JP5782843B2 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
JP5782843B2
JP5782843B2 JP2011128906A JP2011128906A JP5782843B2 JP 5782843 B2 JP5782843 B2 JP 5782843B2 JP 2011128906 A JP2011128906 A JP 2011128906A JP 2011128906 A JP2011128906 A JP 2011128906A JP 5782843 B2 JP5782843 B2 JP 5782843B2
Authority
JP
Japan
Prior art keywords
lens
focus
unit
phase difference
movement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011128906A
Other languages
English (en)
Other versions
JP2012255910A (ja
Inventor
富田 博之
博之 富田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2011128906A priority Critical patent/JP5782843B2/ja
Publication of JP2012255910A publication Critical patent/JP2012255910A/ja
Application granted granted Critical
Publication of JP5782843B2 publication Critical patent/JP5782843B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、撮像装置に関する。
レンズ鏡筒に、ズームレンズの移動に応じた焦点調節レンズの移動量を示すズームトラッキングデータを保存しておき、ズームレンズの駆動時に、ズームトラッキングデータに基づいて、焦点調節レンズを駆動させることで、ズーム倍率が変化することにより変化した焦点位置を補正するズームトラッキング技術が知られている(たとえば、特許文献1参照)。
特開平3−228036号公報
しかしながら、従来技術では、焦点調節レンズの駆動状況に応じて、ズームトラッキングを実施するものではないため、焦点調節レンズがハンチング現象を起こしてしまう場合があるという問題や、使用感に劣ってしまうという問題などがあった。
本発明が解決しようとする課題は、光学系の焦点調節を適切に行なうことができる撮像装置を提供することにある。
本発明は、以下の解決手段によって上記課題を解決する。なお、以下においては、本発明の実施形態を示す図面に対応する符号を付して説明するが、この符号は本発明の理解を容易にするためだけのものであって発明を限定する趣旨ではない。
[1]本発明に係る撮像装置は、ズームレンズと焦点調節レンズとを有する光学系を介して入射した光を光電変換して信号を出力する撮像部と、前記光学系の瞳の異なる領域を通過した光を光電変換して得られた信号の位相差を検出する位相差検出部と、前記撮像部から出力された信号に基づいて、前記光学系を介して入射した光による像のコントラストを検出するコントラスト検出部と、前記焦点調節レンズを移動させて前記光学系の焦点調節を行う焦点調節部と、前記ズームレンズの移動を指示する指示部と、前記位相差検出部による位相差の検出または前記コントラスト検出部によるコントラストの検出のために前記焦点調節レンズが移動している間に、前記指示部による前記ズームレンズの移動が指示されると、前記焦点調節レンズの移動を中止し、前記ズームレンズの移動に応じた前記焦点調節レンズの移動を前記焦点調節部に行わせる制御部と、を備える。
[2]本発明の撮像装置において、前記制御部は、前記焦点調節部による前記ズームレンズの移動に応じた前記焦点調節レンズの移動させた位置から、前記位相差検出部による位相差の検出または前記コントラスト検出部によるコントラストの検出のために前記焦点調節レンズを再度移動させるように構成することができる。
[3]本発明の撮像装置において、前記制御部は、前記焦点調節レンズを再度移動させるとき、前記焦点調節レンズの移動が中止される前の移動方向と同じ方向に前記焦点調節レンズを移動させるように構成することができる。
[4]本発明の撮像装置において、前記焦点調節部は、前記ズームレンズの移動による撮影距離の変化に応じて、前記焦点調節レンズの移動量を決定するように構成することができる。
[5]本発明の撮像装置において、前記位相差検出部による位相差の検出または前記コントラスト検出部によるコントラストの検出のために前記焦点調節レンズが移動している間に、合焦位置が検出された場合には、前記焦点調節部に前記焦点調節レンズを合焦位置へ移動させる合焦駆動を実行させるように構成することができる。
[6]本発明の撮像装置において、前記制御部は、前記位相差検出部による位相差の検出または前記コントラスト検出部によるコントラストの検出のために前記焦点調節レンズが移動している間に、合焦位置が検出された後、前記ズームレンズの移動を検出した場合には、前記ズームレンズの移動に応じた前記焦点調節レンズの移動を前記焦点調節部に行わせないように構成することができる。
[7]本発明の撮像装置において、前記制御部は、前記光学系の合焦位置が検出された後、前記指示部による前記ズームレンズの移動が指示されると、前記ズームレンズの移動方向が、合焦位置が現在の焦点検出レンズ位置に近づく方向である場合には、前記ズームレンズの移動に応じた前記焦点調節レンズの移動を前記焦点調節部に行わせることなく、前記焦点調節部に前記合焦位置への前記焦点調節レンズの移動を行わせ、前記ズームレンズの移動方向が、前記合焦位置が現在の焦点検出レンズ位置から遠ざかる方向である場合には、前記ズームレンズの移動に応じた前記焦点調節レンズの移動を前記焦点調節部に行わせた後に、前記焦点調節部に前記焦点調節レンズの移動を行わせるように構成することができる。
本発明の撮像装置によれば、光学系の焦点調節を適切に行なうことができる。
図1は、本実施形態に係るカメラを示すブロック図である。 図2は、図1に示す撮像素子の撮像面を示す正面図である。 図3は、図2のIII部を拡大して焦点検出画素222a,222bの配列を模式的に示す正面図である。 図4は、撮像画素221の一つを拡大して示す正面図である。 図5(A)は、焦点検出画素222aの一つを拡大して示す正面図、図5(B)は、焦点検出画素222bの一つを拡大して示す正面図である。 図6は、撮像画素221の一つを拡大して示す断面図である。 図7(A)は、焦点検出画素222aの一つを拡大して示す断面図、図7(B)は、焦点検出画素222bの一つを拡大して示す断面図である。 図8は、図3のVIII-VIII線に沿う断面図である。 図9は、ズームレンズ位置とフォーカスレンズ位置との関係を示すズームトラッキング用のテーブルを示す図である。 図10は、AF−Fモードが選択されている場合における動作を示すフローチャートである。 図11は、本実施形態に係るスキャン動作における、フォーカスレンズ位置と焦点評価値との関係、およびフォーカスレンズ位置と時間との関係を示す図である。 図12は、AF−Fモードが選択されている場合における、フォーカスレンズ位置と焦点評価値との関係、およびフォーカスレンズ位置と時間との関係を示す図である。 図13は、AF−SモードまたはAF−Aモードが選択されている場合における動作を示すフローチャートである。 図14は、AF−Sモードが選択されている場合における、フォーカスレンズ位置と焦点評価値との関係、およびフォーカスレンズ位置と時間との関係を示す図である。 図15は、他の実施形態における、フォーカスレンズ位置と焦点評価値との関係、およびフォーカスレンズ位置と時間との関係を示す図である。 図16は、他の実施形態における、フォーカスレンズ位置と焦点評価値との関係、およびフォーカスレンズ位置と時間との関係を示す図である。
以下、本発明の実施形態を図面に基づいて説明する。
図1は、本発明の実施形態に係るデジタルカメラ1を示す要部構成図である。本実施形態のデジタルカメラ1(以下、単にカメラ1という。)は、カメラ本体2とレンズ鏡筒3から構成され、これらカメラ本体2とレンズ鏡筒3はマウント部4により着脱可能に結合されている。
レンズ鏡筒3は、カメラ本体2に着脱可能な交換レンズである。図1に示すように、レンズ鏡筒3には、レンズ31,32,33,34、および絞り35を含む撮影光学系が内蔵されている。
レンズ33は、フォーカスレンズであり、光軸L1方向に移動することで、撮影光学系の焦点距離を調節可能となっている。フォーカスレンズ33は、レンズ鏡筒3の光軸L1に沿って移動可能に設けられ、フォーカスレンズ用エンコーダ332によってその位置が検出されつつフォーカスレンズ駆動モータ331によってその位置が調節される。
このフォーカスレンズ33の光軸L1に沿う移動機構の具体的構成は特に限定されない。一例を挙げれば、レンズ鏡筒3に固定された固定筒に回転可能に回転筒を挿入し、この回転筒の内周面にヘリコイド溝(螺旋溝)を形成するとともに、フォーカスレンズ33を固定するレンズ枠の端部をヘリコイド溝に嵌合させる。そして、フォーカスレンズ駆動モータ331によって回転筒を回転させることで、レンズ枠に固定されたフォーカスレンズ33が光軸L1に沿って直進移動することになる。
上述したようにレンズ鏡筒3に対して回転筒を回転させることによりレンズ枠に固定されたフォーカスレンズ33は光軸L1方向に直進移動するが、その駆動源としてのフォーカスレンズ駆動モータ331がレンズ鏡筒3に設けられている。フォーカスレンズ駆動モータ331と回転筒とは、たとえば複数の歯車からなる変速機で連結され、フォーカスレンズ駆動モータ331の駆動軸を何れか一方向へ回転駆動すると所定のギヤ比で回転筒に伝達され、そして、回転筒が何れか一方向へ回転することで、レンズ枠に固定されたフォーカスレンズ33が光軸L1の何れかの方向へ直進移動することになる。なお、フォーカスレンズ駆動モータ331の駆動軸が逆方向に回転駆動すると、変速機を構成する複数の歯車も逆方向に回転し、フォーカスレンズ33は光軸L1の逆方向へ直進移動することになる。
フォーカスレンズ33の位置はフォーカスレンズ用エンコーダ332によって検出される。既述したとおり、フォーカスレンズ33の光軸L1方向の位置は回転筒の回転角に相関するので、たとえばレンズ鏡筒3に対する回転筒の相対的な回転角を検出すれば求めることができる。
本実施形態のフォーカスレンズ用エンコーダ332としては、回転筒の回転駆動に連結された回転円板の回転をフォトインタラプタなどの光センサで検出して、回転数に応じたパルス信号を出力するものや、固定筒と回転筒の何れか一方に設けられたフレキシブルプリント配線板の表面のエンコーダパターンに、何れか他方に設けられたブラシ接点を接触させ、回転筒の移動量(回転方向でも光軸方向の何れでもよい)に応じた接触位置の変化を検出回路で検出するものなどを用いることができる。
フォーカスレンズ33は、上述した回転筒の回転によってカメラボディ側の端部(至近端ともいう)から被写体側の端部(無限端ともいう)までの間を光軸L1方向に移動することができる。ちなみに、フォーカスレンズ用エンコーダ332で検出されたフォーカスレンズ33の現在位置情報は、レンズ制御部36を介して後述するカメラ制御部21へ送出され、フォーカスレンズ駆動モータ331は、この情報に基づいて演算されたフォーカスレンズ33の駆動位置が、カメラ制御部21からレンズ制御部36を介して送出されることにより駆動する。
また、レンズ32は、ズームレンズであり、光軸L1方向に移動することで、撮影光学系の撮影倍率を調節可能となっている。ズームレンズ32も、上述したフォーカスレンズ33と同様に、ズームレンズ用エンコーダ322によってその位置が検出されつつズームレンズ駆動モータ321によってその位置が調節される。ズームレンズ32の位置は、操作部28に設けられたズームボタンを操作することにより、あるいは、カメラ鏡筒3に設けられたズーム環(不図示)を操作することにより、調節される。なお、ズームレンズ32の光軸L1に沿う移動機構は、上述したフォーカスレンズ31の移動機構と同様とすることができる。また、ズームレンズ用エンコーダ322およびズームレンズ駆動モータ321の構成も、上述したフォーカスレンズ用エンコーダ332およびフォーカスレンズ駆動モータ331と同様とすることができる。
