JP5777098B2 - 金属内部への侵入水素量の測定方法および移動体の金属部位内部へ侵入する水素量のモニタリング方法 - Google Patents

金属内部への侵入水素量の測定方法および移動体の金属部位内部へ侵入する水素量のモニタリング方法 Download PDF

Info

Publication number
JP5777098B2
JP5777098B2 JP2011184806A JP2011184806A JP5777098B2 JP 5777098 B2 JP5777098 B2 JP 5777098B2 JP 2011184806 A JP2011184806 A JP 2011184806A JP 2011184806 A JP2011184806 A JP 2011184806A JP 5777098 B2 JP5777098 B2 JP 5777098B2
Authority
JP
Japan
Prior art keywords
hydrogen
amount
metal
cell
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011184806A
Other languages
English (en)
Other versions
JP2013044712A (ja
Inventor
大塚 真司
真司 大塚
裕樹 中丸
裕樹 中丸
藤田 栄
栄 藤田
徹 水流
徹 水流
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Tokyo Institute of Technology NUC
Original Assignee
JFE Steel Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Tokyo Institute of Technology NUC filed Critical JFE Steel Corp
Priority to JP2011184806A priority Critical patent/JP5777098B2/ja
Publication of JP2013044712A publication Critical patent/JP2013044712A/ja
Application granted granted Critical
Publication of JP5777098B2 publication Critical patent/JP5777098B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、種々の条件の被覆が形成された金属内部へ腐食に伴って侵入する水素量を正確に計測することができる金属内部への侵入水素量の測定方法に関するものである。
また、本発明は、上記の測定方法を利用することにより、自動車、船舶、鉄道車両などの移動体を構成する金属材料の各部位について、使用状態で曝される腐食環境下で腐食することに伴い発生し金属材料中に侵入する水素量を連続的に検出することができる、モニタリング方法に関するものである。
近年、地球温暖化防止の観点から、自動車の走行時に排出されるCO2の削減を狙いとした車体の軽量化が求められている。これに伴い、使用する鋼板を高強度化することによって板厚を低減する努力が進められている。
上記した鋼板の高強度化に伴い、従来の自動車用部品では問題になることのなかった遅れ破壊に対する懸念が新たに浮上してきた。
遅れ破壊とは、高強度鋼部品が静的な負荷応力を受けた状態で、ある時間が経過したとき、外見的にはほとんど塑性変形を伴うことなしに、突然脆性的に破壊する現象であり、広義には液体金属接触割れや応力腐食割れなども含まれるが(非特許文献1)、自動車で問題になるのは腐食に伴い鋼中に侵入する水素によって引き起こされる水素脆化型の遅れ破壊である。
従来から、引張り強さが1200MPa以上の高強度鋼製のボルトが大気環境中で遅れ破壊を起こすことは広く知られていて(非特許文献1)、かかる遅れ破壊は鋼中に侵入した微量の水素によって引き起こされると考えられている。この観点から、鋼中への水素侵入に着目した遅れ破壊の評価方法が種々提案されている。
例えば、特許文献1には、鋼材に陰極チャージによって拡散性水素を含有させ、限界拡散性水素量を測定することによって、鋼材の遅れ破壊特性を評価する遅れ破壊特性の評価方法において、限界拡散性水素量の測定中に鋼材から水素が放出されることを防止するために、鋼材に亜鉛めっきを施す方法が提案されている。
また、非特許文献2には、チオシアン酸アンモニウムを用いた水素侵入量の評価方法について報告がなされている。またこの文献では、チオシアン酸アンモニウムによって得られた水素侵入量と、陰極チャージ法によって得られた水素侵入量との比較がなされている。
さらに、非特許文献3には、大気暴露環境下で一定期間腐食させた高強度ボルトを回収して、ボルトに吸蔵された水素濃度を測定した例が報告されている。また、この非特許文献2には、鋼板の片面を外部環境に暴露する試験装置を用いた電気化学的水素透過法によって、反対面側から検出されるアノード電流値の変化から、大気暴露環境下での腐食による水素侵入挙動を調査した結果が報告されている。
なお、上述したように、現時点で最も遅れ破壊の問題が懸念される金属材料は、実用材料として広範に使用されている鋼材であるが、その他の金属材料においても今後は遅れ破壊の問題が生じる可能性が指摘されている(例えば非特許文献4)。
特開2005−134152号公報
