JP5786328B2 - Conductive material joining method - Google Patents

Conductive material joining method Download PDF

Info

Publication number
JP5786328B2
JP5786328B2 JP2010279805A JP2010279805A JP5786328B2 JP 5786328 B2 JP5786328 B2 JP 5786328B2 JP 2010279805 A JP2010279805 A JP 2010279805A JP 2010279805 A JP2010279805 A JP 2010279805A JP 5786328 B2 JP5786328 B2 JP 5786328B2
Authority
JP
Japan
Prior art keywords
joined
joining
bonded
members
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010279805A
Other languages
Japanese (ja)
Other versions
JP2012125803A (en
Inventor
秀昭 水野
秀昭 水野
徹 深見
徹 深見
牛嶋 研史
研史 牛嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2010279805A priority Critical patent/JP5786328B2/en
Publication of JP2012125803A publication Critical patent/JP2012125803A/en
Application granted granted Critical
Publication of JP5786328B2 publication Critical patent/JP5786328B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、導電材料の接合方法に関する。   The present invention relates to a method for bonding conductive materials.

抵抗溶接における被接合部材形状の自由度を高め、溶接条件設定を容易化し、電流効率を向上させるため、1対の被接合部材を接触させた状態で摺動させ、表面の絶縁被覆を剥離した後に摺動を停止させ、抵抗加熱により溶融接合している(例えば、特許文献1参照。)。   In order to increase the degree of freedom of the shape of the joined member in resistance welding, to facilitate the setting of welding conditions, and to improve current efficiency, the pair of members to be joined were slid in contact with each other, and the surface insulation coating was peeled off. Later, the sliding is stopped and fusion bonding is performed by resistance heating (see, for example, Patent Document 1).

特開平11―138275号公報JP 11-138275 A

しかし、抵抗加熱を引き起こす電流は、被接合部材間の接合領域における高面圧部に集中し、接触面全体に均等に流れないため、加熱が不均等となり、限定された面積および形状しか接合できない。特に、被接合部材の接合領域が、同一平面上にない場合、全ての接合領域を均一に接合し、安定した接合強度を得ることが困難である問題を有する。   However, the current that causes resistance heating is concentrated in the high surface pressure portion in the joining region between the members to be joined and does not flow evenly over the entire contact surface, so that heating becomes uneven and only a limited area and shape can be joined. . In particular, when the bonded regions of the members to be bonded are not on the same plane, there is a problem that it is difficult to uniformly bond all the bonded regions and obtain a stable bonding strength.

本発明は、上記従来技術に伴う課題を解決するためになされたものであり、同一平面上にない複数の接合領域においても安定した接合強度を得ることが可能な導電材料の接合方法を提供することを目的とする。   The present invention has been made to solve the problems associated with the above-described prior art, and provides a bonding method of conductive materials capable of obtaining stable bonding strength even in a plurality of bonding regions that are not on the same plane. For the purpose.

上記目的を達成するための本発明の一様相は、導電材料からなり、同一平面上にない複数の接合領域を有する第1および第2被接合部材を接合するための接合方法であって、前記第1および第2被接合部材の前記接合領域を当接させ、前記第1および第2被接合部材を相対的に摺動させつつ、電流を、前記第1被接合部材から前記第2被接合部材へ流して抵抗加熱することによって、前記第1および第2被接合部材を接合する接合工程を有している。前記接合工程においては、前記接合領域が均一に接合するように、前記接合領域毎に当接させる優先順位が設定されている。また、前記摺動は、一方向の振動によって発生され、前記第1および第2被接合部材の前記接合領域は、前記一方向の振動を許容する形状を有し、前記第1被接合部材は、前記接合領域に含まれる凸状部位を有し、前記第2被接合部材は、前記凸状部位に対応し、かつ前記接合領域に含まれる凹状部位を有する。そして、前記接合工程においては、前記第1被接合部材の前記凸状部位と、前記第2被接合部材の前記凹状部位とが接合される。
上記目的を達成するための本発明の別の一様相は、前記第1被接合部材は、第1の段差面である基部面と、第2の段差面である先端面と、前記基部面と前記先端面とを連結する壁部と、を有する段状部位を備えており、前記第1被接合部材の前記接合領域は、前記基部面の一部および前記先端面を含んでおり、前記第2被接合部材は、第1の段差面である基部面と、第2の段差面である先端面と、前記基部面と前記先端面とを連結する壁部と、を有する段状部位を備えており、前記第2被接合部材の前記接合領域は、前記基部面の一部および前記先端面を含んでいる。そして、前記接合工程においては、前記第1被接合部材の前記基部面の一部と前記第2被接合部材の前記先端面とが接合され、また、前記第1被接合部材の前記先端面と前記第2被接合部材の前記第1基部面の一部とが接合される。
The uniform phase of the present invention for achieving the above object is a joining method for joining first and second members to be joined having a plurality of joining regions which are made of a conductive material and are not on the same plane. The first and second members to be joined are brought into contact with each other and the first and second members to be joined are slid relative to each other while current is passed from the first member to be joined to the second member to be joined. It has the joining process which joins the said 1st and 2nd to-be-joined member by flowing to a member and carrying out resistance heating. In the joining step, a priority order to contact each joining region is set so that the joining regions are joined uniformly. In addition, the sliding is generated by vibration in one direction, the joining region of the first and second members to be joined has a shape that allows the vibration in one direction, and the first member to be joined is The convex part included in the joining region has the convex part, and the second member to be joined has a concave part corresponding to the convex part and contained in the joining region. In the joining step, the convex portion of the first member to be joined and the concave portion of the second member to be joined are joined.
Another aspect of the present invention for achieving the above object is that the first member to be joined includes a base surface that is a first step surface, a tip surface that is a second step surface, and the base surface. A stepped portion having a wall portion connecting to the tip surface, and the joining region of the first member to be joined includes a part of the base surface and the tip surface, 2 to-be-joined member is equipped with the step-shaped site | part which has the base part surface which is a 1st level | step difference surface, the front end surface which is a 2nd level | step difference surface, and the wall part which connects the said base surface and the said front end surface. The joining region of the second member to be joined includes a part of the base surface and the tip surface. In the joining step, a part of the base surface of the first member to be joined and the tip surface of the second member to be joined are joined, and the tip surface of the first member to be joined Part of the first base surface of the second member to be joined is joined.

本発明によれば、摺動が一方向の振動によって発生され、第1および第2被接合部材の接合領域が、一方向の振動を許容する形状を有しており、第1被接合部材が、接合領域に含まれる凸状部位を有し、かつ第2被接合部材が、凸状部位に対応し、かつ接合領域に含まれる凹状部位を有する場合において、あるいは、第1被接合部材が、第1の段差面である基部面と、第2の段差面である先端面と、基部面と先端面とを連結する壁部と、を有する段状部位を備えており、第1被接合部材の接合領域が、基部面の一部および先端面を含んでおり、かつ第2被接合部材が、第1の段差面である基部面と、第2の段差面である先端面と、基部面と先端面とを連結する壁部と、を有する段状部位を備えており、第2被接合部材の接合領域が、基部面の一部および先端面を含んでいる場合において、接合領域が均一に接合するように、接合領域毎に当接させる優先順位が設定されているため安定した接合強度を得ることができる。つまり、同一平面上にない複数の接合領域においても安定した接合強度を得ることが可能な導電材料の接合方法を提供することが可能である。 According to the present invention, sliding is generated by vibration in one direction, the joining region of the first and second members to be joined has a shape that allows vibration in one direction, and the first member to be joined is In the case where the convex region included in the bonding region and the second member to be bonded have a concave portion corresponding to the convex region and included in the bonding region, or the first member to be bonded is A stepped portion having a base surface that is a first step surface, a tip surface that is a second step surface, and a wall portion that connects the base surface and the tip surface, and a first member to be joined The joining region includes a part of the base surface and the tip surface, and the second member to be joined includes a base surface that is the first step surface, a tip surface that is the second step surface, and a base surface. And a wall portion connecting the distal end surface, and a joining region of the second joined member is formed on the base surface. In the case that contains the parts and the tip face, so that the junction region is uniformly bonded, since the priority to abut each junction area is set, it is possible to obtain a stable bonding strength. That is, it is possible to provide a conductive material bonding method capable of obtaining stable bonding strength even in a plurality of bonding regions that are not on the same plane.

実施の形態1に係る導電材料の接合方法に適用される接合装置を説明するための概略図である。It is the schematic for demonstrating the joining apparatus applied to the joining method of the electrically-conductive material which concerns on Embodiment 1. FIG. 図1の線II−IIに関する断面図である。It is sectional drawing regarding line II-II of FIG. 実施の形態1に係る導電材料の接合方法を説明するためのフローチャートである。3 is a flowchart for explaining a conductive material joining method according to Embodiment 1; 実施の形態1に係る変形例1を説明するための断面図である。FIG. 6 is a cross-sectional view for explaining a first modification according to the first embodiment. 実施の形態1に係る変形例2を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining a second modification according to the first embodiment. 実施の形態1に係る変形例3を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining a third modification according to the first embodiment. 実施の形態2に係る導電材料の接合方法を説明するための断面図である。FIG. 6 is a cross-sectional view for explaining a bonding method for conductive materials according to Embodiment 2. 実施の形態2に係る変形例1を説明するための断面図である。FIG. 9 is a cross-sectional view for explaining a first modification according to the second embodiment. 実施の形態2に係る変形例2を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining a second modification according to the second embodiment. 実施の形態2に係る変形例3を説明するための断面図である。FIG. 10 is a cross-sectional view for explaining a third modification according to the second embodiment.

以下、本発明の実施の形態を、図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、実施の形態1に係る導電材料の接合方法に適用される接合装置を説明するための概略図、図2は、図1の線II−IIに関する断面図である。   FIG. 1 is a schematic diagram for explaining a bonding apparatus applied to the conductive material bonding method according to the first embodiment, and FIG. 2 is a cross-sectional view taken along line II-II in FIG.

実施の形態1に係る接合装置40は、抵抗加熱および摩擦熱(塑性流動)を利用し、同一平面上にない複数の接合領域を有する被接合部材を接合するために使用され、第1電極42、第2電極44、電流供給装置50、保持装置60、摺動装置(摺動手段)70、加圧装置80および制御装置90を有する。   The joining apparatus 40 according to the first embodiment is used to join a member to be joined having a plurality of joining regions that are not on the same plane, using resistance heating and frictional heat (plastic flow), and the first electrode 42. , Second electrode 44, current supply device 50, holding device 60, sliding device (sliding means) 70, pressurizing device 80, and control device 90.