絞り35は、上記撮影光学系を通過して撮像素子22に至る光束の光量を制限するとともにボケ量を調整するために、光軸L1を中心にした開口径が調節可能に構成されている。絞り35による開口径の調節は、たとえば自動露出モードにおいて演算された適切な開口径が、カメラ制御部21からレンズ制御部36を介して送出されることにより行われる。また、カメラ本体2に設けられた操作部28によるマニュアル操作により、設定された開口径がカメラ制御部21からレンズ制御部36に入力される。絞り35の開口径は図示しない絞り開口センサにより検出され、レンズ制御部36で現在の開口径が認識される。
また、レンズ制御部36は、ズームレンズ用エンコーダ322によって検出されるズームレンズ32の位置を検出し、ズームレンズ32が駆動した場合には、ズームレンズ32の移動量に応じて、フォーカスレンズ33を駆動させて、フォーカスを微調整するズームトラッキング制御を行う。
一方、カメラ本体2には、上記撮影光学系からの光束L1を受光する撮像素子22が、撮影光学系の予定焦点面に設けられ、その前面にシャッター23が設けられている。撮像素子22はCCDやCMOSなどのデバイスから構成され、受光した光信号を電気信号に変換してカメラ制御部21に送出する。カメラ制御部21に送出された撮影画像情報は、逐次、液晶駆動回路25に送出されて観察光学系の電子ビューファインダ(EVF)26に表示されるとともに、操作部28に備えられたレリーズボタン(不図示)が全押しされた場合には、その撮影画像情報が、記録媒体であるカメラメモリ24に記録される。なお、カメラメモリ24は着脱可能なカード型メモリや内蔵型メモリの何れをも用いることができる。撮像素子22の構造の詳細は後述する。
カメラ本体2には、撮像素子22で撮像される像を観察するための観察光学系が設けられている。本実施形態の観察光学系は、液晶表示素子からなる電子ビューファインダ(EVF)26と、これを駆動する液晶駆動回路25と、接眼レンズ27とを備えている。液晶駆動回路25は、撮像素子22で撮像され、カメラ制御部21へ送出された撮影画像情報を読み込み、これに基づいて電子ビューファインダ26を駆動する。これにより、ユーザは、接眼レンズ27を通して現在の撮影画像を観察することができる。なお、光軸L2による上記観察光学系に代えて、または、これに加えて、液晶ディスプレイをカメラ本体2の背面等に設け、この液晶ディスプレイに撮影画像を表示させることもできる。
カメラ本体2にはカメラ制御部21が設けられている。カメラ制御部21は、マウント部4に設けられた電気信号接点部41によりレンズ制御部36と電気的に接続され、このレンズ制御部36からレンズ情報を受信するとともに、レンズ制御部36へデフォーカス量や絞り開口径などの情報を送信する。また、カメラ制御部21は、上述したように撮像素子22から画素出力を読み出すとともに、読み出した画素出力について、必要に応じて所定の情報処理を施すことにより画像情報を生成し、生成した画像情報を、電子ビューファインダ26の液晶駆動回路25やカメラメモリ24に出力する。また、カメラ制御部21は、撮像素子22からの画像情報の補正やレンズ鏡筒3の焦点調節状態、絞り調節状態などを検出するなど、カメラ1全体の制御を司る。
また、カメラ制御部21は、上記に加えて、撮像素子22から読み出した画素データに基づき、位相検出方式による撮影光学系の焦点状態の検出、およびコントラスト検出方式による撮影光学系の焦点状態の検出を行う。なお、具体的な焦点状態の検出方法については、後述する。
操作部28は、シャッターレリーズボタンや、動画撮影開始ボタンなどの撮影者がカメラ1の各種動作モードを設定するための入力スイッチであり、オートフォーカスモード/マニュアルフォーカスモードの切換や、オードフォーカスモードの中でも、AF−Sモード/AF−Aモード/AF−Fモードの切換が行えるようになっている。この操作部28により設定された各種モードはカメラ制御部21へ送出され、当該カメラ制御部21によりカメラ1全体の動作が制御される。また、シャッターレリーズボタンは、ボタンの半押しでONとなる第1スイッチSW1と、ボタンの全押しでONとなる第2スイッチSW2とを含む。
ここで、AF−Sモードとは、シャッターレリーズボタンの半押しがされた後、焦点検出結果に基づき、フォーカスレンズ33を駆動することで合焦駆動を行ない、一度調節したフォーカスレンズ33の位置を固定し、そのフォーカスレンズ位置で撮影するモードである。なお、AF−Sモードは、静止画撮影に適したモードであり、通常、静止画撮影を行なう際に選択される。また、AF−Aモードとは、シャッターレリーズボタンの半押しがされた後、焦点検出結果に基づき、フォーカスレンズ33を駆動することで合焦駆動を行ない、その後、シャッターレリーズボタンの半押し操作が継続されている間は、焦点状態の検出を繰り返し行い、焦点状態が変化した場合には、フォーカスレンズ33のスキャン駆動を行なうモードである。なお、AF−Aモードは、静止画撮影に適したモードであり、通常、静止画撮影を行なう際に選択される。さらに、AF−Fモードとは、シャッターレリーズボタンの操作の有無に関係なく、焦点検出結果に基づきフォーカスレンズ33を駆動することで合焦駆動を行ない、その後、焦点状態の検出を繰り返し行い、焦点状態が変化した場合には、フォーカスレンズ33のスキャン駆動を行なうモードである。なお、AF−Fモードは、動画撮影に適したモードであり、通常、動画撮影を行なう際に選択される。
また、本実施形態においては、オードフォーカスモードを切換えるためのスイッチとして、ワンショットモード/コンティニュアスモードを切換えるためのスイッチを備えているような構成としてもよい。そして、この場合においては、撮影者によりワンショットモードが選択された場合には、AF−Sモードに設定され、また、撮影者によりコンティニュアスモードが選択された場合には、撮影モードが静止画撮影モードであるときには、AF−Aモードに設定され、撮影モードが動画撮影モードであるときには、AF−Fモードに設定されるような構成とすることができる。
次に、本実施形態に係る撮像素子22について説明する。
図2は、撮像素子22の撮像面を示す正面図、図3は、図2のIII部を拡大して焦点検出画素222a,222bの配列を模式的に示す正面図である。
本実施形態の撮像素子22は、図3に示すように、複数の撮像画素221が、撮像面の平面上に二次元的に配列され、緑色の波長領域を透過するカラーフィルタを有する緑画素Gと、赤色の波長領域を透過するカラーフィルタを有する赤画素Rと、青色の波長領域を透過するカラーフィルタを有する青画素Bがいわゆるベイヤー配列(Bayer Arrangement)されたものである。すなわち、隣接する4つの画素群223(稠密正方格子配列)において一方の対角線上に2つの緑画素が配列され、他方の対角線上に赤画素と青画素が1つずつ配列されている。このベイヤー配列された画素群223を単位として、当該画素群223を撮像素子22の撮像面に二次元状に繰り返し配列することで撮像素子22が構成されている。
なお、単位画素群223の配列は、図示する稠密正方格子以外にも、たとえば稠密六方格子配列にすることもできる。また、カラーフィルタの構成や配列はこれに限定されることはなく、補色フィルタ(緑:G、イエロー:Ye、マゼンタ:Mg,シアン:Cy)の配列を採用することもできる。
図4は、撮像画素221の一つを拡大して示す正面図、図6は断面図である。一つの撮像画素221は、マイクロレンズ2211と、光電変換部2212と、図示しないカラーフィルタから構成され、図6の断面図に示すように、撮像素子22の半導体回路基板2213の表面に光電変換部2212が造り込まれ、その表面にマイクロレンズ2211が形成されている。光電変換部2212は、マイクロレンズ2211により撮影光学系の射出瞳(たとえばF1.0)を通過する撮像光束を受光する形状とされ、撮像光束を受光する。
また、撮像素子22の撮像面には、上述した撮像画素221に代えて焦点検出画素222a,222bが配列された焦点検出画素列22a〜22eが設けられている。図3に示すように、一つの焦点検出画素列は、複数の焦点検出画素222aおよび222bが、互いに隣接して交互に、横一列に配列されて構成されている。本実施形態においては、焦点検出画素222aおよび222bは、ベイヤー配列された撮像画素221の緑画素Gと青画素Bとの位置にギャップを設けることなく密に配列されている。
なお、図2に示す焦点検出画素列22a〜22eの位置は図示する位置にのみ限定されず、何れか一箇所、二箇所、三箇所、あるいは四箇所とすることもでき、また、六箇所以上の位置に配置することもできる。また、図3においては、16個の焦点検出画素222a,222bにより、焦点検出画素列を構成する例を示しているが、焦点検出画素列を構成する焦点検出画素の数は、この例に限定されるものではない。
図5(A)は、焦点検出画素222aの一つを拡大して示す正面図、図7(A)は、焦点検出画素222aの断面図である。また、図5(B)は、焦点検出画素222bの一つを拡大して示す正面図、図7(B)は、焦点検出画素222bの断面図である。焦点検出画素222aは、図5(A)に示すように、マイクロレンズ2221aと、半円形状の光電変換部2222aとから構成され、図7(A)の断面図に示すように、撮像素子22の半導体回路基板2213の表面に光電変換部2222aが造り込まれ、その表面にマイクロレンズ2221aが形成されている。また、焦点検出画素222bは、図5(B)に示すように、マイクロレンズ2221bと、光電変換部2222bとから構成され、図7(B)の断面図に示すように、撮像素子22の半導体回路基板2213の表面に光電変換部2222bが造り込まれ、その表面にマイクロレンズ2221bが形成されている。そして、これら焦点検出画素222aおよび222bは、図3に示すように、互いに隣接して交互に、横一列に配列されることにより、図2に示す焦点検出画素列22a〜22eを構成する。
なお、焦点検出画素222a,222bの光電変換部2222a,2222bは、マイクロレンズ2221a,2221bにより撮影光学系の射出瞳の所定の領域(たとえばF2.8)を通過する光束を受光するような形状とされる。また、焦点検出画素222a,222bにはカラーフィルタは設けられておらず、その分光特性は、光電変換を行うフォトダイオードの分光特性と、図示しない赤外カットフィルタの分光特性を総合したものとなっている。ただし、撮像画素221と同じカラーフィルタのうちの一つ、たとえば緑フィルタを備えるように構成することもできる。
また、図5(A)、図5(B)に示す焦点検出画素222a,222bの光電変換部2222a,2222bは半円形状としたが、光電変換部2222a,2222bの形状はこれに限定されず、他の形状、たとえば、楕円形状、矩形状、多角形状とすることもできる。
ここで、上述した焦点検出画素222a,222bの画素出力に基づいて撮影光学系の焦点状態を検出する、いわゆる位相差検出方式について説明する。
図8は、図3のVIII-VIII線に沿う断面図であり、撮影光軸L1近傍に配置され、互いに隣接する焦点検出画素222a−1,222b−1,222a−2,222b−2が、射出瞳350の測距瞳351,352から照射される光束AB1−1,AB2−1,AB1−2,AB2−2をそれぞれ受光していることを示している。なお、図8においては、複数の焦点検出画素222a,222bのうち、撮影光軸L1近傍に位置するもののみを例示して示したが、図8に示す焦点検出画素以外のその他の焦点検出画素についても、同様に、一対の測距瞳351,352から照射される光束をそれぞれ受光するように構成されている。
