JP5785816B2 - Water treatment process controller - Google Patents

Water treatment process controller Download PDF

Info

Publication number
JP5785816B2
JP5785816B2 JP2011180107A JP2011180107A JP5785816B2 JP 5785816 B2 JP5785816 B2 JP 5785816B2 JP 2011180107 A JP2011180107 A JP 2011180107A JP 2011180107 A JP2011180107 A JP 2011180107A JP 5785816 B2 JP5785816 B2 JP 5785816B2
Authority
JP
Japan
Prior art keywords
nitrification
value
target value
water
aerobic tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011180107A
Other languages
Japanese (ja)
Other versions
JP2013043100A (en
Inventor
一郎 山野井
一郎 山野井
剛 武本
剛 武本
伊智朗 圓佛
伊智朗 圓佛
田所 秀之
秀之 田所
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2011180107A priority Critical patent/JP5785816B2/en
Publication of JP2013043100A publication Critical patent/JP2013043100A/en
Application granted granted Critical
Publication of JP5785816B2 publication Critical patent/JP5785816B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Description

本発明は、下水処理場の処理水の水質や温室効果ガス排出量を制御する水処理プロセス制御装置に関する。   The present invention relates to a water treatment process control device for controlling the quality of treated water and greenhouse gas emissions at a sewage treatment plant.

環境問題への対応が必須となった昨今、下水処理場においても、公共水域へ放流する処理水の水質向上の他に、温室効果ガス削減への取り組みが推進されている。   In recent years when it has become necessary to deal with environmental problems, sewage treatment plants have been promoting efforts to reduce greenhouse gases in addition to improving the quality of treated water discharged into public water bodies.

下水処理場から放出される温室効果ガスには、電力消費に由来するCO2や一酸化二窒素(N2O)がある。水処理過程で放出されるN2Oは、下水処理場全体の温室効果ガスの約9%を占める。したがって、下水処理場では、処理水水質の向上と電力低減に加えて、N2Oガスを低減する運転が求められており、実現できる制御手法の開発が望まれている。 Greenhouse gases emitted from sewage treatment plants include CO 2 and dinitrogen monoxide (N 2 O) derived from power consumption. N 2 O released in the water treatment process accounts for about 9% of the greenhouse gas in the entire sewage treatment plant. Therefore, in the sewage treatment plant, in addition to improving the quality of treated water and reducing electric power, operation for reducing N 2 O gas is required, and development of a control method that can be realized is desired.

処理水水質の向上を低電力で実現することを目的として、様々な制御指標が用いられてきた。一般的な制御指標として、安価な測定器で計測可能な溶存酸素濃度(DO)や酸化還元電位(ORP)がある。DOを制御指標として用いる場合、例えば、好気槽末端のDOを一定以上に保つことで、微生物の活性を維持し、有機物・りん除去や硝化反応を制御する。ORPは嫌気状態の保持に関する制御指標として、一定値以下に管理してりん除去を適正化する目的で使われることが多い。   Various control indexes have been used for the purpose of realizing improved quality of treated water with low power. As a general control index, there are a dissolved oxygen concentration (DO) and an oxidation-reduction potential (ORP) that can be measured with an inexpensive measuring instrument. When using DO as a control index, for example, by maintaining DO at the end of the aerobic tank at a certain level or more, the activity of microorganisms is maintained, and organic matter / phosphorus removal and nitrification reaction are controlled. ORP is often used as a control index for maintaining an anaerobic state in order to manage phosphorus below a certain value and optimize phosphorus removal.

近年、水質をさらに高度に制御する技術開発が進められている。例えば、〔非特許文献1〕に記載のように、嫌気槽、無酸素槽、好気槽のORP値を制御して窒素・りん除去を管理する技術や、〔非特許文献2〕に記載のように、DO計に加えてアンモニア計を用いて硝化を高精度で制御し、電力低減を図る技術が提案されている。   In recent years, technological development to further control water quality has been advanced. For example, as described in [Non-Patent Document 1], a technique for controlling the ORP value of an anaerobic tank, an oxygen-free tank, and an aerobic tank to manage nitrogen / phosphorus removal, and [Non-Patent Document 2] As described above, a technique has been proposed in which nitrification is controlled with high accuracy using an ammonia meter in addition to a DO meter to reduce electric power.

水処理過程で放出されるN2Oは、生物反応槽において好気条件下で進行する硝化反応、無酸素条件で進行する脱窒反応の両過程で生成する。このうち、硝化反応は酸素存在下で進行する酸化反応で、まずアンモニア性窒素(以下、NH4 -N)が主にアンモニア酸化菌による働きで亜硝酸性窒素(以下、NO2 -N)に酸化され、さらに、亜硝酸酸化菌の働きにより硝酸性窒素(以下、NO3 -N)にまで酸化される。 N 2 O released in the water treatment process is generated in both the nitrification reaction that proceeds under aerobic conditions and the denitrification reaction that proceeds under anoxic conditions in the biological reaction tank. Among them, in nitrification reaction oxidation reaction proceeding in the presence of oxygen, first ammonia nitrogen (hereinafter, NH 4 - N) is mainly nitrite nitrogen by the action with ammonia-oxidizing bacteria (hereinafter, NO 2 - N) to is oxidized further, nitrate nitrogen by the action of nitrous acid oxidation bacteria (hereinafter, NO 3 - N) is oxidized to the.

その反応過程で、NO2 -Nの一部がアンモニア酸化菌の働きにより還元される際に副生成物としてN2Oが生成するというメカニズムが考えられている(〔非特許文献3〕参照)。 In the reaction process, NO 2 - mechanisms that part N 2 O is produced as a by-product as it is reduced by the action of ammonia oxidation bacteria N is considered (see [Non-Patent Document 3]) .

このN2Oは溶存態として生成するが、好気槽では曝気気泡のパージにより大気中に放出される。このメカニズムから、NO2 -Nが蓄積しやすいとN2Oガス放出量は増加する傾向があり、処理水のNO2 -N濃度と処理場から排出されるN2Oガス量には相関関係がある。 This N 2 O is generated in a dissolved state, but is released into the atmosphere by purging aerated bubbles in the aerobic tank. This mechanism, NO 2 - N tends to increase the N 2 O gas emissions easy storage, the treated water NO 2 - N concentration correlation N 2 O gas amount discharged from the treatment plant There is.

硝化工程におけるN2Oガス抑制制御技術には、〔特許文献1〕に記載のように、生物反応槽から発生するN2Oガスの濃度を直接測定して、供給する酸素の量を制御する方法がある。この方法では、N2Oガス濃度の上昇に基づき、供給する酸素の量を減少させることで、硝化反応の進行を抑制する。その結果、硝化反応の副生成物として生成する溶存N2OおよびN2Oガスの生成が抑制される。 In the N 2 O gas suppression control technology in the nitrification process, as described in [Patent Document 1], the concentration of N 2 O gas generated from the biological reaction tank is directly measured to control the amount of oxygen supplied. There is a way. In this method, the progress of the nitrification reaction is suppressed by reducing the amount of oxygen to be supplied based on the increase in the N 2 O gas concentration. As a result, the generation of dissolved N 2 O and N 2 O gas generated as a by-product of the nitrification reaction is suppressed.

