JPH03284398A - Water quality controller for activated sludge process - Google Patents

Water quality controller for activated sludge process

Info

Publication number
JPH03284398A
JPH03284398A JP2085363A JP8536390A JPH03284398A JP H03284398 A JPH03284398 A JP H03284398A JP 2085363 A JP2085363 A JP 2085363A JP 8536390 A JP8536390 A JP 8536390A JP H03284398 A JPH03284398 A JP H03284398A
Authority
JP
Japan
Prior art keywords
meter
orp
air
amt
aeration tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2085363A
Other languages
Japanese (ja)
Inventor
Takao Sekine
孝夫 関根
Shigeo Sato
茂雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2085363A priority Critical patent/JPH03284398A/en
Publication of JPH03284398A publication Critical patent/JPH03284398A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Abstract

PURPOSE:To stabilize the water quality in an activated sludge process by obtaining the command for the amt. of air to be blown into an aeration tank or the command for the dissolved oxygen concn. based on the measured values of the oxidation-reduction potentiometer(ORP) and pH meter and controlling the amt. of air to be blown into the aeration tank. CONSTITUTION:A fuzzy controller 5 is provided with a means for fetching the measured values of the ORP 3 and pH meter 4 and normalizing the values in the interval between -1 and +1, a fuzzy rule group and a fuzzy inference part. The command for the air amt. is inferred by the fuzzy rule group based on the measured values from the ORP 3 and pH meter 4. The command for the inferred air amt. is inputted to an air amt. control part 6, and a blower is controlled. Accordingly, even when one of the factors of the pH or ORP is affected, for example, by an interfering ion and the relation to nitrification is broken, the controller is hardly disturbed. The pH value is not deviated from the appropriate range, and the nitrification process is stably controlled.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は活性汚泥プロセスの水質制御装置に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a water quality control device for an activated sludge process.

B9発明の概要 本発明は活性汚泥プロセスにおける処理液の硝化の程度
を管理するための装置において、曝気槽内に酸化還元電
位計及びpH計を設け、これらの計測値に基づいて送風
量あるいは溶存酸素濃度の目標値を求めることによって
、硝化過程を安定に管理できるようにしたものである。
B9 Summary of the Invention The present invention is an apparatus for controlling the degree of nitrification of a treated liquid in an activated sludge process, in which an oxidation-reduction potential meter and a pH meter are provided in an aeration tank, and based on these measured values, the amount of air blown or dissolved By determining the target value of oxygen concentration, the nitrification process can be managed stably.

C9従来の技術 活性汚泥プロセスを制御する場合、従来では第3図に示
すように目標値と状態量とを突き合わせ、その突き合わ
せ結果に基づいてPIDコントローラより制御指令を活
性汚泥プロセスに出力するようにしていた。活性汚泥処
理により得られる処理液の硝化過程を管理する場合にお
いても第3図の制御方法が採用されており、酸化還元電
位の目標値と計測値とを突き合わせてPIDコントロー
ラにより送風量を調節している。硝化過程を安定に管理
することは硝化の安定化のみでなく、処理水のBOD濃
度やpH値も安定し、更に省エネルギーの面からも重要
であることが知られている。硝化過程の計測については
、連続して計測できる自動計測器がないことから例えば
酸化還元電位計が代用として用いられているのである。
C9 Conventional technology When controlling an activated sludge process, conventionally, as shown in Figure 3, a target value and a state quantity are compared, and a control command is output from a PID controller to the activated sludge process based on the comparison result. was. The control method shown in Figure 3 is also used to manage the nitrification process of the treated liquid obtained by activated sludge treatment, in which the amount of air blown is adjusted by a PID controller by comparing the target value and the measured value of the oxidation-reduction potential. ing. It is known that stable management of the nitrification process not only stabilizes nitrification, but also stabilizes the BOD concentration and pH value of treated water, and is also important from the perspective of energy conservation. Regarding the measurement of the nitrification process, for example, a redox electrometer is used as a substitute because there is no automatic measuring device that can continuously measure the nitrification process.

D0発明が解決しようとする課題 しかしながら酸化還元電位と硝化の程度との関係は強い
非線形性であり、しかもその関係が変化しやすいことか
ら、酸化還元電位を一定制御する方法では硝化を安定し
て管理することができず、例えば硝化が進みすぎてpH
値が適正範囲から外れることがあり、この結果処理水の
水質が不安定であった。
D0 Problems to be Solved by the Invention However, the relationship between the redox potential and the degree of nitrification is strongly nonlinear, and the relationship is likely to change. For example, if nitrification progresses too much, the pH
The values sometimes deviated from the appropriate range, and as a result, the quality of the treated water was unstable.

