムイオン二次電池は、少なくとも正極、非水電解質及び負極を備え、アルミニウムめっき鋼箔を負極集電体として用い、負極が、リチウムイオン二次電池内において0.5V以上2.5V以下(v.s.Li/Li+)の電位で作動することを特徴とするものである。 The lithium ion secondary battery of the present invention includes at least a positive electrode, a non-aqueous electrolyte, and a negative electrode, uses an aluminum-plated steel foil as a negative electrode current collector, and the negative electrode is 0.5 V to 2.5 V in the lithium ion secondary battery. It operates at a potential of (vs Li / Li + ) below.

本発明においてアルミニウムめっきする鋼板の成分組成は、特に限定されず、例えば、普通鋼冷延鋼板が使用できる。アルミニウムめっきは、特に限定されないが、例えば、鋼板を溶融アルミニウム浴中に導入した後、めっき浴から引き上げ直後の鋼板にワイピングガスを吹き付けてめっき付着量を調整することにより行うことができる。
溶融アルミニウムめっきには、純アルミニウムめっきと、Siを含有するアルミニウム基合金めっきがあるが、純アルミニウムめっきではめっき層と母材との界面に厚い合金層が生成するので、Siを含有するアルミニウム基合金めっきが望ましい。好ましいSiの含有量は0.5〜20質量%、さらに好ましくは3〜13質量%である。
得られたアルミニウムめっき鋼板を冷間圧延機に通板して、全体の厚さが5〜100μm程度の箔とすればよい。また、本発明においてアルミニウムまたはアルミニウム基合金を鋼箔に被覆する方法としては、例えば溶融めっき法、蒸着めっき法、電気めっき法など、公知の表面被覆方法を用いることができる。
In the present invention, the component composition of the steel sheet to be aluminized is not particularly limited, and, for example, a plain steel cold-rolled steel sheet can be used. Although aluminum plating is not specifically limited, For example, after introduce | transducing a steel plate into a molten aluminum bath, it can perform by spraying wiping gas to the steel plate immediately after pulling up from a plating bath, and adjusting a plating adhesion amount.
There are two types of hot-dip aluminum plating: pure aluminum plating and aluminum-based alloy plating containing Si. In pure aluminum plating, a thick alloy layer is formed at the interface between the plating layer and the base material. Alloy plating is desirable. The Si content is preferably 0.5 to 20% by mass, more preferably 3 to 13% by mass.
The obtained aluminized steel sheet may be passed through a cold rolling mill to form a foil having a total thickness of about 5 to 100 μm. In the present invention, a known surface coating method such as a hot dipping method, a vapor deposition plating method, or an electroplating method can be used as a method for coating the steel foil with aluminum or an aluminum-based alloy.

本発明における負極は、上記で得られたアルミニウムめっき鋼箔とその上に形成された負極活物質層とから構成される。負極活物質層は、0.5V以上2.5V以下(v.s.Li/Li+)の作動電位においてリチウムイオンを挿入及び脱離することのできる負極活物質、導電剤、結着剤等を含むものである。
上記した負極活物質としては、例えば、チタン酸化物粒子が挙げられ、より具体的には、Li4Ti512、TiO2などを用いることができる。導電剤としては、例えば、黒鉛類、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック、炭素繊維、金属繊維などを用いることができる。結着剤としては、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン、ポリプロピレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体などを用いることができる。
The negative electrode in this invention is comprised from the aluminum plating steel foil obtained above and the negative electrode active material layer formed on it. The negative electrode active material layer has a negative electrode active material, a conductive agent, a binder, and the like that can insert and desorb lithium ions at an operating potential of 0.5 V or more and 2.5 V or less (vs. Li / Li + ). Is included.
Examples of the negative electrode active material include titanium oxide particles, and more specifically, Li 4 Ti 5 O 12 , TiO 2 and the like can be used. As the conductive agent, for example, graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon fiber, metal fiber and the like can be used. Examples of the binder include polyvinylidene fluoride (PVDF), polytetrafluoroethylene (PTFE), polyethylene, polypropylene, tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and vinylidene fluoride-hexafluoropropylene copolymer. Coalescence etc. can be used.