特願2008−271664号公報Japanese Patent Application No. 2008-271664

三木理、加藤敏朗、高橋直哉、村上孝雄:高度処理プロセスのORPを用いた効率的制御手法の開発、学会誌「EICA」、Vol.11、No.2−3、pp.37−40(2006)Osamu Miki, Toshiro Kato, Naoya Takahashi, Takao Murakami: Development of efficient control method using ORP of advanced processing process, Journal of EICA, Vol.11, No.2-3, pp.37-40 (2006) ) 遠藤和広:アンモニア計とDO計を用いた送風量制御システムの開発、第47回下水道研究発表会講演集、pp.918−920(2010)Kazuhiro Endo: Development of air flow control system using ammonia meter and DO meter, 47th Sewerage Research Presentation, pp.918-920 (2010) 糸川ほか2名:間欠曝気を行うし尿処理施設における硝化・脱窒過程からの亜酸化窒素の発生と制御、環境工学研究論文集、第32巻、pp.311−319(1995)Itokawa et al .: Generation and control of nitrous oxide from nitrification and denitrification processes in a human waste treatment facility with intermittent aeration, Environmental Engineering Research Papers, Vol. 32, pp. 311-319 (1995)

〔非特許文献1〕および〔非特許文献2〕の方法は、処理水の水質を制御するものであり、N2Oガスの生成抑制は考慮されていないという課題があった。〔特許文献1〕の方法では、硝化反応を抑制することでN2Oガスの生成を低減する。すなわち、N2Oガスが増加した際に硝化反応が抑制されるため、処理水の水質の悪化が懸念されるといった課題があった。 The methods of [Non-Patent Document 1] and [Non-Patent Document 2] control the quality of treated water, and there is a problem that the suppression of N 2 O gas production is not considered. In the method of [Patent Document 1], the generation of N 2 O gas is reduced by suppressing the nitrification reaction. That is, since the nitrification reaction is suppressed when the N 2 O gas increases, there is a problem that the quality of the treated water may be deteriorated.

本発明の目的は、水処理プロセスでの処理水水質の維持と温室効果ガス低減を両立する制御を実施できる水処理プロセス制御装置を提供することにある。   The objective of this invention is providing the water treatment process control apparatus which can implement the control which makes compatible maintenance of the quality of treated water in a water treatment process, and greenhouse gas reduction.

上記目的を達成するために、本発明の水処理プロセス制御装置は、
水処理プロセスの被処理水の硝化度を推定する推定部と、前記硝化度の目標値を設定する目標値設定部と、前記水処理プロセスの好気槽に空気を送り込むブロワと、前記硝化度の推定値が前記目標値となるように、前記ブロワの風量を制御する制御部と、を備えた水処理プロセス制御装置において、前記硝化度を推定する手段として酸化還元電位計を備え、推定部の入力情報として少なくとも酸化還元電位を用いることを特徴とする。
In order to achieve the above object, the water treatment process control device of the present invention comprises:
An estimation unit that estimates the nitrification degree of water to be treated in a water treatment process, a target value setting unit that sets a target value of the nitrification degree, a blower that sends air into an aerobic tank of the water treatment process, and the nitrification degree A control unit for controlling the air volume of the blower so that the estimated value becomes the target value, and includes an oxidation-reduction potentiometer as means for estimating the nitrification degree, and an estimation unit As input information, at least a redox potential is used.

あるいは、前記目標値が、第一目標値と前記第一目標値より大きい第二目標値の少なくとも二つで、選択する制御モードに応じて、前記第一目標値あるいは前記第二目標値を前記硝化度の目標値とする目標値設定部と、を備えたことを特徴とする。   Alternatively, the target value is at least two of a first target value and a second target value larger than the first target value, and the first target value or the second target value is set according to a control mode to be selected. And a target value setting unit for setting the target value of the degree of nitrification.

あるいは、流入負荷推定部により推定された前記水処理プロセスへの流入負荷が、前記閾値より大きい場合に前記目標値を前記第一目標値とし、前記流入負荷が前記閾値以下の場合に前記目標値を前記第二目標値とすることを特徴とする。   Alternatively, when the inflow load to the water treatment process estimated by the inflow load estimation unit is larger than the threshold value, the target value is set as the first target value, and when the inflow load is less than the threshold value, the target value is set. Is the second target value.

あるいは、前記被処理水の硝化度が前記目標値より大きい場合は、前記硝化度が目標値に近づくように前記ブロワの風量を制御して、前記被処理水の硝化度が前記目標値以下の場合は、あらかじめ設定した制御ルールに基づいて前記ブロワの風量を制御することを特徴とする。   Alternatively, when the nitrification degree of the treated water is larger than the target value, the air volume of the blower is controlled so that the nitrification degree approaches the target value, and the nitrification degree of the treated water is equal to or less than the target value. In this case, the air volume of the blower is controlled based on a preset control rule.

あるいは、前記被処理水の硝化度が前記目標値より小さい場合は、前記硝化度が目標値となるように前記ブロワの風量を制御して、前記被処理水の硝化度が前記目標値以上の場合は、あらかじめ設定した制御ルールに基づいて前記ブロワの風量を制御することを特徴とする。   Alternatively, when the nitrification degree of the treated water is smaller than the target value, the air volume of the blower is controlled so that the nitrification degree becomes the target value, and the nitrification degree of the treated water is equal to or higher than the target value. In this case, the air volume of the blower is controlled based on a preset control rule.

あるいは、水処理プロセスの被処理水の硝化度を推定する推定部と、前記硝化度の目標値を設定する目標値設定部と、前記水処理プロセスの好気槽に空気を送り込むブロワと、前記硝化度の推定値が前記目標値となるように、前記ブロワの風量を制御する制御部と、を備えた水処理プロセス制御装置において、前記被処理水の硝化度が前記目標値より大きい場合は、前記硝化度が目標値となるように前記ブロワの風量を制御して、前記被処理水の硝化度が前記目標値以下の場合は、あらかじめ設定した制御ルールに基づいて前記ブロワの風量を制御する制御部と、を備えたことを特徴とする。   Alternatively, an estimation unit that estimates a nitrification degree of water to be treated in a water treatment process, a target value setting unit that sets a target value of the nitrification degree, a blower that sends air into an aerobic tank of the water treatment process, A control unit that controls the air volume of the blower so that the estimated value of the nitrification level becomes the target value, and when the nitrification level of the water to be treated is larger than the target value, The blower air volume is controlled so that the nitrification degree becomes a target value. When the nitrification degree of the treated water is equal to or less than the target value, the blower air volume is controlled based on a preset control rule. And a control unit.

あるいは、水処理プロセスの被処理水の硝化度を推定する推定部と、前記硝化度の目標値を設定する目標値設定部と、前記水処理プロセスの好気槽に空気を送り込むブロワと、前記硝化度の推定値が前記目標値となるように、前記ブロワの風量を制御する制御部と、を備えた水処理プロセス制御装置において、前記被処理水の硝化度が前記目標値より小さい場合は、前記硝化度が目標値となるように前記ブロワの風量を制御して、前記被処理水の硝化度が前記目標値以上の場合は、あらかじめ設定した制御ルールに基づいて前記ブロワの風量を制御する制御部と、を備えたことを特徴とする。   Alternatively, an estimation unit that estimates a nitrification degree of water to be treated in a water treatment process, a target value setting unit that sets a target value of the nitrification degree, a blower that sends air into an aerobic tank of the water treatment process, A control unit that controls the air volume of the blower so that the estimated value of the nitrification level becomes the target value, and when the nitrification level of the water to be treated is smaller than the target value, The blower air volume is controlled so that the nitrification degree becomes a target value. When the nitrification degree of the treated water is equal to or higher than the target value, the blower air volume is controlled based on a preset control rule. And a control unit.

あるいは、前記水処理プロセスの被処理水の硝化度を推定する推定部への入力がアンモニア計であることを特徴とする。   Or the input to the estimation part which estimates the nitrification degree of the to-be-processed water of the said water treatment process is an ammonia meter, It is characterized by the above-mentioned.

あるいは、前記水処理プロセスの被処理水の硝化度を推定する推定部への入力が硝酸計であることを特徴とする。   Or the input to the estimation part which estimates the nitrification degree of the to-be-processed water of the said water treatment process is a nitric acid meter, It is characterized by the above-mentioned.