ここで、射出瞳350とは、撮影光学系の予定焦点面に配置された焦点検出画素222a,222bのマイクロレンズ2221a,2221bの前方の距離Dの位置に設定された像である。距離Dは、マイクロレンズの曲率、屈折率、マイクロレンズと光電変換部との距離などに応じて一義的に決まる値であって、この距離Dを測距瞳距離と称する。また、測距瞳351,352とは、焦点検出画素222a,222bのマイクロレンズ2221a,2221bにより、それぞれ投影された光電変換部2222a,2222bの像をいう。
なお、図8において焦点検出画素222a−1,222b−1,222a−2,222b−2の配列方向は一対の測距瞳351,352の並び方向と一致している。
また、図8に示すように、焦点検出画素222a−1,222b−1,222a−2,222b−2のマイクロレンズ2221a−1,2221b−1,2221a−2,2221b−2は、撮影光学系の予定焦点面近傍に配置されている。そして、マイクロレンズ2221a−1,2221b−1,2221a−2,2221b−2の背後に配置された各光電変換部2222a−1,2222b−1,2222a−2,2222b−2の形状が、各マイクロレンズ2221a−1,2221b−1,2221a−2,2221b−2から測距距離Dだけ離れた射出瞳350上に投影され、その投影形状は測距瞳351,352を形成する。
すなわち、測距距離Dにある射出瞳350上で、各焦点検出画素の光電変換部の投影形状(測距瞳351,352)が一致するように、各焦点検出画素におけるマイクロレンズと光電変換部の相対的位置関係が定められ、それにより各焦点検出画素における光電変換部の投影方向が決定されている。
図8に示すように、焦点検出画素222a−1の光電変換部2222a−1は、測距瞳351を通過し、マイクロレンズ2221a−1に向う光束AB1−1によりマイクロレンズ2221a−1上に形成される像の強度に対応した信号を出力する。同様に、焦点検出画素222a−2の光電変換部2222a−2は測距瞳351を通過し、マイクロレンズ2221a−2に向う光束AB1−2によりマイクロレンズ2221a−2上に形成される像の強度に対応した信号を出力する。
また、焦点検出画素222b−1の光電変換部2222b−1は測距瞳352を通過し、マイクロレンズ2221b−1に向う光束AB2−1によりマイクロレンズ2221b−1上に形成される像の強度に対応した信号を出力する。同様に、焦点検出画素222b−2の光電変換部2222b−2は測距瞳352を通過し、マイクロレンズ2221b−2に向う光束AB2−2によりマイクロレンズ2221b−2上に形成される像の強度に対応した信号を出力する。
そして、上述した2種類の焦点検出画素222a,222bを、図3に示すように直線状に複数配置し、各焦点検出画素222a,222bの光電変換部2222a,2222bの出力を、測距瞳351と測距瞳352とのそれぞれに対応した出力グループにまとめることにより、測距瞳351と測距瞳352とのそれぞれを通過する焦点検出光束が焦点検出画素列上に形成する一対の像の強度分布に関するデータが得られる。そして、この強度分布データに対し、相関演算処理または位相差検出処理などの像ズレ検出演算処理を施すことにより、いわゆる位相差検出方式による像ズレ量を検出することができる。
そして、得られた像ズレ量に一対の測距瞳の重心間隔に応じた変換演算を施すことにより、予定焦点面に対する現在の焦点面(予定焦点面上のマイクロレンズアレイの位置に対応した焦点検出エリアにおける焦点面をいう。)の偏差、すなわちデフォーカス量を求めることができる。
なお、これら位相差検出方式による像ズレ量の演算と、これに基づくデフォーカス量の演算は、カメラ制御部21により実行される。
また、カメラ制御部21は、撮像素子22の撮像画素221の出力を読み出し、読み出した画素出力に基づき、焦点評価値の演算を行う。この焦点評価値は、たとえば撮像素子22の撮像画素221からの画像出力の高周波成分を、高周波透過フィルタを用いて抽出することで求めることができる。また、遮断周波数が異なる2つの高周波透過フィルタを用いて高周波成分を抽出し、それぞれを積算することでも求めることができる。
そして、カメラ制御部21は、レンズ制御部36に制御信号を送出してフォーカスレンズ33を所定のサンプリング間隔(距離)で駆動させ、それぞれの位置における焦点評価値を求め、該焦点評価値が最大となるフォーカスレンズ33の位置を合焦位置として求める、コントラスト検出方式による焦点検出を実行する。なお、この合焦位置は、たとえば、フォーカスレンズ33を駆動させながら焦点評価値を算出した場合に、焦点評価値が、2回上昇した後、さらに、2回下降して推移した場合に、これらの焦点評価値を用いて、内挿法などの演算を行うことで求めることができる。
ここで、図2には、撮影画面内の第1領域と第2領域とを、撮像素子22に対応させて表示している(なお、図2に示す一点鎖線で囲まれた領域が、第1領域であり、この第1領域の周囲に位置する外側の領域が第2領域である)。撮影画面内の第1領域は、撮像素子22のうちの焦点検出画素列22a〜22eを含む領域に対応しており、これにより、光学系の焦点状態を、位相差検出方式およびコントラスト検出方式により検出することが可能な領域である。また、撮影画面内の第2領域は、図2に示すように、撮影画面内の第1領域の周囲に位置し、撮像素子22のうちの焦点検出画素列22a〜22eを含まない領域であり、光学系の焦点状態を、コントラスト検出方式のみにより検出することが可能な領域である。そのため、本実施形態においては、カメラ制御部21は、図2に示すように、焦点検出を行うための焦点検出エリアAFPが、撮影画面内の第1領域に存在する場合には、位相差検出方式およびコントラスト検出方式により焦点状態の検出を行うことができ、一方、焦点検出エリアAFPが、撮影画面の第2領域に存在する場合には、コントラスト検出方式により焦点状態の検出を行うことができる。
さらに、カメラ制御部21は、レンズ制御部36に、ズームトラッキング制御を禁止するためのズームトラッキング禁止信号、およびズームトラッキング制御を許可するためのズームトラッキング許可信号を送出することで、レンズ制御部36により実行されるズームトラッキング制御の許可/禁止を制御する。すなわち、レンズ制御部36は、ズームトラッキング許可信号を受信した際においては、ズームレンズ用エンコーダ322によって検出されるズームレンズ32の位置を検出し、ズームレンズ32が駆動した場合に、ズームレンズ32の移動量に応じて、フォーカスレンズ33を駆動させて、フォーカスを微調整するズームトラッキング制御を行う。具体的には、レンズ制御部36は、ズームレンズ32の駆動を検出した場合に、撮影距離ごとの、ズームレンズ32の位置とフォーカスレンズ33の位置との関係を示すズームトラッキング用のテーブルを用いて、ズームレンズ32の移動量に応じたフォーカスレンズ33の駆動量を算出する。そして、算出したフォーカスレンズ33の駆動量を、フォーカスレンズ駆動モータ331に送ることで、フォーカスレンズ33を駆動させることにより、フォーカスを微調整するズームトラッキング制御が行われる。
一方、レンズ制御部36は、ズームトラッキング禁止信号を受信した際においては、ズームレンズ用エンコーダ322によってズームレンズ32の駆動を検出した場合でも、このようなズームトラッキング制御を実行せず、その後、ズームトラッキング許可信号を受信した場合に、ズームトラッキング制御を行う。
次いで、本実施形態に係るカメラ1の動作例を説明する。まず、本実施形態では、動画撮影に適したモードであるAF−Fモードが選択されている場合における動作例を説明する。図10は、AF−Fモードが選択されている場合における動作を示すフローチャートである。なお、AF−Fモードは、通常、動画撮影を行なう際に選択されるモードであるため、以下においては、動画撮影時においてAF−Fモード選択されている場面を特に例示して説明する。また、以下の動作は、たとえば、カメラ1の電源がオンされ、動画撮影開始ボタンがオンされることにより開始される。
まず、ステップS101では、カメラ制御部21により、ズームトラッキングを許可する処理が行なわれる。具体的には、ズームトラッキング許可信号が、カメラ制御部21からレンズ制御部36に送信され、これにより、レンズ制御部36によるズームトラッキング制御が許可とされる。そして、ズームトラッキング制御が許可とされることにより、レンズ制御部36により、ズームレンズ32の駆動が検出された場合に、ズームトラッキング制御が行われることとなる。すなわち、ズームレンズ32の駆動が検出された場合には、レンズ制御部36は、ズームレンズ32の移動量に応じたフォーカスレンズ33の駆動量を、図9に示すズームトラッキング用のテーブルに基づいて算出し、算出した駆動量を、フォーカスレンズ駆動モータ331に送出することで、フォーカスレンズ33を駆動させ、これによりフォーカスの微調整が行なわれることとなる。
次いで、ステップS102では、カメラ制御部21により、位相差検出方式によるデフォーカス量の算出処理が開始される。本実施形態では、位相差検出方式によるデフォーカス量の算出処理は、次のように行なわれる。すなわち、まず、カメラ制御部21により、撮像素子22の5つの焦点検出画素列22a〜22eを構成する各焦点検出画素222a,222bから一対の像に対応した一対の像データの読み出しが行なわれる。そして、カメラ制御部21は、読み出された一対の像データに基づいて像ズレ検出演算処理(相関演算処理)を実行し、5つの焦点検出画素列22a〜22eに対応する焦点検出位置における像ズレ量を演算し、さらに像ズレ量をデフォーカス量に変換する。また、カメラ制御部21は、算出したデフォーカス量の信頼性の評価を行う。なお、デフォーカス量の信頼性の評価は、たとえば、一対の像データの一致度やコントラストなどに基づいて行なわれる。そして、このような位相差検出方式によるデフォーカス量の算出処理は、所定の間隔で繰り返し実行される。
ステップS103では、カメラ制御部21により、焦点評価値の算出処理が開始される。本実施形態では、焦点評価値の算出処理は、撮像素子22の撮像画素221の画素出力を読み出し、読み出した画素出力の高周波成分を、高周波透過フィルタを用いて抽出し、これを積算することにより行われる。なお、焦点評価値の算出処理は、所定の間隔で繰り返し実行される。
次いで、ステップS104では、カメラ制御部21により、被写体を追尾するための追尾演算処理が開始される。本実施形態では、まず、使用者の手動操作により、あるいは、カメラ制御部21による被写体認識処理により指定された追尾対象となる特定被写体に対応するテンプレート画像の生成が行なわれる。そして、生成されたテンプレート画像との一致度が所定以上であるエリアの探索を行い、一致度が所定以上であるエリアを逐次抽出し、抽出したエリアを、焦点検出エリアAFP(たとえば、図2参照)として設定することにより行われる。なお、追尾演算処理は、所定の間隔で繰り返し実行される。
ステップS105では、カメラ制御部21により、位相差検出方式により、追尾演算処理に基づいて設定された焦点検出エリアAFPにおける、デフォーカス量の算出ができたか否かの判定が行なわれる。デフォーカス量が算出できた場合には、測距可能と判断して、ステップS112に進む。一方、デフォーカス量が算出できなかった場合には、測距不能と判断して、ステップS106に進む。なお、本実施形態においては、追尾演算処理に基づいて設定された焦点検出エリアAFPにおける、デフォーカス量の算出ができた場合でも、算出されたデフォーカス量の信頼性が低い場合にも、デフォーカス量の算出ができなかったものとして扱い、ステップS106に進むこととする。本実施形態においては、たとえば、被写体のコントラストが低い場合、被写体が超低輝度被写体である場合、あるいは被写体が超高輝度被写体である場合などにおいて、デフォーカス量の信頼性が低いと判断される。また、追尾演算処理に基づいて設定された焦点検出エリアAFPが、図2に示す第1領域内に位置する場合には、位相差検出方式による光学系の焦点状態の検出が可能である一方で、焦点検出エリアAFPが、図2に示す第2領域内に位置する場合には、位相差検出方式による光学系の焦点状態の検出ができないため、この場合には、デフォーカス量が算出できなかったものとして、ステップS106に進む。