本発明における正極は、正極集電体とその上に形成された正極活物質層とから構成される。正極活物質層は、リチウムイオンを挿入及び脱離することのできる正極活物質、導電剤、結着剤等を含むものである。
正極集電体及び正極活物質層としては、リチウムイオン二次電池に用いることができる公知のものを制限なく用いることができる。
The positive electrode in the present invention is composed of a positive electrode current collector and a positive electrode active material layer formed thereon. The positive electrode active material layer includes a positive electrode active material capable of inserting and releasing lithium ions, a conductive agent, a binder, and the like.
As the positive electrode current collector and the positive electrode active material layer, known materials that can be used for lithium ion secondary batteries can be used without limitation.

本発明において、非水電解質を構成する溶媒としては、リチウムイオン二次電池に用いることができる公知のものを制限なく用いることができ、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、スルホラン、ジメトキシエタン、テトラヒドロフラン、ジオキソランなどが挙げられ、これらを単独で使用してもよいし、二種以上を混合して使用してもよい   In the present invention, as the solvent constituting the non-aqueous electrolyte, known solvents that can be used for lithium ion secondary batteries can be used without limitation, and examples thereof include ethylene carbonate (EC), diethyl carbonate (DEC), and propylene. Examples include carbonate, butylene carbonate, dimethyl carbonate, sulfolane, dimethoxyethane, tetrahydrofuran, and dioxolane. These may be used alone or in combination of two or more.

本発明において、非水電解質を構成する溶質としては、リチウムイオン二次電池に用いることができる公知のものを制限なく用いることができ、例えば、LiClO4、LiPF6、LiBF4、LiAsF6、LiN(CF3SO22、LiN(C25SO22、LiN(CF3SO2)(C49SO2)、LiC(CF3SO23、LiCF3(CF23SO3などが挙げられ、これらを単独で使用してもよいし、二種以上を混合して使用してもよい。 In the present invention, as the solute constituting the nonaqueous electrolyte, a known solute that can be used for a lithium ion secondary battery can be used without limitation. For example, LiClO 4 , LiPF 6, LiBF 4 , LiAsF 6 , LiN ( CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiCF 3 (CF 2 ) 3 SO 3 and the like can be mentioned, and these may be used alone or in combination of two or more.

以下、本発明を実施例及び比較例によって更に詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example and a comparative example explain the present invention still in detail, the present invention is not limited to these.

C:0.003質量%、Al:0.038質量%、Si:0.003質量%、Mn:0.12質量%、P:0.012質量%、S:0.122質量%、Ni:0.02質量%、Cr:0.02質量%、Cu:0.01質量%、Ti:0.073質量%、N:0.0023質量%、残部Feおよび不可避的不純物からなる組成を有する厚み0.5mmの普通鋼冷延鋼帯に、Si:10質量%、Fe:2質量%及びAl:88質量%からなる組成を有する溶融アルミニウム基合金めっき浴を用いて、浴温700℃で溶融アルミニウム基合金めっきを施した。めっき付着量はガスワイピング法にて片面あたり20μmに制御した。この後、めっき層を含む全体の厚さが50μmになるまで冷間圧延機を適宜回数通板した。この方法で作製したアルミニウムめっき鋼箔を以下の引張強度試験用供試材ならびに充放電試験用集電体として用いた。   C: 0.003% by mass, Al: 0.038% by mass, Si: 0.003% by mass, Mn: 0.12% by mass, P: 0.012% by mass, S: 0.122% by mass, Ni: 0.02% by mass, Cr: 0.02% by mass, Cu: 0.01% by mass, Ti: 0.073% by mass, N: 0.0023% by mass, the thickness having the composition consisting of the balance Fe and inevitable impurities Melting at a bath temperature of 700 ° C. using a molten aluminum base alloy plating bath having a composition of Si: 10% by mass, Fe: 2% by mass and Al: 88% by mass in a 0.5 mm plain steel cold-rolled steel strip Aluminum-based alloy plating was applied. The plating adhesion amount was controlled to 20 μm per side by the gas wiping method. Thereafter, the cold rolling mill was passed through as many times as necessary until the total thickness including the plating layer reached 50 μm. The aluminum-plated steel foil produced by this method was used as the following test material for tensile strength test and current collector for charge / discharge test.