あるいは、前記硝化度から推定された一酸化二窒素量と前記ブロワの消費電力量とを表示する表示部と、を備えたことを特徴とする。   Alternatively, a display unit that displays the amount of dinitrogen monoxide estimated from the nitrification degree and the power consumption of the blower is provided.

あるいは、前記水処理プロセスの被処理水の亜酸化窒素量を取得する亜酸化窒素量取得部と、前記亜酸化窒素濃度から前記一酸化窒素量を推定する一酸化窒素量推定部と、を備えたことを特徴とする。   Alternatively, a nitrous oxide amount acquisition unit that acquires the amount of nitrous oxide in water to be treated in the water treatment process, and a nitric oxide amount estimation unit that estimates the amount of nitric oxide from the nitrous oxide concentration. It is characterized by that.

本発明によれば、水処理プロセスでの処理水水質の維持と温室効果ガス低減を両立する制御を実施できる。   ADVANTAGE OF THE INVENTION According to this invention, the control which makes compatible the maintenance of the quality of treated water in a water treatment process, and greenhouse gas reduction can be implemented.

実施例1の水処理プロセス制御装置の構成図。The block diagram of the water treatment process control apparatus of Example 1. FIG. 酸化還元電位(ORP)と硝化率の関係を表すグラフ。The graph showing the relationship between oxidation-reduction potential (ORP) and nitrification rate. 硝化率と平均N2Oガス放出速度の関係を表すグラフ。Graph showing the average N 2 O gas release rate relationship between nitrification rate. 実施例1の表示画面例。4 is a display screen example of the first embodiment. 実施例1の制御による酸化還元電位の時間履歴を表すグラフ。3 is a graph showing a time history of oxidation-reduction potentials under the control of Example 1. FIG. 実施例2の水処理プロセス制御装置の構成図。The block diagram of the water treatment process control apparatus of Example 2. FIG. 実施例2の制御フローチャート。7 is a control flowchart according to the second embodiment. 実施例2の制御による酸化還元電位の時間履歴を表すグラフ。6 is a graph showing a time history of an oxidation-reduction potential under the control of Example 2. 実施例3の水処理プロセス制御装置の構成図。The block diagram of the water treatment process control apparatus of Example 3. FIG. 実施例3の制御フローチャート。10 is a control flowchart of Embodiment 3. 実施例3の表示画面例。10 is a display screen example of the third embodiment. 実施例3の制御による酸化還元電位の時間履歴を表すグラフ。10 is a graph showing a time history of the oxidation-reduction potential under the control of Example 3. 硝化促進モード時のDO制御とORP制御を組み合わせた際の酸化還元電位の時間履歴を表すグラフ。The graph showing the time history of the oxidation-reduction potential at the time of combining DO control and ORP control at the time of nitrification promotion mode.

本発明の各実施例について図面を用いて説明する。   Embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施例1である水処理プロセス制御装置の構成図である。本実施例は、標準活性汚泥法に水処理プロセス制御装置を適用した例で、活性汚泥により下水を処理する好気槽1の処理を制御する。   FIG. 1 is a configuration diagram of a water treatment process control apparatus that is Embodiment 1 of the present invention. This embodiment is an example in which a water treatment process control device is applied to a standard activated sludge method, and controls the treatment of the aerobic tank 1 for treating sewage with activated sludge.

好気槽1には、空気を供給するブロワ2と、好気槽1の底部に設置されブロワ2から供給される空気を散気する散気管3と、好気槽1での被処理水の酸化還元電位を計測する酸化還元電位計4が設置されている。好気槽1に下水100が流入し、沈殿池5で固液分離され、上澄み液が処理水101として流出する。   The aerobic tank 1 includes a blower 2 for supplying air, an air diffuser 3 installed at the bottom of the aerobic tank 1 to diffuse air supplied from the blower 2, and water to be treated in the aerobic tank 1. An oxidation-reduction potentiometer 4 for measuring the oxidation-reduction potential is installed. Sewage 100 flows into the aerobic tank 1 and is separated into solid and liquid in the sedimentation basin 5, and the supernatant liquid flows out as treated water 101.

酸化還元電位計4に接続された推定部10は、酸化還元電位計4における計測値を取得し、硝化度を演算する。制御部11では、推定部10より推定された硝化度が、目標値設定部12で設定された目標硝化度となるように、ブロワ2を制御する。表示部13では、酸化還元電位計4の計測値とそれに対応する硝化度と、目標値設定部12で設定した目標硝化度とそれに対応する酸化還元電位値を表示する。   The estimation unit 10 connected to the oxidation-reduction potentiometer 4 acquires the measurement value in the oxidation-reduction potentiometer 4 and calculates the nitrification degree. The control unit 11 controls the blower 2 so that the nitrification degree estimated by the estimation unit 10 becomes the target nitrification degree set by the target value setting unit 12. The display unit 13 displays the measurement value of the oxidation-reduction potentiometer 4 and the corresponding nitrification degree, the target nitrification degree set by the target value setting unit 12 and the corresponding oxidation-reduction potential value.

本実施例では、硝化の進行を表す指標として硝化率を用いた。硝化率は、一般的には処理水の硝酸性窒素と脱窒により除去される窒素の合計と流入水の全窒素濃度の比率で定義されるが、本実施例では、各好気槽での硝化反応の進行状態を評価するため、好気槽中のNO3 -N濃度[mgN/L]とNH4 -N濃度[mgN/L]の和に占める、NO3 -N濃度の比率を硝化率[%]と定義した。定義式を数1に示す。 In this example, the nitrification rate was used as an index representing the progress of nitrification. The nitrification rate is generally defined as the ratio of the nitrate nitrogen of the treated water and the nitrogen removed by denitrification to the total nitrogen concentration of the influent water, but in this example, in each aerobic tank to assess the progress of the nitrification, NO 3 aerobic tank - N concentration [mgN / L] and NH 4 - occupying the sum of the N concentration [mgN / L], NO 3 - N nitrification ratio of concentration The rate was defined as [%]. The definition formula is shown in Equation 1.

他の窒素態成分として、有機性窒素や亜硝酸性窒素などがあるが、ここでは実用的な観点から、主要成分のアンモニア性窒素と硝酸性窒素のみを考慮した。   Other nitrogen components include organic nitrogen and nitrite nitrogen, but here, from a practical point of view, only the main components ammonia nitrogen and nitrate nitrogen were considered.

発明者は、この硝化率とORPの関係を実験により見出した。結果を図2に示す。図2示す結果は、好気槽末端での計測値である。図2から分かるように、誤差はあるが、硝化率はORPに対して一意的に決まるとみなすことができ、硝化率をORPにより推定可能と考えられる。   The inventor found the relationship between the nitrification rate and the ORP through experiments. The results are shown in FIG. The results shown in FIG. 2 are measured values at the end of the aerobic tank. As can be seen from FIG. 2, although there is an error, it can be considered that the nitrification rate is uniquely determined for the ORP, and the nitrification rate can be estimated by the ORP.

ORPはNernstの式によって定義されており、酸化体と還元体の濃度によって算出することができる。算出式を数2に示す。   The ORP is defined by the Nernst equation and can be calculated by the concentration of the oxidant and the reductant. The calculation formula is shown in Formula 2.