なお、ステップS105においては、直近の一回のデフォーカス量算出処理の結果を用いて、上記判定を行なうが、直近の所定回数のデフォーカス量算出処理において、連続して、デフォーカス量が算出できなかった場合、あるいは、連続して、デフォーカス量の信頼性が低かった場合に、測距不能と判断して、ステップS106に進み、逆に、直近の所定回数のデフォーカス量算出処理において、一度でもデフォーカス量が算出された場合には、測距可能と判断して、ステップS112に進むような構成としてもよい。
ステップS105において、焦点検出エリアAFPにおける、デフォーカス量が算出できたと判定され、測距可能と判断された場合には、ステップS112に進み、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動(ステップS113)を行なうために、ズームトラッキング禁止信号が、カメラ制御部21からレンズ制御部36に送信され、これにより、レンズ制御部36によるズームトラッキング制御が禁止される。すなわち、本実施形態では、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動中においては、ズームトラッキングを禁止し、ズームレンズ32の駆動が検出された場合でも、ズームトラッキング制御、すなわち、ズームレンズ32の移動量に応じたフォーカスレンズ33を駆動する動作が実行されないこととなる。
次いで、ステップS112に続くステップS113では、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動が行なわれる。具体的には、ステップS113では、位相差検出方式により算出されたデフォーカス量に基づいて、フォーカスレンズ33を、合焦位置まで駆動させる処理が行なわれる。具体的には、カメラ制御部21により、位相差検出方式により算出されたデフォーカス量から、フォーカスレンズ33を合焦位置まで駆動させるのに必要となるレンズ駆動量の算出が行なわれ、算出されたレンズ駆動量が、レンズ制御部36を介して、レンズ駆動モータ36に送出される。そして、レンズ駆動モータ36は、カメラ制御部21により算出されたレンズ駆動量に基づいて、フォーカスレンズ33を合焦位置まで駆動させる。
なお、本実施形態においては、レンズ駆動モータ36を駆動させ、フォーカスレンズ33を合焦位置まで駆動させている間においても、カメラ制御部21は、位相差検出方式によるデフォーカス量の算出を繰り返し行い、その結果、新たなデフォーカス量が算出された場合には、カメラ制御部21は、新たなデフォーカス量に基づいて、フォーカスレンズ33を駆動させる。
そして、フォーカスレンズ33が合焦位置まで駆動すると、ステップS116に進み、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動が終了したため、カメラ制御部21により、ズームトラッキングの禁止を解除するために、ズームトラッキング許可信号がレンズ制御部36に送信され、これにより、レンズ制御部36によるズームトラッキング制御が許可とされる。なお、この場合において、ズームトラッキングの禁止中に、ズームレンズ32の駆動が行われた場合には、ズームトラッキング制御が許可とされた後、ズームトラッキングの禁止中におけるズームレンズ32の駆動量に応じて、フォーカスレンズ33の駆動が行なわれる。
次いで、ステップS117では、光学系の焦点状態が変化したか否かの判断が行なわれる。たとえば、カメラ制御部21によって繰り返し算出されている位相差検出方式によるデフォーカス量が所定値以上変化した場合や、デフォーカス量が算出できなかった場合、あるいは、同じくカメラ制御部21によって繰り返し算出されている焦点評価値が所定値以上変化した場合に、光学系の焦点状態が変化したと判断することができる。光学系の焦点状態が変化したと判断された場合には、ステップS105に戻り、再度、フォーカスレンズ33を合焦位置まで駆動させるための動作が行なわれる。一方、光学系の焦点状態が変化していない場合には、所定の終了動作、たとえば、カメラ1の電源オフ動作や動画撮影の終了動作が行なわれるか(ステップS118)、あるいは、光学系の焦点状態が変化するまで(ステップS117)、フォーカスレンズ33を現在のレンズ位置に停止させたまま待機する。
一方、ステップS105において、位相差検出方式により、焦点検出エリアAFPにおける、デフォーカス量の算出ができなかったと判定された場合には、ステップS106に進み、カメラ制御部21により、スキャン動作(ステップS107〜S111)を行なうために、ズームトラッキング禁止信号が、カメラ制御部21からレンズ制御部36に送信され、これにより、レンズ制御部36によるズームトラッキング制御が禁止される。すなわち、本実施形態では、スキャン動作中においては、ズームトラッキングを禁止し、ズームレンズ32の駆動が検出された場合でも、ズームトラッキング制御、すなわち、ズームレンズ32の移動量に応じたフォーカスレンズ33を駆動する動作が実行されないこととなる。
ステップS106に続くステップS107では、カメラ制御部21により、スキャン動作の開始処理が行なわれる。本実施形態のスキャン動作は、フォーカスレンズ駆動モータ36により、フォーカスレンズ33をスキャン駆動させながら、カメラ制御部21により、位相差検出方式によるデフォーカス量の算出、および焦点評価値の算出を、所定の間隔で同時に行い、これにより、位相差検出方式による合焦位置の検出と、コントラスト検出方式による合焦位置の検出とを、所定の間隔で、同時に実行する動作である。
具体的には、カメラ制御部21は、レンズ制御部36にスキャン駆動開始指令を送出し、レンズ制御部36は、カメラ制御部21からの指令に基づき、フォーカスレンズ駆動モータ36を駆動させ、フォーカスレンズ33を光軸L1に沿ってスキャン駆動させる。なお、フォーカスレンズ33のスキャン駆動は、スキャン駆動開始指令を受信時の位置から無限遠端位置に向かって行い、無限遠端位置に到達したら至近端位置に向かって行う。もしくは、逆に最初は至近端位置に向かって行い、至近端位置に到達したら無限端位置に向かって行う。
そして、カメラ制御部21は、フォーカスレンズ33を駆動させながら、所定間隔で、撮像素子22の焦点検出画素222a,222bから一対の像に対応した一対の像データの読み出しを行い、これに基づき、位相差検出方式により、デフォーカス量の算出および算出されたデフォーカス量の信頼性の評価を行うとともに、フォーカスレンズ33を駆動させながら、所定間隔で、撮像素子22の撮像画素221から画素出力の読み出しを行い、これに基づき、焦点評価値を算出し、これにより、異なるフォーカスレンズ位置における焦点評価値を取得することで、コントラスト検出方式により合焦位置の検出を行う。なお、本実施形態においては、追尾演算処理に基づいて設定された焦点検出エリアAFPが、図2に示す第1領域内に位置する場合には、位相差検出方式による光学系の焦点状態の検出が可能である一方で、焦点検出エリアAFPが、図2に示す第2領域内に位置する場合には、位相差検出方式による光学系の焦点状態の検出ができない。そのため、焦点検出エリアAFPが、図2に示す第2領域内に位置する場合には、本実施形態のスキャン動作においては、位相差検出方式による合焦位置の検出を行わずに、コントラスト検出方式による合焦位置の検出のみを行うこととする。
ステップS108では、カメラ制御部21により、スキャン動作を行なった結果、位相差検出方式により、焦点検出エリアAFPにおける、デフォーカス量が算出できたか否かの判定が行なわれる。デフォーカス量が算出できた場合には、測距可能と判断して、ステップS113に進み、一方、デフォーカス量が算出できなかった場合には、測距不能と判断して、ステップS109に進む。なお、ステップS108においては、上述したステップS105と同様に、デフォーカス量の算出ができた場合でも、算出されたデフォーカス量の信頼性が低い場合には、デフォーカス量の算出ができなかったものとして扱い、ステップS109に進むこととする。なお、焦点検出エリアAFPが、図2に示す第2領域内に位置する場合には、位相差検出方式による光学系の焦点状態の検出ができないため、この場合には、デフォーカス量の算出ができなかったものとして、ステップS109に進むこととする。
ステップS109では、カメラ制御部21により、スキャン動作を行なった結果、コントラスト検出方式により、焦点検出エリアAFPにおける、合焦位置の検出ができたか否かの判定が行なわれる。コントラスト検出方式により、焦点検出エリアAFPにおける、合焦位置の検出ができた場合には、ステップS114に進み、一方、合焦位置の検出ができなかった場合には、ステップS110に進む。
ステップS110においては、カメラ制御部21により、ズームレンズ32の駆動が検出されたか否かの判定が行われる。ズームレンズ32の駆動が検出された場合には、ステップS115に進み、一方、ズームレンズ32の駆動が検出されていない場合には、ステップS111に進む。なお、ズームレンズ32の駆動の検出は、ズームレンズ用エンコーダ322により検出されたズームレンズ32の位置が変化したか否かに基づいて行なわれる。
ステップS111では、カメラ制御部21により、スキャン動作を、フォーカスレンズ33の駆動可能範囲の全域、すなわち、無限遠端位置から至近端位置の間の全域について行なったか否かの判定が行なわれる。フォーカスレンズ33の駆動可能範囲の全域について、スキャン動作を行なっていない場合には、ステップS108に戻り、ステップS108〜S111を繰り返すことにより、スキャン動作、すなわち、フォーカスレンズ33を駆動させながら、位相差検出方式によるデフォーカス量の算出、およびコントラスト検出方式による合焦位置の検出を、所定の間隔で同時に実行する動作を継続して行なう。一方、フォーカスレンズ33の駆動可能範囲の全域について、スキャン動作の実行を完了している場合には、ステップS115に進む。
そして、スキャン動作を実行した結果、ステップS108において、位相差検出方式により、デフォーカス量が算出できたと判定された場合には、スキャン動作を停止し、ステップS113に進み、上記と同様にして、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動が行なわれる。なお、この場合においても、ステップS106において、ズームトラッキングを禁止する処理が行なわれているため、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動中においては、ズームトラッキングは禁止され、ズームレンズ32の駆動が検出された場合でも、ズームトラッキング制御、すなわち、ズームレンズ32の移動量に応じたフォーカスレンズ33を駆動する動作が実行されないこととなる。そして、フォーカスレンズ33の合焦位置への駆動が完了すると、ステップS116に進み、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動が終了したため、カメラ制御部21により、ズームトラッキングの禁止を解除するために、ズームトラッキング許可信号がレンズ制御部36に送信され、これにより、レンズ制御部36によるズームトラッキング制御が許可とされる。
また、スキャン動作を実行した結果、ステップS109において、コントラスト検出方式により、合焦位置が検出できたと判定された場合には、スキャン動作を停止し、ステップS114に進み、コントラスト検出方式により検出された合焦位置に基づく合焦駆動が行なわれる。すなわち、ステップS114では、コントラスト検出方式により検出された合焦位置に基づいて、フォーカスレンズ33を、合焦位置まで駆動させる合焦駆動処理が行なわれる。なお、この場合においても、ステップS106において、ズームトラッキングを禁止する処理が行なわれているため、コントラスト検出方式により検出された合焦位置に基づく合焦駆動中においては、ズームトラッキングは禁止され、ズームレンズ32の駆動が検出された場合でも、ズームトラッキング制御、すなわち、ズームレンズ32の移動量に応じたフォーカスレンズ33を駆動する動作が実行されないこととなる。