「松山晋作:遅れ破壊、日刊工業新聞社、東京、(1989)」 「大村等:腐食防食シンポジウム資料、Vol.170、p.47-54 (2010)」 「大村等:鉄と鋼、Vol.91、No.5、p.42 (2005)」 「高取等:鉄と鋼、Vol.78、No.5、p.149 (1992)」 「M.A.V.Devanathan, Z.Stachurski;Proc. Roy. Soc. London, Ser. A, 270, 90 (1962)」
特許文献1に記載された技術では、鋼中への水素の侵入が陰極チャージにより強制的に水素を侵入させる加速試験であるため、実際の使用環境とは異なる条件の下で、供試材の種類による遅れ破壊発現の優劣をつけることはできるものの、実際の使用環境での腐食に伴う水素侵入量で遅れ破壊が起こるか否かを推定するための判断材料にはならない。
また、非特許文献2に示されたチオシアン酸アンモニウムを用いた水素侵入量の評価方法については、表面の腐食に伴う水素侵入量で遅れ破壊が起こるか否かを推定するための判断材料にならない。
さらに、非特許文献3に開示の大気暴露試験によって得られるデータは、いずれも地勢的な特定環境と結びついた環境因子の下での試験結果にすぎず、構造体の移動に伴い変化する種々の環境下における腐食を継続的に把握することについては、考慮が払われていない。また、非特許文献3に示された鋼板の片面を外部環境に暴露する試験装置を用いた大気暴露における水素透過試験では、環境の温度変化に伴うアノード側の残余電流の変化が考慮されていないことから、測定値の定量性にも問題があった。
上記したように、自動車のような移動体では、移動することによって地勢的な環境が変化し、さらに物理的要因(例えば振動、塵埃堆積−脱落、水・泥跳ね付着−乾燥など)が加わると、腐食環境が極端に変化する場合がある。
しかしながら、上記した振動などの物理的要因や地勢的な環境変化が避けられない移動体について、腐食に伴う水素侵入量を継続的かつ定量的に計測した例は、これまで皆無であった。
また、高強度鋼部品が自動車等に用いられる際には、耐食性の向上を目的として、高強度化した鋼材へ亜鉛めっきや熱処理を加えた合金化亜鉛めっき等を施したものが用いられており、美的外観を得ることを目的として、前記鋼材には種々の塗装が施されている。その場合、同じ鋼材からなる部品であっても、被覆の種類や被覆率に応じて腐食の度合いが大きく異なる結果、腐食に伴う水素侵入量についても大きく変化することとなる。そのため、種々の条件で被覆が形成された金属材料の水素侵入量について正確に把握できる技術の開発が望まれていた。
本発明は、上記の現状に鑑み開発されたもので、環境の温度変化に伴うアノード側の残余電流の変化を考慮することで、腐食に伴って種々の条件の被覆を有する金属の内部へと侵入する水素量を正確に計測することができる金属内部への侵入水素量の測定方法を提案することを目的とする。
また、本発明は、上記の測定方法を用いることにより、環境が目まぐるしく変化する移動体を構成する金属材料の各部位について、使用状態で曝される腐食環境下での腐食に伴い発生し、金属材料中に侵入する水素量を連続して監視することができる移動体の金属部位内部へ侵入する水素量のモニタリング方法を提案することを目的とする。
さて、本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、電気化学的な原理に基づく侵入水素量の新たな測定方法を開発した。
そして、この測定方法を利用すれば、移動体を構成する金属部品の腐食に伴い侵入する水素を連続的にモニタリングできることも見出した。
本発明は、上記の知見に立脚するものである。
すなわち、本発明の要旨構成は次のとおりである。
1.金属材料の腐食に伴って発生し金属内部に侵入する水素の量を、電気化学的水素透過法を用いて測定する方法であって、金属材料からなる被検体の一方の表面に、被覆率30%以上100%未満で、厚さが鋼材の厚さの1/10以下の、亜鉛系めっき、Al系めっき、Niめっき、リン酸塩化合物又は有機樹脂塗膜である被覆が形成された表面処理面を腐食環境に暴露し腐食反応により発生する水素の侵入面とする一方、該被検体の他面を水素検出面とし、該水素検出面側の電位を−0.1〜+0.3V vs SCEに保持した状態で該検出面に拡散してくる水素の流束をアノード電流として測定するに際し、
1つの前記被検体の水素検出面側に、少なくとも2つに分割された複数のセル群で構成された電気化学セルを配置し、該セル群の個々のセルの内部にはpHが9〜13の電解質水溶液を充填すると共に、それぞれ独立した参照電極と対極を設置し、
該セル群のうち少なくとも一つのセルは残余電流を補正するための基準セルとし、該基準セルの水素侵入面側に対応する箇所には腐食環境との接触を遮断する保護膜を設け、
該基準セル以外のセルで検出したアノード電流値を、該基準セルで検出した残余電流値により補正し、この補正したアノード電流値に基づいて腐食面側からの侵入水素量を算出することを特徴とする金属内部への侵入水素量の測定方法。
2.前記参照電極としてIr/Ir酸化物電極を用いることを特徴とする前記1に記載の金属内部への侵入水素量の測定方法。
3.前記被検体の水素検出面側の表面を、予めPdまたはPd含有合金あるいはNiで被覆しておくことを特徴とする前記1又は2に記載の金属内部への侵入水素量の測定方法。
4.前記1〜3のいずれかに記載の侵入水素量の測定方法を、少なくともその一部が金属材料で構成される移動体の評価対象金属部位に適用し、該評価対象金属部位の腐食に伴い内部に侵入する水素の量を、該移動体の走行環境に伴い変化する腐食環境下において連続して測定することを特徴とする、移動体の金属部位内部へ侵入する水素量のモニタリング方法。
5.前記移動体の評価対象金属部位の内部へ侵入する水素量から、該金属部位の遅れ破壊感受性を評価することを特徴とする、前記4に記載の移動体の金属部位内部へ侵入する水素量のモニタリング方法。