本発明の目的は活性汚泥の水質の安定化を図ることにあ
る。
An object of the present invention is to stabilize the water quality of activated sludge.

21課題を解決するための手段 本発明は曝気槽内に設けられた酸化還元電位計及びpH
計と、これら酸化還元電位計及びpH計の各計測値に基
づいて曝気槽内への送風量の目標値または曝気槽内の溶
存酸素濃度の目標値を求める手段と、この手段で求めた
目標値に基づいて曝気槽内への送風量を制御する送風量
制御部とを有してなることを特徴とする。
21 Means for Solving the Problems The present invention provides an oxidation-reduction potential meter and a pH meter installed in an aeration tank.
a means for determining a target value for the amount of air blown into the aeration tank or a target value for dissolved oxygen concentration in the aeration tank based on the measured values of the oxidation-reduction potentiometer and the pH meter, and a target determined by this means. The air blowing amount control section controls the air blowing amount into the aeration tank based on the value.

F1作用 例えば所定のタイミングで酸化還元電位及びpHの計測
値に基づいてファジィ推論を実行し、そのときの硝化の
程度を推定して対応する送風量の目標値を推論し、この
目標値となるように送風量を制御する。
F1 action: For example, at a predetermined timing, fuzzy inference is executed based on the measured values of oxidation-reduction potential and pH, and the degree of nitrification at that time is estimated, and a corresponding target value for the air flow rate is inferred, and this target value is determined. Control the amount of air flow.

G、実施例 本発明はファジィ推論を用いた場合を例にとって説明す
る。第1図において1は活性汚泥プロセスにおける曝気
槽、2は散気パイプ、3は酸化還元電位(以下rORP
Jという)計、4はpH計、5はファジィコントローラ
、6はブロワ等を含む送風量制御部である。
G. Embodiment The present invention will be explained using fuzzy inference as an example. In Figure 1, 1 is an aeration tank in the activated sludge process, 2 is an aeration pipe, and 3 is an oxidation-reduction potential (rORP).
4 is a pH meter, 5 is a fuzzy controller, and 6 is an air flow rate control unit including a blower and the like.

前記ファジィコントローラ5は、ORP計3及びpH計
4の各計測値を取り込んで=1〜+1の区間に正規化す
る手段と、ファジィルール群と、ファジィ推論を実行す
るファジィ推論部とを有している。
The fuzzy controller 5 includes means for taking in each measured value of the ORP meter 3 and the pH meter 4 and normalizing it into an interval of =1 to +1, a fuzzy rule group, and a fuzzy inference section that executes fuzzy inference. ing.

ORPの計測値については、例えばθ〜300mVを−
l〜+1の区間に正規化し、pHの計測値については、
例えば5.0〜8.0を=1〜+1の区間に正規化する
For the measured value of ORP, for example, θ ~ 300 mV -
Normalized to the interval l~+1, for the measured pH value,
For example, 5.0 to 8.0 is normalized to an interval of =1 to +1.

前記ファジィルール群は、ORP計3よりの計測値とp
H計4よりの計測値とに基づいて送風量の目標値を推論
するためのルール群であり、例えばマトリクス表示をす
ると下記表のように表される。
The fuzzy rule group is based on the measured values from ORP total 3 and p
This is a set of rules for inferring the target value of the air blow amount based on the measured value from the H total 4, and is expressed in a matrix format as shown in the table below, for example.

(以下余白) ただしx、yは夫々pH値、ORP値を正規化した値で
あり、Uは送風量の目標値に対応するメンバシップ値で
ある。また表中第1行、第1列はルールの条件部に相当
し、縦横の欄の交差する部分はルールの結論部に相当す
る。例えば表1の第1行、第1列を組み合わせると、 i f  x=NB  and  y−PB  the
n  u=NBというルールになる。PB(正で大)、
NB(負で大)等はファジィラベルであり、夫々第2図
に示すメンバシップ関数が割り当てられている。このよ
うなルールは、予めORP値及びpH値と硝化の程度と
の関係を調べておき、そのデータ?こ基づいて作成され
る。
(The following is a margin) However, x and y are values obtained by normalizing the pH value and ORP value, respectively, and U is a membership value corresponding to the target value of the air flow rate. Further, the first row and first column in the table correspond to the condition part of the rule, and the intersection of the vertical and horizontal columns corresponds to the conclusion part of the rule. For example, if you combine the first row and first column of Table 1, if x=NB and y-PB the
The rule is n u=NB. PB (positive and large),
NB (negative and large) etc. are fuzzy labels, and membership functions shown in FIG. 2 are assigned to them. Such a rule is based on researching the relationship between the ORP value, pH value, and degree of nitrification in advance, and then using that data. It is created based on this.