ここでOxは酸化体物質、Redは還元体物質で、m、nは平衡式における係数を表す。また、Eh[V]:電極電位、E0[V]:標準電極電位、R[J/(K・mol)]:気体定数、T[K]:絶対温度、n[mol]:酸化還元反応において授受される電子数、F[C/mol]:ファラデー定数である。活性汚泥混合液中に含まれる酸化還元物質のうち、硝化反応ではNO3−NがNH4−Nに酸化される反応が主反応で、他の物質の濃度は一定と仮定すると、ORP値は、log([NO3−N]/[NH4−N])の一次式で表される。これより、数1の硝化率[%]は、数3で表される。 Here, Ox is an oxidant substance, Red is a reductant substance, and m and n are coefficients in an equilibrium equation. E h [V]: Electrode potential, E 0 [V]: Standard electrode potential, R [J / (K · mol)]: Gas constant, T [K]: Absolute temperature, n [mol]: Redox Number of electrons exchanged in the reaction, F [C / mol]: Faraday constant. Of the oxidation-reduction substances contained in the activated sludge mixture, in the nitrification reaction, the reaction in which NO 3 —N is oxidized to NH 4 —N is the main reaction, and assuming that the concentration of other substances is constant, the ORP value is , Log ([NO 3 —N] / [NH 4 —N]). Accordingly, the nitrification rate [%] of Equation 1 is expressed by Equation 3.

ここで、A、Bは硝化率の推定に用いた係数で、ORP[mV]は実測値である。この実験結果では、A=−0.013、B=0.94となり、相関係数0.95とよい近似となった。他の実験では異なる係数値となったが、相関係数は同程度であった。計数値の違いには、活性汚泥菌叢や、水温や、水温等の影響による活性汚泥の活性の違いが影響していると考えられる。これらの影響を考慮した推定式の作成は今後の課題であるが、実用上は、対象とする下水処理場毎に計数値を取得し、処理状況が水温等の影響で大きく変化した際に校正することで対応できる。   Here, A and B are coefficients used for estimating the nitrification rate, and ORP [mV] is an actual measurement value. In this experimental result, A = −0.013 and B = 0.94, which is a good approximation with a correlation coefficient of 0.95. In other experiments, the coefficient values were different, but the correlation coefficients were similar. It is considered that the difference in the count value is influenced by the activated sludge flora, the water temperature, the difference in the activity of the activated sludge due to the influence of the water temperature and the like. The creation of an estimation formula that takes these effects into consideration is an issue for the future, but in practice, a count value is obtained for each target sewage treatment plant, and calibration is performed when the treatment status changes greatly due to the influence of water temperature, etc. It can respond by doing.

以上説明したように、好気槽に設置したORP計でその好気槽の硝化率を演算できることが分かった。ここで、硝化率は好気槽末端の値であるが、沈殿池においては硝化が進行しないため、処理水の硝化率と同程度とみなせる。また、好気槽の上流側においても、計測点以降の硝化を考慮した関数などにより同様に処理水の硝化率の推定が可能である。計測点以降の硝化を考慮した関数には、例えば、処理水硝化率=C×計測硝化率+Dなどがある。   As described above, it was found that the nitrification rate of the aerobic tank can be calculated with an ORP meter installed in the aerobic tank. Here, the nitrification rate is a value at the end of the aerobic tank, but since nitrification does not proceed in the sedimentation basin, it can be regarded as the nitrification rate of treated water. In addition, the nitrification rate of the treated water can be similarly estimated on the upstream side of the aerobic tank using a function that considers nitrification after the measurement point. Examples of the function considering nitrification after the measurement point include treated water nitrification rate = C × measured nitrification rate + D.

発明者は、この硝化率と好気槽から大気中に放出されるN2Oガス量の関係を、実験により見出した。結果を図3に示す。ここで、平均N2Oガス放出速度[mgN/(m3・h)]は、単位活性汚泥懸濁液体積から放出されるN2Oガス放出速度で、採取した気体中に含まれるN2Oガス濃度[mgN/m3(gas)]と送気量[m3(gas)/h]と好気槽体積[m3]から算出した。これより、平均N2Oガス放出速度は硝化率に対して極大値を持つ傾向が示された。 The inventor found through experiments the relationship between this nitrification rate and the amount of N 2 O gas released from the aerobic tank into the atmosphere. The results are shown in FIG. Here, the average N 2 O gas release rate [mgN / (m 3 · h)] is the N 2 O gas release rate released from the unit activated sludge suspension volume, and N 2 contained in the collected gas. O gas concentration was calculated from [mgN / m 3 (gas) ] and feed amount [m 3 (gas) / h ] and aerobic tank volume [m 3]. Thus, the average N 2 O gas release rate tended to have a maximum value with respect to the nitrification rate.

硝化がある程度以上促進されると、平均N2Oガス放出速度は低減したが、DOが増大した。DOの増大は、酸素を消費するNH4 -Nや有機物が生物反応の進行にともない減少したためと考えられる。N2Oの生成は、高いDOで抑制されるとされているが、これはNO3 -N、NO2 -NからN2Oへの還元反応が低いDOでは局所的に生じることに対して、高いDOでは速やかに酸化反応が進行するため、溶存N2Oが蓄積しない可能性が考えられる。 When nitrification was promoted to some extent, the average N 2 O gas release rate decreased, but DO increased. Increase in DO is, NH 4 consumes oxygen - N and organic matter is considered to be due to decreased with the progress of the biological reaction. Generation of N 2 O has been to be suppressed at a high DO, which NO 3 - N, NO 2 - with respect to the reduction reaction to N 2 O is produced lower the DO locally from N Since the oxidation reaction proceeds rapidly at high DO, there is a possibility that dissolved N 2 O will not accumulate.

以上の説明のように、活性汚泥処理において、硝化率に対してN2Oガス放出量が極大値を持ち、その硝化率は好気槽のORP計で推定できることが明らかとなり、硝化を適正に制御することで温室効果ガスを低減できることが分かった。 As described above, in activated sludge treatment, it has become clear that the amount of N 2 O gas released has a maximum value with respect to the nitrification rate, and that the nitrification rate can be estimated with an ORP meter in the aerobic tank. It was found that greenhouse gas can be reduced by controlling.

下水処理場の運用では、状況に応じて求める水質が異なり、硝化抑制運転とする場合もあれば、硝化促進運転とする場合もある。水質維持とN2Oガス低減を両立するためには、図3の結果から分かるように、硝化抑制時はN2O放出量が大きくなる領域の硝化率より小さな硝化率を目標とし、硝化促進時はN2O放出量が大きくなる領域の硝化率より大きな硝化率を目標とすればよい。 In the operation of a sewage treatment plant, the required water quality differs depending on the situation, and there are cases where a nitrification suppression operation is performed or a nitrification promotion operation is performed. In order to achieve both water quality maintenance and N 2 O gas reduction, as can be seen from the results in FIG. 3, nitrification is promoted by targeting a nitrification rate smaller than the nitrification rate in the region where the amount of N 2 O emission is large when suppressing nitrification. In some cases, a nitrification rate larger than the nitrification rate in a region where the amount of N 2 O released becomes large may be targeted.

表示部13に表示する画面例を図4に示す。この例では、画面の上部に、計測した酸化還元電位値とそれと対応する硝化率が表示される。この例では、画面中の中段には目標値設定部12が表示され、制御モードとして硝化抑制モードと硝化促進モードを選択できる。また、目標酸化還元電位を入力でき、硝化度の目標値として、それに対応する目標硝化率が表示される。あるいは、目標硝化率を入力することで、それに対応する目標酸化還元電位が表示される。   An example of a screen displayed on the display unit 13 is shown in FIG. In this example, the measured oxidation-reduction potential value and the corresponding nitrification rate are displayed at the top of the screen. In this example, the target value setting unit 12 is displayed in the middle of the screen, and the nitrification suppression mode and the nitrification promotion mode can be selected as the control mode. Further, a target oxidation-reduction potential can be input, and a target nitrification rate corresponding to the target nitrification degree value is displayed. Alternatively, by inputting the target nitrification rate, the corresponding target oxidation-reduction potential is displayed.