万能精密引張試験機を用いて、供試材であるアルミニウムめっき鋼箔、銅箔及びアルミニウム箔の引張強度を以下の方法に従って測定した。
幅12.7mm×長さ175mm×箔厚み50μmの供試材をチャック間距離125mmで固定し、毎分2mmの一定速度で引っ張った際の最大荷重を測定し、この値を供試材断面積で除した。この際、供試材断面積は引張試験前の実測値を用いた。結果を表1に示した。なお、測定は各々の供試材について3回実施し、表1中の引張強度値はその平均値である。表1から分かるように、アルミニウムめっき鋼箔は、優れた引張強度特性を有することが認められた。即ち、アルミニウムめっき鋼箔を集電体として用いることにより、活物質を塗布する工程において箔が切れることがなくなり、電極を安定に連続生産することが可能となる。
Using a universal precision tensile testing machine, the tensile strength of the aluminum-plated steel foil, copper foil, and aluminum foil as test materials was measured according to the following method.
Measure the maximum load when a specimen with a width of 12.7 mm, a length of 175 mm, and a foil thickness of 50 μm is fixed at a distance between chucks of 125 mm, and pulled at a constant speed of 2 mm per minute. Divided by. At this time, the measured value before the tensile test was used for the cross-sectional area of the specimen. The results are shown in Table 1. The measurement was carried out three times for each test material, and the tensile strength values in Table 1 are average values. As can be seen from Table 1, the aluminized steel foil was found to have excellent tensile strength properties. That is, by using the aluminum-plated steel foil as a current collector, the foil is not cut in the step of applying the active material, and the electrodes can be stably and continuously produced.

Figure 2009295470
Figure 2009295470

<実施例>
0.5V以上2.5V以下(v.s.Li/Li+)の作動電位においてリチウムイオンを挿入及び脱離することのできる活物質としてのチタン酸リチウム(Li4Ti512、以下LTOと略記する)粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVDF)とを質量比で88:6:6となるように配合し、これをn−メチルピロリドン(NMP)溶媒に分散してスラリーを調製した。
<Example>
Lithium titanate (Li 4 Ti 5 O 12 , hereinafter referred to as LTO) as an active material capable of inserting and desorbing lithium ions at an operating potential of 0.5 V to 2.5 V (vs Li / Li + ) And powdered acetylene black as a conductive agent and polyvinylidene fluoride (PVDF) as a binder in a mass ratio of 88: 6: 6, which is mixed with n-methylpyrrolidone ( A slurry was prepared by dispersing in NMP) solvent.

先に作製したアルミニウムめっき鋼箔上に上記スラリーを塗布し、80℃で3時間乾燥させた後、プレスした。その後、150℃で3時間減圧乾燥させたものをLTO電極とした。   The slurry was applied onto the previously prepared aluminum-plated steel foil, dried at 80 ° C. for 3 hours, and then pressed. Then, what was dried under reduced pressure at 150 degreeC for 3 hours was made into the LTO electrode.

<比較例>
2.5V超3.9V以下(v.s.Li/Li+)の作動電位においてリチウムイオンを挿入及び脱離することのできる活物質としてのLiFePO4粉末と、導電剤としてのアセチレンブラックと、結着剤としてのポリフッ化ビニリデン(PVDF)とを質量比で80:10:10となるように配合し、これをn−メチルピロリドン(NMP)溶媒に分散してスラリーを調製した。
<Comparative example>
LiFePO 4 powder as an active material capable of inserting and desorbing lithium ions at an operating potential of more than 2.5 V and 3.9 V or less (vs Li / Li + ), acetylene black as a conductive agent, Polyvinylidene fluoride (PVDF) as a binder was blended in a mass ratio of 80:10:10 and dispersed in an n-methylpyrrolidone (NMP) solvent to prepare a slurry.