次に上述実施例の作用について説明する。今図示しない
流入水路から廃水が曝気槽1に流入し、ここで散気パイ
プ2よりエアーが供給されて廃水と活性汚泥との混合液
が曝気されているとする。
Next, the operation of the above embodiment will be explained. It is assumed that wastewater flows into the aeration tank 1 from an inflow channel (not shown), and air is supplied here from the aeration pipe 2 to aerate the mixed liquid of wastewater and activated sludge.

ORP計3及びpH計4の各計測値がファジィコントロ
ーラ5に入力され、ここで正規化される。
The measured values of the ORP meter 3 and the pH meter 4 are input to the fuzzy controller 5, where they are normalized.

ファジィコントローラ5は、正規化された計測値x、y
にファジィルールを適用して例えばマムダ二法により送
風量の目標値を推論する。具体的には、上記のマトリク
ス表にて示したルール群の一つのルールについてX、y
の値を条件部の対応するメンバシップ関数にあてはめて
、得られたメンバシップ値のうち小さい方のメンバシッ
プ値を求め、この値で結論部のメンバシップ関数をカッ
トし、こうした試行を全ルールについて実行して結論部
のメンバシップ関数のカットされた下側部分を全ルール
について重ね合わせ、その和集合の重心値を推論値とす
る。
The fuzzy controller 5 calculates the normalized measurement values x, y
A fuzzy rule is applied to, for example, the Mamdani method to infer the target value of the air flow rate. Specifically, for one rule of the rule group shown in the matrix table above,
Apply the value of to the corresponding membership function in the conditional part, find the smaller membership value among the obtained membership values, cut the membership function in the conclusion part with this value, and repeat these trials for all rules. The cut lower part of the membership function in the conclusion part is superimposed on all the rules, and the centroid value of the union is used as the inference value.

このようにして推論された送風量の目標値は送風量制御
部6に入力され、ここで送風量が目標値となるようにブ
ロワが制御される。
The target value of the airflow amount inferred in this way is input to the airflow amount control section 6, and the blower is controlled here so that the airflow amount becomes the target value.

本発明では、ORP及びpHの計測値を入力するにあた
っては、所定のタイミングでORP及びpHの値をサン
プリングすると共に、夫々について1回前のサンプリン
グ値との差をとり、その変化分をも考慮して送風量の目
標値を推論するようにしてもよい。この場合にはファジ
ィルールの条件部にはx、yに加えてΔX、Δyが含ま
れることになる。
In the present invention, when inputting the measured values of ORP and pH, the values of ORP and pH are sampled at a predetermined timing, and the difference from the previous sampling value is calculated for each, and the change is also taken into consideration. Alternatively, the target value of the airflow amount may be inferred. In this case, the condition part of the fuzzy rule includes ΔX and Δy in addition to x and y.

また推論すべき送風量の目標値としては、送風量の設定
値であってもよいし、現在の送風量からの変化分であっ
てもよい。
Further, the target value of the airflow amount to be inferred may be a set value of the airflow amount, or may be a change from the current airflow amount.

更に本発明では、送風量を推論する代りにり。Furthermore, in the present invention, instead of inferring the amount of air flow.

(溶存酸素)濃度を推論してもよく、この場合DO濃度
設定値またはDo濃度の変化分を目標値とする。
(Dissolved oxygen) concentration may be inferred, in which case the DO concentration set value or the change in the Do concentration is taken as the target value.

以上において送風量あるいはDo濃度の目標値に対して
上限値及び下限値を設け、目標値が限界値から逸脱しな
いようにすることが望ましい。
In the above, it is desirable to set an upper limit value and a lower limit value for the target value of the air flow rate or Do concentration so that the target value does not deviate from the limit value.

本発明では目標値を求める方法としてファジィ推論に限
定されないか、ファジィ推論を用いれば、硝化の程度と
ORPとのように非線形の関係に対して適切な制御がで
き、熟練者の経験に基づく管理ができる。
In the present invention, the method for determining the target value is not limited to fuzzy inference, but if fuzzy inference is used, it is possible to appropriately control nonlinear relationships such as the degree of nitrification and ORP, and management based on the experience of experts. I can do it.