本発明によれば、腐食に伴って種々の条件の被覆を有する金属の内部へと侵入する水素量を正確に検出することができる。
また、本発明によれば、自動車、船舶、鉄道車両などの移動体を構成する金属材料の各部位が、その使用状態で曝される腐食環境下で腐食することに伴い発生し、金属材料中に侵入する水素の量を連続的にモニタリングすることが可能となり、実際の使用環境での腐食に伴う水素侵入量で遅れ破壊が生じるか否かを判断するために必要な情報を得ることができる。
電気化学的水素透過法の説明図である。 本発明の実施に用いて好適なセル構造を模式的に示した図である。 保護膜の無いセルの腐食面(水素侵入面)側および水素検出面側での反応を模式的に示した図である。 Ir線を0.2MのNaOH水溶液中に浸漬したときの電位の経時変化を示した図である。 腐食部に対して縞状にめっきが施されている場合に適切なめっき状態の説明をするための図であり、(a)は適切なめっき状態、(b)は適切でないめっき状態を示す。 実施例1に用いたセル構造を模式的に示した図である。
本発明は、自動車、自動二輪車、鉄道などの各種車両や船舶、航空機など自力で移動可能な移動体のすべてに適用可能な技術であるが、以下、自動車を代表例として実施の形態について詳細に説明する。また、評価対象とする金属材料としては必ずしも鋼材に限定されるわけではないが、ここでは代表例として鋼材に適用した場合について説明する。
本発明は、金属材料の腐食に伴い発生し内部に侵入する水素の量を、電気化学的水素透過法の測定原理を適用して測定するもので、水素侵入面側の鋼材表面を腐食環境に曝すことにより、腐食時に発生した水素が鋼中に侵入するので、反対面側から水素を取り出すことによって侵入水素量を測定する。
電気化学的水素透過法は、1962年にDevanathanとStachurskiによって開発された手法(非特許文献5)で、図1に模式的に示すように、2つの電解槽1a,1bが1枚の試料2を挟んで向かい合わせに配置されている。同図の場合、左側の電解槽1aの試料面を定電位または定電流でカソード分極して、水素発生・水素チャージを行い、右側の電解槽1bでは試料2を定電位アノード分極することによって試料2を透過してきた水素を水素イオンに酸化し、その電流値から透過した水素の量を求めるものである。
図中、符号3a,3bは参照電極、4a,4bは電極であり、特に4bは対電極または係数電極という。そして、電極4aは、定電位を付与するポテンショスタットまたは定電流を付与するガルバノスタットと接続され、一方と電極4bは、定電位を付与するポテンショスタットと接続されている。なお、5a,5bは、対電極 4a,4bで発生するガス等の影響を除去するための焼結ガラスフリットである。
上記した電気化学的水素透過法そのものは、「鋼材中の水素拡散係数の測定手法」として従来から良く知られた手法である。
本来の電気化学的水素透過法は、図1に示したように、試料の片面側を陰極にして水素を電解チャージし、反対面側を陽極にして引き抜く手法であるが、これを応用して、水素チャージ面側に相当する面を腐食環境に曝すという研究が報告されている(前掲非特許文献2)。
しかしながら、非特許文献2に開示された測定方法では、温度の変化による測定電流値の変化が考慮されていないという問題があったことは、前述したとおりである。また、電気化学的水素透過法によって水素検出面側で測定されるアノード電流には、水素の酸化電流の他に、供試材の不動態保持電流が重畳されている。この不動態保持電流は、残余電流の主体をなすもので、様々な因子に影響されるが、特に温度による変化が大きい。
電気化学的水素透過法によって水素検出面側で測定されるアノード電流は微弱な電流であることから、残余電流の温度依存性を補正しないと正確なアノード電流を測定することはできない。
上記の問題を解決するために、本発明者等は、種々検討を重ねた結果、水素検出面側に設ける電気化学セルを、同一の被検体の上に少なくとも2つ以上に分割された複数のセル群で構成し、その内の少なくとも一つのセルについては残余電流を補正するための基準セルとし、かつこの基準セルの水素侵入面側に対応する部分に腐食環境を遮断するための保護膜を設けることによって、残余電流の温度依存性の補正を可能としたのである。
図2に、本発明のセル構造を模式的に示す。図2の例では、被検体としての鋼材6の水素検出面側に4つのセル7a,7b,7c,7dが設けられていて、一番左側のセル7aが残余電流を補正するための基準セルである。図中、符号8が対極(Pt線)、9が参照電極(Ir線)である。
同図において、各セルにおける鋼材の表面温度、セル内の電解質溶液の温度等はすべて同じ温度とする。また、基準セル7aの水素侵入面側には保護膜10が設けられている。このような保護膜10で被覆された部分は腐食せず、従って水素侵入も起こらないことから、基準セルの水素検出面側で測定される電流は残余電流そのものと考えられる。
図3に、保護膜の無いセル(チャンネルともいう)の腐食面(水素侵入面)側および水素検出面側での反応を模式的に示す。
水素検出面側の表面電位を水素のイオン化反応に十分な電位に保持することで、拡散によって検出面側に到達した水素はすべて水素イオンとして取り出される。なお、本発明において、水素検出面側の鋼材の表面は不動態化されている。これにより、水素検出側で検出されるアノード電流が実質的に水素透過電流に相当すると考えることができる。
従って、かくして得られた電流値を、基準セルにより求めた残余電流値で補正することで、温度変化に伴う残余電流の変化にかかわらず、正確なアノード電流値を計測することができ、その結果、このアノード電流値に基づいて正確な侵入水素量を算出することが可能になるのである。
また本発明では、鋼材上に形成されためっき等の被覆の条件が変化することで鋼中に侵入する水素量が大幅に変化することに着目し、被覆を有する鋼材への侵入水素量を算出することを特徴とする。従来の侵入水素量測定方法では、被覆が形成されていない鋼材を用いて侵入水素量の測定を行っていたため、遅れ破壊が発生したかどうかの判断を誤る可能性もあったが、本発明では種々の条件の被覆を有する鋼材を用いて侵入水素量の測定を行っているため、遅れ破壊の発生について正確な判断を行うことができるのである。ここで、被覆の条件とは、被覆の種類や被覆率のことをいう。
以下、本発明を具体的に説明する。
本発明において、水素検出面側の鋼材を不動態の状態に保持するためには、アノード極室内の溶液はpH:9〜13の電解質溶液とすることが必要である。というのは、pHが9未満では所定の電位において鋼材の表面の不動態を保持することが困難であり、一方、pHが13を超えると、不慮の事故により漏洩した場合に、環境へのダメージが大きいからである。適正なpHの電解質溶液としては、0.1〜0.5M(モル/リットル)程度のNaOH水溶液が好適である。なお、本発明では、適正なpHの電解質溶液として、必ずしも0.1〜0.2MのNaOH水溶液に限定されるわけではなく、水素検出面の鋼材表面を水素のイオン化反応に十分な電位に保持する際に、鋼材の表面の不動態化状態を確保できる電解質溶液であればいずれでも良い。さらに、電解質溶液に代えて、ゲル状の電解質を用いることは、液漏れの防止だけでなく、取り扱いの容易さからも有利である。
また、本発明において、水素検出面の電位は、常時、−0.1〜+0.3V vs SCEに保持しておく必要がある。というのは、水素検出面の電位がこの範囲を外れると、安定した水素のイオン化電流を得ることができなくなるからである。
ここで、SCEは、飽和カロメル電極のことであり、このSCEの標準水素電極(SHE)に対する電位は+0.244 V(vs SHE,25℃)で示される。
なお、電位を制御するための参照電極としては、現在実用化されている各種電極が使用可能である。
ただし、Ag/AgCl電極のような塩化物を含む電極を用いる場合、アノード極室溶液中への塩化物イオンによる汚染により、サンプル表面の不動態が破壊されて残余電流が大きくなり、測定値が不正確になるおそれがある。
そこで、上記のような問題を回避できる参照電極について種々検討した結果、アノード極室溶液中にIr線を浸漬することでIr/Ir酸化物電極となり、長期間安定な電位が得られることが解明された。すなわち、参照電極として最も好適な電極はIr/Ir酸化物電極である。
図4に、Ir線を0.2MのNaOH水溶液中に浸漬したときの電位の経時変化について調べた結果を示す。浸漬初期に電位が変化しているのは、Ir線の表面にIr酸化物(IrOx)が安定に形成されるまでの時間と考えられる。しかしながら、所定時間経過後は、−0.04 vs SSE程度の電位が安定して得られることが分かる。
ここで、SSEは、銀−塩化銀電極のことであり、このSSEの標準水素電極(SHE)に対する電位は+0.199 V(vs SHE,25℃)で示される。
また、本発明において、検出体である鋼材は被覆を有し、その被覆率は30%以上100%未満の範囲である。ここで、前記被覆の種類については、特に限定はされず、前記鋼材の表面に形成されるものであり、その厚さが鋼材の厚さの1/10以下であれば良い。例えば、亜鉛系めっきや、Al系めっき等のめっきや、リン酸塩化合物、有機樹脂塗膜などが挙げられる。
大気腐食環境での被覆を有する鋼材の腐食について、一般的に用いられる亜鉛系めっきを例として説明を行う。亜鉛系めっき鋼板が大気腐食環境に曝されたとき、まず亜鉛系めっきの腐食が発生した後(期間1)、亜鉛系めっきの腐食が下地鋼材に到達し、亜鉛と下地鋼材とのガルバニック腐食が発生する(期間2)。その後、亜鉛の腐食生成物による防食期間があり(期間3)、この腐食生成物が欠損することにより下地鋼材の腐食が発生する(期間4)。本発明では、前記表面被覆の種類が水素侵入に影響する期間を考えたとき、期間2〜4がそれに当たると考えられる。上記期間2及び3における水素侵入量の測定は、鋼材と被覆との相互作用による水素侵入特性を評価することとなり、上記期間4における水素侵入量の測定ついては、2及び3の水素侵入特性に加えて、一部被覆が完全に剥がれた状態での鋼材のみの腐食による水素侵入特性を評価することとなる。なお、期間1については、前記鋼材上に100%被覆が覆われた状態であるため、素地鋼材の腐食は発生せず、腐食による水素侵入も無いと考えられる。
また、前記被覆の被覆率については、30%以上100%未満の範囲であることを要する。ここで被覆率とは、被覆の施された鋼材の表面を上方から見たとき、被覆の占める面積率(%)のことをいう。
前記被覆率を30%以上としたのは、30%未満の場合、被覆を形成している影響が小さく、被覆がない鋼材の水素侵入量と同様の水素侵入量となる結果、本発明による効果を十分に得ることができないためである。一方、被覆が100%の場合には、上述したように前記鋼材に腐食が発生せず、腐食に起因した水素侵入がないことから、前記被覆率は100%未満とする。
前記被覆を所望の範囲にする方法については特に限定はされない。所望の被覆率を有する被覆が形成された鋼材を用いることもできるし、被覆率が100%の被覆を有する鋼材に対して加工を施し、擬似的に所望の被覆率を有する被覆を形成することも可能である。被覆率を調整する方法については特に限定はされない。例えば、レーザー照射、酸やアルカリを用いた溶融又は機械研削などによる被覆除去が挙げられる。また、被覆率が100%の被覆を形成した後、引張加工や円筒深絞り加工を施すことで、前記被覆にクラックを生じさせ、所望の被覆率へと調整することもできる。
なお、前記被覆の分布については、できるだけ均一であることが好ましい。上述した被覆率(30%以上100%未満)を満たす場合であっても、極端に被覆の偏りがある場合には、素地鋼材の腐食量が大きくなり、被覆を形成しない場合と同様の侵入水素量を示し、正確な遅れ破壊特性の評価が行えないおそれがあるからである。
例えば、図5に示すように、腐食部11に対して、縞状にめっきが施されている場合には、図5(a)に示すように、腐食部の長径Lに対する、ある被覆部分12aとそれに最近接した被覆部分12bとの距離Mとの比が0.3以下であることが好ましい(M1/L≦0.3)。図5(b)に示すように、上記比が0.3を超える場合(M2/L>0.3)、被覆同士12c、dが偏って形成されており、腐食による水素侵入量が極端に増加する傾向が高く、正確な遅れ破壊特性の評価を行うことができないおそれがある。
また、前記腐食部の面積は、特に限定されないが、0.1〜30cm2の範囲であることが好ましい。0.1 cm2未満の場合、測定されるアノード電流値が小さくなる為、電気化学測定装置の能力によっては誤差が大きくなる為好ましくなく、30cm2より大きい場合には腐食面での腐食の偏りが生じやすくなるため好ましくない。ここで、前記腐食部の面積とは、腐食した部分の合計面積ではなく、鋼材中の腐食した複数箇所のうちの1箇所についての面積のことをいう。
さらに、鋼板の厚さについても特に限定されないが、厚くなりすぎるとアノード電流値が小さくなり測定誤差が大きくなりやすいため、2mm以下であることが好ましい。薄い場合には特に限定されないが、腐食により板が貫通した場合、内溶液の漏出が懸念されることから、0.1mm以上であることが好ましい。
また、前記鋼材の水素検出面の表面は、水素拡散定数が大きく、かつ水素の酸化反応を促進させるような金属で被覆することが好ましく、かような金属としては、PdやPd合金、Niなどが挙げられる。これらの金属または合金を被覆することによって、水素検出面の残余電流を低い値に保持することが可能となるだけでなく、水素検出面側での侵入水素の酸化反応が促進されるので、水素のイオン化によるアノード電流の感度を高めることができる。なお、Pdは、Niに比べると、水素拡散定数が大きく、また残余電流を低減できるという利点がある。
PdやPd合金で被覆する場合は、[Pd(NH3)4]Cl2・H2O等のパラジウムイオンを含有する水溶液中で陰極電解することで、めっきを行えばよい。Pd合金としては、Pd−NiやPd−Co合金などが使用可能である。ここに、PdめっきまたはPd合金めっきの膜厚は10〜100nmとすることが好ましい。
また、Niで被覆する場合は、ワット浴等の既知のめっき浴中で陰極電解することで、Niめっきを行えばよい。Niめっきの膜厚も10〜100nmにすることが好ましい。
さらに、Niめっきの上に、PdやPd合金をめっきすることもできる。
水素侵入面に設ける保護膜については、特に制限はなく、腐食環境を遮断できるものであればいずれでもよい。具体的手段としては、有機物系接着剤を介したステンレス鋼箔の貼着が挙げられる。
上記したように、本発明では、温度変化などの環境の変化の如何にかかわらず、腐食に伴って金属の内部へ侵入する水素量を正確に検出することができる。
従って、本発明の測定方法を、自動車、船舶、鉄道車両などの移動体に適用すれば、移動体を構成する金属材料の各部位が、その使用状態で曝される環境の変化に左右されることなく、金属材料中に侵入する水素量を連続的かつ正確にモニタリングすることができる。
その結果、各種移動体について、それらの実際の使用環境での腐食に伴う水素侵入量で遅れ破壊が生じるか否かを的確に判断することが可能となる。
以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
(実施例1:サンプル1〜9)
(1)鋼板の加工
使用した鋼板は商用の軟鋼(厚さ:0.8mm)及び商用の1470MPa級鋼を用い、加工を施した後、40×50mmにせん断加工を行い、両面を♯2000まで研磨を行った。次いで研磨時に形成される加工層を除去するために両面を弗酸と過酸化水素水の混合液からなる水溶液により約60μm化学研磨を行った。
その後、鋼板の片面Aにwatt浴を用いて約100nmのNiめっきを行った。
その後、以下に示す条件で鋼板の腐食面Bに表面処理を施した。
条件A:硫酸亜鉛・7水和物を150g/L含む溶液を用いて10A/dm2の電流密度で通電し、亜鉛めっき皮膜を形成した。
形成した亜鉛めっき皮膜の被覆率を調整する方法としては、めっき形成前に鋼板上にテープシールを貼り、めっき形成後にテープを剥がすことで被覆のない部分を作って被覆率を調整する方法(条件A−1)、鋼板上にめっきを均一に形成し被覆率を100%とする方法(条件A−2)、又は、めっきを均一に形成した後テープシールを貼り、5%に希釈した塩酸水溶液を用いてめっき溶解させることで被覆の無い部分を作って被覆率を調整する方法(A−3)によって行われた。
条件B:硫酸ニッケル・6水和物を1000g/L含む溶液を用いて1A/dm2の電流密度で通電し、ニッケルめっき皮膜を形成した。
形成したニッケルめっき皮膜の被覆率を調整する方法としては、めっき形成前に鋼板上にテープシールを貼り、めっき形成後にテープを剥がすことで被覆のない部分を作って被覆率を調整する方法(条件B−1)、又は、めっきを均一に形成した後♯800の研磨紙を用いて機械的研削を行うことで被覆率を調整する方法(B−2)によって行われた。
各サンプルの表面処理の種類、被覆率の調整条件及び被覆率について表1に示す。
(2)水素侵入量の測定
以上の加工を行った鋼板を、図6に示すセルに設置した。水素検出面側(片面A)には0.1Nの水酸化ナトリウム水溶液を満たし、参照電極はIr/IrOx電極、対極にはPt線を配して電位を0Vに設定してセルを腐食環境に配した。腐食試験は腐食面に塩化ナトリウム水溶液を塩化物イオンとして1000mg/m3となるように滴下し、セルを湿度30%となる恒湿槽に設置した。以降は塩水滴下から24hr毎に純水を滴下し、最大5日間繰り返し、腐食による水素侵入量(ppm)を測定した。
なお、いずれの測定に際しても温度変化を補正するために腐食をしないセルを設置し、温度補正前後の測定誤差を測定した。3回ずつ測定し、水素検出側の電流密度最大値の平均値を算出した。また、平均3回の水素検出側の電流密度平均値からの最大又は最小値の乖離率(%)とし、表1に示す。さらに、得られた水素検出側の電流密度及び板厚、拡散係数から式1を用いて水素濃度に換算することで、水素侵入量を得た。得られた結果を表1に示す。さらにまた、腐食面積に対する電流密度(μA/cm2)についても算出した。ここで、前記腐食面積については、被覆が形成されていない面積を示す。
水素侵入量の換算は以下の式に従う。
水素侵入量C=(電流密度×板厚)/水素拡散係数×1.318
Figure 0005777098
表1の温度補正前後の乖離率を比べると、温度補正後の乖離率が10%以下となっており、温度補正を行うことで精度が大きく向上されていることがわかる。
また、サンプル2〜7については、亜鉛めっきの被覆率を変化させたものであるが、被覆率が高いほど、水素侵入量が高いことが分かる。これは、被覆率が高くなると腐食時に相対的にカソードよりアノードの面積が大きくなり、カソード部での単位面積あたりの電流値が高くなるためと考えられる。さらに、被覆率が30%未満のサンプル5については、腐食面積に対する電流値が小さく、被覆のないサンプル1の値に近くなっていることから、正確に水素侵入量を評価できているか否かは不明であり、被覆率は30%以上のときに本発明による測定方法が有効であることがわかる。また、サンプル7は完全にめっきが覆った条件であり、腐食面積が0であることから、表1中に電流値の記載は出来ないが、試験期間中に得られた最大の電流値についてめっき面を含めた腐食面積で算出した場合、0.03μA/cm2となった。算出式が異なる為、表1の結果と一概に比較は出来ないが、他の亜鉛めっきの実施例に比べて著しく低い値であることがわかる。この理由は、試験期間中の腐食した部位の観察においては、亜鉛の腐食生成物、いわゆる白錆のみが認められ、鉄の錆は確認されなかった。このことから、試験期間において鉄表面を亜鉛が完全に被覆した状態が継続されており、この亜鉛層により水素が鋼板中に侵入することを抑制した為と考えられる。このように完全にめっき層が被覆した場合においては皮膜自体の水素侵入特性を得られることが想定されるが、本発明の目的である表面処理を施した鋼材の腐食に伴う水素侵入特性に及ぼす影響については知見できない。
さらにまた、ニッケルめっきを施したサンプル8及び9については、亜鉛めっきのサンプル1〜7に比べて、水素濃度、及び、腐食面積に対する電流値のいずれについても小さくなっており、ニッケルめっきを施すことで鋼板への水素侵入をより有効に低減できていることがわかる。
(実施例2:サンプル10〜13)
(1)鋼板の加工
商用の軟鋼(厚さ:0.8mm)及び商用の1470MPa級鋼を用い、加工を施した後、40×50mmにせん断加工を行い、両面を♯2000まで研磨を行った。次いで研磨時に形成される加工層を除去するために両面を弗酸と過酸化水素水の混合液からなる水溶液により約60μm化学研磨を行った。
その後、鋼板の片面Aに商用のK−ピュアパラジウムめっき浴を用いて約100nmのPdめっきを行った。
その後、以下に示す条件で鋼板の腐食面Bに表面処理を施した。
条件A:硫酸亜鉛・7水和物を150g/L含む溶液を用いて10A/dm2の電流密度で通電し、亜鉛めっき皮膜を形成した。形成した亜鉛めっき皮膜の被覆率を調整については、めっき形成前に鋼板上にテープシールを貼り、めっき形成後にテープを剥がすことで被覆のない部分を作って被覆率を調整する方法によって被覆率を調整する方法によって行われた。
条件B:硫酸ニッケル・6水和物を1000g/L含む溶液を用いて1A/dm2の電流密度で通電し、ニッケルめっき皮膜を形成した。形成したニッケルめっき皮膜の被覆率の調整については、めっき形成前に鋼板上にテープシールを貼り、めっき形成後にテープを剥がすことで被覆のない部分を作って被覆率を調整する方法によって行われた。
各サンプルの表面処理の種類被覆率について表2に示す。
(2)車体に装着した状態での水素侵入量の測定
得られた各サンプルの鋼板を、図2に示すような構造になるセル数4個(CH1〜4)の測定装置を設置し、自動車の床下(フロア下面)に登載した状態で、広島県福山市のJFEスチール(株)の製鉄所内を38日間走行した。この間に検出された水素検出側の水素侵入量、腐食面積に対する電流値の結果を表2に示す。
Figure 0005777098
表2の結果から、めっきの被覆率が高いほど、鋼板の腐食に起因した水素の侵入を抑制できていることがわかった。また、ニッケルめっきは亜鉛めっきに比べて、水素侵入量が小さく、鋼材の腐食を抑制し、水素侵入をより低減できることがわかった。
よって、実車の走行環境における腐食により遅れ破壊が発生するか否かを部位毎に判定できることが可能となる。
本発明により、環境が絶え間なく変化する移動体について、それを構成する金属材料の各部位が使用状態で曝される腐食環境下での腐食に伴い発生し、被覆を有する金属材料中に侵入する水素の量を、連続的かつ正確にモニタリングすることが可能となる。
1 電解槽
2 試料
3 参照電極
4 電極
4b 対電極
5 焼結ガラスフリット
6 被検体(鋼板)
7 セル
7a 基準セル
8 対極
9 参照電極
10 保護膜
11 腐食部
12 被覆(めっき)

Claims (5)

  1. 金属材料の腐食に伴って発生し金属内部に侵入する水素の量を、電気化学的水素透過法を用いて測定する方法であって、金属材料からなる被検体の一方の表面に、被覆率30%以上100%未満で、厚さが鋼材の厚さの1/10以下の、亜鉛系めっき、Al系めっき、Niめっき、リン酸塩化合物又は有機樹脂塗膜である被覆が形成された表面処理面を腐食環境に暴露し腐食反応により発生する水素の侵入面とする一方、該被検体の他面を水素検出面とし、該水素検出面側の電位を−0.1〜+0.3V vs SCEに保持した状態で該検出面に拡散してくる水素の流束をアノード電流として測定するに際し、
    1つの前記被検体の水素検出面側に、少なくとも2つに分割された複数のセル群で構成された電気化学セルを配置し、該セル群の個々のセルの内部にはpHが9〜13の電解質水溶液を充填すると共に、それぞれ独立した参照電極と対極を設置し、
    該セル群のうち少なくとも一つのセルは残余電流を補正するための基準セルとし、該基準セルの水素侵入面側に対応する箇所には腐食環境との接触を遮断する保護膜を設け、
    該基準セル以外のセルで検出したアノード電流値を、該基準セルで検出した残余電流値により補正し、この補正したアノード電流値に基づいて腐食面側からの侵入水素量を算出することを特徴とする金属内部への侵入水素量の測定方法。
  2. 前記参照電極としてIr/Ir酸化物電極を用いることを特徴とする請求項1記載の金属内部への侵入水素量の測定方法。
  3. 前記被検体の水素検出面側の表面を、予めPdまたはPd含有合金あるいはNiで被覆しておくことを特徴とする請求項1または2記載の金属内部への侵入水素量の測定方法。
  4. 請求項1〜3のいずれかに記載の侵入水素量の測定方法を、少なくともその一部が金属材料で構成される移動体の評価対象金属部位に適用し、該評価対象金属部位の腐食に伴い内部に侵入する水素の量を、該移動体の走行環境に伴い変化する腐食環境下において連続して測定することを特徴とする、移動体の金属部位内部へ侵入する水素量のモニタリング方法。
  5. 前記移動体の評価対象金属部位の内部へ侵入する水素量から、該金属部位の遅れ破壊感受性を評価することを特徴とする、請求項4に記載の移動体の金属部位内部へ侵入する水素量のモニタリング方法。
JP2011184806A 2011-08-26 2011-08-26 金属内部への侵入水素量の測定方法および移動体の金属部位内部へ侵入する水素量のモニタリング方法 Active JP5777098B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011184806A JP5777098B2 (ja) 2011-08-26 2011-08-26 金属内部への侵入水素量の測定方法および移動体の金属部位内部へ侵入する水素量のモニタリング方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011184806A JP5777098B2 (ja) 2011-08-26 2011-08-26 金属内部への侵入水素量の測定方法および移動体の金属部位内部へ侵入する水素量のモニタリング方法

Publications (2)

Publication Number Publication Date
JP2013044712A JP2013044712A (ja) 2013-03-04
JP5777098B2 true JP5777098B2 (ja) 2015-09-09

Family

ID=48008725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011184806A Active JP5777098B2 (ja) 2011-08-26 2011-08-26 金属内部への侵入水素量の測定方法および移動体の金属部位内部へ侵入する水素量のモニタリング方法

Country Status (1)

Country Link
JP (1) JP5777098B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999772B2 (ja) * 2013-08-01 2016-09-28 日本電信電話株式会社 水素侵入電位予測方法
CN103630465A (zh) * 2013-12-11 2014-03-12 江苏科技大学 一种金属氢扩散电流的测定装置
KR102239642B1 (ko) * 2014-04-15 2021-04-12 쇼와덴코머티리얼즈가부시끼가이샤 투과성 평가방법
CN104458878B (zh) * 2014-09-26 2017-02-01 浙江工商大学 糖精钠浓度检测装置及检测方法
JP6342783B2 (ja) * 2014-11-12 2018-06-13 日本電信電話株式会社 水素侵入評価方法
JP6476097B2 (ja) * 2015-09-10 2019-02-27 株式会社Subaru 床下部品の腐食速度予測方法
FR3043465B1 (fr) 2015-11-09 2019-01-25 IFP Energies Nouvelles Capteur pour la mesure de la fragilisation des aciers par l'hydrogene dans un environnement agressif, ledit capteur comportant une cavite metallique reliee a un dispositif de mesure de pression
CN111693426A (zh) * 2019-03-15 2020-09-22 宝山钢铁股份有限公司 一种评价搪瓷用钢鳞爆性能的装置和方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134684A (en) * 1975-05-16 1976-11-22 Nippon Paint Co Ltd Method and equipment to measure the corrosion resistance of coated met al plate
JPS6056251A (ja) * 1983-09-07 1985-04-01 Nippon Paint Co Ltd 被覆金属の腐食速度を測定する方法及びその装置
JPS6125047A (ja) * 1984-07-16 1986-02-03 Kawasaki Steel Corp 圧力容器における水素侵食の事前検出方法
DE102008027038A1 (de) * 2008-06-06 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Detektieren von chemischen oder biologischen Species sowie Elektrodenanordnung hierfür
JP2011001611A (ja) * 2009-06-19 2011-01-06 Jfe Steel Corp 耐遅れ破壊特性に優れた鋼板およびその製造方法

Also Published As

Publication number Publication date
JP2013044712A (ja) 2013-03-04

Similar Documents

Publication Publication Date Title
JP5777098B2 (ja) 金属内部への侵入水素量の測定方法および移動体の金属部位内部へ侵入する水素量のモニタリング方法
JP5700673B2 (ja) 金属内部への侵入水素量の測定方法および移動体の金属部位内部へ侵入する水素量のモニタリング方法
Fajardo et al. The source of anodic hydrogen evolution on ultra high purity magnesium
EP2905612B1 (en) Apparatus for measuring amount of hydrogen penetrated into metal
Gavrila et al. Corrosion behaviour of zinc–nickel coatings, electrodeposited on steel
JP2011179893A (ja) 金属内部への侵入水素量の測定方法および移動体の金属部位内部へ侵入する水素量のモニタリング方法
Notter et al. Porosity of electrodeposited coatings: its cause, nature, effect and management
JP7149242B2 (ja) 水素透過試験装置
Hamdy et al. Corrosion mitigation of rare-earth metals containing magnesium EV31A-T6 alloy via chrome-free conversion coating treatment
Thomas et al. Oxygen consumption upon electrochemically polarised zinc
JP5888692B2 (ja) 金属内部への侵入水素量の測定方法および移動体の金属部位内部へ侵入する水素量のモニタリング方法
Posner et al. Electrochemical electrolyte spreading studies of the protective properties of ultra-thin films on zinc galvanized steel
Rossi et al. Influence of soil chemical characteristics on corrosion behaviour of galvanized steel
JP5754566B2 (ja) 金属内部への侵入水素量の測定装置
Izquierdo et al. Evaluation of the corrosion protection of steel by anodic processing in metasilicate solution using the scanning vibrating electrode technique
JP6172097B2 (ja) 自動車車体を構成する鋼材への侵入水素量のモニタリング方法
JP5979731B2 (ja) 移動体の金属部位内部へ侵入する水素量のモニタリング方法
JP6130447B2 (ja) 移動体の金属部位内部へ侵入する水素量のモニタリング方法
JP2018115942A (ja) 侵入水素評価方法、侵入水素評価システムおよび侵入水素評価用セル
Kuznetsov et al. Studies on corrosion resistance of coatings formed by plasma electrolytic oxidation on aluminum alloys
Flis et al. Behaviour of intact and scratched phosphate coatings on zinc, zinc–nickel and mild steel in dilute sodium phosphate solution
JP2017211217A (ja) 耐食性の評価方法およびめっき製品の修復方法
Court et al. Electrochemical measurements of electroless nickel coatings on zincated aluminium substrates
Pruthviraj et al. Electrochemical studies of aluminium 7075 alloy in different concentration of acid chloride medium
Hata et al. Investigation of Relationship between Corrosion and Hydrogen Entry Behavior of Electro-Galvanized Steel under Atmospheric Environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150501

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150701

R150 Certificate of patent or registration of utility model

Ref document number: 5777098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250