接合されるワークは、上方に位置する被接合部材10と、下方に位置する被接合部材20と、被接合部材10,20の間に配置される被接合部材である中間部材30とからなり、後述される一方向の振動を許容する一様形状を有し、接触面の延長方向は、水平方向Hとなっており、被接合部材10,20を振動によって容易に接合することが可能である。   The workpieces to be joined include a member to be joined 10 positioned above, a member to be joined 20 located below, and an intermediate member 30 that is a member to be joined disposed between the members to be joined 10 and 20. It has a uniform shape that allows vibration in one direction, which will be described later, and the extending direction of the contact surface is the horizontal direction H, so that the members 10 and 20 can be easily joined by vibration. .

被接合部材10は、振動の方向に関して断面がテーパ状の凸状部位を備えている第1被接合部材であり、1対の傾斜面12,14と、傾斜面を連結する角部16と、を有し、また、角部16には、膨出部位18(図2参照)が形成されている。被接合部材20は、振動の方向に関して断面がテーパ状の窪みからなる凹状部位を備えている第2被接合部材であり、窪んでいる1対の傾斜面22,24と、傾斜面22,24を連結する角部26と、を有し、また、被接合部材10に対して重力方向(上下方向)Lに関し下側に配置されている。   The member to be joined 10 is a first member to be joined having a convex portion having a tapered cross section with respect to the direction of vibration, and a pair of inclined surfaces 12 and 14 and a corner portion 16 connecting the inclined surfaces, In addition, a bulging portion 18 (see FIG. 2) is formed in the corner portion 16. The member 20 to be joined is a second member to be joined that has a concave portion having a recess whose section is tapered with respect to the direction of vibration. The pair of inclined surfaces 22 and 24 that are recessed, and the inclined surfaces 22 and 24. , And is disposed on the lower side with respect to the direction of gravity (vertical direction) L with respect to the member to be joined 10.

被接合部材10の傾斜面12,14および角部16は、被接合部材20の傾斜面22,24および角部26と対応しており、被接合部材10の凸状部位と、被接合部材20の凹状部位とは、接合可能に構成されている。つまり、傾斜面12,22と、傾斜面14,24と、角部16,26とは、同一平面上にない接合領域であり、被接合部材10の凸状部位と被接合部材20の凹状部位とが嵌合した中実の接合部を形成することが可能である。なお、膨出部位18は、被接合部材20の角部26に設けたり、角部16,26の両方に設けることも可能である。必要に応じて、膨出部位18を、角部16,26ではなく、傾斜面12,14および傾斜面22,24の一方あるいは両方に設けることも可能である。   The inclined surfaces 12 and 14 and the corners 16 of the member to be bonded 10 correspond to the inclined surfaces 22 and 24 and the corners 26 of the member to be bonded 20, and the convex portion of the member to be bonded 10 and the member to be bonded 20. The concave portion is configured to be joinable. That is, the inclined surfaces 12 and 22, the inclined surfaces 14 and 24, and the corner portions 16 and 26 are joining regions that are not on the same plane, and the convex portion of the member to be joined 10 and the concave portion of the member to be joined 20. It is possible to form a solid joint portion in which and are fitted. Note that the bulging portion 18 can be provided at the corner portion 26 of the member to be joined 20 or at both the corner portions 16 and 26. If necessary, the bulging part 18 can be provided not on the corners 16 and 26 but on one or both of the inclined surfaces 12 and 14 and the inclined surfaces 22 and 24.

中間部材30は、被接合部材10,20の傾斜面12,14,22,24および角部16,26に対応する傾斜面および角部を有する板状部材であり、被接合部材10,20の少なくとも一方を構成する導電材料より低融点の導電材料からなる。これにより、被接合部材10,20の低温での接合が可能となり、被接合部材10,20への熱影響が低減され、かつ、接合が容易となる。   The intermediate member 30 is a plate-like member having inclined surfaces and corners corresponding to the inclined surfaces 12, 14, 22, and 24 and the corners 16 and 26 of the members to be joined 10 and 20, It is made of a conductive material having a melting point lower than that of the conductive material constituting at least one of them. Thereby, joining to the to-be-joined members 10 and 20 is attained at low temperature, the thermal influence on the to-be-joined members 10 and 20 is reduced, and joining becomes easy.

被接合部材10,20は、高圧ダイカスト(HPDC)鋳物であり、アルミニウム鋳物素材(ADC12)が適用されている。中間部材30は、アルミニウムと低温共晶を形成する共晶反応材料である亜鉛(Zn)からなり、その厚みは、例えば、10〜100μmである。   The members 10 and 20 are high-pressure die casting (HPDC) castings, and an aluminum casting material (ADC12) is applied. The intermediate member 30 is made of zinc (Zn), which is a eutectic reaction material that forms a low-temperature eutectic with aluminum, and has a thickness of, for example, 10 to 100 μm.

第1および第2電極42,44は、抵抗加熱によって被接合部材10,20および中間部材30(中間部材30が介在している被接合部材10,20の接触面)を昇温し軟化させるための加熱手段であり、第1電極42は、上方に位置する被接合部材10に電気的に接続され、第2電極44は、下方に位置する被接合部材20に電気的に接続される。   The first and second electrodes 42 and 44 are for heating and softening the members to be joined 10 and 20 and the intermediate member 30 (contact surfaces of the members 10 and 20 to which the intermediate member 30 is interposed) by resistance heating. The first electrode 42 is electrically connected to the member to be bonded 10 positioned above, and the second electrode 44 is electrically connected to the member to be bonded 20 positioned below.

第1および第2電極42,44は、弾性的に保持されており、加圧装置80からの押圧力が、直接付加されないように構成されている。第1および第2電極42,44は、被接合部材10,20に直接接触する形態に限定されず、例えば、導電性を有する他の部材を介して間接的に接触させることも可能である。第1および第2電極42,44は、それぞれ複数の電極によって構成することも可能である。   The first and second electrodes 42 and 44 are elastically held, and are configured so that the pressing force from the pressing device 80 is not directly applied. The 1st and 2nd electrodes 42 and 44 are not limited to the form which contacts the to-be-joined members 10 and 20 directly, For example, it is also possible to contact indirectly through the other member which has electroconductivity. Each of the first and second electrodes 42 and 44 may be composed of a plurality of electrodes.

電流供給装置50は、電流を、第1電極42から、被接合部材10、中間部材30および被接合部材20を経由して第2電極44に流すための電流供給手段であり、例えば、電流値および電圧値が調整自在に構成されている。   The current supply device 50 is current supply means for flowing current from the first electrode 42 to the second electrode 44 via the member to be bonded 10, the intermediate member 30, and the member 20 to be bonded. The voltage value is adjustable.

保持装置60は、上方に位置する可動保持部62と下方に位置する固定保持部64とを有する。可動保持部62は、被接合部材10を水平方向Hに往復動自在に保持するために使用される。固定保持部64は、被接合部材20の水平方向Hへの移動を規制し、被接合部材10に対し被接合部材20を相対的に静止した状態で維持するために使用される。   The holding device 60 has a movable holding part 62 positioned above and a fixed holding part 64 positioned below. The movable holding part 62 is used to hold the member 10 to be reciprocated in the horizontal direction H. The fixed holding portion 64 is used to restrict the movement of the member to be bonded 20 in the horizontal direction H and maintain the member to be bonded 20 in a stationary state relative to the member to be bonded 10.

摺動装置70は、被接合部材10を被接合部材20に対して相対的に摺動させ、中間部材30が介在している被接合部材10,20の接触面に摩擦熱(塑性流動)を発生させるために使用される加振手段からなり、可動保持部62に保持された被接合部材10を、接触面の延長方向に対して平行である水平方向Hに振動(加振)させるシャフト72と、シャフト72の駆動源であるモータ74と、を有する。例えば、加振振幅は100〜1000μmの範囲、加振周波数は10〜100Hzの範囲で調整可能に構成されている。加振機構は、特に限定されず、例えば、超音波振動、電磁式振動、油圧式加振、カム式振動を適用することが可能である。   The sliding device 70 slides the member to be bonded 10 relative to the member to be bonded 20, and applies frictional heat (plastic flow) to the contact surfaces of the members to be bonded 10 and 20 with the intermediate member 30 interposed therebetween. The shaft 72 is composed of vibration means used for generating the vibration, and vibrates (vibrates) the member to be bonded 10 held by the movable holding portion 62 in a horizontal direction H parallel to the extending direction of the contact surface. And a motor 74 that is a drive source of the shaft 72. For example, the excitation amplitude is adjustable in the range of 100 to 1000 μm, and the excitation frequency is adjustable in the range of 10 to 100 Hz. The vibration mechanism is not particularly limited, and for example, ultrasonic vibration, electromagnetic vibration, hydraulic vibration, and cam vibration can be applied.

加振方向は、接触面の延長方向に沿う1方向への往復運動であるため、接触面の形状の自由度が向上することとなる。すなわち、1方向にさえ変位可能であれば加振できるため、接触面の形状が平面である必要はなく、例えば、一方向に延びる溝に凸部が嵌合する形態とすることも可能である。また、摺動装置70は、振動(加振機構)を利用する形態に限定されず、回転運動や、自転せずに円軌道を描くように振れ回る公転運動を適宜適用することも可能である。なお、公転運動の場合、振動と異なり、接触面同士の相対的な運動が停止しないことから、動摩擦係数のみが作用して摩擦係数が安定し、接触面を均一に磨耗させることが可能である。また、摺動を回動によって発生させる場合、接触面(接合領域)は、前記回動を許容する形状を有することが必要である。   Since the excitation direction is a reciprocating motion in one direction along the extending direction of the contact surface, the degree of freedom of the shape of the contact surface is improved. In other words, since vibration can be applied as long as it can be displaced in one direction, the shape of the contact surface does not need to be a flat surface. For example, it is possible to adopt a form in which a convex portion is fitted in a groove extending in one direction. . Further, the sliding device 70 is not limited to a form using vibration (vibration mechanism), and it is also possible to appropriately apply a rotational motion or a revolving motion that swings around in a circular orbit without rotating. . In the case of the revolving motion, unlike the vibration, the relative motion between the contact surfaces does not stop, so only the dynamic friction coefficient acts to stabilize the friction coefficient, and it is possible to wear the contact surface uniformly. . Further, when sliding is generated by rotation, the contact surface (joining region) needs to have a shape that allows the rotation.

加圧装置80は、上方に位置する加圧部82と下方に位置する支持構造体84とを有する。加圧部82は、被接合部材10の両側に配置され(図2参照)、上下方向(接触面と直交する押圧方向P)Lに進退動可能となっており、被接合部材10に押圧力を付与可能であり、被接合部材20に対する被接合部材10の押し付け面圧を調整するため面圧調整手段として機能する。加圧部82は、例えば、油圧シリンダが組み込まれており、押圧力を調整自在に構成されている。押圧力は、例えば、2〜10MPaである。支持構造体84は、加圧装置80の押圧力が伝達される被接合部材20を保持する固定保持部64を、支持するために使用される。   The pressurizing device 80 includes a pressurizing unit 82 positioned above and a support structure 84 positioned below. The pressurizing portions 82 are arranged on both sides of the member to be joined 10 (see FIG. 2), and can be moved forward and backward in the vertical direction (pressing direction P orthogonal to the contact surface) L. And functions as surface pressure adjusting means for adjusting the pressing surface pressure of the member to be bonded 10 against the member 20 to be bonded. The pressurizing unit 82 includes, for example, a hydraulic cylinder, and is configured to be capable of adjusting the pressing force. The pressing force is, for example, 2 to 10 MPa. The support structure 84 is used to support the fixed holding portion 64 that holds the bonded member 20 to which the pressing force of the pressurizing device 80 is transmitted.