H1発明の効果 本発明によれば、硝化過程がpH及びORPの双方に対
して強い相関関係があることに着目し、pH及びORP
の両方の計測値に基づいて硝化の程度を予測して送風量
を制御している。従ってpHまたはORPの一方の因子
が例えば妨害イオンによる影響を受けて硝化との関係が
崩れた場合にも、得られた送風量の目標値やDoの目標
値には直接その影響が出ないため、外乱の影響を受けに
くくなり、pH値が適正範囲から逸脱するおそれがなく
なり、硝化過程を安定に管理することができる。
H1 Effects of the Invention According to the present invention, focusing on the fact that the nitrification process has a strong correlation with both pH and ORP,
The amount of air blown is controlled by predicting the degree of nitrification based on the measured values of both. Therefore, even if one of the factors, pH or ORP, is affected by interfering ions and the relationship with nitrification is disrupted, this will not directly affect the obtained target value of air flow rate or target value of Do. , it becomes less susceptible to disturbances, there is no fear that the pH value will deviate from the appropriate range, and the nitrification process can be managed stably.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す構成図、第2図はメンバ
シップ関数を示すグラフ、第3図は従来例を示すブロッ
ク図、 ■・・・曝気槽、3・・・ORP計、4・・・pH計、
5・・・ファジィ推論部、6・・・送風量制御部。 外2名
Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2 is a graph showing a membership function, Fig. 3 is a block diagram showing a conventional example, 1...Aeration tank, 3...ORP meter, 4...pH meter,
5... Fuzzy inference section, 6... Air flow rate control section. 2 people outside

Claims (1)

【特許請求の範囲】[Claims] (1)曝気槽内に設けられた酸化還元電位計及びpH計
と、これら酸化還元電位計及びpH計の各計測値に基づ
いて曝気槽内への送風量の目標値または曝気槽内の溶存
酸素濃度の目標値を求める手段と、この手段で求めた目
標値に基づいて曝気槽内への送風量を制御する送風量制
御部とを有してなることを特徴とする活性汚泥プロセス
の水質制御装置。
(1) A redox potential meter and a pH meter installed in the aeration tank, and based on the measured values of these redox potential meter and pH meter, the target value of the amount of air blown into the aeration tank or the dissolved amount in the aeration tank. Water quality for an activated sludge process, comprising means for determining a target value of oxygen concentration, and an air flow rate control unit that controls the air flow rate into an aeration tank based on the target value determined by the means. Control device.
JP2085363A 1990-03-30 1990-03-30 Water quality controller for activated sludge process Pending JPH03284398A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2085363A JPH03284398A (en) 1990-03-30 1990-03-30 Water quality controller for activated sludge process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2085363A JPH03284398A (en) 1990-03-30 1990-03-30 Water quality controller for activated sludge process

Publications (1)

Publication Number Publication Date
JPH03284398A true JPH03284398A (en) 1991-12-16

Family

ID=13856632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2085363A Pending JPH03284398A (en) 1990-03-30 1990-03-30 Water quality controller for activated sludge process

Country Status (1)

Country Link
JP (1) JPH03284398A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043100A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Water treating process controller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013043100A (en) * 2011-08-22 2013-03-04 Hitachi Ltd Water treating process controller

Similar Documents

Publication Publication Date Title
CN104090488B (en) The method that sewage plant controls dissolved oxygen, sludge loading and sludge age in real time automatically
US10010830B2 (en) Biofilter with fuzzy logic control
US11420161B2 (en) Addition of alkaline materials to biotrickling filter or bio-filter make-up water
JP2001079310A (en) Water quality control method and device therefor
US7005073B2 (en) Residual wastewater chlorine concentration control using a dynamic weir
JPH03284398A (en) Water quality controller for activated sludge process
KR100573189B1 (en) Method and device for pH control of water supply facilities using tuning method of 2-DOF PID controller by neural network
US6569335B1 (en) Wastewater treatment control method and apparatus
JPH0938690A (en) Method for controlling injection of flocculating agent in water treatment
JPH09122681A (en) Water quality controlling apparatus
JPH06102195B2 (en) Method for controlling phosphorus concentration in wastewater
JPH07185583A (en) Waste water disposing method and device using continuous breath measuring device
JP2002219481A (en) Equipment for controlling concentration of dissolved oxygen in aerating tank
JPS5879594A (en) Controlling method for concentration of dissolved oxygen in aerating tank in activated sludge treating process
JPH10286585A (en) Aeration air volume controlling apparatus
JP2002062927A (en) Waste water treatment process simulator
JPH06335694A (en) Controller of device for biologically treating waste water
JP3460211B2 (en) Sewage treatment control device
CN115385432A (en) Method and system for removing phosphorus from sewage
JP2870906B2 (en) Nitrification activity measurement method
JP2010088988A (en) Aeration tank control method and apparatus
Wan et al. Adaptive fuzzy control of a ph process
JP3182835B2 (en) Optimal control device for activated sludge process
JP2950661B2 (en) Control unit for water treatment plant
Samuelsson Modelling and control of activated sludge processes with nitrogen removal