このように、処理対象である硝化率の目標値と、計測値である酸化還元電位の目標値を並べて表示することで、処理目標と制御目標を容易に把握でき、適切な運転方法を導出する上での支援情報となる。温室効果ガスとして、ブロワの電力に由来するCO2排出量とN2Oガスを換算したCO2排出量を示した。ブロワの電力に由来するCO2排出量は、ブロワの消費電力に、消費電力に対するCO2排出量の原単位を乗じることで算出できる。
2Oガス排出量は、推定した硝化率を図3に示す関係に適用することで推定でき、CO2排出量は、N2Oの温室効果係数を乗じることで算出できる。
In this way, by displaying the target value of the nitrification rate that is the processing target and the target value of the oxidation-reduction potential that is the measured value side by side, the processing target and the control target can be easily grasped, and an appropriate operation method is derived. It becomes support information in the above. Greenhouse gases showed CO 2 emissions in terms of CO 2 emissions and N 2 O gas from the power of the blower. The CO 2 emission amount derived from the power of the blower can be calculated by multiplying the power consumption of the blower by the basic unit of the CO 2 emission amount with respect to the power consumption.
The N 2 O gas emission can be estimated by applying the estimated nitrification rate to the relationship shown in FIG. 3, and the CO 2 emission can be calculated by multiplying the N 2 O greenhouse effect coefficient.

図3に示す関係、すなわち平均N2Oガス放出速度は硝化率に対して極大値を持つ傾向は定性的には成立するが、定量的には変動する。N2Oガスの排出量は、処理水のNO2濃度と相関があることから、処理水のNO2濃度を計測して、その計測値から、例えば比例定数や関数形を決めて、N2Oガスの排出量を概算することができる。処理水のNO2濃度は日単位程度では大きく変化しないため、定期的に計測した値を用いても良い。このように、トレードオフの関係にある処理水の硝化率と温室効果ガス排出量の表示は、最適な運転方法を導出する上での支援情報となる。 The relationship shown in FIG. 3, that is, the average N 2 O gas release rate, has a qualitative tendency to have a maximum value with respect to the nitrification rate, but varies quantitatively. Emissions of N 2 O gas, since it is correlated with the NO 2 concentration in the treated water, by measuring the NO 2 concentration in the treated water, from the measured value, for example determined proportionality constant or function type, N 2 The amount of O gas discharged can be estimated. Since the NO 2 concentration of the treated water does not change greatly on a daily basis, a value measured periodically may be used. As described above, the display of the nitrification rate of treated water and the amount of greenhouse gas emissions in a trade-off relationship is support information for deriving an optimum operation method.

制御部11は、選択したモードの目標値によりブロワ2を制御する。図4は、硝化抑制モードを選択した例で、図5は、硝化抑制モードによる制御状況を表す。   The control unit 11 controls the blower 2 according to the target value of the selected mode. FIG. 4 shows an example in which the nitrification suppression mode is selected, and FIG. 5 shows the control status in the nitrification suppression mode.

第一目標値である第一目標酸化還元電位は、硝化抑制モードにおける目標値、第二目標値である第二目標酸化還元電位は、硝化促進モードにおける目標値であり、硝化促進モードの第二目標酸化還元電位は、硝化抑制モードの第一目標酸化還元電位よりも大きくなる。これらの目標値は、N2Oガス抑制の観点から、図3に示したN2Oガスの放出量が大きくなる領域を避けて設定されることが望ましい。 The first target redox potential that is the first target value is the target value in the nitrification suppression mode, and the second target redox potential that is the second target value is the target value in the nitrification promotion mode, and the second target value in the nitrification promotion mode. The target redox potential is larger than the first target redox potential in the nitrification suppression mode. These target values are desirably set avoiding the region where the amount of N 2 O gas released becomes large as shown in FIG. 3 from the viewpoint of N 2 O gas suppression.

本実施例では、硝化抑制モードが選択されており、実線で示す酸化還元電位の計測値は第一目標酸化還元電位110mV近傍となるように制御されている。すなわち、図4で示したように、硝化率70%近傍となるように制御されている。この制御により、ブロワ風量不足による水質悪化を避けることができ、ブロワ風量過多によるN2Oガスと電力消費由来のCO2の増加を抑制できる。 In this embodiment, the nitrification suppression mode is selected, and the measured value of the oxidation-reduction potential indicated by the solid line is controlled to be in the vicinity of the first target oxidation-reduction potential 110 mV. That is, as shown in FIG. 4, the nitrification rate is controlled to be around 70%. By this control, it is possible to avoid deterioration of water quality due to insufficient blower air volume, and to suppress an increase in N 2 O gas and CO 2 derived from power consumption due to excessive blower air volume.

硝化促進モードを選択した場合は、第二目標酸化還元電位近傍となるように制御することで、ブロワ風量不足による水質悪化とN2O増加を避けることができ、ブロワ風量過多による電力由来のCO2の増加を抑制できる。 When the nitrification promotion mode is selected, by controlling to be close to the second target redox potential, it is possible to avoid water quality deterioration and N 2 O increase due to insufficient blower air volume, and CO 2 derived from electric power due to excessive blower air volume. 2 increase can be suppressed.

本実施例では、硝化率の推定に酸化還元電位計4を用いたが、アンモニウムイオン濃度を計測するアンモニア計でも良い。この場合、硝化率の演算に処理前の水質が必要となるが、これには流入水の水質の計測値や、既存の値からの推定値を用いても良い。また、硝化度を表す指標としてアンモニウムイオン濃度を直接用いてもよい。アンモニウムイオン濃度は硝化率とは負の相関を持つ。そのため、図3と同様に、N2Oガスが大きくなる領域が存在するため、二つの目標値を用いることで、所望の水質を得つつ、N2Oガスの低減を図れる。 In this embodiment, the oxidation-reduction potentiometer 4 is used for estimating the nitrification rate, but an ammonia meter that measures the ammonium ion concentration may be used. In this case, the water quality before treatment is required for the calculation of the nitrification rate. For this, a measured value of the quality of the influent water or an estimated value from an existing value may be used. Further, the ammonium ion concentration may be directly used as an index representing the nitrification degree. The ammonium ion concentration has a negative correlation with the nitrification rate. Therefore, as in FIG. 3, there is a region where the N 2 O gas becomes large. Therefore, by using two target values, it is possible to reduce the N 2 O gas while obtaining a desired water quality.

本実施例では、硝化率の推定に酸化還元電位計4を用いたが、硝酸イオン濃度を計測する硝酸計でも良い。この場合は、硝化率の演算に処理前の水質が必要となるが、流入水の水質の計測値や、既存の値からの推測値を用いても良い。また、硝化度を表す指標として硝酸イオン濃度を直接用いてもよい。硝酸イオン濃度は硝化率とは正の相関を持つ。そのため、図3と同様に、N2Oガスが大きくなる領域が存在するため、二つの目標値を用いることで、所望の水質を得つつ、N2Oガスの低減を図れる。 In this embodiment, the oxidation-reduction potentiometer 4 is used for estimating the nitrification rate, but a nitric acid meter that measures the nitrate ion concentration may be used. In this case, the water quality before treatment is required for the calculation of the nitrification rate, but a measured value of the influent water quality or an estimated value from an existing value may be used. Further, the nitrate ion concentration may be directly used as an index representing the nitrification degree. The nitrate ion concentration has a positive correlation with the nitrification rate. Therefore, as in FIG. 3, there is a region where the N 2 O gas becomes large. Therefore, by using two target values, it is possible to reduce the N 2 O gas while obtaining a desired water quality.

本実施例では、制御モードを硝化促進と硝化抑制の二つとし、それぞれに対応する制御目標値を示したが、これらは三つ以上でもよい。   In this embodiment, the control modes are two, namely, nitrification promotion and nitrification suppression, and control target values corresponding to the control modes are shown, but these may be three or more.