加圧部82による押圧力は、第1電極42を介して被接合部材10に間接的に付与する形態を適用することも可能である。加圧部82と支持構造体84とを逆に配置することも可能である。この場合、下方に配置される加圧部82によって被接合部材20が押圧され、上方に配置される支持構造体84よって被接合部材10が支持されることになる。また、支持構造体84の代わりに、第2の加圧部を設けることによって、面圧調整の自由度を向上さることも可能である。   It is also possible to apply a form in which the pressing force by the pressurizing unit 82 is indirectly applied to the bonded member 10 via the first electrode 42. It is also possible to dispose the pressurizing unit 82 and the support structure 84 in reverse. In this case, the member to be bonded 20 is pressed by the pressurizing portion 82 disposed below, and the member to be bonded 10 is supported by the support structure 84 disposed above. In addition, the degree of freedom in adjusting the surface pressure can be improved by providing the second pressure unit instead of the support structure 84.

制御装置90は、演算部、記憶部、入力部および出力部を有するコンピュータからなる制御手段であり、電流供給装置50、摺動装置70および加圧装置80を統括的に制御するために使用される。制御装置90の各機能は、記憶装置に格納されているプログラムを演算部が実行することにより発揮される。   The control device 90 is a control means including a computer having a calculation unit, a storage unit, an input unit, and an output unit, and is used for comprehensively controlling the current supply device 50, the sliding device 70, and the pressurizing device 80. The Each function of the control device 90 is exhibited when the arithmetic unit executes a program stored in the storage device.

なお、被接合部材10,20は、特に、高圧ダイカスト(HPDC)鋳物に限定されず、例えば、圧延材を適用することも可能である。しかし、実施の形態1に係る接合は、融点以下で形成され、内包ガスの影響が抑制されるため、鋳造素材の選択の自由度が大きい(材料の選択範囲が広い)。また、アルミニウム高圧ダイカスト鋳物は安価な構造材であるため、接合体の製造コストを低減することができる。   Note that the members to be joined 10 and 20 are not particularly limited to high-pressure die casting (HPDC) castings, and for example, rolled materials can be applied. However, since the joint according to Embodiment 1 is formed at a melting point or lower and the influence of the inclusion gas is suppressed, the degree of freedom in selecting a casting material is large (the material selection range is wide). Moreover, since the aluminum high pressure die casting is an inexpensive structural material, the manufacturing cost of the joined body can be reduced.

被接合部材10,20は、同材(同種金属)からなる形態に限定されない。例えば、被接合部材10,20の一方を、アルミニウムから構成し、被接合部材10,20の他方を、鉄系材料あるいはマグネシウム系材料から構成することが可能である。この場合、Al−FeやAl−Mgの異材接合体が得られるため、エキゾーストマニホールド等の自動車用部品として適用することが容易である。   The members to be joined 10 and 20 are not limited to the form made of the same material (the same kind of metal). For example, one of the members to be joined 10 and 20 can be made of aluminum, and the other of the members to be joined 10 and 20 can be made of an iron-based material or a magnesium-based material. In this case, since an Al—Fe or Al—Mg dissimilar material joined body is obtained, it can be easily applied as automotive parts such as an exhaust manifold.

中間部材30を構成する共晶反応材料は、液相を形成し、被接合部材同士および共晶反応材料と被接合部材との間における相互拡散を促進するため、良好な接合強度を確保することが可能であり、かつ、形成される液相によって間隙が埋められるため、広い面積や曲面の接合においても良好な水密性を達成することが容易である。したがって、高度な水密性が要求される部位や、2次元的な曲面や大面積部位に、特に有効である。   The eutectic reaction material constituting the intermediate member 30 forms a liquid phase and promotes interdiffusion between the members to be joined and between the eutectic reaction material and the member to be joined, thus ensuring good joint strength. In addition, since the gap is filled with the liquid phase to be formed, it is easy to achieve good water-tightness even when joining large areas or curved surfaces. Therefore, it is particularly effective for a portion requiring high water tightness, a two-dimensional curved surface, or a large area portion.

中間部材30は、共晶反応により低融点で液相化し、酸素を遮断して再酸化を抑制する役割を果たすため、真空雰囲気と長時間が必要であった真空ろう付けに比較し、大気中における短時間、低入熱での接合が可能となり、量産化が容易となる点でも好ましい。アルミニウムと低温共晶を形成する共晶反応材料は、亜鉛に限定されず、銅(Cu)、錫(Sn)あるいは銀(Ag)を適用することが可能である。   The intermediate member 30 is in a liquid phase with a low melting point by a eutectic reaction, and plays a role of blocking oxygen and suppressing reoxidation. It is also preferable in that it can be joined with low heat input for a short time and mass production is easy. The eutectic reaction material that forms a low-temperature eutectic with aluminum is not limited to zinc, and copper (Cu), tin (Sn), or silver (Ag) can be applied.

中間部材30は、共晶反応材料以外の液相を形成する導電材料から構成することも可能であり、この場合は、中間部材の選択の自由度が大きい(材料の選択範囲が広い)。共晶反応材料以外の液相を形成する導電材料としては、共晶反応材料に比較して安価で一般的なろう材や低温はんだが挙げられる。   The intermediate member 30 can also be composed of a conductive material that forms a liquid phase other than the eutectic reaction material, and in this case, the degree of freedom in selecting the intermediate member is large (the material selection range is wide). Examples of the conductive material that forms a liquid phase other than the eutectic reaction material include inexpensive and general brazing materials and low-temperature solder as compared with the eutectic reaction material.

中間部材30は、別体からなる形態に限定されず、被接合部材10,20の一方と一体化された被覆層から構成することも可能である。この場合、中間部材30を局所的に配置することが可能である。被覆は、めっき、クラッド、塗布等により形成することが可能である。   The intermediate member 30 is not limited to the form which consists of another body, but can also be comprised from the coating layer integrated with one of the to-be-joined members 10 and 20. FIG. In this case, it is possible to arrange the intermediate member 30 locally. The coating can be formed by plating, cladding, coating, or the like.

次に、実施の形態1に係る接合方法を説明する。   Next, the joining method according to Embodiment 1 will be described.

図3は、実施の形態1に係る導電材料の接合方法を説明するためのフローチャートである。図3に示されるフローチャートにより示されるアルゴリズムは、制御装置90の記憶部にプログラムとして記憶されており、制御装置90の演算部によって実行される。   FIG. 3 is a flowchart for explaining the conductive material bonding method according to the first embodiment. The algorithm shown by the flowchart shown in FIG. 3 is stored as a program in the storage unit of the control device 90, and is executed by the arithmetic unit of the control device 90.

本接合方法は、同一平面上にない複数の接合領域を有する被接合部材を接合するための接合方法であって、被接合部材10,20の接合領域(傾斜面12,14,22,24および角部16,26)を当接させ、被接合部材10,20を相対的に摺動させつつ、電流を、被接合部材10から被接合部材20へ流して抵抗加熱することによって、被接合部材10,20を接合する接合工程を有しており、当該接合工程においては、接合領域が均一に接合するように、接合領域毎に当接させる優先順位が設定されている。つまり、接合領域が均一に接合するように、接合領域毎に当接させる優先順位が設定されているため、安定した接合強度を得ることが可能である。   This joining method is a joining method for joining members to be joined having a plurality of joining regions that are not on the same plane, and the joining regions (inclined surfaces 12, 14, 22, 24, and The members to be joined are heated by resistance by causing current to flow from the members to be joined 10 to the members to be joined 20 while the corners 16 and 26) are brought into contact with each other and the members to be joined 10 and 20 are relatively slid. 10 and 20 is joined, and in the joining step, priority is set for each joining region so that the joining regions are joined uniformly. That is, since the priority order for contacting each bonding region is set so that the bonding regions are uniformly bonded, stable bonding strength can be obtained.

前記接合工程は、概して、接触抵抗のばらつきを低減するための予備摺動ステップ(S11)、抵抗加熱および摩擦熱(塑性流動)を利用し、中間部材30が介在する被接合部材10,20の接合界面の形成を開始する第1接合ステップ(S12)、接合界面の一体化を促進する第2接合ステップ(S13)、接合体(中間部材30が介在して接合された被接合部材10,20)を冷却する冷却ステップ(S14)を有する。   The joining process generally uses a preliminary sliding step (S11) for reducing variation in contact resistance, resistance heating and frictional heat (plastic flow), and the joining members 10 and 20 with the intermediate member 30 interposed therebetween. The first joining step (S12) for starting the formation of the joining interface, the second joining step (S13) for promoting the integration of the joining interface, and the joined bodies (joined members 10 and 20 joined via the intermediate member 30). ) Has a cooling step (S14).

詳述すると、予備摺動ステップ(S11)においては、中間部材30が被接合部材10と被接合部材20との間に配置されてなるワークが投入され、加圧装置80の加圧部82が稼働され、被接合部材10,中間部材30および被接合部材20に押圧力が付与される。   More specifically, in the preliminary sliding step (S11), a work in which the intermediate member 30 is disposed between the member to be bonded 10 and the member to be bonded 20 is introduced, and the pressurizing unit 82 of the pressurizing device 80 is moved. It is operated and a pressing force is applied to the member to be joined 10, the intermediate member 30, and the member 20 to be joined.

その後、摺動装置70が駆動され、被接合部材10の水平方向Hの摺動(振動)が引き起こされる。このとき、被接合部材20は、保持装置60の固定保持部64によって水平方向への移動が規制され、かつ、被接合部材10,中間部材30および被接合部材20は、加圧下にあるため、中間部材30が介在している被接合部材10,20の接触面に摩擦が生じ、接触面表面のアルミニウム酸化皮膜が除去される。   Thereafter, the sliding device 70 is driven to cause sliding (vibration) in the horizontal direction H of the member 10 to be joined. At this time, since the member 20 to be bonded is restricted from moving in the horizontal direction by the fixed holding portion 64 of the holding device 60, and the member to be bonded 10, the intermediate member 30, and the member to be bonded 20 are under pressure, Friction occurs on the contact surfaces of the members 10 and 20 to which the intermediate member 30 is interposed, and the aluminum oxide film on the contact surface is removed.