ここで、図11に、スキャン動作の結果、コントラスト検出方式により合焦位置が検出された場合における、フォーカスレンズ位置と焦点評価値との関係、およびフォーカスレンズ位置と時間との関係を表す図を示す。図11に示すように、スキャン動作開始時(時間t0〜t1)には、フォーカスレンズ33は、図11に示すP0に位置しており、P0から、無限遠側から至近側に向けてフォーカスレンズ33を駆動させながら、焦点評価値の取得を行う(時間t1〜t2)。そして、フォーカスレンズ33を、図11に示すP1の位置に移動させた時点において、焦点評価値のピーク位置(合焦位置)が検出されると(ステップS109=Yes)、スキャン動作を停止し、フォーカスレンズ33を合焦位置(図11中、P2の位置)まで駆動するための合焦駆動(ステップS113)が行なわれる(時間t2〜t3)。
なお、本実施形態においては、ステップS109において、コントラスト検出方式により、合焦位置が検出できたと判定され、コントラスト検出方式による検出結果に基づいて、フォーカスレンズ33を合焦位置への駆動を行なう際には、フォーカスレンズ33の合焦位置への駆動が完了するまでは、位相差検出方式による焦点検出結果に基づく、フォーカスレンズ33の駆動を禁止する。すなわち、コントラスト検出方式により、合焦位置が検出できたと判定された後においては、位相差検出方式によりデフォーカス量が算出できた場合でも、位相差検出方式の結果に基づいたフォーカスレンズ33の駆動を禁止する。これにより、フォーカスレンズ33のハンチング現象を抑制することができる。
また、本実施形態のスキャン動作においては、上述したステップS108〜S110を繰り返し実行することで、フォーカスレンズ33をスキャン駆動させながら、位相差検出方式によるデフォーカス量の算出、およびコントラスト検出方式による合焦位置の検出を所定の間隔で同時に実行する。そして、上述したステップS108〜S110を繰り返し実行した結果、位相差検出方式およびコントラスト検出方式のうち、先にデフォーカス量の算出、または合焦位置の検出ができた検出方式による、焦点検出結果を用いて、フォーカスレンズ33を、合焦位置まで駆動させる処理を行なう。また、上述したように、本実施形態のスキャン動作においては、位相差検出方式によりデフォーカス量が算出できたか否かを判断した(ステップS108)後に、コントラスト検出方式により合焦位置の検出ができたか否かの判断を行う(ステップS109)ことで、位相差検出方式とコントラスト検出方式とで同時期にデフォーカス量の算出および合焦位置の検出ができた場合に、位相差検出方式による焦点検出結果を、コントラスト検出方式による焦点検出結果よりも優先して、採用するものである。
そして、フォーカスレンズ33の合焦位置への駆動が完了すると、ステップS116に進み、コントラスト検出方式により検出された合焦位置に基づく合焦駆動が終了したため、カメラ制御部21により、ズームトラッキングの禁止を解除するために、ズームトラッキング許可信号がレンズ制御部36に送信され、これにより、レンズ制御部36によるズームトラッキング制御が許可とされ、ステップS117に進む。そして、ステップS117において、光学系の焦点状態が変化したか否かの判断が行なわれ、光学系の焦点状態が変化したと判断された場合には、ステップS105に戻り、再度、フォーカスレンズ33を合焦位置まで駆動させるための動作が行なわれる。一方、光学系の焦点状態が変化していない場合には、所定の終了動作、たとえば、カメラ1の電源オフ動作や動画撮影の終了動作が行なわれるか(ステップS118)、あるいは、光学系の焦点状態が変化するまで(ステップS117)、フォーカスレンズ33を現在のレンズ位置に停止させたまま待機する。
また、スキャン動作中において、位相差検出方式によるデフォーカス量の算出、およびコントラスト検出方式による合焦位置の検出がされる前に、ステップS110にて、ズームレンズ32の駆動が検出された場合には、ステップS115に進み、スキャン動作を終了し、次いで、ステップS116に進み、レンズ制御部36に、ズームトラッキング制御を実行させるために、ズームトラッキング許可信号がカメラ制御部21にからレンズ制御部36に送信される。そして、これにより、レンズ制御部36により、ズームレンズ32の移動量に応じて、フォーカスレンズ33を駆動させて、フォーカスを微調整するズームトラッキング制御が実行される。そして、ステップS117において、光学系の焦点状態が変化したか否かの判断が行なわれ、光学系の焦点状態が変化したと判断された場合には、ステップS105に戻り、再度、フォーカスレンズ33を合焦位置まで駆動させるための動作が行なわれる。一方、光学系の焦点状態が変化していない場合には、所定の終了動作、たとえば、カメラ1の電源オフ動作や動画撮影の終了動作が行なわれるか(ステップS118)、あるいは、光学系の焦点状態が変化するまで(ステップS117)、フォーカスレンズ33を現在のレンズ位置に停止させたまま待機する。
一方、スキャン動作を行なった結果、ステップS111において、フォーカスレンズ33の駆動可能範囲の全域について、スキャン動作の実行が完了していると判定された場合には、ステップS115に進み、スキャン動作を終了し、次いで、ステップS116に進み、カメラ制御部21により、カメラ制御部21により、ズームトラッキングの禁止を解除するために、ズームトラッキング許可信号がレンズ制御部36に送信される。そして、ステップS117において、光学系の焦点状態が変化したか否かの判断が行なわれ、光学系の焦点状態が変化したと判断された場合には、ステップS105に戻り、再度、フォーカスレンズ33を合焦位置まで駆動させるための動作が行なわれる。一方、光学系の焦点状態が変化していない場合には、所定の終了動作、たとえば、カメラ1の電源オフ動作や動画撮影の終了動作が行なわれるか(ステップS118)、あるいは、光学系の焦点状態が変化するまで(ステップS117)、フォーカスレンズ33を現在のレンズ位置に停止させたまま待機する。
本実施形態においては、動画撮影に適したモードであるAF−Fモードが選択されている場合には、以上のように動作する。
すなわち、本実施形態においては、AF−Fモードに設定されている場合においては、図12に示すように、フォーカスレンズ33が停止している状態において(時間t10〜t11)、位相差検出方式によりデフォーカス量が算出されないと判断されると(ステップS105=No)、ズームトラッキングが禁止され(ステップS106)、スキャン動作(ステップS107〜S111)が開始される(時間t11)。そして、スキャン動作実行中、時間t12にて、ズームレンズ32の駆動が検出されると(ステップS110=Yes)、スキャン動作を終了し(ステップS115)、ズームトラッキングが許可とされることで(ステップS116)、ズームレンズ32の駆動に応じて、レンズ制御部36によりズームトラッキング制御が実行される(時間t12〜t13)。なお、図12においては、時間t12〜t13において、ズームレンズ33が駆動することにより、合焦位置がP2からP3に変化する例を示している。そして、時間t13にて、ズームレンズ32の駆動が停止すると、ズームトラッキング制御により駆動していたフォーカスレンズ33の駆動も停止し、フォーカスレンズ33を現在のレンズ位置に停止させたまま待機する(時間t13〜t14)。
そして、フォーカスレンズ33を現在のレンズ位置に停止させたまま待機している際に、たとえば、カメラ制御部21によって繰り返し算出されている焦点評価値が所定値以上変化し、光学系の焦点状態が変化したと判断された場合には(ステップS117)、再度、位相差検出方式によりデフォーカス量が算出されたか否かの判断が行なわれる(ステップS105)。その結果、位相差検出方式によりデフォーカス量が算出されないと判断されると(ステップS105=No)、再度、スキャン動作(ステップS107〜S111)が実行される(時間t14〜t15)。そして、コントラスト検出方式により合焦位置(P3の位置)の検出ができた場合(ステップS109=Yes)には、ズームトラッキングが禁止とされた状態で合焦駆動が行なわれる(時間t15〜t16)。
なお、本実施形態においては、スキャン動作中に、ズームレンズ33の駆動が検出され、そのため、スキャン動作を終了してズームトラッキング制御を行った後、再度、スキャン動作を実行する際には、フォーカスレンズ33の駆動方向は、ズームトラッキング制御を行う前のスキャン動作の駆動方向と同じ方向に設定する。すなわち、図12に示す例のように、時間t14〜t15において、再度、スキャン動作を行なう際には、フォーカスレンズ33の駆動方向を、時間t11〜t12におけるスキャン動作の駆動方向と同じ至近側方向とする。ここで、ズームトラッキング制御は、フォーカスレンズ33を駆動させることにより、ズームレンズ32の駆動によるフォーカスの変化を抑制するものであるため、ズームトラッキング制御前後において、現在のフォーカスレンズ33の位置と合焦位置との像面での距離差は一定となる。そのため、このように、時間t14〜t15において、再度、スキャン動作を行なう際に、フォーカスレンズ33の駆動方向を、時間t11〜t12におけるスキャン動作の駆動方向と同じ方向とすることにより、時間t11〜t12におけるスキャン動作において、既にスキャン動作が終了している領域から引き続いてスキャン動作を実行することができるため、スキャン動作に要する時間の短縮を図ることができる。
次いで、静止画撮影に適したモードであるAF−SモードまたはAF−Aモードが選択されている場合における動作例を説明する。図13は、AF−SモードまたはAF−Aモードが選択されている場合における動作を示すフローチャートである。また、以下の動作は、たとえば、カメラ1の電源がオンされることにより開始される。
まず、ステップS201〜S204では、上述した図10のステップS101〜S104と同様にして、ズームトラッキングを許可する処理(ステップS201)、位相差検出方式によるデフォーカス量の算出処理(ステップS202)、焦点評価値の算出処理(ステップS203)、および被写体を追尾するための追尾演算処理(ステップS204)を開始させるための処理が行なわれる。
そして、ステップS205に進み、ステップS205では、カメラ制御部21により、操作部28に備えられたシャッターレリーズボタンの半押し(第1スイッチSW1のオン)がされたか否かの判断が行なわれる。第1スイッチSW1がオンした場合はステップS206に進む。一方、第1スイッチSW1がオンしていない場合は、第1スイッチSW1がオンされるまで、ステップS205を繰り返す。すなわち、第1スイッチSW1がオンされるまで、位相差検出方式によるデフォーカス量の算出処理、焦点評価値の算出処理、および追尾演算処理が繰り返し実行される。
ステップS206では、上述した図10のステップ105と同様に、位相差検出方式により、追尾演算処理に基づいて設定された焦点検出エリアAFPにおける、デフォーカス量の算出ができたか否かの判定が行なわれる。デフォーカス量が算出できた場合には、測距可能と判断して、ステップS213に進む。一方、デフォーカス量が算出できなかった場合には、測距不能と判断して、ステップS207に進む。
ステップS206において、焦点検出エリアAFPにおける、デフォーカス量が算出できたと判定され、測距可能と判断された場合には、ステップS213に進み、上述した図10のステップS112と同様にして、ズームトラッキングを禁止する処理が行なわれ、ステップS214に進み、上述した図10のステップS113と同様にして、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動が行なわれる。
一方、ステップS206において、位相差検出方式により、焦点検出エリアAFPにおける、デフォーカス量の算出ができなかったと判定された場合には、ステップS207に進み、上述した図10のステップS106と同様にして、ズームトラッキングを禁止する処理が行なわれ、ステップS208に進み、上述した図10のステップS107〜S111と同様にして、スキャン動作の開始処理が行なわれ、ステップS209〜S212において、スキャン動作が実行される。