図6は本発明の実施例2である水処理プロセス制御装置の構成図である。本実施例では、実施例1の水処理プロセス制御装置の構成図に水処理プロセスへの流入負荷を推定する流入負荷推定部6として流量計を設置している。   FIG. 6 is a configuration diagram of a water treatment process control apparatus that is Embodiment 2 of the present invention. In the present embodiment, a flow meter is installed as the inflow load estimation unit 6 for estimating the inflow load to the water treatment process in the configuration diagram of the water treatment process control apparatus of the first embodiment.

実施例1と同様に、制御モードは、硝化抑制モードと硝化促進モードの二つで、それぞれに第一目標酸化還元電位と第二目標酸化還元電位の値が割りつけられている。N2Oガスを低減するためには、これらの目標値の間のN2Oガス量が極大となる領域を避けることが望まれる。しかし、ブロワ風量には上限値および下限値があり、流入負荷が小さいため、硝化率、すなわち酸化還元電位を第一目標酸化還元電位に下げられない場合がある。
また、流入負荷が大きいため、酸化還元電位を第二目標酸化還元電位に上げられない場合がある。
As in the first embodiment, there are two control modes, the nitrification suppression mode and the nitrification promotion mode, and the values of the first target oxidation-reduction potential and the second target oxidation-reduction potential are assigned to each. To reduce the N 2 O gas, it is desired to avoid these N 2 O regions gas amount becomes maximum between the target value. However, since the blower air volume has an upper limit value and a lower limit value and the inflow load is small, the nitrification rate, that is, the redox potential may not be lowered to the first target redox potential.
Further, since the inflow load is large, the redox potential may not be raised to the second target redox potential.

そこで、本実施例では流入負荷に閾値を設け、流入負荷に応じて制御モードを切り替える。図7に制御フローを、図8に制御時の酸化還元電位の時間変動を示す。   Therefore, in this embodiment, a threshold is provided for the inflow load, and the control mode is switched according to the inflow load. FIG. 7 shows the control flow, and FIG. 8 shows the time variation of the oxidation-reduction potential during control.

ステップ(S1)で、第一目標酸化還元電位および第二目標酸化還元電位に加えて流入負荷の閾値を入力し、ステップ(S2)で、好気槽のORP値を計測し、ステップ(S3)で、流入負荷を計測する。ステップ(S4)で、流入負荷とその閾値を比べ、この流入負荷が閾値より大きい場合は、ステップ(S5−1)で、第一酸化還元電位を目標値とする制御モードとし、閾値以下の場合は、ステップ(S5−2)で、第二酸化還元電位を目標値とする制御モードとする。ステップ(S6)で、得られた目標値でORP制御を実施し、ステップ(S7)で、ブロワ風量を出力する。以上を一制御周期で実施し、再びステップ(S2)で、ORP値を計測する。これにより、一定レベル以上の処理水水質を得つつ、N2Oガスの増大を避けることができる。 In step (S1), in addition to the first target oxidation-reduction potential and the second target oxidation-reduction potential, an inflow load threshold value is input. In step (S2), the ORP value of the aerobic tank is measured, and step (S3). Then measure the inflow load. In step (S4), when the inflow load is compared with its threshold value and this inflow load is larger than the threshold value, in step (S5-1), the control mode is set with the first oxidation-reduction potential as the target value. Is a control mode in which the second redox potential is set as a target value in step (S5-2). In step (S6), ORP control is performed with the obtained target value, and in step (S7), the blower air volume is output. The above is performed in one control cycle, and the ORP value is measured again in step (S2). Thus, while obtaining a certain level or more of the treated water quality can be avoided an increase in the N 2 O gas.

本実施例では、硝化率の推定に酸化還元電位計4を用いたが、アンモニウムイオン濃度を計測するアンモニア計でも良い。この場合、硝化率の演算に処理前の水質が必要となるが、これには流入水の水質の計測値や、既存の値からの推定値を用いても良い。また、硝化度を表す指標としてアンモニウムイオン濃度を直接用いてもよい。アンモニウムイオン濃度は硝化率とは負の相関を持つ。そのため、図3と同様に、N2Oガスが大きくなる領域が存在するため、二つの目標値を用いることで、所望の水質を得つつ、N2Oガスの低減を図れる。 In this embodiment, the oxidation-reduction potentiometer 4 is used for estimating the nitrification rate, but an ammonia meter that measures the ammonium ion concentration may be used. In this case, the water quality before treatment is required for the calculation of the nitrification rate. For this, a measured value of the quality of the influent water or an estimated value from an existing value may be used. Further, the ammonium ion concentration may be directly used as an index representing the nitrification degree. The ammonium ion concentration has a negative correlation with the nitrification rate. Therefore, as in FIG. 3, there is a region where the N 2 O gas becomes large. Therefore, by using two target values, it is possible to reduce the N 2 O gas while obtaining a desired water quality.

本実施例では、硝化率の推定に酸化還元電位計4を用いたが、硝酸イオン濃度を計測する硝酸計でも良い。この場合は、硝化率の演算に処理前の水質が必要となるが、これには流入水の水質の計測値や、既存の値からの推測値を用いても良い。また、硝化度を表す指標として硝酸イオン濃度を直接用いてもよい。硝酸イオン濃度は硝化率とは正の相関を持つ。そのため、N2Oガスが大きくなる領域は図3と同様に存在するため、二つの目標値を用いることで、所望の水質を得つつ、N2Oガスの低減を図れる。 In this embodiment, the oxidation-reduction potentiometer 4 is used for estimating the nitrification rate, but a nitric acid meter that measures the nitrate ion concentration may be used. In this case, the water quality before treatment is required for the calculation of the nitrification rate. For this purpose, a measured value of the influent water quality or an estimated value from the existing value may be used. Further, the nitrate ion concentration may be directly used as an index representing the nitrification degree. The nitrate ion concentration has a positive correlation with the nitrification rate. Therefore, since the region where the N 2 O gas increases is present as in FIG. 3, the N 2 O gas can be reduced while obtaining desired water quality by using two target values.

本実施例では、制御モードを硝化促進と硝化抑制の二つとし、それぞれに対応する制御目標値を示したが、これらは三つ以上でもよい。   In this embodiment, the control modes are two, namely, nitrification promotion and nitrification suppression, and control target values corresponding to the control modes are shown, but these may be three or more.

処理対象となる水質は硝化量のみではないため、水処理プロセスの運用では、DO制御や流量比例制御や流入負荷制御やこれらの組合せを含め、これまでの運用実績に応じた制御方法を用いて運転を実施している。本実施例では、これらの運転方法と組合せた場合について述べる。一例として、あらかじめ設定した制御ルールをDO制御とし、これと硝化制御方式を組合せた制御方式について説明する。   Since the water quality to be treated is not limited to the amount of nitrification, in the operation of the water treatment process, using DO control, flow proportional control, inflow load control, and combinations of these, using control methods according to the past operation results Driving is being carried out. In this embodiment, a case where these driving methods are combined will be described. As an example, a control method in which a preset control rule is DO control and this is combined with a nitrification control method will be described.

図9は、本発明の実施例3である水処理プロセス制御装置の構成図である。本実施例は、実施例1の水処理プロセス制御装置の構成図に、好気槽の溶存酸素濃度を計測するDO計7を設置している。   FIG. 9 is a configuration diagram of a water treatment process control apparatus that is Embodiment 3 of the present invention. In this embodiment, the DO meter 7 for measuring the dissolved oxygen concentration in the aerobic tank is installed in the configuration diagram of the water treatment process control apparatus of the first embodiment.

図10は表示部13の表示画面である。本実施例では、硝化抑制モードでDO制御+硝化制御とし、硝化促進モードで硝化制御とした。DO制御では目標DO値とDO下限値を設定できる。   FIG. 10 is a display screen of the display unit 13. In this embodiment, DO control + nitrification control is performed in the nitrification suppression mode, and nitrification control is performed in the nitrification promotion mode. In the DO control, a target DO value and a DO lower limit value can be set.