第1接合ステップ(S12)においては、電流供給装置50が稼働され、電流供給装置50から供給される電流が、第1電極42から、被接合部材10、中間部材30および被接合部材20を経由して、第2電極44へ流され、抵抗加熱が生じる。これにより、接触面は、摩擦熱および抵抗加熱の両方の併用によって、摩耗,塑性流動および材料拡散が生じ、中間部材30が介在する被接合部材10,20の接合界面の形成が開始される。   In the first joining step (S12), the current supply device 50 is operated, and the current supplied from the current supply device 50 passes from the first electrode 42 via the member 10 to be joined, the intermediate member 30 and the member 20 to be joined. As a result, resistance heating is caused to flow to the second electrode 44. As a result, wear, plastic flow, and material diffusion occur in the contact surface due to the combined use of both frictional heat and resistance heating, and the formation of the bonding interface between the members to be bonded 10 and 20 with the intermediate member 30 interposed therebetween is started.

この際、被接合部材10の角部16には膨出部位18が形成されているため、被接合部材10の角部16と被接合部材20の角部26とが、中間部材30を介して最初に当接する。また、中間部材30は、被接合部材20の上方に位置し、溶融した中間部材30が、被接合部材20の凹状部位における応力集中しがちな角部26に留まる。   At this time, since the bulging portion 18 is formed in the corner portion 16 of the member to be bonded 10, the corner portion 16 of the member to be bonded 10 and the corner portion 26 of the member to be bonded 20 are connected via the intermediate member 30. Abut first. Further, the intermediate member 30 is located above the member 20 to be joined, and the melted intermediate member 30 stays at the corner portion 26 where stress tends to concentrate in the concave portion of the member 20 to be joined.

その後、被接合部材10の傾斜面12,14と被接合部材20の傾斜面22,24とが、中間部材30を介して当接することになる。   Thereafter, the inclined surfaces 12 and 14 of the member to be bonded 10 and the inclined surfaces 22 and 24 of the member to be bonded 20 come into contact with each other via the intermediate member 30.

第2接合ステップ(S13)においては、電流供給装置50による電流の供給を減少させることよって抵抗加熱による発熱量が低下させられる一方、加圧装置80による押圧力を増加させることによって摩擦熱が増加させられる。これにより、抵抗加熱による発熱量が減少し、軟化された材料を摺動によって掻き混ぜるようにして一体化を促進する過程へ移行する。摩擦熱の増加は、摺動装置70を制御することによっても達成することが可能である。   In the second joining step (S13), the amount of heat generated by resistance heating is reduced by decreasing the supply of current by the current supply device 50, while the frictional heat is increased by increasing the pressing force by the pressure device 80. Be made. As a result, the amount of heat generated by resistance heating decreases, and the process proceeds to a process of promoting integration by stirring the softened material by sliding. The increase in frictional heat can also be achieved by controlling the sliding device 70.

電流供給装置50による電流の供給は、最終的には停止される。そして、冷却工程(S14)に入る直前において、摺動装置70の稼動が停止され、被接合部材10が所定の静止位置(最終的な接合位置)に位置決めされる。この際、位置決め精度を向上させ、かつ、位置決めを容易にするため、加圧装置80による押圧力を低下させることも可能である。   The supply of current by the current supply device 50 is finally stopped. Then, immediately before entering the cooling step (S14), the operation of the sliding device 70 is stopped, and the member to be joined 10 is positioned at a predetermined stationary position (final joining position). At this time, in order to improve positioning accuracy and facilitate positioning, the pressing force by the pressurizing device 80 can be reduced.

第1接合ステップ(S12)および第2接合ステップ(S13)の結果、傾斜面12,14,22,24および角部16,26の接合界面には、拡散接合領域、塑性流動接合領域および中間部材介在接合領域を有する構造が形成される。塑性流動接合領域は、被接合部材10,20が相互に直接的に拡散し、かつ、排出あるいは拡散された中間部材30が存在している領域である。塑性流動接合領域は、導電材料の塑性流動による圧接と再結晶組織とを有する領域である。中間部材介在接合領域は、中間部材30と、中間部材30を構成する導電材料が被接合部材10,20を構成する導電材料に拡散した拡散接合領域と、を含んでいる領域である。   As a result of the first joining step (S12) and the second joining step (S13), a diffusion joining region, a plastic flow joining region and an intermediate member are formed at the joining interfaces of the inclined surfaces 12, 14, 22, 24 and the corners 16, 26. A structure having an intervening junction region is formed. The plastic flow joining region is a region where the members to be joined 10 and 20 are directly diffused to each other and the discharged or diffused intermediate member 30 is present. The plastic flow bonding region is a region having a pressure welding due to plastic flow of a conductive material and a recrystallized structure. The intermediate member intervening joining region is a region including the intermediate member 30 and a diffusion joining region in which the conductive material constituting the intermediate member 30 diffuses into the conductive material constituting the members to be joined 10 and 20.

冷却工程(S14)においては、加圧装置80による押圧力が上昇させられ、所定の時間が経過すると、冷却が終了したと判断され、加圧が停止される。そして、加圧装置80の加圧部82が、被接合部材10から離間させられる。冷却の終了は、温度を検出することによって直接的に判断することも可能である。   In the cooling step (S14), when the pressing force by the pressurizing device 80 is increased and a predetermined time elapses, it is determined that the cooling is finished, and pressurization is stopped. Then, the pressurizing unit 82 of the pressurizing device 80 is separated from the bonded member 10. The end of cooling can also be determined directly by detecting the temperature.

その後、中間部材30が介在して接合された被接合部材10,20(被接合部材10の凸状部位と被接合部材20の凹状部位とが嵌合した中実の接合部が形成された)が取り外される。   Thereafter, the joined members 10 and 20 joined with the intermediate member 30 interposed therebetween (a solid joined portion in which the convex portion of the joined member 10 and the concave portion of the joined member 20 were fitted) was formed. Is removed.

なお、予備摺動ステップ(S11)においては、接触面表面のアルミニウム酸化皮膜が除去され、皮膜厚さの違いによる接触抵抗のばらつきが低減されるため、後続の第1接合ステップ(S12)における発熱量のばらつきが抑制される。また、予備摺動ステップ(S11)の前において、脱脂や、ワイヤブラシによるブラッシングによってアルミニウム酸化皮膜を除去する等の前処理が不要となるため、作業性が向上する。なお、必要に応じて、前処理を実施することも可能である。   In the preliminary sliding step (S11), the aluminum oxide film on the surface of the contact surface is removed, and the variation in contact resistance due to the difference in film thickness is reduced. Therefore, heat generation in the subsequent first joining step (S12). Variation in quantity is suppressed. In addition, before the preliminary sliding step (S11), pre-treatment such as degreasing and removing the aluminum oxide film by brushing with a wire brush is not required, so that workability is improved. In addition, it is also possible to implement pre-processing as needed.

予備摺動ステップ(S11)の前あるいは予備摺動ステップ(S11)の代わりとして、摺動装置70を停止させた状態で電流供給装置50を稼働させることによって、接触面を抵抗加熱により軟化させる予備加熱ステップを設けることも可能である。また、予備摺動ステップ(S11)は、適宜省略することも可能である。   Before the preliminary sliding step (S11) or as an alternative to the preliminary sliding step (S11), the current supply device 50 is operated in a state where the sliding device 70 is stopped, so that the contact surface is softened by resistance heating. It is also possible to provide a heating step. Further, the preliminary sliding step (S11) can be omitted as appropriate.

第1接合ステップ(S12)においては、被接合部材10の角部16と被接合部材20の角部26とが、中間部材30を介して最初に当接するため、膨出部位18のバリにより、応力集中しがちな角部16,26の初期面圧が増加し、隙間の発生が抑制され、接合強度が向上するため、安定した接合強度を得ることが可能となる。   In the first joining step (S12), the corner portion 16 of the member to be joined 10 and the corner portion 26 of the member to be joined 20 first contact each other via the intermediate member 30. Since the initial surface pressure of the corner portions 16 and 26 that tend to concentrate stress increases, the generation of gaps is suppressed and the bonding strength is improved, so that a stable bonding strength can be obtained.

中間部材30は、被接合部材20の上方に位置し、溶融した中間部材30が、被接合部材20の凹状部位における応力集中しがちな角部26に留まるため、接合強度を向上させ、安定した接合強度を得ることが可能である。また、中間部材は低融点の導電材料からなり、低温での接合が可能となるため、被接合部材への熱影響が低減され、かつ、接合が容易となる。   The intermediate member 30 is located above the member 20 to be joined, and the melted intermediate member 30 stays at the corner portion 26 where stress tends to concentrate in the concave portion of the member 20 to be joined. It is possible to obtain a bonding strength. Further, since the intermediate member is made of a conductive material having a low melting point and can be bonded at a low temperature, the thermal influence on the members to be bonded is reduced and the bonding becomes easy.

電流の供給を減少させず、かつ、加圧力を増加させないことにより、第2接合ステップ(S13)を第1接合ステップ(S12)に一体化させることも可能である。また、冷却工程(S14)は、適宜省略することも可能である。   It is also possible to integrate the second joining step (S13) with the first joining step (S12) by not reducing the supply of current and increasing the applied pressure. In addition, the cooling step (S14) can be omitted as appropriate.

実施の形態1に係る接合界面は、拡散接合領域および中間部材介在接合領域に加えて塑性流動接合領域によって物理的に接合されているため、被接合部材10,20の母材特性に近い強度を備えており、接合領域の全体に渡って良好な接合強度を確保することが可能である。   Since the joining interface according to the first embodiment is physically joined by the plastic flow joining region in addition to the diffusion joining region and the intermediate member interposed joining region, the strength close to the base material characteristics of the members to be joined 10 and 20 is obtained. It is possible to ensure good bonding strength over the entire bonding region.

また、摩擦熱および抵抗加熱の両方を併用するため、一方のみを利用する接合に比較し、高い面圧を付与する必要がないため、接触面の面積が、大きい場合でも容易に接合することが可能である。つまり、接触面に高い押圧力(面圧)を付与せずとも電流集中箇所が変化して均一に加熱されるため、接触面が大面積の場合や複雑な形状の場合であっても接合することができ、かつ低歪みの面接合が可能である。   In addition, since both frictional heat and resistance heating are used in combination, it is not necessary to apply a high surface pressure compared to joining using only one, so that even when the area of the contact surface is large, it can be easily joined. Is possible. In other words, even if a high pressing force (surface pressure) is not applied to the contact surface, the current-concentrated portion changes and is heated uniformly, so that even when the contact surface has a large area or a complicated shape, it is joined. And surface bonding with low distortion is possible.

接触面の表層のみが塑性流動(溶融)して接合するため、加熱時間を短縮でき、更に、材料内に気体を含有している鋳造品であっても、加熱により材料内の気体が膨張、噴出し難く、良好な接合を実現することが可能である。   Since only the surface layer of the contact surface is plastically flowed (melted) and joined, the heating time can be shortened, and even in a cast product containing gas in the material, the gas in the material expands due to heating, It is difficult to eject and it is possible to achieve good bonding.