先に作製したアルミニウムめっき鋼箔上に上記スラリーを塗布し、80℃で3時間乾燥させた後、プレスした。その後、150℃で3時間減圧乾燥させたものをLiFePO4電極とした。 The slurry was applied onto the previously prepared aluminum-plated steel foil, dried at 80 ° C. for 3 hours, and then pressed. Thereafter, those were allowed to 3 hours drying under reduced pressure at 0.99 ° C. was LiFePO 4 electrode.

<試験用セルの作製>
アルゴン雰囲気下(露点−110℃以下)のグローブボックス(ガス循環精製機付グローブボックス装置)内で、試験用セルを作製した。試験用セルには、一般的な3電極式セルを用いた。LTO電極又はLiFePO4電極を試験極に、対向電極及び参照電極に金属リチウムを用いた。セルの構成として、対向電極の表面積を試験極のそれに対して十分に大きくして、試験極の電位にて規制されるように設定した。電解液として、LTO電極には1.0mol/dm3LiClO4/EC+DEC(50:50vol%)を、LiFePO4電極には1.0mol/dm3LiPF6/EC+DEC(50:50vol%)を用いた。
<Production of test cell>
A test cell was produced in a glove box (glove box device with a gas circulation purifier) under an argon atmosphere (dew point −110 ° C. or less). A general three-electrode cell was used as a test cell. An LTO electrode or a LiFePO 4 electrode was used as a test electrode, and metallic lithium was used as a counter electrode and a reference electrode. The cell configuration was set such that the surface area of the counter electrode was sufficiently large relative to that of the test electrode and was regulated by the potential of the test electrode. As an electrolytic solution, 1.0 mol / dm 3 LiClO 4 / EC + DEC (50:50 vol%) was used for the LTO electrode, and 1.0 mol / dm 3 LiPF 6 / EC + DEC (50:50 vol%) was used for the LiFePO 4 electrode. .

<充放電試験>
充放電作動試験は、アルゴン雰囲気下グローブボックス中、20℃にて行った。HJR−1010mSM8(北斗電工製)に試験用セルを接続し、表2に示す測定条件で評価した。
<Charge / discharge test>
The charge / discharge operation test was performed at 20 ° C. in a glove box under an argon atmosphere. A test cell was connected to HJR-1010mSM8 (manufactured by Hokuto Denko) and evaluated under the measurement conditions shown in Table 2.

Figure 2009295470
Figure 2009295470

なお、電極の容量は、以下の式:
{電流値(mA)×時間(h)/活物質の質量(g)}=容量(mAh/g)
より計算した。また、電流密度を0.1Cと設定したが、LTO電極の場合は1C=175mA/g、LiFePO4電極の場合は1C=170mA/gより算出した。
In addition, the capacity | capacitance of an electrode is the following formula | equation:
{Current value (mA) × Time (h) / Mass of active material (g)} = Capacity (mAh / g)
More calculated. Moreover, although the current density was set to 0.1 C, it calculated from 1C = 175 mA / g in the case of the LTO electrode and 1 C = 170 mA / g in the case of the LiFePO 4 electrode.