図11に制御フローを示す。ステップ(S1)で、第一目標値および第二目標値に加えて硝化抑制モード時の目標DO値と、制御全体におけるDO下限値を入力し、ステップ(S2)で、好気槽のORP値を計測し、ステップ(S3)で、DO値を計測する。ステップ(S4)で、計測したDO値と設定したDO下限値を比較し、計測値が大きければ、ステップ(S5)で、運転モードを確認する。   FIG. 11 shows a control flow. In step (S1), in addition to the first target value and the second target value, the target DO value in the nitrification suppression mode and the DO lower limit value in the overall control are input. In step (S2), the ORP value of the aerobic tank In step (S3), the DO value is measured. In step (S4), the measured DO value is compared with the set DO lower limit value. If the measured value is large, the operation mode is confirmed in step (S5).

硝化促進モードであれば、ステップ(S7−1)で、第二目標値を酸化還元電位目標値とする。運転モードが硝化抑制モードであれば、ステップ(S6)で、ORP計測値と第一目標値を比較して、第一目標値が大きければ第一目標値を酸化還元電位目標値とする。
そうでなければ、ステップ(S8−2)で、設定した目標DO値をDO目標値として、ステップ(S9−1)で、DO制御を実施し、ステップ(S10)で、ブロワ風量を出力する。DO値がDO下限値以下であれば、ステップ(S8−1)で、DO下限値をDO目標値とし、ステップ(S9−1)で、DO制御を実施する。ステップ(S7−1)、(S7−2)で、酸化還元電位目標値が設定された場合は、ステップ(S9−2)で、ORP制御を実施し、ステップ(S10)で、ブロワ風量を出力する。以上を一制御周期で実施し、再びステップ(S2)で、ORP値を計測する。これにより、これまでの実績をもつ風量制御方法を利用しつつ、N2Oガスの生成を抑制できる。
If it is the nitrification promotion mode, the second target value is set as the redox potential target value in step (S7-1). If the operation mode is the nitrification suppression mode, the ORP measurement value is compared with the first target value in step (S6), and if the first target value is large, the first target value is set as the redox potential target value.
Otherwise, in step (S8-2), the set target DO value is set as the DO target value, the DO control is performed in step (S9-1), and the blower air volume is output in step (S10). If the DO value is equal to or less than the DO lower limit value, the DO lower limit value is set as the DO target value in step (S8-1), and the DO control is performed in step (S9-1). When the redox potential target value is set in steps (S7-1) and (S7-2), ORP control is performed in step (S9-2), and the blower air volume is output in step (S10). To do. The above is performed in one control cycle, and the ORP value is measured again in step (S2). Thus, while using the air volume control method having a proven so far, can suppress the formation of N 2 O gas.

図12は、硝化抑制モードでのDO制御と硝化(ORP)制御の組合せ制御の時間履歴を示す図である。酸化還元電位が第一目標値を上回る場合はORP制御とし、以下となる場合はDO制御となっている。図13は、硝化促進モード時にDO制御と硝化(ORP)制御を組み合わせた際の時間履歴の例で、酸化還元電位が第二目標値を下回る場合はORP制御とし、酸化還元電位が第二目標値以上となる場合はDO制御となっている。いずれの場合も、これまでの制御方法ではN2O発生量が大きくなるおそれがあったが、この領域付近でORP制御に切り替えることで、N2O発生を抑制できる。 FIG. 12 is a diagram showing a time history of combined control of DO control and nitrification (ORP) control in the nitrification suppression mode. When the oxidation-reduction potential exceeds the first target value, ORP control is performed, and when it is below, DO control is performed. FIG. 13 is an example of a time history when the DO control and the nitrification (ORP) control are combined in the nitrification promotion mode. When the redox potential is lower than the second target value, the ORP control is performed, and the redox potential is the second target. When it exceeds the value, it is DO control. In either case, the conventional control method may increase the amount of N 2 O generated, but N 2 O generation can be suppressed by switching to ORP control in the vicinity of this region.

本実施例では、あらかじめ設定した制御ルールとして、ブロワ風量をDO値で制御する方法を示したが、ブロワ風量一定制御、流入流量比例制御でもよい。また、流入負荷を計測してこれを関数とする制御方法でもよい。また、以上説明した制御方法の組合せでもよい。また、酸化還元電位目標値とORP計測値との差分からブロワ風量の増加減値を求めて、あらかじめ設定した制御ルールで算出したブロワ風量値を増加減してもよい。   In the present embodiment, the method of controlling the blower air volume with the DO value is shown as a preset control rule, but the blower air volume constant control and the inflow flow rate proportional control may be used. Moreover, the control method which measures inflow load and uses this as a function may be used. Moreover, the combination of the control method demonstrated above may be sufficient. Further, the increase / decrease value of the blower air volume may be obtained from the difference between the target value of the oxidation-reduction potential and the ORP measurement value, and the blower air volume value calculated by a preset control rule may be increased or decreased.

本実施例では、硝化率の推定に酸化還元電位計4を用いたが、アンモニウムイオン濃度を計測するアンモニア計でも良い。この場合は、硝化率の演算に処理前の水質が必要となるが、これには流入水の水質の計測値や、既存の値からの推定値を用いても良い。また、硝化度を表す指標としてアンモニウムイオン濃度を直接用いてもよい。アンモニウムイオン濃度は硝化率とは負の相関を持つ。そのため、図3と同様に、N2Oガスが大きくなる領域は存在するため、この領域付近でORP制御に切り替えることで、N2Oガスの低減を図れる。 In this embodiment, the oxidation-reduction potentiometer 4 is used for estimating the nitrification rate, but an ammonia meter that measures the ammonium ion concentration may be used. In this case, the water quality before treatment is required for the calculation of the nitrification rate. For this, a measured value of the quality of the influent water or an estimated value from the existing value may be used. Further, the ammonium ion concentration may be directly used as an index representing the nitrification degree. The ammonium ion concentration has a negative correlation with the nitrification rate. Therefore, as in FIG. 3, there is a region where the N 2 O gas increases, and therefore, switching to the ORP control in the vicinity of this region can reduce the N 2 O gas.

本実施例では、硝化率の推定に酸化還元電位計4を用いたが、硝酸イオン濃度を計測する硝酸計でも良い。この場合は、硝化率の演算に処理前の水質が必要となるが、これには流入水の水質の計測値や、既存の値からの推測値を用いても良い。また、硝化度を表す指標として硝酸イオン濃度を直接用いてもよい。硝酸イオン濃度は硝化率とは正の相関を持つ。そのため、図3と同様に、N2Oガスが大きくなる領域は存在するため、二つの目標値を用いることで、所望の水質を得つつ、N2Oガスの低減を図れる。 In this embodiment, the oxidation-reduction potentiometer 4 is used for estimating the nitrification rate, but a nitric acid meter that measures the nitrate ion concentration may be used. In this case, the water quality before treatment is required for the calculation of the nitrification rate. For this purpose, a measured value of the influent water quality or an estimated value from the existing value may be used. Further, the nitrate ion concentration may be directly used as an index representing the nitrification degree. The nitrate ion concentration has a positive correlation with the nitrification rate. Therefore, as in FIG. 3, there is a region where the N 2 O gas increases, and therefore, by using two target values, it is possible to reduce the N 2 O gas while obtaining a desired water quality.

本実施例では、制御モードを硝化促進と硝化抑制の二つとし、それぞれに対応する制御目標値を示したが、これらは三つ以上でもよい。   In this embodiment, the control modes are two, namely, nitrification promotion and nitrification suppression, and control target values corresponding to the control modes are shown, but these may be three or more.