接触面の面積を、略同一に設定する場合、接触面の一方に電流が集中することが抑制され、均一に加熱することが容易である。また、接触面に電流が集中する高面圧領域が存在する場合であっても、当該領域においては、抵抗加熱が大きく作用して加熱され酸化膜が強制的に剥離され、押圧力(面圧)と加振が作用して塑性流動が生じて磨耗することで、刻々と電流集中箇所が変化するため、電流の流れが分散し、接触面は、均一に加熱されることになる。   When the area of the contact surface is set to be substantially the same, the current is suppressed from being concentrated on one of the contact surfaces, and uniform heating is easy. Even if there is a high surface pressure region where current is concentrated on the contact surface, resistance heating is greatly applied in the region, and the oxide film is forcibly peeled off and the pressing force (surface pressure) is increased. ) And vibrations are applied to cause plastic flow and wear, and the current concentration location changes every moment, so that the current flow is dispersed and the contact surface is heated uniformly.

次に、実施の形態1に係る変形例1〜3を順次説明する。   Next, Modifications 1 to 3 according to Embodiment 1 will be sequentially described.

図4は、実施の形態1に係る変形例1を説明するための断面図である。   FIG. 4 is a cross-sectional view for explaining the first modification according to the first embodiment.

変形例1においては、被接合部材10Aの凸状部位の傾斜面12,14のテーパ角θ10が、被接合部材20の凹状部位の傾斜面22,24のテーパ角θ20より小さくなるように設定されている。したがって、被接合部材10の角部16に膨出部位18が形成されている場合と同様に、被接合部材10の角部16と被接合部材20の角部26とが、中間部材30を介して最初(被接合部材10Aの傾斜面12,14と被接合部材20の傾斜面22,24との当接より前)に当接することになるため、角部16の先端部位のバリにより、応力集中しがちな角部16,26の初期面圧が増加し、隙間の発生が抑制され、接合強度が向上するため、安定した接合強度を得ることが可能となる。 In the first modification, the taper angle θ 10 of the inclined surfaces 12 and 14 of the convex portion of the member 10A to be joined is smaller than the taper angle θ 20 of the inclined surfaces 22 and 24 of the concave portion of the member 20 to be joined. Is set. Accordingly, the corner 16 of the member to be joined 10 and the corner 26 of the member to be joined 20 are interposed via the intermediate member 30 as in the case where the bulging portion 18 is formed at the corner 16 of the member to be joined 10. The first contact (before the contact between the inclined surfaces 12 and 14 of the member 10A to be bonded and the inclined surfaces 22 and 24 of the member 20 to be bonded) causes the stress due to the burr at the tip portion of the corner 16. Since the initial surface pressure of the corner portions 16 and 26 that tend to concentrate increases, the generation of gaps is suppressed, and the bonding strength is improved, so that stable bonding strength can be obtained.

図5は、実施の形態1に係る変形例2を説明するための断面図である。   FIG. 5 is a cross-sectional view for explaining a second modification according to the first embodiment.

変形例2においては、中間部材30Aの角部36における肉厚は、中間部材30Aの傾斜面32,34における肉厚より大きく、設定されている。したがって、被接合部材10の角部16に膨出部位18が形成されている場合と同様に、被接合部材10の角部16と被接合部材20の角部26とが、中間部材30の角部36を介して最初(中間部材30Aの傾斜面32,34を介する被接合部材10の傾斜面12,14と被接合部材20の傾斜面22,24との当接より前)に当接することになるため、中間部材30の角部36の増肉のバリにより、応力集中しがちな角部16,26の初期面圧が増加し、隙間の発生が抑制され、接合強度が向上するため、安定した接合強度を得ることが可能である。特に、予備摺動ステップ(S11)における初期(一番初めの摩擦)における摩耗が促進することになる。   In the second modification, the thickness of the corner portion 36 of the intermediate member 30A is set to be larger than the thickness of the inclined surfaces 32 and 34 of the intermediate member 30A. Therefore, similarly to the case where the bulging portion 18 is formed in the corner portion 16 of the member to be bonded 10, the corner portion 16 of the member to be bonded 10 and the corner portion 26 of the member to be bonded 20 are the corners of the intermediate member 30. First contact (before the contact between the inclined surfaces 12 and 14 of the bonded member 10 and the inclined surfaces 22 and 24 of the bonded member 20 via the inclined surfaces 32 and 34 of the intermediate member 30A) via the portion 36 Therefore, the burr due to the thickening of the corner portion 36 of the intermediate member 30 increases the initial surface pressure of the corner portions 16 and 26 that tend to concentrate stress, thereby suppressing the generation of gaps and improving the bonding strength. It is possible to obtain a stable bonding strength. In particular, wear in the initial stage (first friction) in the preliminary sliding step (S11) is promoted.

図6は、実施の形態1に係る変形例3を説明するための断面図である。なお、第1電極42を省略している。   FIG. 6 is a cross-sectional view for explaining a third modification according to the first embodiment. The first electrode 42 is omitted.

変形例3においては、加圧装置の加圧部82によって押圧されている被接合部材10における押圧面から押圧方向Pに伸ばした線上に、被接合部材10の凸状部位の角部16が位置している。この場合、応力集中しがちな角部16,26に面圧を効果的に付加することができるため、接合強度を向上させ、安定した接合強度を得ることが可能である。なお、傾斜面12,14および傾斜面22,24の少なくとも一方に膨出部位を形成し、接合工程において、傾斜面12,14と傾斜面22,24とが最初(被接合部材10の角部16と被接合部材20の角部26との当接より前)に接合するように、設定する場合、バリを生成する摩耗粉(コンタミネイション)の発生を抑制することも可能である。   In the third modification, the corner 16 of the convex portion of the member to be bonded 10 is positioned on a line extending in the pressing direction P from the pressing surface of the member to be bonded 10 pressed by the pressure unit 82 of the pressure device. doing. In this case, since the surface pressure can be effectively applied to the corner portions 16 and 26 that tend to concentrate stress, it is possible to improve the bonding strength and obtain a stable bonding strength. In addition, the bulging part is formed in at least one of the inclined surfaces 12 and 14 and the inclined surfaces 22 and 24, and in the joining process, the inclined surfaces 12 and 14 and the inclined surfaces 22 and 24 are first (corner portions of the members to be joined 10). In the case of setting so as to join to 16 and the corner portion 26 of the member 20 to be joined), it is also possible to suppress the generation of abrasion powder (contamination) that generates burrs.

以上のように、実施の形態1においては、接合領域が均一に接合するように、接合領域毎に当接させる優先順位が設定されているため、同一平面上にない複数の接合領域においても安定した接合強度を得ることが可能である。   As described above, in the first embodiment, the priority order for contacting each joining region is set so that the joining regions are uniformly joined, and therefore stable even in a plurality of joining regions that are not on the same plane. It is possible to obtain the obtained bonding strength.

また、摺動を一方向の振動によって発生させ、第1および第2被接合部材の接合領域を、前記一方向の振動を許容する一様形状を有するように構成する場合、第1および第2被接合部材を振動によって容易に接合することが可能である。なお、摺動を回動によって発生させる場合、第1および第2被接合部材の前記接合領域は、前記回動を許容する形状を有することが必要である。   Further, when the sliding is generated by vibration in one direction and the joining regions of the first and second members to be joined are configured to have a uniform shape that allows the vibration in the one direction, the first and second It is possible to easily join the members to be joined by vibration. When sliding is generated by rotation, the joining regions of the first and second members to be joined need to have a shape that allows the rotation.

第1被接合部材の凸状部位と、第2被接合部材の凹状部位とが接合されるため、第1被接合部材の凸状部位と第2被接合部材の凹状部位とが嵌合した中実の接合部を形成することが可能である。   Since the convex part of the first member to be joined and the concave part of the second member to be joined are joined, the convex part of the first member to be joined and the concave part of the second member to be joined Real joints can be formed.

凸状部位あるいは凹状部位の一方における角部に、膨出部位を形成する場合、接合工程においては、凸状部位の角部と凹状部位の角部とが、最初に当接し、膨出部位のバリにより、応力集中しがちな角部の初期面圧が増加し、隙間の発生が抑制され、接合強度が向上するため、安定した接合強度を得ることが可能である。   In the case where the bulging part is formed at the corner of one of the convex part or the concave part, in the joining process, the corner of the convex part and the corner of the concave part first come into contact with each other. The burrs increase the initial surface pressure at the corners where stress tends to concentrate, suppress the generation of gaps, and improve the bonding strength, so that a stable bonding strength can be obtained.

凸状部位の傾斜面のテーパ角を、凹状部位の傾斜面のテーパ角より小さく設定する場合も、凸状部位の角部と凹状部位の角部とが、最初に当接し、角部の先端部位のバリにより、応力集中しがちな角部の初期面圧が増加し、隙間の発生が抑制され、接合強度が向上するため、安定した接合強度を得ることが可能である。   Even when the taper angle of the inclined surface of the convex part is set to be smaller than the taper angle of the inclined surface of the concave part, the corner of the convex part and the corner of the concave part first contact, and the tip of the corner part Due to the burrs at the sites, the initial surface pressure at the corners where stress tends to concentrate increases, the generation of gaps is suppressed, and the bonding strength is improved, so that stable bonding strength can be obtained.

中間部材の角部における肉厚を、中間部材の傾斜面における肉厚より大きく、設定する場合も、凸状部位の角部と凹状部位の角部とが、中間部材の角部を介して、最初に当接するため、中間部材の角部の増肉のバリにより、応力集中しがちな角部の初期面圧が増加し、隙間の発生が抑制され、接合強度が向上するため、安定した接合強度を得ることが可能である。特に、予備摺動ステップの摺動初期におけるなじみ時(一番初めの摩擦)における摩耗を促進させることができる。また、中間部材は低融点の導電材料からなり、低温での接合が可能となるため、被接合部材への熱影響が低減され、かつ、接合が容易となる。   Even when the wall thickness at the corner of the intermediate member is set larger than the wall thickness at the inclined surface of the intermediate member, the corner of the convex portion and the corner of the concave portion are connected via the corner of the intermediate member, Since the contact is made first, the thickening burr at the corners of the intermediate member increases the initial surface pressure at the corners where stress tends to concentrate, suppresses the generation of gaps, and improves the bonding strength. It is possible to obtain strength. In particular, it is possible to promote wear at the time of familiarity (first friction) in the initial sliding stage of the preliminary sliding step. Further, since the intermediate member is made of a conductive material having a low melting point and can be bonded at a low temperature, the thermal influence on the members to be bonded is reduced and the bonding becomes easy.