そして、スキャン動作を行なった結果、位相差検出方式により、焦点検出エリアAFPにおける、デフォーカス量の算出ができた場合(ステップS209=Yes)には、ステップS214に進み、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動が行なわれる。また、スキャン動作を行なった結果、コントラスト検出方式により、焦点検出エリアAFPにおける、合焦位置が検出できた場合(ステップS210=Yes)には、ステップS215に進み、上述した図10のステップS114と同様にして、コントラスト検出方式により検出された合焦位置に基づく合焦駆動が行なわれる。なお、この場合においても、ステップS106において、ズームトラッキングを禁止する処理が行なわれているため、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動中(ステップS214)、コントラスト検出方式により検出された合焦位置に基づく合焦駆動中(ステップS215)のいずれの場合においても、ズームトラッキングは禁止され、ズームレンズ32の駆動が検出された場合でも、ズームトラッキング制御、すなわち、ズームレンズ32の移動量に応じたフォーカスレンズ33を駆動する動作が実行されないこととなる。そして、ステップS214において、位相差検出方式により算出されたデフォーカス量に基づいてフォーカスレンズ33を合焦位置に駆動させた後、ステップS215において、コントラスト検出方式により検出された合焦位置に基づいてフォーカスレンズ33を合焦位置に駆動させた後、ステップS217に進み、カメラ制御部21により、ズームトラッキング許可信号がレンズ制御部36に送信され、これにより、レンズ制御部36によるズームトラッキング制御が許可とされ、ステップS218に進む。
あるいは、スキャン動作中において、位相差検出方式によるデフォーカス量の算出、およびコントラスト検出方式による合焦位置の検出がされる前に、ステップS211にて、ズームレンズ32の駆動が検出された場合には、ステップS216に進み、スキャン動作を終了し、次いで、ステップS217に進み、レンズ制御部36に、ズームトラッキング制御を実行させるために、ズームトラッキング許可信号がカメラ制御部21にからレンズ制御部36に送信される。そして、これにより、レンズ制御部36により、ズームレンズ32の移動量に応じて、フォーカスレンズ33を駆動させて、フォーカスを微調整するズームトラッキング制御が実行され、ステップS218に進む。
一方、ステップS212において、フォーカスレンズ33の駆動可能範囲の全域について、スキャン動作の実行が完了していると判定された場合には、ステップS216に進み、スキャン動作を終了する処理が行なわれ、次いで、ステップS217に進み、カメラ制御部21により、ズームトラッキング許可信号がレンズ制御部36に送信され、これにより、レンズ制御部36によるズームトラッキング制御が許可とされ、ステップS218に進む。
ステップS218では、オートフォーカスモードがAF−Sモードに設定されているか否かの判定が行なわれる。AF−Sモードに設定されている場合には、ステップS219に進み、AF−Sモードではなく、AF−Aモードに設定されている場合には、ステップS223に進む。
AF−Sモードに設定されている場合には、ステップS219に進み、ステップS219では、フォーカスレンズ33を現在のレンズ位置に固定する合焦ロックが行なわれる。そして、ステップS220にて、操作部28に備えられたシャッターレリーズボタンの全押し(第2スイッチSW2のオン)がされたか否かの判断が行なわれ、第2スイッチSW2がオンされると、ステップS225に進み、被写体像の撮影が行なわれる。一方、第2スイッチSW2がオンされない場合には、第1スイッチSW1がオンされ続けている限り(ステップS221=No)、フォーカスレンズ33を現在のレンズ位置に固定したまま、第2スイッチSW2がオンされるまで、待機する。また、第2スイッチSW2がオンされる前に、第1スイッチSW1がオフとされると(ステップS221=Yes)、ステップS205に戻る。
一方、AF−Aモードに設定されている場合には、ステップS223に進み、光学系の焦点状態が変化したか否かの判断が行なわれる。たとえば、カメラ制御部21によって繰り返し算出されている位相差検出方式によるデフォーカス量が所定値以上変化した場合や、デフォーカス量が算出できなかった場合、あるいは、同じくカメラ制御部21によって繰り返し算出されている焦点評価値が所定値以上変化した場合に、光学系の焦点状態が変化したと判断することができる。光学系の焦点状態が変化したと判断された場合には、ステップS205に戻り、第1スイッチSW1がオンされた状態である場合には、上述してステップS207〜S217の処理を再度行なうことにより、フォーカスレンズ33を合焦位置まで駆動させるための動作が行なわれる。一方、光学系の焦点状態が変化していない場合には、第2スイッチSW2がオンされるか(ステップS221)、第1スイッチSW1がオフとされるか(ステップS224)、あるいは、光学系の焦点状態が変化するまで(ステップS220)、フォーカスレンズ33を現在のレンズ位置に停止させたまま待機する。なお、第1スイッチSW1がオフとされると(ステップS224=Yes)、ステップS205に戻る。
本実施形態においては、静止画撮影に適したモードであるAF−SモードまたはAF−Aモードが選択されている場合には、以上のように動作する。
すなわち、本実施形態においては、AF−Sモードに設定されている場合においては、図14に示すように、第1スイッチSW1がオンされ(時間t21)、位相差検出方式によりデフォーカス量が算出されないと判断されると(ステップS206=No)、ズームトラッキングが禁止され(ステップS207)、スキャン動作(ステップS208〜S212)が開始される(時間t21)。そして、スキャン動作実行中、時間t22にて、ズームレンズ32の駆動が検出されると(ステップS211=Yes)、上述したAF−Fモード(図12参照)と同様に、スキャン動作を終了し(ステップS216)、ズームトラッキングが許可とされることで(ステップS217)、ズームレンズ32の駆動に応じて、レンズ制御部36によりズームトラッキング制御が実行される(時間t22〜t23)。なお、図14においても、図12と同様に、時間t22〜t23において、ズームレンズ33が駆動することにより、合焦位置がP2からP3に変化する例を示している。そして、時間t23にて、ズームレンズ32の駆動が停止すると、ズームトラッキング制御により駆動していたフォーカスレンズ33の駆動も停止し、フォーカスレンズ33を現在のレンズ位置に停止させたまま待機する(時間t23〜t24)。
そして、時間t23〜t24の間に、一度、第1スイッチSW1がオフとされ(ステップS221=Yes)、再度、時間t24において、第1スイッチSW1がオンとされると(ステップS205=Yes)、再度、位相差検出方式によりデフォーカス量が算出されたか否かの判断が行なわれる(ステップS206)。その結果、位相差検出方式によりデフォーカス量が算出されないと判断されると(ステップS206=No)、上述したAF−Fモード(図12参照)と同様に、再度、スキャン動作(ステップS208〜S212)が実行される(時間t24〜t25)。そして、コントラスト検出方式により合焦位置(P3の位置)の検出ができた場合(ステップS210=Yes)には、ズームトラッキングが禁止とされた状態で合焦駆動が行なわれる(時間t25〜t26)。なお、AF−Sモードに設定されている場合においても、上述したAF−Fモード(図12参照)と同様に、時間t24〜t25において、再度、スキャン動作を行なう際には、フォーカスレンズ33の駆動方向を、時間t21〜t22におけるスキャン動作の駆動方向と同じ至近側方向とする。
また、本実施形態においては、AF−Aモードに設定されている場合には、上述したAF−Fモードと同様に、図12に示すように動作することとなる。
本実施形態においては、フォーカスレンズ33をスキャン駆動させながら、位相差検出方式によるデフォーカス量の算出、および焦点評価値の算出を、所定の間隔で同時に実行するスキャン動作を行なっている際に、ズームレンズ32の駆動が検出されると、スキャン動作を中止し、ズームレンズ32の移動量に応じてフォーカスレンズ33を駆動するズームトラッキング制御を行う。そのため、本実施形態によれば、ズームレンズ32の駆動終了後に、再度、スキャン動作を実行する際におけるスキャン動作に要する時間を短縮することが可能となる。
特に、スキャン動作中にズームレンズ32の駆動が行なわれると、焦点評価値が変動してしまい、その結果、合焦位置の検出精度が低下してしまうこととなってしまう。これに対して、本実施形態によれば、スキャン動作中にズームレンズ32の駆動が行なわれた場合には、その時点でスキャン動作を中止することで、合焦位置の検出精度が低下した状態でスキャン動作を継続することを防止することができ、しかも、ズームトラッキング制御を行うことで、ズームレンズ32の駆動による合焦位置の変化に対して、ズームレンズ32を追従させておくことができる。そして、本実施形態によれば、ズームレンズ32の駆動が終了した後に、再度、スキャン動作を実行することで、フォーカスレンズ33による焦点調節精度を良好なものとしながら、スキャン動作を実行する際におけるスキャン動作に要する時間、すなわち、焦点調節に要する時間を短縮することができる。
なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
たとえば、上述した実施形態においては、スキャン動作を行なった結果、コントラスト検出方式により合焦位置の検出がされた場合(ステップS109、S210=Yes)に、コントラスト検出方式により検出された合焦位置に基づいて合焦駆動を行う際(ステップS114、S215)には、ズームトラッキングを禁止するような態様を例示したが、たとえば、図15、図16に例示するような態様としてもよい。
すなわち、たとえば、図15に示す態様においては、まず、スキャン駆動を行い(時間t31〜t32)、その結果、コントラスト検出方式により合焦位置の検出がされ、スキャン駆動を終了した後に、ズームレンズ32の駆動が検出された際に(時間t32)、ズームレンズ32の駆動方向を検出する。そして、図15に示すように、ズームレンズ32の駆動方向が、合焦位置が現在のレンズ位置に近づくような方向である場合(すなわち、ズームレンズ32の駆動により、合焦位置がP2の位置からP4の位置に移動する場合)には、ズームレンズ32の駆動が終了するまで(時間t33)、フォーカスレンズ33を停止させておき、ズームレンズ32の駆動が終了したら、新たな合焦位置であるP4にフォーカスレンズ33を駆動させる態様を例示している。
あるいは、図16に示す態様においては、まず、スキャン駆動を行い(時間t41〜t42)、その結果、コントラスト検出方式により合焦位置の検出がされ、スキャン駆動を終了した後に、ズームレンズ32の駆動が検出された際に(時間t42)、ズームレンズ32の駆動方向を検出する。そして、図16に示すように、ズームレンズ32の駆動方向が、合焦位置が現在のレンズ位置から遠ざかる方向である場合(すなわち、ズームレンズ32の駆動により、合焦位置がP2の位置からP5の位置に移動する場合)には、ズームレンズ32の駆動に応じて、ズームトラッキング制御を行い(時間t42〜t43)、ズームレンズ32の駆動が終了したら、新たな合焦位置であるP5にフォーカスレンズ33を駆動させる態様を例示している。
このような図15、図16に示すような態様を採用することにより、スキャン駆動を終了した後に、ズームレンズ32の駆動が行なわれた場合に、より短い時間で、高精度に合焦駆動を行なうことができる。
また、上述した実施形態においては、AF−Fモードに設定されている場合において、位相差検出方式により算出されたデフォーカス量に基づく合焦駆動、およびコントラスト検出方式により検出された合焦位置に基づく合焦駆動を行なった後は、フォーカスレンズ33を合焦位置に停止させるような構成を例示したが、フォーカスレンズ33を、合焦位置近傍において、微小に往復駆動させるウォブリング駆動を行なってもよい。
1…デジタルカメラ
2…カメラ本体
21…カメラ制御部
22…撮像素子
221…撮像画素
222a,222b…焦点検出画素
3…レンズ鏡筒
32…ズームレンズ
321…ズームレンズ駆動モータ
33…フォーカスレンズ
331…フォーカスレンズ駆動モータ
36…レンズ制御部