1 好気槽
2 ブロワ
3 散気管
4 酸化還元電位計
5 沈殿池
6 流入負荷推定部
7 DO計
10 推定部
11 制御部
12 目標値設定部
13 表示部
DESCRIPTION OF SYMBOLS 1 Aerobic tank 2 Blower 3 Aeration pipe 4 Oxidation reduction potential meter 5 Sedimentation basin 6 Inflow load estimation part 7 DO meter 10 Estimation part 11 Control part 12 Target value setting part 13 Display part

Claims (3)

水処理プロセスの好気槽に設けた酸化還元電位計の計測値から好気槽の被処理水の硝化率を推定する推定部と、
前記好気槽の被処理水の硝化率の目標値を設定する目標値設定部と、
前記好気槽に空気を送り込むブロワと、
前記推定部で推定された硝化率の推定値が前記好気槽の被処理水の硝化率の目標値となるように、前記ブロワの風量を上限値および下限値の範囲で制御する制御部とを備え、
前記好気槽の被処理水の硝化率の目標値が、硝化率と前記好気槽から大気中に放出されるN2Oガス量の関係にて平均N2Oガス放出速度が硝化率に対して極大値となる領域を避けて設定された第一目標値と前記第一目標値より大きい値の第二目標値の少なくとも二つであり、
前記目標値設定部は、前記ブロワの風力の上限値および下限値に対応して前記流入負荷の閾値を設定し、前記流入負荷が前記閾値より大きい場合には前記第一目標値を前記好気槽の被処理水の硝化率の目標値とし、前記流入負荷が前記閾値以下の場合に前記第二目標値を前記好気槽の被処理水の硝化率の目標値をとすることを特徴とする水処理プロセス制御装置。
An estimation unit for estimating the nitrification rate of the water to be treated in the aerobic tank from the measurement value of the oxidation-reduction potentiometer provided in the aerobic tank of the water treatment process;
A target value setting unit for setting a target value of the nitrification rate of the water to be treated in the aerobic tank;
A blower for sending air to the aerobic tank;
A control unit that controls the air volume of the blower within a range between an upper limit value and a lower limit value so that the estimated value of the nitrification rate estimated by the estimation unit becomes a target value of the nitrification rate of the water to be treated in the aerobic tank; With
The target value of the nitrification rate of the water to be treated in the aerobic tank is the maximum value of the average N2O gas release rate relative to the nitrification rate in relation to the nitrification rate and the amount of N2O gas released from the aerobic tank to the atmosphere. At least two of a first target value set avoiding the region and a second target value greater than the first target value,
The target value setting unit sets a threshold value of the inflow load corresponding to an upper limit value and a lower limit value of the wind power of the blower, and when the inflow load is larger than the threshold value, the first target value is aerobic. A target value for the nitrification rate of the water to be treated in the tank, and when the inflow load is equal to or less than the threshold, the second target value is a target value for the nitrification rate of the water to be treated in the aerobic tank. Water treatment process control device.
請求項1の水処理プロセス制御装置において、
前記水処理プロセスの好気槽に設けた酸化還元電位計の代わりに硝酸計を備え、前記推定部が、前記硝酸計により好気槽の被処理水の硝化率を推定することを特徴とする水処理プロセス制御装置。
The water treatment process control device according to claim 1,
A nitric acid meter is provided instead of the oxidation-reduction potentiometer provided in the aerobic tank of the water treatment process, and the estimation unit estimates a nitrification rate of water to be treated in the aerobic tank by the nitric acid meter. Water treatment process control device.
請求項1、又は請求項2の水処理プロセス制御装置において、
前記硝化率から推定された一酸化二窒素量と前記ブロワの消費電力量とを表示する表示部と、を備えたことを特徴とする水処理プロセス制御装置。
In the water treatment process control device according to claim 1 or 2,
A water treatment process control device comprising: a display unit that displays a dinitrogen monoxide amount estimated from the nitrification rate and a power consumption amount of the blower.
JP2011180107A 2011-08-22 2011-08-22 Water treatment process controller Active JP5785816B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011180107A JP5785816B2 (en) 2011-08-22 2011-08-22 Water treatment process controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011180107A JP5785816B2 (en) 2011-08-22 2011-08-22 Water treatment process controller

Publications (2)

Publication Number Publication Date
JP2013043100A JP2013043100A (en) 2013-03-04
JP5785816B2 true JP5785816B2 (en) 2015-09-30

Family

ID=48007446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011180107A Active JP5785816B2 (en) 2011-08-22 2011-08-22 Water treatment process controller

Country Status (1)

Country Link
JP (1) JP5785816B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0757356B2 (en) * 1987-09-10 1995-06-21 日立プラント建設株式会社 Wastewater nitrogen removal treatment method
JPH03284398A (en) * 1990-03-30 1991-12-16 Meidensha Corp Water quality controller for activated sludge process
JPH0938683A (en) * 1995-07-27 1997-02-10 Hitachi Ltd Biological water treating device
JPH1177083A (en) * 1997-08-29 1999-03-23 Hitachi Kiden Kogyo Ltd Automatic control of operation of aeration device
JP3388405B2 (en) * 2000-06-15 2003-03-24 独立行政法人農業工学研究所 Sewage treatment apparatus and method
JP2003053375A (en) * 2001-08-22 2003-02-25 Toshiba Corp Device for controlling water quality
JP4906788B2 (en) * 2008-06-11 2012-03-28 株式会社日立製作所 Monitoring and control system for water and sewage treatment plants
JP5140545B2 (en) * 2008-10-22 2013-02-06 メタウォーター株式会社 Air supply system and air supply method
JP5188451B2 (en) * 2009-05-22 2013-04-24 株式会社日立製作所 Water treatment equipment

Also Published As

Publication number Publication date
JP2013043100A (en) 2013-03-04

Similar Documents

Publication Publication Date Title
Rodríguez-Caballero et al. Minimizing N2O emissions and carbon footprint on a full-scale activated sludge sequencing batch reactor
Isanta et al. Stable partial nitritation for low-strength wastewater at low temperature in an aerobic granular reactor
Deng et al. Advanced nitrogen removal from municipal wastewater via two-stage partial nitrification-simultaneous anammox and denitrification (PN-SAD) process
Peng et al. The combined effect of dissolved oxygen and nitrite on N2O production by ammonia oxidizing bacteria in an enriched nitrifying sludge
JP5775296B2 (en) Operation support apparatus and operation support method for sewage treatment plant
JP5075926B2 (en) Sewage treatment apparatus and sewage treatment method
JP6431363B2 (en) Water treatment system and aeration air volume control method thereof
JP5733785B2 (en) Waste water treatment method and waste water treatment equipment
JP2017006894A (en) Method for controlling the amount of aeration in activated sludge
He et al. Unveiling the roles of biofilm in reducing N2O emission in a nitrifying integrated fixed-film activated sludge (IFAS) system
JP2017113725A (en) Operation support system and operation support method of sewage treatment plant
JP5175647B2 (en) Water quality prediction method and biological treatment method
JP5592162B2 (en) Sewage treatment equipment
JP5785816B2 (en) Water treatment process controller
JP6062328B2 (en) Waste water treatment method, waste water treatment device, control method, control device, and program
JP6391325B2 (en) N2O suppression type water treatment method and treatment apparatus
JP4278701B1 (en) Simulation method, simulation apparatus, biological treatment method, and biological treatment apparatus
JP2012005983A (en) Method and apparatus for performing arithmetic operation on information about water quality
JP2016007576A (en) Water treatment plant
JP2015051389A (en) Water treatment controller
JP2012148231A (en) Water treatment plant
JP5717187B2 (en) Waste water treatment method and waste water treatment equipment
JP2016198697A (en) Organic acid solution decomposition system and organic acid solution decomposition method
JP6007679B2 (en) Biological treatment method for wastewater containing nitrogen
JP5848823B2 (en) Water treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150630

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150727

R151 Written notification of patent or utility model registration

Ref document number: 5785816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151