第1被接合部材の角部が、押圧手段によって押圧される第1被接合部材における押圧面から押圧方向に伸ばした線上に位置している場合、応力集中しがちな角部に面圧を効果的に付加することができるので、接合強度を向上させ、安定した接合強度を得ることが可能である。   When the corner portion of the first member to be bonded is located on a line extending in the pressing direction from the pressing surface of the first member to be pressed pressed by the pressing means, the surface pressure is effectively applied to the corner portion where the stress tends to be concentrated. Therefore, it is possible to improve the bonding strength and obtain a stable bonding strength.

中間部材が、凹状部位を有する第2被接合部材に対して重力方向に関し上方に配置される場合、溶融した中間部材が、第2被接合部材の凹状部位における応力集中しがちな角部に留まるため、接合強度を向上させ、安定した接合強度を得ることが可能である。また、中間部材は低融点の導電材料からなり、低温での接合が可能となるため、被接合部材への熱影響が低減され、かつ、接合が容易となる。   When the intermediate member is disposed above in the direction of gravity with respect to the second member to be joined having the concave portion, the melted intermediate member stays at a corner portion where the stress tends to concentrate in the concave portion of the second member to be joined. Therefore, it is possible to improve the bonding strength and obtain a stable bonding strength. Further, since the intermediate member is made of a conductive material having a low melting point and can be bonded at a low temperature, the thermal influence on the members to be bonded is reduced and the bonding becomes easy.

次に、実施の形態2を説明する。   Next, a second embodiment will be described.

図7は、実施の形態2に係る導電材料の接合方法を説明するための断面図である。なお、以下において、実施の形態1と同様の機能を有する部材については類似する符号を使用し、重複を避けるため、その説明を省略する。   FIG. 7 is a cross-sectional view for explaining a bonding method of conductive materials according to the second embodiment. In the following, members having the same functions as those of the first embodiment are denoted by similar reference numerals, and the description thereof is omitted to avoid duplication.

実施の形態2は、中空の接合部を形成する点で、中実の接合部を形成する実施の形態1と概して異なり、実施の形態2に係るワークは、上方に位置する被接合部材110と、下方に位置する被接合部材120と、からなり、振動の方向に対して一様形状を有し、接触面の延長方向は、水平方向Hとなっている。   The second embodiment is generally different from the first embodiment in which a solid joint portion is formed in that a hollow joint portion is formed, and the workpiece according to the second embodiment includes a member 110 to be joined located above. And a member 120 to be joined, which has a uniform shape with respect to the direction of vibration, and the extending direction of the contact surface is the horizontal direction H.

被接合部材110は、第1の段差面である基部面112と、第2の段差面である先端面114と、基部面112と先端面114とを連結する壁部116と、を有する断面L字状の段状部位を備えている第1被接合部材である。被接合部材120は、被接合部材110と同様に、第1の段差面である基部面122と、第2の段差面である先端面124と、基部面122と先端面124とを連結する壁部126と、を有する断面L字状の段状部位を備えている第2被接合部材である。   The member to be joined 110 has a cross section L having a base surface 112 that is a first step surface, a tip surface 114 that is a second step surface, and a wall portion 116 that connects the base surface 112 and the tip surface 114. It is the 1st to-be-joined member provided with the character-like step-shaped part. Similarly to the member to be bonded 110, the member to be bonded 120 includes a base surface 122 that is a first step surface, a tip surface 124 that is a second step surface, and a wall that connects the base surface 122 and the tip surface 124. And a second member to be joined having a stepped portion having an L-shaped cross section.

基部面112,122の一部112A,122Aと先端面114,124とは、同一平面上にない接合領域であり、被接合部材110の基部面112の一部112Aと、被接合部材120の先端面124とが接合され、また、被接合部材110の先端面114と被接合部材120の基部面122の一部122Aとが接合可能に構成されている。つまり、被接合部材110の段状部位と被接合部材120の段状部位とを組み合わせて、中空の接合部を形成することが可能である。また、被接合部材110の先端面114は、加圧装置の加圧部182によって押圧されている被接合部材110における押圧面から押圧方向Pに伸ばした線上に、位置している。   The portions 112A and 122A of the base surfaces 112 and 122 and the tip surfaces 114 and 124 are joint regions that are not on the same plane, and the portion 112A of the base surface 112 of the member to be joined 110 and the tip of the member 120 to be joined. The front surface 114 of the member to be bonded 110 and a part 122A of the base surface 122 of the member to be bonded 120 can be bonded to each other. That is, it is possible to form a hollow joint by combining the stepped portion of the member to be bonded 110 and the stepped portion of the member to be bonded 120. Further, the front end surface 114 of the member to be bonded 110 is located on a line extending in the pressing direction P from the pressing surface of the member to be bonded 110 pressed by the pressurizing unit 182 of the pressing device.

被接合部材110,120の壁部116,126の剛性(肉厚)は略同一であり、また、被接合部材110の壁部116の長さは、被接合部材120の壁部126の長さより小さく設定されている。したがって、接合工程においては、押圧面から離間している被接合部材110の基部面112の一部112Aと被接合部材120の先端面124とが、最初(被接合部材110の先端面114と被接合部材120の基部面122の一部122Aとの当接より前)に当接する。これにより、加重がかかりづらい(押圧面から離間している)基部面の一部を先に摩耗させることで、接触面積を増加させ、なじみ効果を向上させることにより、安定した接合強度を得ることが可能である。なお、被接合部材110,120が異種材からなる場合、剛性が略同一であっても、肉厚が異なる場合もあり得る。   The rigidity (thickness) of the wall portions 116 and 126 of the members to be bonded 110 and 120 is substantially the same, and the length of the wall portion 116 of the member to be bonded 110 is longer than the length of the wall portion 126 of the member to be bonded 120. It is set small. Therefore, in the joining process, a part 112A of the base surface 112 of the member to be joined 110 that is separated from the pressing surface and the tip surface 124 of the member to be joined 120 are first (the tip surface 114 of the member to be joined 110 and the surface to be joined). Abutting with a part 122A of the base surface 122 of the joining member 120). This makes it possible to obtain a stable joint strength by increasing the contact area and improving the conforming effect by first wearing a part of the base surface that is difficult to be loaded (separated from the pressing surface). Is possible. In addition, when the to-be-joined members 110 and 120 consist of a dissimilar material, even if rigidity is substantially the same, thickness may differ.

次に、変形例1〜3を順次説明する。   Next, modified examples 1 to 3 will be described sequentially.

図8は、実施の形態2に係る変形例1を説明するための断面図である。   FIG. 8 is a cross-sectional view for explaining a first modification according to the second embodiment.

変形例1においては、加圧装置の加圧部182は、被接合部材110Aの基部面112の一部112Aの側に配置されており、加圧部182によって押圧されている被接合部材110における押圧面から押圧方向Pに伸ばした線上には、被接合部材110Aの基部面112の一部112Aが位置している。また、被接合部材110Aの壁部116の長さは、被接合部材120の壁部126の長さより大きく設定されている。   In the first modification, the pressurizing unit 182 of the pressurizing device is disposed on the side of the part 112A of the base surface 112 of the member to be joined 110A, and in the member to be joined 110 pressed by the pressurizing unit 182. A part 112A of the base surface 112 of the member to be bonded 110A is located on a line extending from the pressing surface in the pressing direction P. In addition, the length of the wall portion 116 of the member to be bonded 110 </ b> A is set to be larger than the length of the wall portion 126 of the member to be bonded 120.

したがって、接合工程においては、押圧面から離間している被接合部材110Aの先端面114と被接合部材120の基部面122の一部122Aとが、最初(被接合部材110Aの基部面112の一部112Aと被接合部材120の先端面124との当接より前)に当接する。これにより、加重がかかりづらい(押圧面から離間している)先端面を先に摩耗させることで、接触面積を増加させ、なじみ効果を向上させることにより、安定した接合強度を得ることが可能である。   Therefore, in the joining step, the tip surface 114 of the member to be joined 110A that is separated from the pressing surface and the part 122A of the base surface 122 of the member to be joined 120 are first (one of the base surfaces 112 of the member to be joined 110A). Abutting the portion 112A and the front end surface 124 of the member 120 to be joined. As a result, it is possible to obtain a stable joint strength by increasing the contact area and improving the conforming effect by first abrading the tip surface that is difficult to apply a load (separated from the pressing surface). is there.

図9は、実施の形態2に係る変形例2を説明するための断面図である。   FIG. 9 is a cross-sectional view for explaining a second modification according to the second embodiment.

変形例2においては、被接合部材110Bの壁部116の剛性と、被接合部材120の壁部126の剛性とは異なっており、被接合部材110Bの壁部116の剛性が、被接合部材120の壁部126の剛性より小さく設定されている。   In the second modification, the rigidity of the wall portion 116 of the member to be bonded 110B is different from the rigidity of the wall portion 126 of the member to be bonded 120, and the rigidity of the wall portion 116 of the member to be bonded 110B is different from the rigidity of the member to be bonded 120. The wall portion 126 is set to be smaller than the rigidity of the wall portion 126.

この場合、加圧装置の加圧部182は、被接合部材110Bの壁部116側に配置され、被接合部材110Bにおける押圧面から押圧方向Pに伸ばした線上に、先端面114が位置するように設定される。これにより、被接合部材120の壁部126に比較し、剛性が小さい被接合部材110Bの壁部116が、押圧面から押圧方向Pに伸ばした線上に位置するため、電流の偏在を抑制することができるため、均一に接合し、安定した接合強度を得ることが可能である。   In this case, the pressurizing unit 182 of the pressurizing device is disposed on the wall 116 side of the member to be joined 110B, and the tip end surface 114 is positioned on a line extending in the pressing direction P from the pressing surface of the member to be joined 110B. Set to Thereby, compared with the wall part 126 of the member 120 to be joined, since the wall part 116 of the to-be-joined member 110B with small rigidity is located on the line extended in the pressing direction P from the pressing surface, it suppresses uneven distribution of an electric current. Therefore, it is possible to bond uniformly and obtain a stable bonding strength.

図10は、実施の形態2に係る変形例3を説明するための断面図である。   FIG. 10 is a cross-sectional view for explaining a third modification according to the second embodiment.

変形例3においては、被接合部材120Aの壁部126の剛性が、被接合部材110の壁部116の剛性より小さく設定されている。この場合、加圧装置の加圧部182は、被接合部材110Bの基部面112の一部112A側に配置され、被接合部材110Bにおける押圧面から押圧方向Pに伸ばした線上に、基部面112の一部112Aが位置するように設定される。これにより、被接合部材110の壁部116に比較し、剛性が小さい被接合部材120Aの壁部126が、押圧面から押圧方向Pに伸ばした線上に位置するため、電流の偏在を抑制することができるため、均一に接合し、安定した接合強度を得ることが可能である。   In the third modification, the rigidity of the wall portion 126 of the member to be bonded 120 </ b> A is set smaller than the rigidity of the wall portion 116 of the member to be bonded 110. In this case, the pressurizing unit 182 of the pressurizing apparatus is disposed on the part 112A side of the base surface 112 of the member to be bonded 110B, and the base surface 112 is on a line extending in the pressing direction P from the pressing surface of the member to be bonded 110B. Is set so that a part 112A of the Thereby, compared with the wall part 116 of the to-be-joined member 110, since the wall part 126 of the to-be-joined member 120A with a small rigidity is located on the line extended in the pressing direction P from the press surface, it suppresses uneven distribution of an electric current. Therefore, it is possible to bond uniformly and obtain a stable bonding strength.