Claims (7)

  1. ズームレンズと焦点調節レンズとを有する光学系を介して入射した光を光電変換して信号を出力する撮像部と、
    前記光学系の瞳の異なる領域を通過した光を光電変換して得られた信号の位相差を検出する位相差検出部と、
    前記撮像部から出力された信号に基づいて、前記光学系を介して入射した光による像のコントラストを検出するコントラスト検出部と、
    前記焦点調節レンズを移動させて前記光学系の焦点調を行う焦点調節部と
    記ズームレンズの移動を指示する指示部と、
    前記位相差検出部による位相差の検出または前記コントラスト検出部によるコントラストの検出のために前記焦点調節レンズが移動している間に、前記指示部による前記ズームレンズの移動が指示されると、前記焦点調節レンズの移動を中止し、前記ズームレンズの移動に応じた前記焦点調節レンズの移動を前記焦点調節部に行わせる制御部と、
    を備える撮像装置。
  2. 請求項1に記載の撮像装置において、
    前記制御部は、前記焦点調節部による前記ズームレンズの移動に応じた前記焦点調節レンズの移動させた位置から、前記位相差検出部による位相差の検出または前記コントラスト検出部によるコントラストの検出のために前記焦点調節レンズを再度移動させる撮像装置。
  3. 請求項2に記載の撮像装置において、
    前記制御部は、前記焦点調節レンズを再度移動させるとき、前記焦点調節レンズの移動が中止される前の移動方向と同じ方向に前記焦点調節レンズを移動させる撮像装置。
  4. 請求項1〜3のいずれかに記載の撮像装置において、
    前記焦点調節部は、前記ズームレンズの移動による撮影距離の変化に応じて、前記焦点調節レンズの移動量を決定する撮像装置。
  5. 請求項1〜4のいずれかに記載の撮像装置において、
    前記制御部は、前記位相差検出部による位相差の検出または前記コントラスト検出部によるコントラストの検出のために前記焦点調節レンズが移動している間に、合焦位置が検出された場合には、前記焦点調節部に前記焦点調節レンズを合焦位置へ移動させる合焦駆動を実行させる撮像装置。
  6. 請求項5に記載の撮像装置において、
    前記制御部は、前記位相差検出部による位相差の検出または前記コントラスト検出部によるコントラストの検出のために前記焦点調節レンズが移動している間に、合焦位置が検出された後、前記ズームレンズの移動を検出した場合には、前記ズームレンズの移動に応じた前記焦点調節レンズの移動を前記焦点調節部に行わせない撮像装置。
  7. 請求項5に記載の撮像装置において、
    前記制御部は、前記光学系の合焦位置が検出された後、前記指示部による前記ズームレンズの移動が指示されると、前記ズームレンズの移動方向が、合焦位置が現在の焦点検出レンズ位置に近づく方向である場合には、前記ズームレンズの移動に応じた前記焦点調節レンズの移動を前記焦点調節部に行わせることなく、前記焦点調節部に前記合焦位置への前記焦点調節レンズの移動を行わせ、前記ズームレンズの移動方向が、前記合焦位置が現在の焦点検出レンズ位置から遠ざかる方向である場合には、前記ズームレンズの移動に応じた前記焦点調節レンズの移動を前記焦点調節部に行わせた後に、前記焦点調節部に前記焦点調節レンズの移動を行わせる撮像装置。
JP2011128906A 2011-06-09 2011-06-09 撮像装置 Active JP5782843B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011128906A JP5782843B2 (ja) 2011-06-09 2011-06-09 撮像装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011128906A JP5782843B2 (ja) 2011-06-09 2011-06-09 撮像装置