<充放電試験の結果>
各々の電極についてサイクル特性と調べたところ、LTO電極の1サイクル目の放電容量は約150mAh/gを示し、10サイクル目の放電容量もほとんど低下しなかった。これに対し、LiFePO4電極の1サイクル目の放電容量は約85mAh/gを示したが、10サイクル目の放電容量は約65mAh/gと約24%も低下した。このように、実施例と比較例の比較により、活物質種の違い、すなわち、作動電位の違いがサイクル特性に影響を及ぼすことが分かる。
以上の結果から、アルミニウムめっき鋼箔を集電体として用いたリチウムイオン二次電池を電位範囲1.0V以上2.5V以下(v.s.Li/Li+)で作動させることにより、所望な電極特性を発現することが明らかとなった。
なお、LTOへのリチウムイオンの挿入反応に対応するカソード分極を充電、LTOからのリチウムイオンの脱離反応に対応するアノード分極を放電と定義した。また、LiFePOからのリチウムイオンの脱離反応に対応するアノード分極を充電、LiFePOへのリチウムイオンの挿入反応に対応するカソード分極を放電と定義した。
<Results of charge / discharge test>
As a result of examining the cycle characteristics of each electrode, the discharge capacity at the first cycle of the LTO electrode was about 150 mAh / g, and the discharge capacity at the 10th cycle was hardly decreased. In contrast, the discharge capacity at the first cycle of the LiFePO 4 electrode was about 85 mAh / g, but the discharge capacity at the 10th cycle was about 65 mAh / g, which was about 24% lower. Thus, it can be seen from the comparison between the example and the comparative example that the difference in the type of active material, that is, the difference in operating potential affects the cycle characteristics.
From the above results, it is possible to operate a lithium ion secondary battery using an aluminum-plated steel foil as a current collector in a potential range of 1.0 V or more and 2.5 V or less (vs Li / Li + ). It was revealed that the electrode characteristics were developed.
The cathode polarization corresponding to the insertion reaction of lithium ions into LTO was defined as charging, and the anodic polarization corresponding to the elimination reaction of lithium ions from LTO was defined as discharging. The charging anode polarization corresponding to elimination reaction of lithium ions from LiFePO 4, was defined as the discharge cathode polarization corresponding to the insertion reaction of lithium ions into LiFePO 4.

Claims (4)

少なくとも正極、非水電解質及び負極を備えたリチウムイオン二次電池であって、
アルミニウム又はアルミニウム基合金で被覆した鋼箔を負極集電体として用い、負極が、リチウムイオン二次電池内において0.5V以上2.5V以下(v.s.Li/Li+)の電位で作動することを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery comprising at least a positive electrode, a non-aqueous electrolyte, and a negative electrode,
A steel foil coated with aluminum or an aluminum-based alloy is used as a negative electrode current collector, and the negative electrode operates at a potential of 0.5 V or more and 2.5 V or less (vs Li / Li +) in a lithium ion secondary battery. The lithium ion secondary battery characterized by the above-mentioned.
前記被覆が、溶融めっきにより形成されたものであることを特徴とする請求項1に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the coating is formed by hot dipping. 前記負極の負極活物質が、少なくともチタン酸化物粒子を含むことを特徴とする請求項1又は2に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 1, wherein the negative electrode active material of the negative electrode contains at least titanium oxide particles. 前記チタン酸化物粒子が、Li4Ti512又はTiO2であることを特徴とする請求項3に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 3, wherein the titanium oxide particles are Li 4 Ti 5 O 12 or TiO 2 .
JP2008149071A 2008-06-06 2008-06-06 Lithium ion secondary battery Pending JP2009295470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008149071A JP2009295470A (en) 2008-06-06 2008-06-06 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149071A JP2009295470A (en) 2008-06-06 2008-06-06 Lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2009295470A true JP2009295470A (en) 2009-12-17

Family

ID=41543469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149071A Pending JP2009295470A (en) 2008-06-06 2008-06-06 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2009295470A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157600A1 (en) 2012-04-19 2013-10-24 新日鐵住金株式会社 Steel foil and method for producing same
JP2015526859A (en) * 2012-07-26 2015-09-10 ホガナス アクチボラグ (パブル) Sustainable current collector for lithium batteries
JPWO2013157598A1 (en) * 2012-04-19 2015-12-21 新日鐵住金株式会社 Steel foil and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236260A (en) * 1987-03-24 1988-10-03 Toyota Central Res & Dev Lab Inc Negative electrode of lithium for secondary battery
JPH10241670A (en) * 1997-02-25 1998-09-11 Sanyo Electric Co Ltd Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JP2003323893A (en) * 2002-03-01 2003-11-14 Matsushita Electric Ind Co Ltd Positive electrode active material, its manufacturing method and nonaqueous electrolyte secondary battery
JP2007103352A (en) * 2005-09-09 2007-04-19 Toshiba Corp Non-aqueous electrolyte secondary battery and battery pack
JP2007531970A (en) * 2004-04-01 2007-11-08 スリーエム イノベイティブ プロパティズ カンパニー Redox shuttle for overdischarge protection of rechargeable lithium-ion batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63236260A (en) * 1987-03-24 1988-10-03 Toyota Central Res & Dev Lab Inc Negative electrode of lithium for secondary battery
JPH10241670A (en) * 1997-02-25 1998-09-11 Sanyo Electric Co Ltd Electrode for nonaqueous electrolytic secondary battery and manufacture thereof
JP2003323893A (en) * 2002-03-01 2003-11-14 Matsushita Electric Ind Co Ltd Positive electrode active material, its manufacturing method and nonaqueous electrolyte secondary battery
JP2007531970A (en) * 2004-04-01 2007-11-08 スリーエム イノベイティブ プロパティズ カンパニー Redox shuttle for overdischarge protection of rechargeable lithium-ion batteries
JP2007103352A (en) * 2005-09-09 2007-04-19 Toshiba Corp Non-aqueous electrolyte secondary battery and battery pack