以上のように、実施の形態2においては、第1被接合部材の段状部位と第2被接合部材の段状部位とを組み合わせて、中空の接合部を形成することが可能である。   As described above, in the second embodiment, it is possible to form a hollow joint portion by combining the stepped portion of the first member to be joined and the stepped portion of the second member to be joined.

また、第1被接合部材の先端面が、第1被接合部材における押圧面から押圧方向に伸ばした線上に位置している場合、接合工程においては、押圧面から離間している第1被接合部材の基部面の一部と、第2被接合部材の先端面とが、最初に当接するように設定し、一方、第1被接合部材の基部面の一部が、第1被接合部材における押圧面から押圧方向に伸ばした線上に位置している場合、接合工程においては、押圧面から離間している第1被接合部材の先端面と、第2被接合部材の基部面の一部とが、最初に当接するように設定することにより、加重がかかりづらい(押圧面から離間している)方を先に摩耗させることで、接触面積を増加させ、なじみ効果を向上させることにより、安定した接合強度を得ることが可能である。   Moreover, when the front end surface of a 1st to-be-joined member is located on the line extended in the pressing direction from the pressing surface in a 1st to-be-joined member, in a joining process, the 1st to-be-joined part spaced apart from the pressing surface A part of the base surface of the member and the tip surface of the second member to be joined are set so as to contact each other first, while a part of the base surface of the first member to be joined is in the first member to be joined. When located on a line extending in the pressing direction from the pressing surface, in the bonding step, the tip surface of the first bonded member spaced from the pressing surface and a part of the base surface of the second bonded member However, it is stable by increasing the contact area and improving the conforming effect by first setting the contact so that it is difficult to apply a load (separate from the pressing surface). It is possible to obtain the obtained bonding strength.

第1被接合部材の壁部の剛性が、第2被接合部の壁部の剛性より小さい場合、第1被接合部材における押圧面から押圧方向に伸ばした線上に、第1被接合部材の先端面が配置され、第1被接合部材の壁部の剛性が、第2被接合部の壁部の剛性より大きい場合、第1被接合部材における押圧面から押圧方向に伸ばした線上に、第1被接合部材の基部面の一部が配置されるように設定することにより、第1および第2被接合部材の壁部における剛性が小さい方が、押圧面から押圧方向に伸ばした線上に位置することとなり、電流の偏在が抑制されるため、均一に接合し、安定した接合強度を得ることが可能である。   When the rigidity of the wall portion of the first bonded member is smaller than the rigidity of the wall portion of the second bonded portion, the tip of the first bonded member is on a line extending in the pressing direction from the pressing surface of the first bonded member. When the surface is disposed and the rigidity of the wall portion of the first member to be bonded is larger than the rigidity of the wall portion of the second member to be bonded, the first member extends on the line extending in the pressing direction from the pressing surface of the first member to be bonded. By setting so that a part of the base surface of the member to be joined is arranged, the smaller rigidity in the wall portion of the first and second members to be joined is located on a line extending in the pressing direction from the pressing surface. In other words, since uneven distribution of current is suppressed, it is possible to perform uniform bonding and obtain stable bonding strength.

本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲で種々改変することができる。例えば、実施の形態1、実施の形態1の変形例1および3において、中間部材を適宜省略することも可能である。また、実施の形態2、実施の形態2の変形例1〜3において、中間部材を、被接合部材の間に適宜配置することも可能である。   The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. For example, in the first embodiment and the first and third modifications of the first embodiment, the intermediate member can be omitted as appropriate. Further, in the second embodiment and the first to third modifications of the second embodiment, the intermediate member can be appropriately disposed between the members to be joined.

10,10A 被接合部材(第1被接合部材)、
12,14 傾斜面(接合領域)、
16 角部(接合領域)、
18 膨出部位(接合領域)、
20 被接合部材(第1被接合部材)、
22,24 傾斜面(接合領域)、
26 角部(接合領域)、
30,30A 中間部材、
32,34 傾斜面(接合領域)、
36 角部(接合領域)、
40 接合装置、
42 第1電極、
44 第2電極、
50 電流供給装置、
60 保持装置、
62 可動保持部、
64 固定保持部、
70 摺動装置、
72 シャフト、
74 モータ、
80 加圧装置、
82 加圧部、
84 支持構造体、
90 制御装置、
110,110A,110B 被接合部材(第1被接合部材)、
112 基部面、
112A 基部面の一部(接合領域)、
114 先端面(接合領域)、
116 壁部、
120,120A 被接合部材(第2被接合部材)、
122 基部面、
122A 基部面の一部(接合領域)、
124 先端面(接合領域)、
126 壁部、
182 加圧部、
H 水平方向、
L 上下方向、
P 押圧方向、
θ10 テーパ角、
θ20 テーパ角。
10, 10A member to be joined (first member to be joined),
12, 14 inclined surface (joining region),
16 corner (joining area),
18 bulge site (joining area),
20 member to be joined (first member to be joined),
22, 24 Inclined surface (joining region),
26 Corner (joining area),
30, 30A intermediate member,
32, 34 inclined surface (joining region),
36 corner (joining area),
40 joining device,
42 first electrode,
44 second electrode,
50 current supply device,
60 holding device,
62 movable holding part,
64 fixed holding part,
70 sliding device,
72 shaft,
74 motor,
80 pressure device,
82 pressurizing part,
84 support structure,
90 control device,
110, 110A, 110B Joined member (first joined member),
112 base surface,
112A A part of the base surface (joining region),
114 Tip surface (joining region),
116 walls,
120, 120A member to be joined (second member to be joined),
122 base surface,
122A A part of the base surface (joining region),
124 tip surface (joining region),
126 walls,
182 pressure part,
H horizontal direction,
L vertical direction,
P pressing direction,
θ 10 taper angle,
θ 20 taper angle.

Claims (10)