Publications (2)

Publication Number Publication Date
JP2012255910A JP2012255910A (ja) 2012-12-27
JP5782843B2 true JP5782843B2 (ja) 2015-09-24

Family

ID=47527531

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011128906A Active JP5782843B2 (ja) 2011-06-09 2011-06-09 撮像装置

Country Status (1)

Country Link
JP (1) JP5782843B2 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6366230B2 (ja) * 2013-06-27 2018-08-01 キヤノン株式会社 撮像装置、その制御方法、および制御プログラム
JP6345919B2 (ja) 2013-08-27 2018-06-20 オリンパス株式会社 撮影装置およびカメラシステム
JP6366295B2 (ja) * 2014-02-21 2018-08-01 キヤノン株式会社 光学機器および制御方法
JP6320095B2 (ja) * 2014-03-17 2018-05-09 キヤノン株式会社 撮像装置、その制御方法、および制御プログラム
JP6516472B2 (ja) * 2015-01-08 2019-05-22 オリンパス株式会社 撮影装置および撮影装置の制御方法
JP6808340B2 (ja) 2016-03-31 2021-01-06 キヤノン株式会社 レンズ制御装置、制御方法
KR102214094B1 (ko) * 2017-03-21 2021-02-09 한화테크윈 주식회사 줌 트래킹 방법 및 줌 카메라
JP6399140B2 (ja) * 2017-04-13 2018-10-03 株式会社ニコン 撮像装置
WO2019064759A1 (ja) 2017-09-27 2019-04-04 富士フイルム株式会社 撮像装置、撮像方法、及びプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183543B2 (ja) * 1991-10-29 2001-07-09 オリンパス光学工業株式会社 ズーム式カメラ
JPH06138358A (ja) * 1992-10-28 1994-05-20 Canon Inc 光学機器のモータ制御方法及び装置
JPH09284631A (ja) * 1996-04-12 1997-10-31 Fuji Photo Optical Co Ltd ズームレンズ装置
JP4068716B2 (ja) * 1998-03-30 2008-03-26 オリンパス株式会社 ズームレンズを備えたカメラのレンズ駆動装置及びレンズ駆動方法
JP2003005018A (ja) * 2001-06-20 2003-01-08 Nikon Corp 焦点検出装置
JP2006146059A (ja) * 2004-11-24 2006-06-08 Olympus Imaging Corp レンズ位置制御装置及びレンズ位置制御方法
JP4639799B2 (ja) * 2004-12-27 2011-02-23 カシオ計算機株式会社 カメラ装置、レンズ駆動方法

Also Published As

Publication number Publication date
JP2012255910A (ja) 2012-12-27

Similar Documents

Publication Publication Date Title
JP5782843B2 (ja) 撮像装置
JP5776210B2 (ja) 焦点調節装置および撮像装置
JP2013015559A (ja) 焦点検出装置および撮像装置
JP2013050690A (ja) 焦点調節装置および撮像装置
JP5831070B2 (ja) 撮像装置
JP6187617B2 (ja) 撮像装置
JP5966262B2 (ja) 撮像装置
JP5796388B2 (ja) 焦点検出装置および撮像装置
JP6399140B2 (ja) 撮像装置
JP5929060B2 (ja) 焦点検出装置および撮像装置
JP5891667B2 (ja) 焦点調節装置およびそれを備えた撮像装置
JP5891668B2 (ja) 焦点調節装置および撮像装置
JP5477344B2 (ja) 焦点調節装置およびそれを備えた撮像装置
JP2013061579A (ja) 焦点調節装置および撮像装置
JP6127730B2 (ja) 撮像装置
JP6183482B2 (ja) 焦点検出装置および撮像装置
JP2013011811A (ja) 撮像装置およびレンズ鏡筒
JP5402997B2 (ja) 焦点調節装置およびそれを備えた撮像装置
JP6014977B2 (ja) 焦点検出装置、カメラボディ、およびカメラ
JP6035728B2 (ja) 焦点調節装置および撮像装置
JP2013054326A (ja) 焦点検出装置および撮像装置
JP2013011763A (ja) 焦点調節装置およびそれを備えた撮像装置
JP2012181448A (ja) 焦点調節装置および撮像装置
JP5982749B2 (ja) 焦点調節装置および撮像装置
JP5899735B2 (ja) 交換レンズ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150706

R150 Certificate of patent or registration of utility model

Ref document number: 5782843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250