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157600A1 (en) 2012-04-19 2013-10-24 新日鐵住金株式会社 Steel foil and method for producing same
JPWO2013157598A1 (en) * 2012-04-19 2015-12-21 新日鐵住金株式会社 Steel foil and manufacturing method thereof
KR20160122280A (en) 2012-04-19 2016-10-21 신닛테츠스미킨 카부시키카이샤 Steel foil and method for producing same
US9997786B2 (en) 2012-04-19 2018-06-12 Nippon Steel & Sumitomo Metal Corporation Steel foil and method for manufacturing the same
US10201953B2 (en) 2012-04-19 2019-02-12 Nippon Steel & Sumitomo Metal Corporation Steel foil and method for manufacturing the same
JP2015526859A (en) * 2012-07-26 2015-09-10 ホガナス アクチボラグ (パブル) Sustainable current collector for lithium batteries
EP2878024A4 (en) * 2012-07-26 2016-03-23 Lifesize Ab Sustainable current collectors for lithium batteries

Similar Documents

Publication Publication Date Title
US9379387B2 (en) Cathode current collector coated with primer and magnesium secondary battery comprising the same
US10566608B2 (en) Negative electrode for electric device and electric device using the same
US10367198B2 (en) Negative electrode active material for electric device
JP2007095568A (en) Lithium secondary battery and method of manufacturing same
RU2539318C1 (en) ACTIVE MATERIAL WITH Si ALLOY FOR NEGATIVE ELECTRODE USED IN ELECTRICAL DEVICES
JP5437536B2 (en) Current collector for electrode, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery
MX2013013673A (en) Negative electrode active material for electrical devices.
US20180076458A1 (en) Porous Silicon Materials and Conductive Polymer Binder Electrodes
JP2010043333A (en) Aluminum foil for positive electrode collector
JPWO2019156031A1 (en) Electrode for lithium-ion secondary battery, manufacturing method thereof, and lithium-ion secondary battery
EP2924780A1 (en) Negative electrode for electrical device and electrical device provided with same
EP2924773B1 (en) Negative electrode for electrical device and electrical device provided with same
CN107408698A (en) Negative active core-shell material and its preparation method
EP2924774B1 (en) Negative electrode for electric device and electric device using the same
EP2924775B1 (en) Negative electrode for electrical device, and electrical device using same
JP2010027304A (en) Aluminum foil for positive current collector
JP6495009B2 (en) Secondary battery positive electrode, secondary battery, and method for producing secondary battery positive electrode
CN106058260B (en) Non-aqueous electrolyte secondary battery
CN114342148A (en) Method for manufacturing secondary battery
CN107078274B (en) Positive electrode for lithium ion secondary battery and lithium ion secondary battery using same
JP2009295470A (en) Lithium ion secondary battery
CN103187589B (en) Lithium-ion battery and manufacturing method for same
CN115004405A (en) Method for manufacturing secondary battery
JP2012178309A (en) Lithium ion secondary battery anode and lithium ion secondary battery using the same
KR20160051196A (en) Lithium electrode, method for the same and lithium battery compring the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312