導電材料からなり、同一平面上にない複数の接合領域を有する第1および第2被接合部材を接合するための接合方法であって、
前記第1および第2被接合部材の前記接合領域を当接させ、前記第1および第2被接合部材を相対的に摺動させつつ、電流を、前記第1被接合部材から前記第2被接合部材へ流して抵抗加熱することによって、前記第1および第2被接合部材を接合する接合工程を有しており、
前記接合工程においては、前記接合領域が均一に接合するように、前記接合領域毎に当接させる優先順位が設定されており、
前記摺動は、一方向の振動によって発生され、
前記第1および第2被接合部材の前記接合領域は、前記一方向の振動を許容する形状を有し、
前記第1被接合部材は、前記接合領域に含まれる凸状部位を有し、
前記第2被接合部材は、前記凸状部位に対応し、かつ前記接合領域に含まれる凹状部位を有し、
前記接合工程においては、前記第1被接合部材の前記凸状部位と、前記第2被接合部材の前記凹状部位とが接合される
ことを特徴とする接合方法。
A joining method for joining first and second joined members made of a conductive material and having a plurality of joining regions not on the same plane,
While the first and second members to be joined are brought into contact with each other and the first and second members to be joined are relatively slid, current is passed from the first member to be joined to the second member to be joined. A joining step of joining the first and second joined members by flowing to the joining member and resistance heating;
In the joining step, a priority order to contact each joining region is set so that the joining regions are uniformly joined,
The sliding is generated by unidirectional vibration,
The joining region of the first and second joined members has a shape that allows vibration in the one direction;
The first member to be joined has a convex portion included in the joining region,
The second member to be joined has a concave part corresponding to the convex part and included in the joining region,
In the joining step, the convex portion of the first member to be joined and the concave portion of the second member to be joined are joined .
導電材料からなり、同一平面上にない複数の接合領域を有する第1および第2被接合部材を接合するための接合方法であって、A joining method for joining first and second joined members made of a conductive material and having a plurality of joining regions not on the same plane,
前記第1および第2被接合部材の前記接合領域を当接させ、前記第1および第2被接合部材を相対的に摺動させつつ、電流を、前記第1被接合部材から前記第2被接合部材へ流して抵抗加熱することによって、前記第1および第2被接合部材を接合する接合工程を有しており、While the first and second members to be joined are brought into contact with each other and the first and second members to be joined are relatively slid, current is passed from the first member to be joined to the second member to be joined. A joining step of joining the first and second joined members by flowing to the joining member and resistance heating;
前記接合工程においては、前記接合領域が均一に接合するように、前記接合領域毎に当接させる優先順位が設定されており、In the joining step, a priority order to contact each joining region is set so that the joining regions are uniformly joined,
前記摺動は、一方向の振動によって発生され、The sliding is generated by unidirectional vibration,
前記第1および第2被接合部材の前記接合領域は、前記一方向の振動を許容する形状を有し、The joining region of the first and second joined members has a shape that allows vibration in the one direction;
前記第1被接合部材は、第1の段差面である基部面と、第2の段差面である先端面と、前記基部面と前記先端面とを連結する壁部と、を有する段状部位を備えており、前記第1被接合部材の前記接合領域は、前記基部面の一部および前記先端面を含んでおり、The first member to be joined includes a base surface that is a first step surface, a tip surface that is a second step surface, and a wall portion that connects the base surface and the tip surface. The bonding region of the first member to be bonded includes a part of the base surface and the tip surface,
前記第2被接合部材は、第1の段差面である基部面と、第2の段差面である先端面と、前記基部面と前記先端面とを連結する壁部と、を有する段状部位を備えており、前記第2被接合部材の前記接合領域は、前記基部面の一部および前記先端面を含んでおり、The second member to be joined has a stepped portion having a base surface that is a first step surface, a tip surface that is a second step surface, and a wall portion that connects the base surface and the tip surface. And the joining region of the second joined member includes a part of the base surface and the tip surface,
前記接合工程においては、前記第1被接合部材の前記基部面の一部と前記第2被接合部材の前記先端面とが接合され、また、前記第1被接合部材の前記先端面と前記第2被接合部材の前記第1基部面の一部とが接合されるIn the joining step, a part of the base surface of the first member to be joined and the tip surface of the second member to be joined are joined, and the tip surface of the first member to be joined and the first 2 A part of the first base surface of the member to be joined is joined.
ことを特徴とする接合方法。The joining method characterized by the above-mentioned.
前記第1被接合部材の前記凸状部位は、前記振動の方向に関して断面がテーパ状であり、1対の傾斜面と、前記傾斜面を連結する角部と、を有し、
前記第2被接合部材の前記凹状部位は、前記振動の方向に関して断面がテーパ状の窪みからなり、前記傾斜面および前記角部に対応する1対の傾斜面および角部を有する
ことを特徴とする請求項に記載の接合方法。
The convex part of the first member to be joined has a tapered cross section with respect to the direction of vibration, and has a pair of inclined surfaces and a corner portion connecting the inclined surfaces,
The concave portion of the second member to be joined is a depression having a tapered cross section with respect to the direction of vibration, and has a pair of inclined surfaces and corner portions corresponding to the inclined surfaces and the corner portions. The joining method according to claim 1 .
前記凸状部位あるいは前記凹状部位の少なくとも一方における前記角部に、膨出部位が形成されており、
前記接合工程において、前記凸状部位の前記角部と前記凹状部位の前記角部との当接は、前記凸状部位の前記傾斜面と前記凹状部位の前記傾斜面との当接より、前である
ことを特徴とする請求項に記載の接合方法。
A bulging portion is formed at the corner in at least one of the convex portion or the concave portion,
In the joining step, the contact between the corner portion of the convex portion and the corner portion of the concave portion is before the contact between the inclined surface of the convex portion and the inclined surface of the concave portion. It is these. The joining method of Claim 3 characterized by the above-mentioned.
前記凸状部位のテーパ角は、前記凹状部位のテーパ角より小さく、
前記接合工程において、前記凸状部位の前記角部と前記凹状部位の前記角部との当接は、前記凸状部位の前記傾斜面と前記凹状部位の前記傾斜面との当接より、前である
ことを特徴とする請求項に記載の接合方法。
The taper angle of the convex part is smaller than the taper angle of the concave part,
In the joining step, the contact between the corner portion of the convex portion and the corner portion of the concave portion is before the contact between the inclined surface of the convex portion and the inclined surface of the concave portion. It is these. The joining method of Claim 3 characterized by the above-mentioned.
前記第1および第2被接合部材の間には、前記第1および第2被接合部材の少なくとも一方を構成する導電材料より低融点の導電材料からなる中間部材が配置されており、
前記中間部材は、前記第1被接合部材の前記凸状部位の前記傾斜面および前記角部に対応する1対の傾斜面および角部を有し、
前記中間部材の前記角部における肉厚は、前記中間部材の前記傾斜面における肉厚より大きく、
前記接合工程において、前記中間部材の前記角部を介する前記凸状部位の前記角部と前記凹状部位の前記角部と当接は、前記中間部材の前記傾斜面を介する前記凸状部位の前記傾斜面と前記凹状部位の前記傾斜面との当接より、前である
ことを特徴とする請求項に記載の接合方法。
An intermediate member made of a conductive material having a melting point lower than that of the conductive material constituting at least one of the first and second bonded members is disposed between the first and second bonded members,
The intermediate member has a pair of inclined surfaces and corners corresponding to the inclined surfaces and the corners of the convex portion of the first joined member,
The wall thickness at the corner of the intermediate member is greater than the wall thickness at the inclined surface of the intermediate member,
In the joining step, the contact of the corner portion of the convex portion through the corner portion of the intermediate member and the corner portion of the concave portion is caused by the contact of the convex portion through the inclined surface of the intermediate member. The joining method according to claim 3 , which is before the contact between the inclined surface and the inclined surface of the concave portion.
前記第1被接合部材は、押圧手段により前記第2被接合部材に対して押圧され、
前記凸状部位の前記角部は、前記第1被接合部材における押圧面から押圧方向に伸ばした線上に位置している
ことを特徴とする請求項に記載の接合方法。
The first bonded member is pressed against the second bonded member by a pressing means,
The said corner | angular part of the said convex-shaped part is located on the line extended in the pressing direction from the pressing surface in a said 1st to-be-joined member. The joining method of Claim 3 characterized by the above-mentioned.
前記第1および第2被接合部材の間には、前記第1および第2被接合部材の少なくとも一方を構成する導電材料より低融点の導電材料からなる中間部材が配置されており、
前記中間部材は、前記凸状部位の前記傾斜面および前記角部に対応する1対の傾斜面および角部を有し、前記第2被接合部材に対して重力方向に関し上方に配置されている
ことを特徴とする請求項に記載の接合方法。
An intermediate member made of a conductive material having a melting point lower than that of the conductive material constituting at least one of the first and second bonded members is disposed between the first and second bonded members,
The intermediate member has a pair of inclined surfaces and corners corresponding to the inclined surfaces and the corners of the convex portion, and is disposed above in the direction of gravity with respect to the second joined member. The joining method according to claim 3 .
前記第1被接合部材は、押圧手段により前記第2被接合部材に対して押圧され、
前記第1被接合部材の前記先端面が、前記第1被接合部材における押圧面から押圧方向に伸ばした線上に位置している場合、前記接合工程において、前記押圧面から離間している前記第1被接合部材の前記基部面の一部と前記第2被接合部材の前記先端面との当接は、前記第1被接合部材の前記先端面と前記第2被接合部材の前記基部面の一部との当接より、前であり、
前記第1被接合部材の前記基部面の一部が、前記第1被接合部材における押圧面から押圧方向に伸ばした線上に位置している場合、前記接合工程において、前記押圧面から離間している前記第1被接合部材の前記先端面と前記第2被接合部材の前記基部面の一部との当接は、前記第1被接合部材の前記基部面の一部と前記第2被接合部材の前記先端面との当接より、前である
ことを特徴とする請求項に記載の接合方法。
The first bonded member is pressed against the second bonded member by a pressing means,
When the front end surface of the first member to be bonded is located on a line extending in the pressing direction from the pressing surface of the first member to be bonded, the first member that is separated from the pressing surface in the bonding step. The contact between the part of the base surface of the 1-to-be-joined member and the tip surface of the 2nd to-be-joined member is such that It is before contact with a part,
When a part of the base surface of the first member to be bonded is located on a line extending in the pressing direction from the pressing surface of the first member to be bonded, in the bonding step, the base surface is separated from the pressing surface. The contact between the tip surface of the first member to be bonded and the part of the base surface of the second member to be bonded is a part of the base surface of the first member to be bonded to the second member to be bonded. The joining method according to claim 2 , wherein the joining method is before contact with the tip surface of the member.
前記第1被接合部材は、押圧手段により前記第2被接合部材に対して押圧され、
前記第1被接合部材の前記壁部の剛性と、前記第2被接合部の前記壁部の剛性とは異なっており、
前記第1被接合部材の前記壁部の剛性が、前記第2被接合部の前記壁部の剛性より小さい場合、前記第1被接合部材における押圧面から押圧方向に伸ばした線上に、前記第1被接合部材の前記先端面が配置され、
前記第1被接合部材の前記壁部の剛性が、前記第2被接合部の前記壁部の剛性より大きい場合、前記第1被接合部材における押圧面から押圧方向に伸ばした線上に、前記第1被接合部材の前記基部面の一部が配置される
ことを特徴とする請求項に記載の接合方法。
The first bonded member is pressed against the second bonded member by a pressing means,
The rigidity of the wall portion of the first bonded member is different from the rigidity of the wall portion of the second bonded portion,
When the rigidity of the wall part of the first member to be joined is smaller than the rigidity of the wall part of the second member to be joined, the first member to be joined is formed on a line extending in the pressing direction from the pressing surface of the first member to be joined. 1 the front end surface of the member to be joined is disposed;
When the rigidity of the wall portion of the first member to be bonded is larger than the rigidity of the wall portion of the second member to be bonded, the first member is joined to a line extending in the pressing direction from the pressing surface of the first member to be bonded. The joining method according to claim 2 , wherein a part of the base surface of one member to be joined is disposed.
JP2010279805A 2010-12-15 2010-12-15 Conductive material joining method Expired - Fee Related JP5786328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010279805A JP5786328B2 (en) 2010-12-15 2010-12-15 Conductive material joining method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010279805A JP5786328B2 (en) 2010-12-15 2010-12-15 Conductive material joining method

Publications (2)

Publication Number Publication Date
JP2012125803A JP2012125803A (en) 2012-07-05
JP5786328B2 true JP5786328B2 (en) 2015-09-30

Family

ID=46643462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010279805A Expired - Fee Related JP5786328B2 (en) 2010-12-15 2010-12-15 Conductive material joining method

Country Status (1)

Country Link
JP (1) JP5786328B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5879771B2 (en) * 2011-06-27 2016-03-08 日産自動車株式会社 Metal bonding method
WO2016166842A1 (en) * 2015-04-15 2016-10-20 株式会社小松製作所 Method for producing metal member

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58100989A (en) * 1981-12-09 1983-06-15 Toshiba Corp Ultrasonic welding method
DE4001367A1 (en) * 1990-01-18 1991-09-19 Branson Ultraschall DEVICE FOR SETTING A MACHINE PARAMETER IN FRICTION WELDING
JPH07282675A (en) * 1994-04-13 1995-10-27 Anden Kk Rotary type contact jointing method
US6779708B2 (en) * 2002-12-13 2004-08-24 The Boeing Company Joining structural members by friction welding

Also Published As

Publication number Publication date
JP2012125803A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5786866B2 (en) Conductive material assembly
US20130255619A1 (en) Bonding method and members to be bonded
JPH11285842A (en) Joined metal member and joining method of its member
JP2009202212A (en) Method and apparatus for joining different kinds of material
JP2001340972A (en) Projection welding method for high carbon steel material and high tensile strength low alloy steel material
JPH09122924A (en) Resistance joining method between different materials
JP5786328B2 (en) Conductive material joining method
JP2011088197A (en) Different material joined body and different material resistance spot welding method
JP7353329B2 (en) Welding device and method for friction stir welding and resistance welding
JP5740958B2 (en) Joining method and member to be joined
JP2007289988A (en) Friction stir welding method
JP5771974B2 (en) Joining method
CN112317947A (en) Continuous driving friction welding method for aluminum bar and steel bar with outer conical end face
JP5740960B2 (en) Joining method and joining apparatus
JP2004098107A (en) Aluminum material resistance spot welding method
JP2002035955A (en) Manufacturing method for aluminum alloy composite member by electrified joint
KR102071223B1 (en) Welding method and apparatus for dissimilar metals
KR20090067434A (en) Apparatus for spot welding
JP5740959B2 (en) Joining method and joining apparatus
JP7433663B2 (en) Dissimilar material solid phase joining method, dissimilar material solid phase joining structure, and dissimilar material solid phase joining device
JP5760421B2 (en) Joining method and joining apparatus
JP2014166646A (en) Solid-phase welding method for metal workpiece
JP5853364B2 (en) Joining method and joining device
JP4453506B2 (en) Friction spot welding method
JP6868885B2 (en) Joining device, joining method using it, and manufacturing method of joined body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150713

R151 Written notification of patent or utility model registration

Ref document number: 5786328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees