JP5775183B2 - Vibrating transfer device - Google Patents

Vibrating transfer device Download PDF

Info

Publication number
JP5775183B2
JP5775183B2 JP2014001447A JP2014001447A JP5775183B2 JP 5775183 B2 JP5775183 B2 JP 5775183B2 JP 2014001447 A JP2014001447 A JP 2014001447A JP 2014001447 A JP2014001447 A JP 2014001447A JP 5775183 B2 JP5775183 B2 JP 5775183B2
Authority
JP
Japan
Prior art keywords
vibration
spring
mass body
transport direction
springs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014001447A
Other languages
Japanese (ja)
Other versions
JP2015129041A (en
Inventor
太郎 三村
太郎 三村
順一 原
順一 原
和紀 百瀬
和紀 百瀬
恭弘 皆川
恭弘 皆川
宗保 波多腰
宗保 波多腰
勇希 木内
勇希 木内
神戸 祐二
祐二 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiichi Co Ltd
Original Assignee
Daiichi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiichi Co Ltd filed Critical Daiichi Co Ltd
Priority to JP2014001447A priority Critical patent/JP5775183B2/en
Priority to KR1020140145150A priority patent/KR20150083011A/en
Priority to CN201410767810.XA priority patent/CN104760803A/en
Priority to TW104100374A priority patent/TW201529447A/en
Publication of JP2015129041A publication Critical patent/JP2015129041A/en
Application granted granted Critical
Publication of JP5775183B2 publication Critical patent/JP5775183B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Jigging Conveyors (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)

Description

本発明は振動式搬送装置に係り、特に、直線状に部品を搬送する場合に好適な搬送装置の搬送機構に関する。   The present invention relates to a vibration type conveying apparatus, and more particularly to a conveying mechanism of a conveying apparatus suitable for conveying parts in a straight line.

一般に、振動式搬送装置は、架台上に板ばねを介して搬送体を弾性支持し、この搬送体を電磁駆動体や圧電駆動体などの加振手段によって加振することによって搬送の向きに斜め上方へ向かう振動を生じさせることにより、搬送体上に形成された搬送路に沿って部品等の搬送物を搬送するようにしている。近年は、搬送物として微細な電子部品が多くなり、また、このような微細な搬送物を高速で供給するニーズが高まってきているため、圧電駆動源を用いた加振により、微細な搬送物を高速で整列させながら搬送する装置が多く要求されるようになってきている。このような高速搬送の要求を満たそうとしたときに生ずる振動式搬送装置の共通の問題点は、搬送体の振動の反力が設置面に伝達されることで設置面を介して周囲の他の装置類に振動的な影響を及ぼす虞がある点や、搬送体を振動させるための加振構造全体のピッチング動作などにより搬送体が本来の振動方向とは異なる方向に振動することにより、搬送速度が搬送方向の位置によって異なったり搬送物が搬送方向以外の向きに振動して搬送姿勢が乱れたりする点である。   In general, the vibration-type transfer device elastically supports a transfer body on a gantry via a leaf spring, and the transfer body is obliquely inclined in the transfer direction by exciting the transfer body with an excitation means such as an electromagnetic drive body or a piezoelectric drive body. By generating upward vibration, a transported object such as a component is transported along a transport path formed on the transport body. In recent years, there are many fine electronic parts as conveyed objects, and there is an increasing need to supply such fine conveyed objects at high speed. Many apparatuses are required to convey the sheets while aligning them at high speed. A common problem of the vibratory transfer device that occurs when trying to satisfy such high-speed transfer requirements is that the reaction force of the vibration of the transfer body is transmitted to the installation surface, so that other Conveyance occurs when the transport body vibrates in a direction different from the original vibration direction due to the fact that there is a risk of vibrational effects on the devices, and the pitching operation of the entire excitation structure for vibrating the transport body. The speed varies depending on the position in the transport direction, or the transported object vibrates in a direction other than the transport direction and the transport posture is disturbed.

上記の問題点を解決するために従来の振動式搬送装置において提案されている一つの方法は、防振ばねを介して振動系を支持するとともに、当該振動系内に搬送体とは逆相で振動する反作用ウエイト(慣性体)を設け、この反作用ウエイトの振動によって搬送体の振動の反力を相殺して、設置面上に伝達される振動エネルギーを低減しようとするものである(例えば、以下の特許文献1)。しかしながら、このような構造では、搬送体と反作用ウエイトの重心が上下にずれているため、搬送体の振動に伴って装置全体にピッチング運動が生じ、これによって搬送効率が低下するとともに搬送方向の位置によって搬送速度が変化したり搬送姿勢が乱れたりする。このため、搬送体の重心と反作用ウエイトの重心のずれを低減して上記ピッチングを抑制するようにしたものが知られている。例えば、搬送体に対して、反作用ウエイトより下方に配置された釣り合い用おもりを接続した構造(例えば、以下の特許文献2)、防振ばねで支持された圧電式振動部と搬送体を連結するとともに、圧電式振動部と搬送体の間にカウンターウエイトを配置し、圧電式振動部と搬送体の合計の重心位置とカウンターウエイトの重心位置とを結ぶ直線を、搬送物に与えられる振動方向と平行に配置する構造(例えば、以下の特許文献3)、防振ばねで支持された固定フレームの上方に搬送体に接続された可動板を弾性支持し、可動板の下方に下部ウエイトを接続するとともに固定フレームの上方に固定ウエイトを接続することによって両者の重心位置を近づけ、回転モーメントの発生を抑制した構造(例えば、以下の特許文献4)などが知られている。   In order to solve the above problems, one method proposed in the conventional vibration type conveying apparatus supports the vibration system via the vibration-proof spring and has a phase opposite to that of the conveyance body in the vibration system. A reaction weight (inertial body) that vibrates is provided, and the reaction force of the conveyance body is canceled by the vibration of the reaction weight to reduce vibration energy transmitted to the installation surface (for example, the following) Patent Document 1). However, in such a structure, since the center of gravity of the transport body and the reaction weight is shifted up and down, a pitching motion is generated in the entire apparatus due to the vibration of the transport body, thereby reducing the transport efficiency and the position in the transport direction. As a result, the transport speed changes or the transport posture is disturbed. For this reason, there has been known one in which the pitching is suppressed by reducing the deviation between the center of gravity of the carrier and the center of gravity of the reaction weight. For example, a structure in which a counterweight disposed below the reaction weight is connected to the transport body (for example, Patent Document 2 below), and the piezoelectric vibration portion supported by the vibration isolating spring and the transport body are coupled. In addition, a counterweight is disposed between the piezoelectric vibration unit and the transport body, and a straight line connecting the total barycentric position of the piezoelectric vibration unit and the transport body and the barycentric position of the counterweight is a vibration direction given to the transported object. A structure arranged in parallel (for example, Patent Document 3 below), a movable plate connected to the transport body is elastically supported above a fixed frame supported by an anti-vibration spring, and a lower weight is connected below the movable plate. Also known is a structure (for example, Patent Document 4 below) in which a fixed weight is connected above the fixed frame to bring the positions of the centers of gravity close to each other and the generation of rotational moment is suppressed. That.

特開平2−204210号公報JP-A-2-204210 特開平4−39206号公報JP-A-4-39206 特開2006−248727号公報JP 2006-248727 A 特開2009−298498号公報JP 2009-298498 A

しかしながら、上記従来の反作用ウエイトを備えた振動式搬送装置では、搬送体の重心と反作用ウエイトの重心を近づけたり直線状に配列させたりするために構造が複雑になることから装置の大型化や製造コストの増大を招くとともに、重心位置をきわめて精密に設定する必要があるため、搬送物の種類や搬送速度等の状況が変化する製造現場では充分な効果を得ることが難しいという問題点がある。特に、重心位置の僅かなずれがあるだけでも、高速搬送を可能にするために駆動周波数を高めるとピッチングや上下動などが激しくなり、適正な搬送状態を得ることができないため、高周波数化や高速搬送を実現することが難しい。   However, in the above-described conventional vibratory transfer device having a reaction weight, the structure becomes complicated because the center of gravity of the carrier and the center of gravity of the reaction weight are brought close to each other or arranged in a straight line. In addition to incurring an increase in cost, it is necessary to set the position of the center of gravity very precisely. Therefore, it is difficult to obtain a sufficient effect at a manufacturing site where the type of conveyed product, the conveyance speed, and the like change. In particular, even if there is a slight shift in the center of gravity position, increasing the drive frequency to enable high-speed conveyance increases the pitching and vertical movements, making it impossible to obtain an appropriate conveyance state. It is difficult to realize high-speed conveyance.

そこで、本発明は上記問題点を解決するものであり、その課題は、設置面に与える反力の低減とともに振動の高周波数化或いは搬送速度の高速化を簡易な構造で容易に実現できる振動式搬送装置を提供することにある。   Therefore, the present invention solves the above-mentioned problems, and the problem is that a vibration type that can easily realize a high frequency vibration or a high conveyance speed with a simple structure while reducing the reaction force applied to the installation surface. It is to provide a transport device.

斯かる実情に鑑み、本発明の振動式搬送装置は、搬送方向の前後位置にそれぞれ設けられ、前記搬送方向に向いた板面を備えた板ばねからなる一対の防振ばねと、前記一対の防振ばねによって前記搬送方向の前後位置で支持された基準質量体と、前記基準質量体の上方に配置された上側質量体と、前記基準質量体の下方に配置された下側質量体と、前記基準質量体と前記上側質量体とを前記搬送方向の前後位置でそれぞれ弾性接続する、前記搬送方向に向いた板面を備えた板ばね構造を含む一対の上側振動ばねと、前記基準質量体と前記下側質量体とを前記搬送方向の前後位置でそれぞれ弾性接続する、前記搬送方向に向いた板ばね部分を含む一対の下側振動ばねと、前記基準質量体と前記上側質量体との間、及び、前記基準質量体と前記下側質量体との間の双方に加振力を与え、前記搬送方向に同位相の振動を生じさせる同相加振手段と、を具備し、前記上側質量体と前記下側搬送体の少なくとも一方に搬送物を搬送する搬送路が設けられ、前記上側振動ばねと前記下側振動ばねが相互に上下方向の逆側に傾斜する振動角を有し、前記同相加振手段の前記加振力により、前記上側質量体と前記下側質量体が相互に上下方向の逆側に傾斜した方向に振動することを特徴とする。   In view of such circumstances, the vibratory transfer device of the present invention is provided with a pair of vibration-proof springs that are respectively provided at front and rear positions in the transfer direction, each of which includes a plate spring having a plate surface facing the transfer direction. A reference mass body supported by vibration-proof springs at front and rear positions in the transport direction, an upper mass body arranged above the reference mass body, a lower mass body arranged below the reference mass body, A pair of upper vibration springs including a leaf spring structure having a plate surface facing the transport direction, which elastically connects the reference mass body and the upper mass body at front and rear positions in the transport direction, and the reference mass body A pair of lower vibration springs including a leaf spring portion facing in the transport direction, and elastically connecting the lower mass body and the lower mass body at front and rear positions in the transport direction, and the reference mass body and the upper mass body And the reference mass body and the lower An in-phase excitation means for applying an excitation force to both of the mass bodies and generating an in-phase vibration in the transport direction, and at least one of the upper mass body and the lower transport body A conveyance path for conveying a conveyance object is provided, and the upper vibration spring and the lower vibration spring have a vibration angle that inclines in opposite directions in the vertical direction, and the vibration force of the in-phase vibration means is The upper mass body and the lower mass body vibrate in directions inclined to opposite sides in the vertical direction.

本発明によれば、搬送方向の前後位置でそれぞれ防振ばねによって支持された基準質量体の上下それぞれに、上側質量体と下側質量体が搬送方向の前後位置において振動ばねを介して弾性接続されるとともに、同相加振手段が加振力を与えることにより、上側質量体と下側質量体が搬送方向に見て同位相で振動するとともに、基準質量体と上側質量体及び下側質量体とが搬送方向に見て逆位相で振動する。したがって、基準質量体の重心位置と上側質量体及び下側質量体の合計の重心位置の上下方向のずれを低減できるため、基準質量体と上側質量体及び下側質量体の搬送方向の振動の反力の打ち消し作用を高めることができる。また、振動時においては、基準質量体に対して上側質量体が与える回転モーメントと下側質量体が与える回転モーメントが相互に逆向きとなるから、基準質量体が受ける振動による回転方向の反力が相互に相殺乃至は減殺されるため、ピッチング動作(回転運動)を抑制することができる。したがって、防振ばねを介して設置面に伝達される搬送方向及び上下方向の反力が低減され、防振ばねを介した設置面への振動エネルギーの漏出を抑制することができる。さらに、ピッチング動作が抑制されることによって、高周波化しても振動が乱れにくく、搬送物の姿勢も安定するために、高速搬送が可能になるとともに、搬送路に沿った搬送速度や搬送姿勢等の搬送状態の均一性も向上させることができる。   According to the present invention, the upper mass body and the lower mass body are elastically connected to the upper and lower positions of the reference mass body supported by the vibration isolation springs at the front and rear positions in the transport direction via the vibration springs at the front and rear positions in the transport direction, respectively. In addition, when the in-phase excitation means gives an excitation force, the upper mass body and the lower mass body vibrate in the same phase as seen in the transport direction, and the reference mass body, the upper mass body, and the lower mass The body vibrates in the opposite phase when viewed in the transport direction. Accordingly, since the vertical shift between the center of gravity position of the reference mass body and the total center of gravity position of the upper mass body and the lower mass body can be reduced, the vibration in the transport direction of the reference mass body, the upper mass body, and the lower mass body can be reduced. The counteracting reaction force can be enhanced. In addition, during vibration, the rotational moment given by the upper mass body and the rotational moment given by the lower mass body with respect to the reference mass body are opposite to each other. Are mutually offset or reduced, so that the pitching motion (rotational motion) can be suppressed. Therefore, the reaction force in the conveying direction and the vertical direction transmitted to the installation surface via the vibration isolation spring is reduced, and leakage of vibration energy to the installation surface via the vibration isolation spring can be suppressed. Furthermore, since the pitching operation is suppressed, vibrations are not easily disturbed even when the frequency is increased, and the posture of the transported object is stabilized, so that high-speed transport is possible, and the transport speed, transport posture, etc. along the transport path The uniformity of the transport state can also be improved.

本発明においては、前記上側質量体と前記下側搬送体の少なくとも一方に搬送物を搬送する搬送路が設けられ、前記上側振動ばねと前記下側振動ばねが相互に上下方向の逆側に傾斜する振動角を有し、前記同相加振手段の前記加振力により、前記上側質量体と前記下側質量体が相互に上下方向の逆側に傾斜した方向に振動することにより、上側質量体と下側搬送体の少なくとも一方に設けられる搬送路上で搬送方向の一方側又は他方側に向かう搬送力を搬送物に与えることができる。したがって、搬送物に対する搬送力を生じさせるために振動系全体を傾斜させて設置する必要がなくなるため、構造を簡易に構成することが可能になるとともに搬送力の調整作業も容易化できる。また、同期して振動する上側質量体と下側質量体の振動方向が相互に上下逆側へ傾斜した方向となるため、上側質量体の回転モーメントと下側質量体の回転モーメントの上下方向成分に関する減殺効果が高められるから、基準質量体が受ける上下方向の反力を低減することが可能になる。したがって、搬送路上における搬送物の搬送状態の安定化、装置の高周波化による搬送速度の向上、防振ばねを介した設置面への上下振動の漏出の抑制を図ることが可能になる。特に、300Hz〜1kHzといった従来よりも大幅な高周波化を図る場合には、僅かな上下方向の動的バランスの不均衡によっても、上下振動によって搬送物が踊って搬送物の整列、選別、高密度搬送などが困難になったり、或いは、上下振動が設置面から周囲に伝搬したりするといった事態が生ずる。しかし、本発明の構成によれば、上下振動の低減により搬送物の上下動が低減され、搬送物の搬送姿勢が安定するため、搬送物の整列、選別、高密度搬送などが可能になるとともに、設置面から周囲への上下振動の伝搬を抑制することができる。   In the present invention, at least one of the upper mass body and the lower transport body is provided with a transport path for transporting a transported object, and the upper vibration spring and the lower vibration spring are inclined to opposite sides in the vertical direction. And the upper mass body and the lower mass body vibrate in directions inclined in opposite directions in the vertical direction by the excitation force of the in-phase excitation means. A conveyance force directed toward one side or the other side in the conveyance direction on a conveyance path provided on at least one of the body and the lower conveyance body can be applied to the conveyance object. Therefore, since it is not necessary to incline the entire vibration system in order to generate a transport force for the transported object, it is possible to easily configure the structure and facilitate a work for adjusting the transport force. In addition, since the vibration directions of the upper mass body and the lower mass body that vibrate synchronously are inclined in the opposite directions, the vertical component of the rotational moment of the upper mass body and the rotational moment of the lower mass body Therefore, the vertical reaction force received by the reference mass body can be reduced. Therefore, it becomes possible to stabilize the conveyance state of the conveyed product on the conveyance path, improve the conveyance speed by increasing the frequency of the apparatus, and suppress leakage of vertical vibration to the installation surface via the vibration isolation spring. In particular, when a significantly higher frequency is required than in the past, such as 300 Hz to 1 kHz, even if a slight balance of dynamic balance in the vertical direction is caused, the transported material dances due to vertical vibration, and the transported material is aligned, selected, and dense. There are situations in which it becomes difficult to carry, or vertical vibrations propagate from the installation surface to the surroundings. However, according to the configuration of the present invention, the vertical movement of the conveyed product is reduced by reducing the vertical vibration, and the conveyed posture of the conveyed product is stabilized. The propagation of vertical vibration from the installation surface to the surroundings can be suppressed.

本発明において、上述のように、前記上側振動ばねと前記下側振動ばねが振動角を有するためには、一例として、前記上側振動ばね及び前記下側振動ばねがそれぞれ全体的に傾斜姿勢で設置される構成としてもよい。この場合に、上側振動ばねと下側振動ばねが相互に上下方向に逆側の振動角を有するためには、上側振動ばねと下側振動ばねをそれぞれ全体的に上下方向の逆側に傾斜した姿勢とすればよい。しかし、ばねの取付作業を容易化し、振動角を調整可能に構成する上では、前記上側振動ばね及び前記下側振動ばねは、いずれも複数のばね要素をそれぞれ有し、前記基準質量体の側の前記ばね要素に対して前記上側質量体及び前記下側質量体の側の前記ばね要素が前記搬送方向の一方側に配置されたばね構造を有することが好ましい。   In the present invention, as described above, in order for the upper vibration spring and the lower vibration spring to have a vibration angle, as an example, the upper vibration spring and the lower vibration spring are respectively installed in an inclined posture. It is good also as a structure to be made. In this case, in order for the upper vibration spring and the lower vibration spring to have mutually opposite vibration angles in the vertical direction, the upper vibration spring and the lower vibration spring are respectively inclined to the opposite sides in the vertical direction as a whole. It may be a posture. However, in order to facilitate the mounting operation of the spring and to adjust the vibration angle, the upper vibration spring and the lower vibration spring both have a plurality of spring elements, respectively, on the side of the reference mass body. It is preferable that the spring element on the side of the upper mass body and the lower mass body with respect to the spring element is arranged on one side in the transport direction.

この場合において、前記上側振動ばねは、前記基準質量体の側のばね要素に相当する上側振動ばね本体と、該上側振動ばね本体の上端部を前記上側質量体に対して前記搬送方向に連結する上側連結部とを有し、該上側連結部には、前記上側振動ばね本体よりも前記搬送方向の前記一方側に配置された、前記上側質量体の側のばね要素に相当する上側ばね要素が設けられ、該上側ばね要素は、前記上側振動ばね本体に対して前記上側質量体が前記搬送方向及び垂直方向と直交する軸線周りに回動可能な態様で弾性変形し、前記下側振動ばねは、前記基準質量体の側のばね要素に相当する下側振動ばね本体と、該下側振動ばね本体の下端部を前記下側質量体に対して前記搬送方向に連結する下側連結部とを有し、該下側連結部には、前記下側振動ばね本体よりも前記搬送方向の前記一方側に配置された、前記下側質量体の側のばね要素に相当する下側ばね要素が設けられ、該下側ばね要素は、前記下側振動ばね本体に対して前記下側質量体が前記搬送方向及び垂直方向と直交する軸線周りに回動可能な態様で弾性変形することが好ましい。これによれば、上側連結部及び下側連結部においては、上側振動ばね本体の上端部又は下側振動ばね本体の下端部に対して、搬送方向の他方側に配置された上側ばね要素又は下側ばね要素を介して上側質量体又は下側質量体が連結されていることにより、上側振動ばね及び下側振動ばね自体が傾斜姿勢で設置される場合と同様に、上側質量体又は下側質量体に設けられる搬送路の振動方向を搬送方向に対して相互に上下逆側に傾斜した方向とすることができる。この場合に、上記上側振動ばね及び下側振動ばねの振動角は、上側振動ばね本体の上部接続端と上側ばね要素との間の搬送方向の間隔、及び、下側振動ばね本体の下部接続端と下側ばね要素との間の搬送方向の間隔、に応じて変化する。このため、当該間隔をスペーサ等によって調整するだけで、上側振動ばね及び下側振動ばねの振動角を調整することが可能になる。ここで、上記上側ばね要素若しくは下側ばね要素としては、前記上側振動ばね本体若しくは前記下側振動ばね本体と、前記上側質量体若しくは前記下側質量体とを前記搬送方向及び垂直方向と直交する幅方向(水平方向)に連結する板ばね状の連結板を用いることができる。この連結板は、上側振動ばね本体の上部接続端若しくは下側振動ばね本体の下部接続端に対して、上側質量体若しくは下側質量体が幅方向の軸線を中心に回転する方向に弾性変形可能とされる、ねじりばねとして機能する。この場合にはさらに、前記上側振動ばね本体は、前記基準質量体と前記上側質量体との間において垂直方向に延在する姿勢で配置され、前記下側振動ばね本体は、前記基準質量体と前記下側質量体との間において垂直方向に延在する姿勢で配置されることが望ましい。上述のように上側連結部及び下側連結部に上側ばね要素及び下側ばね要素を設けることによって、上側振動ばね及び下側振動ばねに振動角を設けることができるため、上側振動ばね本体及び下側振動ばね本体を垂直姿勢とした場合でも搬送力を生じさせることが可能になる。そして、上側振動ばね本体及び下側振動ばね本体を垂直姿勢とすることにより、構造の簡易化と上下振動の低減を図ることができるため、高周波化しても搬送姿勢の安定性を確保することができ、また、防振ばねを介した振動の漏出を低減することができる。 In this case, the upper vibration spring connects an upper vibration spring body corresponding to a spring element on the reference mass body and an upper end portion of the upper vibration spring body to the upper mass body in the transport direction. An upper spring element corresponding to a spring element on the side of the upper mass body, which is disposed on the one side in the transport direction with respect to the upper vibration spring main body. The upper spring element is elastically deformed in such a manner that the upper mass body can rotate about an axis perpendicular to the transport direction and the vertical direction with respect to the upper vibration spring body, and the lower vibration spring is A lower vibration spring main body corresponding to a spring element on the side of the reference mass body, and a lower connection portion for connecting a lower end portion of the lower vibration spring main body to the lower mass body in the transport direction. The lower connecting portion has the lower vibration It is arranged on the one side of the transport direction than the body, the lower spring element is provided which corresponds to the spring element on the side of the lower mass, said lower spring elements, the lower vibrating spring body On the other hand, it is preferable that the lower mass body is elastically deformed in such a manner that the lower mass body can rotate around an axis perpendicular to the transport direction and the vertical direction. According to this, in the upper connection part and the lower connection part, the upper spring element or the lower part disposed on the other side in the transport direction with respect to the upper end part of the upper vibration spring body or the lower end part of the lower vibration spring body. By connecting the upper mass body or the lower mass body via the side spring element, the upper mass body or the lower mass is the same as when the upper vibration spring and the lower vibration spring are installed in an inclined posture. The vibration direction of the conveyance path provided in the body can be a direction inclined mutually upside down with respect to the conveyance direction. In this case, the vibration angles of the upper vibration spring and the lower vibration spring are determined by the distance in the conveying direction between the upper connection end of the upper vibration spring body and the upper spring element, and the lower connection end of the lower vibration spring body. And the distance in the conveying direction between the lower spring element and the lower spring element. For this reason, it is possible to adjust the vibration angles of the upper vibration spring and the lower vibration spring only by adjusting the interval with a spacer or the like. Here, as the upper spring element or the lower spring element, the upper vibration spring body or the lower vibration spring body and the upper mass body or the lower mass body are orthogonal to the transport direction and the vertical direction. A leaf spring-like connecting plate connected in the width direction (horizontal direction) can be used. This connecting plate can be elastically deformed in a direction in which the upper mass body or the lower mass body rotates about the axis in the width direction with respect to the upper connection end of the upper vibration spring body or the lower connection end of the lower vibration spring body. It functions as a torsion spring. In this case, the upper vibration spring main body is arranged in a posture extending in a vertical direction between the reference mass body and the upper mass body, and the lower vibration spring main body is arranged with the reference mass body. It is desirable to arrange in a posture extending in the vertical direction between the lower mass body. As described above, by providing the upper spring element and the lower spring element in the upper connection part and the lower connection part, the upper vibration spring and the lower vibration spring can be provided with a vibration angle. Even when the side vibration spring body is in a vertical posture, it is possible to generate a conveying force. Since the upper vibration spring main body and the lower vibration spring main body are in a vertical posture, the structure can be simplified and the vertical vibration can be reduced. Therefore, the stability of the conveying posture can be ensured even if the frequency is increased. In addition, it is possible to reduce leakage of vibration through the vibration-proof spring.

上記のような複数のばね要素が配列されたばね構造の他の一例としては、前記上側振動ばね及び下側振動ばねをその延在方向(上下方向)の途中で上下に分割し、分割された上側板ばね部分の下端と下側板ばね部分の上端を、必要に応じて搬送方向に厚みを有するスペーサ等を介して、段差状に連結してもよい。この場合に、上側振動ばねと下側振動ばねが相互に上下方向の逆側に傾斜した振動角を有するためには、上側振動ばねの上側板ばね部分(前記上側質量体の側のばね要素に相当する。)の下端に対する下側板ばね部分(前記基準質量体の側のばね要素に相当する。)の上端の配置される側と、下側振動ばねの上側板ばね部分(前記基準質量体の側のばね要素に相当する。)の下端に対する下側板ばね部分(前記下側質量体の側のばね要素に相当する。)の上端の配置される側とが、搬送方向に見て相互に逆側となるように構成すればよい。例えば、上側振動ばねが下方に配置される上側圧電駆動部と上方に配置される上側増幅ばねとの直列接続構造で構成され、下側振動ばねが上方に配置される下側圧電駆動部と下方に配置される下側増幅ばねとの直列接続構造で構成される場合には、上側圧電駆動部の上端に上側増幅ばねの下端を搬送方向の一方側に、必要に応じて間隔を介して、連結するとともに、下側圧電駆動部の下端に下側増幅ばねの上端を搬送方向の一方側(上記と同じ側)に、必要に応じて間隔を介して、連結すればよい。この場合においても、前記上側振動ばね及び前記下側振動ばねは、いずれも、上側板ばね部分と下側板ばね部分がそれぞれ垂直方向に延在する姿勢で配置されることが好ましい。これにより、構造の簡易化と上下振動の低減を図ることができるため、高周波化しても搬送姿勢の安定性を確保することができ、また、防振ばねを介した振動の漏出を低減することができる。 As another example of the spring structure in which a plurality of spring elements as described above are arranged, the upper vibration spring and the lower vibration spring are divided vertically in the middle of the extending direction (vertical direction), and the divided upper You may connect the lower end of a side leaf | plate spring part, and the upper end of a lower leaf | plate spring part in a step shape through the spacer etc. which have thickness in a conveyance direction as needed. In this case, in order for the upper vibration spring and the lower vibration spring to have a vibration angle inclined to the opposite sides in the vertical direction, the upper leaf spring portion of the upper vibration spring (the spring element on the upper mass body side) The lower leaf spring portion (corresponding to the spring element on the side of the reference mass body ) with respect to the lower end of the lower vibration spring and the upper leaf spring portion of the lower vibration spring (of the reference mass body). The side where the upper end of the lower leaf spring portion (corresponding to the spring element on the lower mass body side ) with respect to the lower end of the lower end of the lower leaf spring part corresponds to the opposite side when viewed in the conveying direction. What is necessary is just to comprise so that it may become a side. For example, the upper piezoelectric drive unit is arranged in series with an upper piezoelectric drive unit arranged below and an upper amplification spring arranged above, and the lower piezoelectric drive unit arranged below and below the lower vibration spring In the case of a series connection structure with the lower amplification spring disposed in the upper piezoelectric drive unit, the lower end of the upper amplification spring is placed on the one side in the transport direction at the upper end of the upper piezoelectric drive unit, with an interval as necessary. In addition to the connection, the upper end of the lower amplification spring may be connected to one side in the transport direction (the same side as described above) with an interval as needed, to the lower end of the lower piezoelectric drive unit. Also in this case, it is preferable that the upper vibration spring and the lower vibration spring are both arranged in a posture in which the upper leaf spring portion and the lower leaf spring portion respectively extend in the vertical direction. As a result, the structure can be simplified and the vertical vibration can be reduced, so that the stability of the conveying posture can be ensured even when the frequency is increased, and the leakage of vibration through the anti-vibration spring can be reduced. Can do.

本発明において、前記同相加振手段は、前記基準質量体と前記上側質量体との間に直接に前記加振力を与える上側加振部と、前記基準質量体と前記下側質量体との間に直接に前記加振力を与える下側加振部とを有することが好ましい。これによれば、上側加振部と下側加振部が直接かつ別々に加振力を与えるように構成されることにより、装置の全体構造を簡易化できるとともに、状況に応じた同相加振手段の調整を容易に行うことが可能になる。この場合に、前記上側加振部は上側圧電駆動部によって構成されるとともに前記上側振動ばねの長さ方向の一部に組み込まれ、前記下側加振部は下側圧電駆動部によって構成されるとともに前記上側振動ばねの長さ方向の一部に組み込まれることが望ましい。これにより、基準質量体と上側質量体及び下側質量体の間を弾性接続する上側振動ばね及び下側振動ばねの長さ方向の一部に上側圧電駆動部及び下側圧電駆動部が組み込まれることにより、基準質量体と上側質量体及び下側質量体との間に上側振動ばね及び下側振動ばねのみを介して加振力を与えることができるため、構造の簡易化を図ることができるとともに、主要振動系において生ずる反力をさらに容易に相殺乃至は減殺することが可能になる。ここで、前記上側振動ばねは、前記上側圧電駆動部と、搬送方向に向いた板面を備えた板状の上側増幅ばねとを直列に接続した構造を有することが好ましい。また、前記下側振動ばねは、前記上側圧電駆動部と、搬送方向に向いた板面を備えた板状の下側増幅ばねとを直列に接続した構造を有することが好ましい。上側圧電駆動部及び下側圧電駆動部は、搬送方向に向いた板面を有する板状の弾性基板と、この弾性基板の表裏少なくともいずれか一方の面上に積層された圧電体とを有し、この圧電体の厚み方向に交番電圧を印加することによって上記弾性基板を搬送方向の前後に撓ませることにより振動を発生する。   In the present invention, the in-phase excitation means includes an upper excitation unit that directly applies the excitation force between the reference mass body and the upper mass body, the reference mass body, and the lower mass body. It is preferable to have a lower side excitation part which gives the said excitation force directly between. According to this, since the upper excitation unit and the lower excitation unit are configured so as to apply the excitation force directly and separately, the overall structure of the apparatus can be simplified, and in-phase excitation according to the situation can be achieved. The vibration means can be easily adjusted. In this case, the upper excitation unit is configured by an upper piezoelectric drive unit and is incorporated in a part of the length of the upper vibration spring, and the lower excitation unit is configured by a lower piezoelectric drive unit. In addition, it is desirable that the upper vibration spring is incorporated in a part of the length direction. Accordingly, the upper piezoelectric drive unit and the lower piezoelectric drive unit are incorporated in part of the length direction of the upper vibration spring and the lower vibration spring that elastically connect the reference mass body, the upper mass body, and the lower mass body. Thus, an excitation force can be applied between the reference mass body, the upper mass body, and the lower mass body only through the upper vibration spring and the lower vibration spring, so that the structure can be simplified. At the same time, the reaction force generated in the main vibration system can be more easily offset or reduced. Here, it is preferable that the upper vibration spring has a structure in which the upper piezoelectric driving unit and a plate-like upper amplification spring having a plate surface facing the conveyance direction are connected in series. The lower vibration spring preferably has a structure in which the upper piezoelectric drive unit and a plate-like lower amplification spring having a plate surface facing the transport direction are connected in series. The upper piezoelectric drive unit and the lower piezoelectric drive unit have a plate-like elastic substrate having a plate surface facing in the transport direction, and a piezoelectric body laminated on at least one of the front and back surfaces of the elastic substrate. By applying an alternating voltage in the thickness direction of the piezoelectric body, vibration is generated by bending the elastic substrate back and forth in the transport direction.

この場合において、前記同相加振手段は、前記基準質量体に対して上下方向の中間部において幅方向両側が結合され、前記基準質量体の上方に延在する部分が前記上側圧電駆動部を形成し、前記基準質量体の下方に延在する部分が前記下側圧電駆動部を形成する、全体として前記搬送方向に向いた板面が上下一体に撓み変形する板状の圧電駆動体により構成されることが好ましい。これによれば、一体に構成される圧電駆動体の中間部の幅方向両側が基準質量体に結合され、基準質量体の上方へ伸びる上側圧電駆動部が上側質量体を加振し、基準質量体の下方に伸びる下側圧電駆動部が下側質量体を加振することにより、基準質量体に対して安定した接続状態を得ることができると同時に、上下一体の撓み変形により、上側質量体と下側質量体を容易かつ確実に同位相で振動させることができる。また、一体の圧電駆動体で上側質量体と下側質量体を加振できるため、装置全体の高さを低減することができ、装置をコンパクトに構成できる。この場合において、前記圧電駆動体は前記基準質量体に対する結合位置より上下両側に伸びる一体の圧電体を有することが好ましい。本発明では、例えば、弾性基板を一体のものとしつつ、基準質量体の上方の上側圧電駆動部と下方の下側圧電駆動部を別々の圧電体で構成することも可能である。しかし、上記のように基準質量体の上下両側に伸びる一体の圧電体を設けることで、圧電駆動体の撓み変形の一体性を高めることができるから、上側質量体と下側質量体をより均等に加振できるなど、構造の簡易化、製造コストの低減、上下の振動態様の均一化などを容易に図ることができる。   In this case, the in-phase excitation means is coupled to both sides of the reference mass body at the intermediate portion in the vertical direction, and a portion extending above the reference mass body includes the upper piezoelectric drive unit. And a portion extending below the reference mass body forms the lower piezoelectric drive portion, and is configured by a plate-like piezoelectric drive body in which the plate surface facing the transport direction as a whole is bent and deformed integrally vertically. It is preferred that According to this, both sides in the width direction of the intermediate portion of the integrally configured piezoelectric driving body are coupled to the reference mass body, and the upper piezoelectric driving section extending above the reference mass body vibrates the upper mass body, thereby The lower piezoelectric drive unit extending below the body vibrates the lower mass body, so that a stable connection state with respect to the reference mass body can be obtained, and at the same time, the upper mass body can be deformed integrally with the upper and lower bodies. And the lower mass body can be vibrated easily and reliably in the same phase. Further, since the upper mass body and the lower mass body can be vibrated with an integral piezoelectric driving body, the height of the entire apparatus can be reduced, and the apparatus can be configured compactly. In this case, it is preferable that the piezoelectric driving body has an integral piezoelectric body that extends in the upper and lower sides from the coupling position with respect to the reference mass body. In the present invention, for example, the upper piezoelectric drive unit above the reference mass body and the lower piezoelectric drive unit below may be formed of separate piezoelectric bodies while integrating the elastic substrate. However, by providing the integral piezoelectric body extending on both the upper and lower sides of the reference mass body as described above, it is possible to improve the integrity of the flexural deformation of the piezoelectric drive body, so that the upper mass body and the lower mass body are more evenly distributed. The structure can be simplified, the manufacturing cost can be reduced, and the upper and lower vibration modes can be made uniform.

本発明において、前記上側圧電駆動部は、弾性基板と、該弾性基板上に積層された圧電体とを有し、前記上側増幅ばねは、前記弾性基板と一体に構成されていることが好ましい。また、前記下側圧電駆動部は、弾性基板と、該弾性基板上に積層された圧電体とを有し、前記下側増幅ばねは、前記弾性基板と一体に構成されていることが好ましい。これによれば、上下の少なくともいずれか一方の圧電駆動部と、上下の少なくともいずれか一方の増幅ばねとをボルト等によって連結する必要がなくなるため、部品点数や組立工数を削減できるとともに、当該連結部分の高さ分だけ装置高さを低減することが可能になる。特に、上側圧電駆動部の弾性基板が上側増幅ばねと一体に構成されると共に、下側圧電駆動部の弾性基板が下側増幅ばねと一体に構成されていることが好ましい。また、上側圧電駆動部と下側圧電駆動部が一体の圧電駆動体によって構成される場合(上側圧電駆動部の弾性基板と下側圧電駆動部の弾性基板が一体である場合)には、当該一体の圧電駆動体の弾性基板と上側増幅ばね及び下側増幅ばねの全てが一体に構成されていることが望ましい。このとき、圧電駆動体自体は垂直姿勢で設置することが可能である。また、上記上側増幅ばね及び上記下側増幅ばねは、上側圧電駆動部及び下側圧電駆動部よりも薄く形成されることが好ましい。これによれば、上側圧電駆動部及び下側圧電駆動部の損傷を回避すると同時に、上側増幅ばね及び下側増幅ばねによる振幅の確保を図ることができる。   In the present invention, it is preferable that the upper piezoelectric drive unit includes an elastic substrate and a piezoelectric body laminated on the elastic substrate, and the upper amplification spring is configured integrally with the elastic substrate. Preferably, the lower piezoelectric drive unit includes an elastic substrate and a piezoelectric body laminated on the elastic substrate, and the lower amplification spring is configured integrally with the elastic substrate. According to this, since it is not necessary to connect at least one of the upper and lower piezoelectric drive units and at least one of the upper and lower amplification springs with a bolt or the like, the number of parts and assembly man-hours can be reduced and the connection can be reduced. The height of the apparatus can be reduced by the height of the portion. In particular, it is preferable that the elastic substrate of the upper piezoelectric drive unit is configured integrally with the upper amplification spring, and the elastic substrate of the lower piezoelectric drive unit is configured integrally with the lower amplification spring. In addition, when the upper piezoelectric driving unit and the lower piezoelectric driving unit are configured by an integrated piezoelectric driving body (when the elastic substrate of the upper piezoelectric driving unit and the elastic substrate of the lower piezoelectric driving unit are integrated), It is desirable that the elastic substrate of the integral piezoelectric driving body, the upper amplification spring, and the lower amplification spring are all integrally formed. At this time, the piezoelectric driving body itself can be installed in a vertical posture. The upper amplification spring and the lower amplification spring are preferably formed thinner than the upper piezoelectric drive unit and the lower piezoelectric drive unit. According to this, it is possible to avoid the damage of the upper piezoelectric drive unit and the lower piezoelectric drive unit, and at the same time, to secure the amplitude by the upper amplification spring and the lower amplification spring.

本発明において、上記一体の圧電駆動体が上側増幅ばね及び下側増幅ばねと別体に構成され、上側増幅ばね及び下側増幅ばねに対してボルトや座金等を介して接続固定されるための上側接続構造及び下側接続構造が設けられる場合には、上側接続構造及び下側接続構造は弾性基板を圧電体が積層される領域から上方及び下方へ延出させて設けることが好ましい。また、上側接続構造及び下側接続構造の厚み範囲を圧電体が積層される領域の厚み範囲よりも搬送方向に見てずらして形成することにより、その厚み範囲のずれ量に応じて上側増幅ばね及び下側増幅ばねとの間の搬送方向のずれ量が設定されるため、上記振動角を調整したり、振動角の調整範囲を変更したりすることが可能になる。上側圧電駆動部及び下側圧電駆動部と上側増幅ばね及び下側増幅ばねとの間の搬送方向のずれ量は、振動角と正の相関を有し、上記厚み範囲のずれ量や両者間に介挿されるスペーサの厚みによって設定することができる。   In the present invention, the integrated piezoelectric driving body is configured separately from the upper amplification spring and the lower amplification spring, and is connected and fixed to the upper amplification spring and the lower amplification spring via a bolt, a washer, or the like. When the upper connection structure and the lower connection structure are provided, it is preferable that the upper connection structure and the lower connection structure are provided by extending the elastic substrate upward and downward from the region where the piezoelectric body is laminated. Further, by forming the thickness ranges of the upper connection structure and the lower connection structure so as to be shifted from the thickness range of the region where the piezoelectric bodies are laminated in the conveying direction, the upper amplification spring is formed in accordance with the deviation amount of the thickness range. Since the amount of shift in the transport direction between the lower amplification spring and the lower amplification spring is set, the vibration angle can be adjusted or the adjustment range of the vibration angle can be changed. The amount of deviation in the conveying direction between the upper piezoelectric drive unit and the lower piezoelectric drive unit and the upper amplification spring and the lower amplification spring has a positive correlation with the vibration angle. It can be set by the thickness of the inserted spacer.

本発明において、前記上側増幅ばねの下端は、前記上側接続構造に対して前記搬送方向の前記一方側に重ねられた状態で接続固定され、前記下側増幅ばねの上端は、前記下側接続構造に対して前記搬送方向の前記一方側に重ねられた状態で接続固定されることが望ましい。これにより、上側増幅ばね及び下側増幅ばねと上側圧電駆動部及び下側圧電駆動部との間にスペーサを介挿するか否かに拘わらず、上記振動角を形成することが可能になる。この場合に、上述のように圧電駆動体における圧電体が積層された部分と上側接続構造及び下側接続構造との間に厚み範囲のずれを設けることにより、振動角の調整や最適化を図ることが容易になる。また、上側接続構造及び下側接続構造を圧電体が積層された部分より薄く構成することにより、上側増幅ばね及び下側増幅ばねとともに圧電体により生ずる撓み変形の増幅作用を果たす部分として機能するように構成できるため、上側増幅ばね及び下側増幅ばねの長さを短く構成することが可能になる。   In the present invention, a lower end of the upper amplification spring is connected and fixed in a state of being overlapped on the one side in the transport direction with respect to the upper connection structure, and an upper end of the lower amplification spring is connected to the lower connection structure. It is desirable that the connection is fixed in a state of being superimposed on the one side in the transport direction. Thus, the vibration angle can be formed regardless of whether or not a spacer is interposed between the upper amplification spring and the lower amplification spring and the upper piezoelectric drive unit and the lower piezoelectric drive unit. In this case, the vibration angle is adjusted or optimized by providing a deviation in the thickness range between the piezoelectric layered portion of the piezoelectric driving body and the upper connection structure and the lower connection structure as described above. It becomes easy. Further, by configuring the upper connection structure and the lower connection structure to be thinner than the portion where the piezoelectric bodies are laminated, the upper connection spring and the lower amplification spring function as a portion that performs an amplification action of the bending deformation generated by the piezoelectric body. Therefore, the length of the upper amplification spring and the lower amplification spring can be reduced.

この場合において、前記上側圧電駆動部と前記下側圧電駆動部は前記基準質量体に対する結合位置より実質的に上下に対称な構造を有することが好ましい。これによれば、対称な構造を有する上側圧電駆動部と下側圧電駆動部により、上下両側に対称な動作態様を得ることができる。また、上記のように基準質量体に対して一体の圧電駆動体が幅方向両側で結合した接続構造が採用される場合には、上記圧電駆動体は、幅方向両側の結合部位を結ぶ水平線を対称軸として上下に対称な構造を有することが好ましい。   In this case, it is preferable that the upper piezoelectric drive unit and the lower piezoelectric drive unit have a structure that is substantially vertically symmetrical with respect to the coupling position with respect to the reference mass body. According to this, a symmetrical operation mode can be obtained on both the upper and lower sides by the upper piezoelectric drive unit and the lower piezoelectric drive unit having a symmetrical structure. In addition, when the connection structure in which the piezoelectric drive body integrated with the reference mass body is coupled on both sides in the width direction as described above is adopted, the piezoelectric drive body has a horizontal line connecting the coupling sites on both sides in the width direction. It is preferable to have a vertically symmetrical structure as a symmetry axis.

本発明において、前記圧電駆動体は、前記基準質量体に対する結合位置が幅方向両側に設けられ、前記結合位置の間に圧電体が配置されていることが好ましい。これによれば、圧電駆動体と基準質量体とが幅方向両側で結合されるとともに、その結合位置の間に圧電体が配置されることで、基準質量体に対して幅方向両側に均等な結合剛性を確保でき、安定した加振状態を容易に実現することができる。特に、圧電駆動体の上下一体の撓み変形を阻害することがなくなり、効率的かつ安定した上下同位相の駆動状態を実現できる。ここで、圧電駆動体には、上記結合部位の上下両側に亘って一体に構成された圧電体が形成されることが望ましい。   In the present invention, it is preferable that the piezoelectric driving body has coupling positions with respect to the reference mass body on both sides in the width direction, and the piezoelectric body is disposed between the coupling positions. According to this, the piezoelectric driving body and the reference mass body are coupled on both sides in the width direction, and the piezoelectric body is disposed between the coupling positions, so that the piezoelectric mass and the reference mass body are even on both sides in the width direction. The coupling rigidity can be ensured, and a stable vibration state can be easily realized. In particular, the upper and lower integrated bending deformation of the piezoelectric driving body is not hindered, and an efficient and stable driving state with the same phase in the upper and lower sides can be realized. Here, it is desirable that the piezoelectric driving body is formed with a piezoelectric body integrally formed across the upper and lower sides of the coupling portion.

本発明において、前記基準質量体は前記一対の防振ばねによって下方から支持されることが好ましい。防振ばねによる基準質量体の支持は任意の方向から行うことができるが、この構成によれば、基準質量体を吊り下げたり側方から支持したりする場合に比べて装置全体の設置面積を低減できる。また、前記一対の防振ばねは、それぞれ前記基準質量体から設置面(基台)の側に向かう接続方向(長さ方向)が前記搬送方向と直交する垂直面に沿った垂直姿勢の板ばねによりそれぞれ構成されることが好ましい。上記防振ばねが垂直姿勢の板ばねで構成されることで、基準質量体の上下方向の振動成分を削減することができるため、搬送姿勢の安定化や設置面への振動の漏洩を低減することが可能になる。前記一対の防振ばねは、上述の支持方向がいずれであっても、次のような二つの構成のいずれかとすることができる。一つの構成は、一対の防振ばねが、搬送方向の前後の支持箇所において、上側振動ばねと下側振動ばね(或いは、圧電駆動体)が基準質量体に結合する位置よりも搬送方向の前後の外側において基準質量体をそれぞれ支持する構成である。この場合には、装置の組み立て作業を容易化し、主要振動系の搬送方向の安定性を高めることができる。もう一つの構成は、一対の防振ばねが、搬送方向の前後の支持箇所において、上側振動ばね及び下側振動ばね(或いは、圧電駆動体)が基準質量体に結合する位置に対していずれも搬送方向の同じ側(一方側又は他方側)において基準質量体をそれぞれ支持する構成である。この場合には、基準質量体が上側振動ばね及び下側振動ばねから反力を受ける位置と、防振ばねから支持力を受ける位置との間の搬送方向の位置関係が搬送方向の前後の一対の支持箇所において同一となることから、主要振動系の上下方向や幅方向の安定性を高めることができ、その結果、搬送物の搬送態様をさらに安定させることができる。特に、圧電駆動体の駆動電圧を上げて搬送速度を高めた場合でも搬送路の全長に亘り均一な搬送速度が得られ、かつ、搬送姿勢も安定したものとなる。   In the present invention, the reference mass body is preferably supported from below by the pair of anti-vibration springs. The reference mass body can be supported by the anti-vibration spring from any direction. However, according to this configuration, the installation area of the entire apparatus can be reduced as compared with the case where the reference mass body is suspended or supported from the side. Can be reduced. The pair of anti-vibration springs are plate springs in a vertical posture along a vertical plane in which a connection direction (length direction) from the reference mass body toward the installation surface (base) is perpendicular to the transport direction. It is preferable that each is comprised. Since the vibration isolating spring is composed of a plate spring in a vertical posture, the vibration component in the vertical direction of the reference mass body can be reduced, so the conveyance posture is stabilized and the leakage of vibration to the installation surface is reduced. It becomes possible. The pair of anti-vibration springs can have either of the following two configurations regardless of the support direction described above. In one configuration, the pair of vibration-isolating springs are arranged in front and rear in the transport direction at positions where the upper vibration spring and the lower vibration spring (or piezoelectric driving body) are coupled to the reference mass body at the support positions in the front and rear in the transport direction. It is the structure which each supports a reference | standard mass body in the outer side. In this case, the assembly operation of the apparatus can be facilitated and the stability of the main vibration system in the transport direction can be enhanced. In another configuration, the pair of vibration-isolating springs are both at the support positions before and after in the transport direction with respect to the position where the upper vibration spring and the lower vibration spring (or the piezoelectric driving body) are coupled to the reference mass body. It is the structure which each supports a reference | standard mass body in the same side (one side or the other side) of a conveyance direction. In this case, the positional relationship in the transport direction between the position where the reference mass body receives the reaction force from the upper vibration spring and the lower vibration spring and the position where the support force is received from the vibration-proof spring is a pair of front and rear in the transport direction. Therefore, the stability of the main vibration system in the vertical direction and the width direction can be improved, and as a result, the conveyance mode of the conveyed product can be further stabilized. In particular, even when the drive voltage of the piezoelectric driving body is increased to increase the transport speed, a uniform transport speed can be obtained over the entire length of the transport path, and the transport posture can be stabilized.

本発明において、前記基準質量体は、前記搬送方向の前後位置において、前記防振ばねと、前記搬送方向に沿った水平姿勢で配置される板ばねで構成される水平防振ばねとが直列に接続された一対の防振構造によりそれぞれ支持されていることが好ましい。これによれば、振動態様が相互に異なる基準質量体の搬送方向の振動成分と、垂直方向の振動成分とをそれぞれ別の板ばねで吸収することができるため、各板ばねのばね特性を最適化することで、設置面への振動の漏洩をさらに低減できる。この場合に、前記防振ばねを介して前記基準質量体を支持する基台が設けられ、前記基台は、前記防振ばねが接続された上側支持台と、前記水平防振ばねを介して前記上側支持台を支持する下側支持台とを有することが望ましい。これによれば、搬送方向に振動する基準質量体の振動が防振ばねで吸収された状態で、残存する微小な上下動が水平防振ばねで吸収されることによって、搬送方向の振動と上下動の双方を安定した状態で確実に吸収することができる。また、占有平面の小さな防振ばねで基準質量体を支持し、占有平面の大きな水平防振ばねを基台内に設けることにより、スペース効率を高めて装置をコンパクトに構成することができる。   In the present invention, in the reference mass body, the anti-vibration spring and a horizontal anti-vibration spring composed of leaf springs arranged in a horizontal posture along the conveyance direction are arranged in series at the front and rear positions in the conveyance direction. It is preferably supported by a pair of connected anti-vibration structures. According to this, since the vibration component in the conveyance direction and the vibration component in the vertical direction of the reference mass bodies having different vibration modes can be absorbed by different leaf springs, the spring characteristics of each leaf spring are optimal. Therefore, leakage of vibration to the installation surface can be further reduced. In this case, a base that supports the reference mass body is provided via the vibration-proof spring, and the base includes an upper support to which the vibration-proof spring is connected and the horizontal vibration-proof spring. It is desirable to have a lower support for supporting the upper support. According to this, in the state where the vibration of the reference mass that vibrates in the transport direction is absorbed by the vibration isolating spring, the remaining minute vertical movement is absorbed by the horizontal vibration isolating spring, thereby Both movements can be reliably absorbed in a stable state. Further, by supporting the reference mass body with a vibration isolating spring having a small occupied plane and providing a horizontal vibration isolating spring having a large occupied plane in the base, the space efficiency can be improved and the apparatus can be configured compactly.

この場合において、搬送方向の前後位置に設けられた一対の前記水平防振ばねの前記上側支持台から前記下側支持台の側へ向かう接続の向きが相互に搬送方向の前後に逆向きとなっていることが望ましい。これによれば、搬送方向の前後位置にそれぞれ設置された水平防振ばねが主要振動系の上下振動に応じて上下に撓み変形した場合に、それぞれの水平防振ばねの接続の向きが搬送方向の前後に逆向きとなっていることにより、各水平防振ばねの撓み変形の円弧状の軌跡が搬送方向の前後逆側に湾曲することとなる。このため、搬送方向の前後位置の水平防振ばねの弾性変形が相互に干渉し合うことにより、上下振動の振幅が大きくなるに従って水平防振ばねが弾性変形しにくくなるため、微小な上下振動を確実に吸収できるように構成しつつ、主要振動系の支持安定性を高めることができる。   In this case, the direction of the connection from the upper support base to the lower support base of the pair of horizontal anti-vibration springs provided at the front and rear positions in the transport direction is opposite to the front and rear in the transport direction. It is desirable that According to this, when the horizontal anti-vibration springs respectively installed at the front and rear positions in the conveyance direction are bent up and down in response to the vertical vibration of the main vibration system, the connection direction of each horizontal anti-vibration spring is the conveyance direction. As a result, the arc-shaped trajectory of each horizontal anti-vibration spring is bent backward and forward in the transport direction. For this reason, the elastic deformation of the horizontal anti-vibration springs at the front and rear positions in the transport direction interferes with each other, so that the horizontal anti-vibration springs are less likely to elastically deform as the vertical vibration amplitude increases. The support stability of the main vibration system can be enhanced while the structure is configured so as to be able to absorb it reliably.

本発明において、前記搬送路は前記上側質量体に設けられることが好ましい。上述のように、搬送路は上側質量体と下側質量体のいずれか少なくとも一方に設ければよい。しかし、特に、上側質量体に搬送路を設けることによって、稼働時の装置や搬送物の取り扱いが容易になる。   In this invention, it is preferable that the said conveyance path is provided in the said upper mass body. As described above, the conveyance path may be provided in at least one of the upper mass body and the lower mass body. However, in particular, by providing a transport path in the upper mass body, it becomes easy to handle the apparatus and the transported object during operation.

本発明において、前記基準質量体の質量は、前記上側質量体と前記下側質量体の質量の和と実質的に等しいか、或いは、前記質量の和より大きいことが好ましい。基準質量体と上側質量体及び下側質量体は相互に搬送方向(振動方向)の反力を打ち消し合う関係にあるため、基準質量体の質量が上側質量体と下側質量体の質量の和と実質的に等しいことで反力の打ち消し効果を高めることができる。ただし、基準質量体は防振ばねによって設置面に対して支持されるとともに拘束されているから、上記質量の和よりも基準質量体の質量を大きくすることで、基準質量体の振幅を抑制することができると同時に上側質量体及び下側質量体の振幅を増大させることができるため、設置面へ流れる振動エネルギーを抑制できるとともに、上側質量体又は下側質量体において充分な搬送力を確保することができ、より安定した振動態様を実現できる。   In the present invention, it is preferable that the mass of the reference mass body is substantially equal to or greater than the sum of the masses of the upper mass body and the lower mass body. Since the reference mass body, the upper mass body, and the lower mass body have a relationship in which the reaction force in the conveying direction (vibration direction) cancels each other, the mass of the reference mass body is the sum of the masses of the upper mass body and the lower mass body. It is possible to enhance the counteracting effect of the reaction force. However, since the reference mass body is supported and restrained by the vibration isolation spring, the amplitude of the reference mass body is suppressed by making the mass of the reference mass body larger than the sum of the masses. Since the amplitude of the upper mass body and the lower mass body can be increased at the same time, vibration energy flowing to the installation surface can be suppressed and sufficient transport force is secured in the upper mass body or the lower mass body. And a more stable vibration mode can be realized.

本発明において、前記上側質量体の質量と前記下側質量体の質量は実質的に等しく、前記基準質量体と前記上側質量体の間の重心間隔及びばね定数と、前記基準質量体と前記下側質量体の間の重心間隔及びばね定数とが実質的に等しいことが好ましい。これによれば、基準質量体に対して上側質量体と下側質量体の慣性質量及び弾性接続態様が対称的に構成されるため、回転モーメントを相殺し、ピッチング動作をさらに低減できる。   In the present invention, the mass of the upper mass body and the mass of the lower mass body are substantially equal, the center-of-gravity distance and the spring constant between the reference mass body and the upper mass body, and the reference mass body and the lower mass body. It is preferred that the center of gravity spacing between the side masses and the spring constant are substantially equal. According to this, since the inertia mass and the elastic connection mode of the upper mass body and the lower mass body are configured symmetrically with respect to the reference mass body, the rotational moment can be canceled and the pitching operation can be further reduced.

本発明において、前記搬送路は直線状であり、前記搬送方向は直線に沿った方向であることが好ましい。本発明は、所定の軸線の周りに周回する方向(軸線周りの接線方向)を振動方向とする回転振動機と、この回転振動機上に設置されるらせん状の搬送路とを有する振動式搬送装置において、回転方向の振動によって搬送物をらせん状の搬送路に沿って搬送する場合にも適用可能である。しかし、直線状の搬送路に沿って直線状に搬送物を搬送する場合には、後述する実施例にも示すように、装置構造を簡易に構成できるとともに、搬送速度の向上や搬送状態の安定化を容易に図ることができる。   In this invention, it is preferable that the said conveyance path is linear shape and the said conveyance direction is a direction along a straight line. The present invention relates to a vibratory conveyance having a rotary vibrator having a vibration direction in a direction around a predetermined axis (tangential direction around the axis) and a spiral conveyance path installed on the rotary vibrator. In the apparatus, the present invention can also be applied to a case where a transported object is transported along a spiral transport path by vibration in the rotation direction. However, when transporting a transported object in a straight line along a straight transport path, as shown in the examples described later, the apparatus structure can be easily configured, and the transport speed is improved and the transport state is stabilized. Can be easily achieved.

本発明によれば、設置面へ漏出する振動の低減とともに振動の高周波数化或いは搬送速度の高速化並びに搬送物の搬送姿勢の安定化を簡易な構造で容易に実現することのできる振動式搬送装置を提供できるという優れた効果を奏し得る。   According to the present invention, vibration transfer that can easily realize with a simple structure, reduction of vibration leaking to the installation surface, increase of vibration frequency, increase of the transfer speed, and stabilization of the transfer posture of the transfer object. An excellent effect that an apparatus can be provided can be achieved.

本発明に係る第1実施形態の振動式搬送装置の全体構成を示す側面図である。1 is a side view showing an overall configuration of a vibration type conveying apparatus according to a first embodiment of the present invention. 第1実施形態の全体構成を示す斜視図である。It is a perspective view which shows the whole structure of 1st Embodiment. 第1実施形態の搬送ブロックを除く装置構造の図2の一点鎖線IIIで示す面に沿った断面を示す縦断面図である。It is a longitudinal cross-sectional view which shows the cross section along the surface shown by the dashed-dotted line III of FIG. 2 of the apparatus structure except the conveyance block of 1st Embodiment. 第1実施形態の全体構成を示す正面図(a)及び背面図(b)である。It is the front view (a) and back view (b) which show the whole structure of 1st Embodiment. 第1実施形態の搬送ブロックを除く装置構造の平面図である。It is a top view of the apparatus structure except the conveyance block of 1st Embodiment. 第1実施形態の圧電駆動体の構造を示す斜視図(a)、第1実施形態の圧電駆動体と、その上側質量体及び下側質量体に対する上側連結部及び下側連結部を示す縦断面図(b)、当該縦断面図の一部を拡大して示す拡大部分断面図(c)、及び、第1実施形態の異なる例の圧電駆動体と、その上側質量体及び下側質量体に対する上側連結部及び下側連結部を示す縦断面図(d)である。The perspective view (a) which shows the structure of the piezoelectric drive body of 1st Embodiment, The longitudinal cross-section which shows the piezoelectric drive body of 1st Embodiment, and the upper connection part and lower connection part with respect to the upper mass body and lower mass body FIG. 2B is an enlarged partial cross-sectional view showing a part of the vertical cross-sectional view in an enlarged manner, and a piezoelectric driving body of a different example of the first embodiment and its upper mass body and lower mass body. It is a longitudinal cross-sectional view (d) which shows an upper side connection part and a lower side connection part. 異なる例の搬送ブロックを除く装置構造の平面図である。It is a top view of the apparatus structure except the conveyance block of a different example. 第1実施形態の圧電駆動体と、その上側質量体及び下側質量体に対する上側連結部及び下側連結部を示す縦断面図(a)、並びに、第2実施形態の圧電駆動体と、その上側質量体及び下側質量体に対する上側連結部及び下側連結部を示す縦断面図(b)である。The piezoelectric drive body of the first embodiment, the longitudinal cross-sectional view (a) showing the upper connection portion and the lower connection portion for the upper mass body and the lower mass body, the piezoelectric drive body of the second embodiment, It is a longitudinal cross-sectional view (b) which shows the upper side connection part and lower side connection part with respect to an upper side mass body and a lower side mass body. 各実施形態に用いることのできる基台に設けられた防振構造を水平防振ばねの拡大平面図とともに示す(図2の二点鎖線XIIで示す面に沿った)拡大部分断面図である。FIG. 3 is an enlarged partial cross-sectional view (along a plane indicated by a two-dot chain line XII in FIG. 2) showing an anti-vibration structure provided on a base that can be used in each embodiment together with an enlarged plan view of a horizontal anti-vibration spring. 第3実施形態の搬送装置の概略構造を示す側面図である。It is a side view which shows schematic structure of the conveying apparatus of 3rd Embodiment. 各実施形態の主要振動系の構成を模式的に示す概念説明図である。It is a conceptual explanatory drawing which shows typically the structure of the main vibration system of each embodiment. 第4実施形態の構成を模式的に示す概略構成図である。It is a schematic block diagram which shows the structure of 4th Embodiment typically. 第5実施形態の構成を模式的に示す概略構成図である。It is a schematic block diagram which shows typically the structure of 5th Embodiment. 第6実施形態の搬送ブロックを除く装置構造の側面図である。It is a side view of the apparatus structure except the conveyance block of 6th Embodiment. 第6実施形態の搬送装置の回収側搬送ユニットを除く全体構造を示す側面図である。It is a side view which shows the whole structure except the collection | recovery side conveyance unit of the conveying apparatus of 6th Embodiment. 第6実施形態の搬送ブロックを除く装置構造の平面図である。It is a top view of the apparatus structure except the conveyance block of 6th Embodiment. 第6実施形態の搬送ブロックを除く装置構造の正面図である。It is a front view of the apparatus structure except the conveyance block of 6th Embodiment. 第6実施形態の搬送ブロックを除く装置構造の右側面後方から見た斜視図である。It is the perspective view seen from the right side rear surface of the apparatus structure except the conveyance block of 6th Embodiment. 第6実施形態の搬送ブロックを除く装置構造の左側面後方から見た斜視図である。It is the perspective view seen from the left side rear of the apparatus structure except the conveyance block of 6th Embodiment. 第6実施形態の上側振動ばねの連結構造を示す拡大側面図である。It is an enlarged side view which shows the connection structure of the upper vibration spring of 6th Embodiment.

[第1実施形態]
次に、添付図面を参照して本発明に係る振動式搬送装置の実施形態について詳細に説明する。最初に、第1実施形態の全体構成について図1乃至図5を参照して説明する。図1は第1実施形態の全体構成を示す右側面図、図2は第1実施形態の全体構成を示す斜視図、図3は第1実施形態の搬送ブロックを除く装置構造を示す縦断面図、図4は第1実施形態の全体構成を示す正面図(a)及び背面図(b)、図5は第1実施形態の搬送ブロックを除く装置構造を示す平面図である。
[First Embodiment]
Next, an embodiment of a vibratory transfer device according to the present invention will be described in detail with reference to the accompanying drawings. First, the overall configuration of the first embodiment will be described with reference to FIGS. 1 to 5. 1 is a right side view showing the overall configuration of the first embodiment, FIG. 2 is a perspective view showing the overall configuration of the first embodiment, and FIG. 3 is a longitudinal sectional view showing the structure of the apparatus excluding the transport block of the first embodiment. FIG. 4 is a front view (a) and a rear view (b) showing the overall configuration of the first embodiment, and FIG. 5 is a plan view showing the apparatus structure excluding the transport block of the first embodiment.

本実施形態の振動式搬送装置10は、基準質量体11と、この基準質量体11の上方に配置される上側質量体12Aと、基準質量体11の下方に配置される下側質量体12Bとを有する。基準質量体11は、搬送方向Dの前後位置においてそれぞれ搬送方向Dに向いた板面を備えた板状の防振ばね13aと13bによって下方から支持されている。これらの防振ばね13a,13bの下端は、設置面上に配置された基台2に固定される。ここで、搬送方向Dの前後位置とは、搬送方向Dに沿って相互に離間した2つの位置、すなわち、前方の位置が搬送の向きF側(搬送方向Dの一方側)の位置、後方の位置が搬送の向きFとは反対側(搬送方向Dの他方側)の位置である。なお、本明細書において、搬送方向Dとは、振動式搬送装置10における搬送路12tにおいて電子部品などの搬送物が搬送されていく方向であり、搬送の向きFとは、搬送方向Dのうちの上記搬送物が進行する向きである。   The vibrating transfer device 10 of the present embodiment includes a reference mass body 11, an upper mass body 12 </ b> A disposed above the reference mass body 11, and a lower mass body 12 </ b> B disposed below the reference mass body 11. Have The reference mass body 11 is supported from below by plate-shaped anti-vibration springs 13 a and 13 b each having a plate surface facing the transport direction D at the front and rear positions in the transport direction D. The lower ends of these anti-vibration springs 13a and 13b are fixed to the base 2 arranged on the installation surface. Here, the front and rear positions in the transport direction D are two positions separated from each other along the transport direction D, that is, the front position is a position on the transport direction F side (one side of the transport direction D), The position is the position on the side opposite to the transport direction F (the other side in the transport direction D). In the present specification, the conveyance direction D is a direction in which a conveyance object such as an electronic component is conveyed on the conveyance path 12t in the vibration type conveyance device 10, and the conveyance direction F is the conveyance direction D. This is the direction in which the conveyed product advances.

また、基準質量体11と上側質量体12Aは、搬送方向Dの前後位置においてそれぞれ搬送方向Dに向いた板面を備えた板ばね状の構造を含む上側振動ばね14aと14bにより弾性接続されている。すなわち、上側質量体12Aは、搬送方向Dの前後位置においてそれぞれ上側振動ばね14a,14bにより下方から支持されている。さらに、基準質量体11と下側質量体12Bは、搬送方向Dの前後位置においてそれぞれ搬送方向Dに向いた板面を備えた板ばね状の構造を含む下側振動ばね15aと15bにより弾性接続されている。すなわち、下側質量体12Bは、搬送方向Dの前後位置においてそれぞれ下側振動ばね15a,15bによって上方から吊り下げられている。   Further, the reference mass body 11 and the upper mass body 12A are elastically connected by upper vibration springs 14a and 14b including plate spring-like structures each having a plate surface facing the transport direction D at the front and rear positions in the transport direction D. Yes. That is, the upper mass body 12A is supported from below by the upper vibration springs 14a and 14b at the front and rear positions in the transport direction D, respectively. Further, the reference mass body 11 and the lower mass body 12B are elastically connected by lower vibration springs 15a and 15b including plate spring-like structures each having a plate surface facing the transport direction D at the front and rear positions in the transport direction D. Has been. That is, the lower mass body 12B is suspended from above by the lower vibration springs 15a and 15b at the front and rear positions in the transport direction D, respectively.

上記防振ばね13a,13b、上側振動ばね14a,14b及び下側振動ばね15a,15bは、いずれも全体として板状に構成される板ばね構造を有し、その板面が正対する方向のばね定数は低く、長さ方向(上下両側に接続される物体間を結ぶ方向)のばね定数は高い。また、本実施形態では、上記防振ばね13a,13b、上側振動ばね14a,14b及び下側振動ばね15a,15bの板ばね構造は、それぞれの延在(長さ)方向が垂直方向に一致する垂直姿勢となるように取り付けられている。したがって、図示例では、各ばねの垂直方向や幅方向の支持剛性が高いのに対して、搬送方向Dの剛性は低くなっている。これによって、基準質量体11、上側質量体12A及び下側質量体12Bの相互間の支持構造が安定し、相互の位置関係が保持されやすくなるとともに、搬送物に対して搬送の向きFの搬送力を与えるための振動を容易に生じさせつつ、上記搬送力に寄与しない、或いは、上記搬送を妨げる態様の不要振動の発生を抑制する。ここで、防振ばね13a,13bは他のばねよりも幅を大きくすることで幅方向の支持剛性を高めるとともに、他のばねよりも長さを大きくすることで搬送方向Dの弾性変形を容易にしている。ただし、上記各ばねの弾性特性は材質や板厚によっても調整できる。なお、本明細書において、幅方向とは、上記搬送方向Dと垂直方向のいずれとも直交する方向である。   The anti-vibration springs 13a and 13b, the upper vibration springs 14a and 14b, and the lower vibration springs 15a and 15b all have a plate spring structure configured in a plate shape as a whole, and springs in directions in which the plate surfaces face each other. The constant is low, and the spring constant in the length direction (the direction connecting the objects connected to the upper and lower sides) is high. In the present embodiment, the leaf spring structures of the anti-vibration springs 13a and 13b, the upper vibration springs 14a and 14b, and the lower vibration springs 15a and 15b have their extending (length) directions aligned with the vertical direction. It is mounted in a vertical position. Therefore, in the illustrated example, the rigidity in the vertical direction and the width direction of each spring is high, whereas the rigidity in the transport direction D is low. Accordingly, the support structure among the reference mass body 11, the upper mass body 12A, and the lower mass body 12B is stabilized, the mutual positional relationship is easily maintained, and the conveyance in the conveyance direction F with respect to the conveyance object is performed. The generation of unnecessary vibration that does not contribute to the transport force or obstruct the transport is easily generated while vibration for applying force is easily generated. Here, the anti-vibration springs 13a and 13b have a width larger than that of the other springs to increase the support rigidity in the width direction, and the length of the anti-vibration springs 13a and 13b is larger than that of the other springs, so that elastic deformation in the transport direction D can be easily performed. I have to. However, the elastic characteristics of each spring can be adjusted by the material and the plate thickness. In the present specification, the width direction is a direction orthogonal to both the transport direction D and the vertical direction.

本実施形態において、上側振動ばね14a,14bは、搬送方向Dの前後位置においてそれぞれ基準振動体11に結合(接続固定)された圧電駆動体16a,16bのうちの基準質量体11の上方へ伸びる部分である上側圧電駆動部16au,16buと、この上側圧電駆動部16au,16buの上端に接続された、搬送方向Dに向いた板面を備えた板状の上側増幅ばね17a,17bとの直列接続構造を有する。なお、本実施形態において、上側振動ばね14a,14bには、上側増幅ばね17a,17bと上側質量体12Aとを連結するための、後述する上側連結部12AaS、12AbSが含まれる。同様に、下側振動ばね15a,15bは、基準振動体11にそれぞれ結合(接続固定)された圧電駆動体16a,16bのうちの基準質量体11の下方へ伸びる部分である下側圧電駆動部16ad,16bdと、この下側圧電駆動部16ad,16bdの下端に接続された、搬送方向Dに向いた板面を備えた板状の下側増幅ばね18a,18bとの直列接続構造を有する。この下側振動ばね15a,15bにも、下側増幅ばね18a、18bと下側質量体12Bとを連結するための、後述する下側連結部12BaS、12BbSが含まれる。   In the present embodiment, the upper vibration springs 14a and 14b extend above the reference mass body 11 among the piezoelectric drive bodies 16a and 16b coupled (fixed) to the reference vibration body 11 at the front and rear positions in the transport direction D, respectively. The upper piezoelectric drive parts 16au and 16bu which are parts, and plate-like upper amplification springs 17a and 17b each having a plate surface facing the conveying direction D and connected to the upper ends of the upper piezoelectric drive parts 16au and 16bu. It has a connection structure. In the present embodiment, the upper vibration springs 14a and 14b include upper connection portions 12AaS and 12AbS, which will be described later, for connecting the upper amplification springs 17a and 17b and the upper mass body 12A. Similarly, the lower vibration springs 15a and 15b are lower piezoelectric drive portions which are portions extending downward of the reference mass body 11 among the piezoelectric drive bodies 16a and 16b coupled (fixed) to the reference vibration body 11, respectively. 16ad, 16bd and a plate-like lower amplifying spring 18a, 18b having a plate surface facing the transport direction D, connected to the lower ends of the lower piezoelectric driving portions 16ad, 16bd. The lower vibration springs 15a and 15b also include lower connection portions 12BaS and 12BbS, which will be described later, for connecting the lower amplification springs 18a and 18b and the lower mass body 12B.

圧電駆動体16a,16bは、基準質量体11の搬送方向Dの前方と後方にある前方取付位置11aと後方取付位置11bにそれぞれ取り付けられる。基準質量体11は、搬送方向Dの前方取付位置11aと後方取付位置11bの間に配置される中間部11abと、前方取付位置11aよりも搬送方向Dの前方に配置される前方部11aaと、後方取付位置11bよりも搬送方向Dの後方に配置される後方部11bbとを有する。基準質量体11は、圧電駆動体16a,16bに対する取付部分である前方取付位置11a及び後方取付位置11bにおいては、圧電駆動体16a,16bの動作を妨げないように垂直方向に薄く構成され、上記箇所以外においては、中間部11ab、前方部11aa及び後方部11bbが前方取付位置11a及び後方取付位置11bから上下両側に張り出すように厚く構成される。これらの中間部11ab、前方部11aa及び後方部11bbは、上側質量体12A及び下側質量体12Bと干渉しない範囲で、上側増幅ばね17a,17b及び下側増幅ばね18a,18bと同じ高さ領域まで達する程度に厚肉化された構造を有している。基準質量体11の前方取付位置11aには、圧電駆動体16aにおいて上下方向の中間部位に設けられた後述する側部接続構造16tが固定され、基準質量体11の後方取付位置11bには、圧電駆動体16bの上下方向の中間部位に設けられた後述する側部接続構造16tが固定される。また、前方部11aaの前端と後方部11bbの後端には、後述するボルト19a,19bにより防振ばね13a,13bの上端部が接続固定されている。なお、このように防振ばね13a,13bが下側振動ばね15a,15bよりも搬送方向Dの前後位置の外側に配置されることで、搬送方向Dに沿った方向に見たときの主要振動系全体の安定性が向上する。特に、本実施形態の基準質量体11では、圧電駆動体16a,16bに接続される前方取付位置11a及び後方取付位置11bよりも搬送方向Dの前後位置の外側に配置される前方部11aaと後方部11bbが上下方向に張り出すように構成されて比較的大きな質量を備えることにより、基準質量体11の搬送方向Dに沿ったピッチング運動に抗する慣性を大きくすることができるため、搬送物の搬送姿勢の不安定化や設置面への上下振動の伝搬を抑制することができる。また、装置の組み立て工程において、上記主要振動系を組み立てた後に防振ばね13a,13bを搬送方向Dの前後外側から組み付けることができるため、組み立て作業が容易になるという利点もある。なお、前方部11aa及び後方部11bbは後述する圧電駆動体16a,16bの覆い(カバー)部材としても機能する。   The piezoelectric driving bodies 16a and 16b are respectively attached to the front mounting position 11a and the rear mounting position 11b that are in front and rear in the transport direction D of the reference mass body 11. The reference mass body 11 includes an intermediate portion 11ab disposed between the front mounting position 11a and the rear mounting position 11b in the transport direction D, a front portion 11aa disposed in front of the transport direction D with respect to the front mounting position 11a, And a rear portion 11bb disposed rearward in the transport direction D with respect to the rear attachment position 11b. The reference mass body 11 is configured to be thin in the vertical direction so as not to hinder the operation of the piezoelectric driving bodies 16a and 16b at the front mounting position 11a and the rear mounting position 11b which are mounting portions with respect to the piezoelectric driving bodies 16a and 16b. Except for the place, the intermediate portion 11ab, the front portion 11aa, and the rear portion 11bb are configured to be thicker so as to protrude from the front attachment position 11a and the rear attachment position 11b to the upper and lower sides. The intermediate portion 11ab, the front portion 11aa, and the rear portion 11bb have the same height region as the upper amplification springs 17a and 17b and the lower amplification springs 18a and 18b within a range that does not interfere with the upper mass body 12A and the lower mass body 12B. The structure is thick enough to reach A side connection structure 16t, which will be described later, provided at an intermediate portion in the vertical direction of the piezoelectric driving body 16a is fixed to the front mounting position 11a of the reference mass body 11, and a piezoelectric element is attached to the rear mounting position 11b of the reference mass body 11 at the rear mounting position 11b. A side connection structure 16t, which will be described later, provided at an intermediate portion in the vertical direction of the driving body 16b is fixed. The upper ends of the vibration-proof springs 13a and 13b are connected and fixed to the front end of the front portion 11aa and the rear end of the rear portion 11bb by bolts 19a and 19b described later. The vibration-proof springs 13a and 13b are arranged outside the front and rear positions in the transport direction D with respect to the lower vibration springs 15a and 15b in this way, so that the main vibration when viewed in the direction along the transport direction D is obtained. The stability of the whole system is improved. In particular, in the reference mass body 11 of the present embodiment, the front portion 11aa and the rear portion disposed outside the front and rear positions in the transport direction D with respect to the front mounting position 11a and the rear mounting position 11b connected to the piezoelectric driving bodies 16a and 16b. Since the portion 11bb is configured to protrude in the vertical direction and has a relatively large mass, the inertia against the pitching motion of the reference mass body 11 along the transport direction D can be increased. Instability of the transport posture and propagation of vertical vibration to the installation surface can be suppressed. Further, in the device assembly process, after the main vibration system is assembled, the vibration-proof springs 13a and 13b can be assembled from the front and rear sides in the transport direction D, so that there is an advantage that the assembling work is facilitated. The front part 11aa and the rear part 11bb also function as cover members for the piezoelectric drive bodies 16a and 16b described later.

本実施形態の圧電駆動体16a,16bは、図6(a)〜(c)に示すように、シム板と呼ばれる金属製の弾性基板16sと、この弾性基板16sの表裏両面に貼着(積層)された圧電体(圧電層)16pとを有する。弾性基板16sは、その延在方向の両端(上下両端)にそれぞれ延長形成された薄肉部分を備え、これらの薄肉部分が上述の上側増幅ばね17a,17bと下側増幅ばね18a,18bを構成している。また、上側増幅ばね17a,17bの上端及び下側増幅ばね18a,18bの下端には、上部接続構造16u及び下部接続構造16dが形成されている。これらの上部接続構造16u及び下部接続構造16dは図示例では連結用の貫通孔となっているが、ねじ穴、ボス、切り欠きなどであってもよく、特に限定されない。また、弾性基板16sは、その延在方向の中間部位の幅方向の両側に基準質量体11に対する側部接続構造16t、16tを有する。この側部接続構造16tは図示例では幅方向に突出する孔付の突出部となっているが、ねじ穴、ボス、切り欠きなどであってもよく、特に限定されない。このとき、圧電体16pは、弾性基板16s上において、左右の側部接続構造16tの間の幅方向の中間位置に配置される。このようにすると、基準質量体11に対する結合位置が圧電体16pを回避した幅方向両側に設けられるため、圧電駆動体16a,16bの撓み変形動作に影響を与えにくくなるとともに、左右両側で確実に基準質量体11に結合させることにより、圧電駆動体16a,16bを基準質量体11に対して強固に固定でき、この基準質量体11を基準として上下両側の上側質量体12A及び下側質量体12Bに加振力を確実に与えることが可能になる。   As shown in FIGS. 6A to 6C, the piezoelectric driving bodies 16a and 16b of the present embodiment are bonded (laminated) to a metal elastic substrate 16s called a shim plate and both front and back surfaces of the elastic substrate 16s. ) Piezoelectric body (piezoelectric layer) 16p. The elastic substrate 16s includes thin portions extending at both ends (upper and lower ends) in the extending direction, and these thin portions constitute the upper amplification springs 17a and 17b and the lower amplification springs 18a and 18b. ing. An upper connection structure 16u and a lower connection structure 16d are formed at the upper ends of the upper amplification springs 17a and 17b and the lower ends of the lower amplification springs 18a and 18b. The upper connection structure 16u and the lower connection structure 16d are coupling through holes in the illustrated example, but may be screw holes, bosses, cutouts, or the like, and are not particularly limited. The elastic substrate 16s has side connection structures 16t and 16t for the reference mass body 11 on both sides in the width direction of the intermediate portion in the extending direction. The side connection structure 16t is a protruding portion with a hole protruding in the width direction in the illustrated example, but may be a screw hole, a boss, a notch, or the like, and is not particularly limited. At this time, the piezoelectric body 16p is disposed at an intermediate position in the width direction between the left and right side connection structures 16t on the elastic substrate 16s. In this way, since the coupling position with respect to the reference mass body 11 is provided on both sides in the width direction avoiding the piezoelectric body 16p, it is difficult to affect the bending deformation operation of the piezoelectric driving bodies 16a and 16b, and reliably on both the left and right sides. By coupling to the reference mass body 11, the piezoelectric driving bodies 16 a and 16 b can be firmly fixed to the reference mass body 11, and the upper mass body 12 </ b> A and the lower mass body 12 </ b> B on both upper and lower sides with respect to the reference mass body 11. It is possible to reliably apply an excitation force to the.

上記圧電駆動体16a,16bは、圧電体16pの表裏に電圧を印加すると、電圧に応じて圧電体16pが変形し、これによって弾性基板16sは長さ方向に撓むように構成される。そして、所定周波数の交番電圧を印加することにより、圧電駆動体16a,16bは、交互に逆方向に撓み変形することで振動し、その振動は上側増幅ばね17a,17b及び下側増幅ばね18a,18bを介して基準質量体11と上側質量体12A及び下側質量体12Bとの間に搬送方向Dにほぼ沿った振動を生じさせる。ここで、搬送方向Dの前後位置の圧電駆動体16a,16bは共に同位相で撓み変形し、それぞれの上側圧電駆動部16au,16buと下側圧電駆動部16ad,16bdも同位相で変形するので、基準質量体11に対して上側質量体12Aと下側質量体12Bも同位相で振動する。このとき、基準振動体11は、上側質量体12A及び下側質量体12Bの振動による反力を打ち消すように、これらとは逆位相で振動する。なお、図示例の圧電駆動体16a,16bは、弾性基板16sの両面に圧電体16pが配置されたバイモルフ構造を有するが、弾性基板16sの片面のみに圧電体が配置されてなるユニモルフ構造であってもよく、その他、公知の種々の圧電駆動体を用いることができる。また、圧電駆動体16a,16bは、上記中間部位(具体的には、幅方向両側の側部接続構造16t間を結ぶ水平線)を対称軸として長さ方向(上下)に対称な構造を有し、また、幅方向中央部の上下方向に沿った軸線を対称軸として幅方向(左右)にも対称に構成される。これにより、上側質量体12Aと下側質量体12Bの双方に対して均等な同位相の加振力を確実に与えることができるとともに、よじれなどが少なく幅方向に見て安定した振動態様を実現できる。   The piezoelectric driving bodies 16a and 16b are configured such that when a voltage is applied to the front and back of the piezoelectric body 16p, the piezoelectric body 16p is deformed according to the voltage, whereby the elastic substrate 16s is bent in the length direction. Then, by applying an alternating voltage of a predetermined frequency, the piezoelectric driving bodies 16a and 16b vibrate by alternately bending and deforming in opposite directions, and the vibrations are caused by the upper amplification springs 17a and 17b and the lower amplification springs 18a and 18a. A vibration substantially along the transport direction D is generated between the reference mass body 11, the upper mass body 12A, and the lower mass body 12B via 18b. Here, the piezoelectric driving bodies 16a and 16b at the front and rear positions in the transport direction D are both bent and deformed in the same phase, and the upper piezoelectric driving sections 16au and 16bu and the lower piezoelectric driving sections 16ad and 16bd are also deformed in the same phase. The upper mass body 12A and the lower mass body 12B also vibrate in the same phase with respect to the reference mass body 11. At this time, the reference vibrating body 11 vibrates with an opposite phase so as to cancel the reaction force due to the vibration of the upper mass body 12A and the lower mass body 12B. The piezoelectric driving bodies 16a and 16b in the illustrated example have a bimorph structure in which the piezoelectric bodies 16p are disposed on both surfaces of the elastic substrate 16s, but have a unimorph structure in which the piezoelectric bodies are disposed only on one surface of the elastic substrate 16s. In addition, various other known piezoelectric drivers can be used. The piezoelectric drivers 16a and 16b have a structure that is symmetrical in the length direction (up and down) with the intermediate portion (specifically, a horizontal line connecting the side connection structures 16t on both sides in the width direction) as the axis of symmetry. Also, it is configured symmetrically in the width direction (left and right) with the axis line along the vertical direction of the central portion in the width direction as the axis of symmetry. As a result, an equal in-phase excitation force can be reliably applied to both the upper mass body 12A and the lower mass body 12B, and a stable vibration mode can be realized with little kinking and the like when viewed in the width direction. it can.

圧電駆動体16a,16bの弾性基板16sは、圧電体16pが積層されている範囲に構成された上側圧電駆動部16au,16bu及び下側圧電駆動部16ad,16bdにおいて厚く構成され、当該上側圧電駆動部16au,16bu及び下側圧電駆動部16ad,16bdから上下にさらに延在する上側増幅ばね17a,17b及び下側増幅ばね18a,18bにおいて薄く構成される。この理由は以下の通りである。上記圧電体16pは通常セラミックスで構成されるために脆く、割れやすいために、圧電駆動体16a,16bの上側圧電駆動部16au,16bu及び下側圧電駆動部16ad,16bdでは、素子の破損を回避するために弾性基板16sを厚くして弾性変形を抑制し、圧電体16pのたわみ変形量を制限する必要がある。一方、上記上側増幅ばね17a,17b及び下側増幅ばね18a,18bでは、上側圧電駆動部16au,16bu及び下側圧電駆動部16ad,16bdで発生した振動の振幅を増幅し、搬送物の搬送力を十分に得るために、弾性基板16sを薄くして弾性変形量を増大させ、上側質量体12A及び下側質量体12B(特に、搬送路12tを備えた上側質量体12A)の搬送方向の振動の振幅を拡大する必要がある。したがって、弾性基板16sの上述の厚みの変化は、圧電体16pの保護(損傷防止)と、上側質量体12A及び下側質量体12Bの振動の振幅の確保とを両立できるという作用効果をもたらす。   The elastic substrate 16s of the piezoelectric driving bodies 16a and 16b is formed thick in the upper piezoelectric driving sections 16au and 16bu and the lower piezoelectric driving sections 16ad and 16bd configured in the range where the piezoelectric bodies 16p are stacked, and the upper piezoelectric driving is performed. The upper amplifying springs 17a and 17b and the lower amplifying springs 18a and 18b extending further vertically from the portions 16au and 16bu and the lower piezoelectric driving portions 16ad and 16bd are thinly configured. The reason is as follows. Since the piezoelectric body 16p is usually made of ceramic and is fragile and easily broken, the upper piezoelectric driving sections 16au and 16bu and the lower piezoelectric driving sections 16ad and 16bd of the piezoelectric driving bodies 16a and 16b avoid element damage. In order to achieve this, it is necessary to increase the thickness of the elastic substrate 16s to suppress elastic deformation and limit the amount of deformation of the piezoelectric body 16p. On the other hand, the upper amplification springs 17a and 17b and the lower amplification springs 18a and 18b amplify the amplitude of vibrations generated in the upper piezoelectric drive units 16au and 16bu and the lower piezoelectric drive units 16ad and 16bd, and the conveyance force of the conveyed product. In order to obtain sufficient, the elastic substrate 16s is thinned to increase the amount of elastic deformation, and the upper mass body 12A and the lower mass body 12B (especially, the upper mass body 12A provided with the conveyance path 12t) are vibrated in the conveyance direction. It is necessary to enlarge the amplitude of. Therefore, the above-described change in the thickness of the elastic substrate 16s brings about an effect that both protection (damage prevention) of the piezoelectric body 16p and securing of vibration amplitude of the upper mass body 12A and the lower mass body 12B can be achieved.

ここで、上側圧電駆動部16au,16bu及び下側圧電駆動部16ad,16bdと、上側増幅ばね17a,17b及び下側増幅ばね18a,18bとの境界領域においては、弾性基板16sの断面形状は、上側振動ばね14a,14b及び下側振動ばね15a,15bの延在方向に徐々に厚みが変化するように、上側増幅ばね17a,17b及び下側増幅ばね18a,18bの側に向けてテーパ状に構成されることが好ましい。これによって、弾性基板16sの上記境界領域の局所(特に、より薄く構成された上側増幅ばね17a,17b及び下側増幅ばね18a,18bの側の部分)に応力が集中して耐久性が低下したり、上側増幅ばね17a,17b及び下側増幅ばね18a,18bの長さ方向全体の弾性特性を有効に利用できなかったりすることを回避できる。特に、図示例のように、上記境界領域の断面の輪郭形状が上記延在方向に沿って凹曲線状に構成され、上側増幅ばね17a,17b及び下側増幅ばね18a,18bの断面の表面又は裏面の輪郭線上に滑らかに収束するように構成されることが、上側増幅ばね17a,17b及び下側増幅ばね18a,18bを滑らかに撓み変形させる上で望ましい。   Here, in the boundary region between the upper piezoelectric driving portions 16au and 16bu and the lower piezoelectric driving portions 16ad and 16bd and the upper amplification springs 17a and 17b and the lower amplification springs 18a and 18b, the cross-sectional shape of the elastic substrate 16s is Tapered toward the upper amplification springs 17a, 17b and the lower amplification springs 18a, 18b so that the thickness gradually changes in the extending direction of the upper vibration springs 14a, 14b and the lower vibration springs 15a, 15b. Preferably, it is configured. As a result, the stress concentrates locally on the boundary region of the elastic substrate 16s (particularly on the side of the thinner upper amplification springs 17a and 17b and the lower amplification springs 18a and 18b), resulting in a decrease in durability. Or the elastic characteristics of the entire lengthwise direction of the upper amplification springs 17a and 17b and the lower amplification springs 18a and 18b cannot be effectively used. In particular, as in the illustrated example, the contour shape of the cross section of the boundary region is configured as a concave curve along the extending direction, and the surface of the cross section of the upper amplification springs 17a and 17b and the lower amplification springs 18a and 18b or It is desirable that the upper amplification springs 17a and 17b and the lower amplification springs 18a and 18b are smoothly bent and deformed so as to converge smoothly on the contour line on the back surface.

本実施形態の場合、一対のボルト19aが前方部11aaの幅方向の両側部分を貫通して上記圧電駆動体16aの幅方向両側に設けられた一対の側部接続構造16t,16tをそれぞれ挿通した状態で中間部11abに締結される。これにより、当該側部接続構造16tが前方部11aaと中間部11abの間に挟圧された状態で、圧電駆動体16aが基準質量体11に固定される。図示例では、ボルト19aが座金19cと前方部11aaの間に防振ばね13aの上端部を保持固定すると同時に、前方部11aa、圧電駆動体16a及び中間部11abを保持固定している。同様に、一対のボルト19bが後方部11bbの幅方向両側部分を貫通して上記圧電駆動体16bの幅方向両側に設けられた一対の側部接続構造16t,16tをそれぞれ挿通した状態で中間部11abに締結される。これにより、当該側部接続構造16tが後方部11bbと中間部11abの間に挟圧された状態で、圧電駆動体16bが基準質量体11に固定される。図示例では、ボルト19bが座金19dと後方部11bbの間に防振ばね13bの上端部を保持固定すると同時に、後方部11bb、圧電駆動体16b及び中間部11abを保持固定している。   In the case of the present embodiment, a pair of bolts 19a penetrates a pair of side connection structures 16t and 16t provided on both sides of the piezoelectric driving body 16a through both widthwise portions of the front portion 11aa. The state is fastened to the intermediate portion 11ab. Thereby, the piezoelectric driving body 16a is fixed to the reference mass body 11 in a state where the side portion connection structure 16t is sandwiched between the front portion 11aa and the intermediate portion 11ab. In the illustrated example, the bolt 19a holds and fixes the upper end portion of the vibration-proof spring 13a between the washer 19c and the front portion 11aa, and simultaneously holds and fixes the front portion 11aa, the piezoelectric driving body 16a, and the intermediate portion 11ab. Similarly, in the state where the pair of bolts 19b penetrates the both sides in the width direction of the rear part 11bb and passes through the pair of side connection structures 16t and 16t provided on both sides in the width direction of the piezoelectric driving body 16b, respectively. 11ab. Thereby, the piezoelectric drive body 16b is fixed to the reference | standard mass body 11 in the state by which the said side part connection structure 16t was pinched between back part 11bb and intermediate part 11ab. In the illustrated example, the bolt 19b holds and fixes the upper end portion of the vibration isolating spring 13b between the washer 19d and the rear portion 11bb, and simultaneously holds and fixes the rear portion 11bb, the piezoelectric driving body 16b, and the intermediate portion 11ab.

図1に示すように、防振ばね13a,13bの下端部は、基台2の上側支持台2Aに接続固定される。基台2は上側支持台2Aと下側支持台2Bを含み、上側支持台2Aは下側支持台2B上に設置される。上側支持台2Aと下側支持台2Bとの間には、水平姿勢で設置された板ばねからなる水平防振ばね13ah及び13bhが接続されている。上側支持台2Aは、水平防振ばね13ah及び13bhによって下側支持台2Bの上方に弾性支持されている。搬送方向Dの前方側に配置された水平防振ばね13ahは、搬送方向Dの前方側において上側支持台2Aの前方取付部2Aaに取り付け固定され、搬送方向Dの後方側において下側支持台2Bの前方取付部2Baに取り付け固定されている。また、搬送方向Dの後方側に配置された水平防振ばね13bhは、搬送方向Dの前方側において下側支持台2Bの後方取付部2Bbに取り付け固定され、搬送方向Dの後方側において上側支持台2Aの後方取付部2Abに取り付け固定されている。なお、図示例では、下側支持台2Bの左右側部に設置面(他の装置の基台や工場の床面など)に固定するための固定穴(図2には片側の固定穴のみが示されている。)が設けられ、これらの固定穴を用いた設置面への固定を可能にするために、上側支持台2A及び下側質量体12Bは、搬送方向Dの中央部の左右の両側部が凹状に構成された平面形状を備えている。   As shown in FIG. 1, the lower ends of the anti-vibration springs 13 a and 13 b are connected and fixed to the upper support 2 </ b> A of the base 2. The base 2 includes an upper support 2A and a lower support 2B, and the upper support 2A is installed on the lower support 2B. Horizontal anti-vibration springs 13ah and 13bh made of leaf springs installed in a horizontal posture are connected between the upper support base 2A and the lower support base 2B. The upper support 2A is elastically supported above the lower support 2B by horizontal anti-vibration springs 13ah and 13bh. The horizontal anti-vibration spring 13ah disposed on the front side in the transport direction D is attached and fixed to the front mounting portion 2Aa of the upper support base 2A on the front side in the transport direction D, and the lower support base 2B on the rear side in the transport direction D. Are attached and fixed to the front mounting portion 2Ba. Further, the horizontal anti-vibration spring 13bh disposed on the rear side in the transport direction D is attached and fixed to the rear mounting portion 2Bb of the lower support base 2B on the front side in the transport direction D, and supported on the upper side on the rear side in the transport direction D. It is fixedly attached to the rear mounting portion 2Ab of the base 2A. In the illustrated example, the fixing holes for fixing the installation surface (the base of another device, the floor of the factory, etc.) on the left and right sides of the lower support base 2B (FIG. 2 shows only one fixing hole on one side. In order to enable fixing to the installation surface using these fixing holes, the upper support base 2A and the lower mass body 12B are provided on the left and right sides of the central portion in the transport direction D. Both sides are provided with a planar shape configured in a concave shape.

本実施形態では、上側質量体12Aは、上記の上側増幅ばね17a,17bの上端部が接続される接続ブロック12Adと、この接続ブロック12Ad上に接続固定され、上面に搬送路12tが形成された搬送ブロック12Auとを有している。搬送ブロック12Auは、一般的には接続ブロック12Adよりも搬送方向Dに沿った長さが大きく、図示のように、接続ブロック12Adの搬送方向Dの前端及び後端からそれぞれ前方及び後方へ張り出すように設置される。搬送路12tは図示例では搬送方向Dに沿った直線状に構成される。搬送路12tは、搬送物を既定の姿勢で収容可能で、搬送方向Dに沿った搬送時に上記搬送物の規定の姿勢を維持可能に構成された溝構造を少なくとも備える。   In the present embodiment, the upper mass body 12A is connected and fixed on the connection block 12Ad to which the upper ends of the upper amplification springs 17a and 17b are connected, and the transport path 12t is formed on the upper surface. A transport block 12Au. The transport block 12Au is generally longer in the transport direction D than the connection block 12Ad, and protrudes forward and backward from the front end and the rear end of the connection block 12Ad in the transport direction D, as shown in the figure. Installed. The conveyance path 12t is configured in a straight line along the conveyance direction D in the illustrated example. The transport path 12t includes at least a groove structure configured to be able to store a transported object in a predetermined posture and to maintain a predetermined posture of the transported object when transported along the transport direction D.

搬送方向Dの前方において、上記上側増幅ばね17a及び下側増幅ばね18aは、搬送方向Dの前方側から上記上側質量体12A及び下側質量体12Bに対して連結固定される。ここで、上側増幅ばね17aと上側質量体12Aの間の上側連結部12AaSと、下側増幅ばね18aと下側質量体12Bの間の下側連結部12BaSは、搬送方向Dに沿った連結構造が実質的に同じになるように構成されている。以下においては、図5を参照して上側連結部12AaSについて説明し、下側連結部12BaSについては説明を省略する。   In front of the conveyance direction D, the upper amplification spring 17a and the lower amplification spring 18a are connected and fixed to the upper mass body 12A and the lower mass body 12B from the front side in the conveyance direction D. Here, the upper coupling portion 12AaS between the upper amplification spring 17a and the upper mass body 12A and the lower coupling portion 12BaS between the lower amplification spring 18a and the lower mass body 12B are coupled structures along the transport direction D. Are configured to be substantially the same. Below, with reference to FIG. 5, upper connection part 12AaS is demonstrated and description is abbreviate | omitted about lower connection part 12BaS.

図5に示すように、上側連結部12AaSでは、上側質量体12Aの搬送方向Dの前端部12aにおいて、搬送方向Dの前方に開口する凹状に構成された前端凹部12aaが幅方向中央に形成されている。また、前端部12aの前端凹部12aaの幅方向両側にある一対の端面は、幅方向に沿ってそれぞれ平坦に構成された前端面12asとなっている。上側増幅ばね17aの上端部は、ボルトと座金等を用いて連結板12AaCの幅方向中央部に対して搬送方向Dの前方側から密着した状態で固定されている。連結板12AaCは、上側増幅ばね17aよりも幅方向両側に延長された板形状を有する弾性体(金属板)で構成され、前端凹部12aaをまたいで、その幅方向の両端部が上記一対の前端面12asに対して搬送方向Dの前方側から密着した状態でボルトと座金等により上側質量体12Aに固定されている。このように、上側増幅ばね17aは連結板12AaCの幅方向中央部に固定され、連結板12AaCの幅方向両側部が上側質量体12Aに固定されているため、上側増幅ばね17aは連結板12AaCを介して上側質量体12Aに対して弾性的に接続されていることになる。ここで、連結板12AaCは、搬送方向Dと垂直方向のいずれにも直交する、連結板12AaCの幅方向に沿った軸線Txaを中心として回動する方向に弾性変形可能に構成されたねじりばねとして機能し得る上側ばね要素を構成する。   As shown in FIG. 5, in the upper connecting portion 12AaS, a front end recess 12aa configured in a concave shape that opens forward in the transport direction D is formed at the center in the width direction at the front end portion 12a in the transport direction D of the upper mass body 12A. ing. In addition, a pair of end surfaces on both sides in the width direction of the front end recess 12aa of the front end portion 12a is a front end surface 12as that is configured to be flat along the width direction. The upper end portion of the upper amplifying spring 17a is fixed in a state of being in close contact with the central portion in the width direction of the connecting plate 12AaC from the front side in the transport direction D using a bolt and a washer. The connecting plate 12AaC is composed of an elastic body (metal plate) having a plate shape extending on both sides in the width direction relative to the upper amplification spring 17a, straddling the front end recess 12aa, and both end portions in the width direction of the pair of front ends. It is fixed to the upper mass body 12A with bolts, washers and the like while being in close contact with the surface 12as from the front side in the transport direction D. In this way, the upper amplification spring 17a is fixed to the central portion in the width direction of the connecting plate 12AaC, and both sides in the width direction of the connecting plate 12AaC are fixed to the upper mass body 12A. Therefore, the upper mass body 12A is elastically connected to the upper mass body 12A. Here, the connecting plate 12AaC is a torsion spring configured to be elastically deformable in a direction rotating around an axis Txa along the width direction of the connecting plate 12AaC, which is orthogonal to both the transport direction D and the vertical direction. Constitutes a functioning upper spring element;

一方、搬送方向Dの後方においても、上記上側増幅ばね17b及び下側増幅ばね18bは、搬送方向Dの前方側から上記上側質量体12A及び下側質量体12Bに連結固定される。ここで、上側増幅ばね17bと上側質量体12Aの間の上側連結部12AbSと、下側増幅ばね18bと下側質量体12Bの間の下側連結部12BbSは、搬送方向Dに沿った連結構造が実質的に同じになるように構成されている。このため、以下においては、図5を参照して上側連結部12AbSについて説明し、下側連結部12BbSについては説明を省略する。   On the other hand, also in the rear in the transport direction D, the upper amplification spring 17b and the lower amplification spring 18b are connected and fixed to the upper mass body 12A and the lower mass body 12B from the front side in the transport direction D. Here, the upper coupling portion 12AbS between the upper amplification spring 17b and the upper mass body 12A and the lower coupling portion 12BbS between the lower amplification spring 18b and the lower mass body 12B are coupled structures along the transport direction D. Are configured to be substantially the same. For this reason, in the following, the upper connecting portion 12AbS will be described with reference to FIG. 5, and the description of the lower connecting portion 12BbS will be omitted.

図5に示すように、上側連結部12AbSでは、上側質量体12Aの搬送方向Dの後端部12bにおいて、搬送方向Dの後方へ開口する凹状に構成された後端凹部12bbが幅方向中央に形成されている。また、後端部12bの後端凹部12bbの幅方向両側にある一対の端面は、幅方向に沿ってそれぞれ平坦に構成された後端面12bsとなっている。上側増幅ばね17bの上端部は、上記後端凹部12bb内においてボルトと座金等を用いて連結板12AbCの幅方向中央部に対し搬送方向Dの前方側から密着した状態で固定されている。ただし、図示例では、一例として、上側増幅ばね17bの上端部と連結板12AbCとの間にスペーサ12Abspが介挿されている。連結板12AbCは、上側増幅ばね17bよりも幅方向両側に延長された板形状を有する弾性体(金属板)で構成され、後端凹部12bbをまたいで、その幅方向の両端部が搬送方向Dの後方側から上記一対の後端面12bsに密着した状態でボルトと座金等により上側質量体12Aに固定されている。このように、上側増幅ばね17bは連結板12AbCの幅方向中央部に固定され、連結板12AbCの幅方向両側部が上側質量体12Aに固定されているため、上側増幅ばね17bは連結板12AbCを介して上側質量体12Aに対して弾性的に接続されていることになる。ここで、連結板12AbCは、搬送方向Dと垂直方向のいずれにも直交する、連結板12AbCの幅方向に沿った軸線Txbを中心としてねじれ方向に弾性変形可能に構成されたねじりばねとして機能し得る上側ばね要素を構成する。 As shown in FIG. 5, in the upper connecting portion 12AbS, the rear end recess 12bb configured in a concave shape that opens rearward in the transport direction D is formed at the center in the width direction at the rear end 12b of the upper mass body 12A in the transport direction D. Is formed. Further, the pair of end surfaces on both sides in the width direction of the rear end recess 12bb of the rear end portion 12b are rear end surfaces 12bs configured to be flat along the width direction. The upper end portion of the upper amplification spring 17b is fixed in a state of being in close contact with the central portion in the width direction of the connecting plate 12AbC from the front side in the transport direction D using a bolt and a washer in the rear end recess 12bb. However, in the illustrated example, as an example, the spacer 12Absp is interposed between the upper end portion of the upper amplification spring 17b and the connecting plate 12AbC. The connecting plate 12AbC is composed of an elastic body (metal plate) having a plate shape extending on both sides in the width direction relative to the upper amplification spring 17b. Are fixed to the upper mass body 12A by bolts, washers and the like in close contact with the pair of rear end surfaces 12bs from the rear side. In this way, the upper amplification spring 17b is fixed to the central portion in the width direction of the connecting plate 12AbC, and both side portions in the width direction of the connecting plate 12AbC are fixed to the upper mass body 12A. Therefore, the upper mass body 12A is elastically connected to the upper mass body 12A. Here, the connecting plate 12AbC functions as a torsion spring configured to be elastically deformable in the torsional direction around the axis Txb along the width direction of the connecting plate 12AbC, which is orthogonal to both the transport direction D and the vertical direction. To obtain an upper spring element.

上述の搬送方向Dの前後位置に設けられた上側連結部12AaSと12AbSのいずれにおいても、上側増幅ばね17a,17bの上端部は搬送方向Dの前方側に配置され、連結板12AaC,12AbCは搬送方向Dの後方側に配置された状態で相互に直接若しくはスペーサ12Abspを介して固定される。したがって、搬送方向Dの上側増幅ばね17a,17bと上側質量体12Aとの間には、上側増幅ばね17a,17bの搬送方向Dの後方側に配置された上記ねじりばねを構成する上側ばね要素が介在している。また、搬送方向Dの前方側の上側連結部AaSにおける上側増幅ばね17aと上記上側ばね要素との間の搬送方向Dの距離に比べて、搬送方向Dの後方側の上側連結部AbSでは、上側増幅ばね17bと上記上側ばね要素との間の搬送方向Dの距離は、上記スペーサ12Abspの厚み分だけ大きくなっている。   In any of the upper coupling portions 12AaS and 12AbS provided at the front and rear positions in the conveyance direction D described above, the upper ends of the upper amplification springs 17a and 17b are arranged on the front side in the conveyance direction D, and the coupling plates 12AaC and 12AbC are conveyed. In a state of being arranged on the rear side in the direction D, they are fixed to each other directly or via the spacer 12Absp. Therefore, between the upper amplification springs 17a and 17b in the transport direction D and the upper mass body 12A, an upper spring element constituting the torsion spring disposed on the rear side in the transport direction D of the upper amplification springs 17a and 17b is provided. Intervene. In addition, in the upper connection part AbS on the rear side in the transport direction D, compared to the distance in the transport direction D between the upper amplification spring 17a and the upper spring element in the upper connection part AaS on the front side in the transport direction D, The distance in the conveying direction D between the amplification spring 17b and the upper spring element is increased by the thickness of the spacer 12Absp.

次に、上述の構成に基づいて、圧電駆動体16a,16bによる基準質量体11と上側質量体12A及び下側質量体12Bの動作態様について説明する。図6(b)に示すように、本実施形態では、上側振動ばね14a,14b及び下側振動ばね15a,15bが基準質量体11に対しては固定位置11pにおいて接続されている。一方、上側振動ばね14a,14b及び下側振動ばね15a,15bの上側質量体12A及び下側質量体12Bに対する実質的な固定位置12Ap,12Bpは、搬送方向Dの後方側へずれている。これは、上述の構成において、上側質量体12A及び下側質量体12Bとの間に介在する連結板12AaC,12AbC及び12BaC,12BbCが上側増幅ばね17a,17b及び下側増幅ばね18a,18bよりも搬送方向Dの後方に配置されていることによる。すなわち、連結板12AaC,12AbC及び12BaC,12BbCによって構成されるねじりばねに相当する上側ばね要素及び下側ばね要素が上側増幅ばね17a,17b及び下側増幅ばね18a,18bよりも搬送方向Dの後方側に配置され、これらの上側ばね要素及び下側ばね要素を介して上側質量体12A及び下側質量体12Bに連結されることにより、上側振動ばね14a,14b及び下側振動ばね15a,15bは、上記固定位置11pから上下方向に離反するに従って搬送方向Dの後方側に向かう向きに傾斜するように設置されている場合と同様に、上側質量体12A及び下側質量体12Bを搬送方向Dに対して傾斜した振動方向BVs、BVt(図1参照)に振動させる。すなわち、上側質量体12Aは、搬送方向Dの前方側には斜め上方へ、搬送方向Dの後方側には斜め下方へ向かう方向BVsに振動し、下側質量体12Bは、搬送方向Dの前方側には斜め下方へ、搬送方向Dの後方側には斜め上方へ向かう方向BVtに振動する。   Next, based on the above-described configuration, operation modes of the reference mass body 11, the upper mass body 12A, and the lower mass body 12B by the piezoelectric driving bodies 16a and 16b will be described. As shown in FIG. 6B, in this embodiment, the upper vibration springs 14a and 14b and the lower vibration springs 15a and 15b are connected to the reference mass body 11 at a fixed position 11p. On the other hand, the substantially fixed positions 12Ap and 12Bp of the upper vibration springs 14a and 14b and the lower vibration springs 15a and 15b with respect to the upper mass body 12A and the lower mass body 12B are shifted to the rear side in the transport direction D. This is because the connecting plates 12AaC, 12AbC and 12BaC, 12BbC interposed between the upper mass body 12A and the lower mass body 12B in the above-described configuration are more than the upper amplification springs 17a, 17b and the lower amplification springs 18a, 18b. This is because it is arranged behind the transport direction D. That is, the upper spring element and the lower spring element corresponding to the torsion spring constituted by the connecting plates 12AaC, 12AbC and 12BaC, 12BbC are more rearward in the transport direction D than the upper amplification springs 17a, 17b and the lower amplification springs 18a, 18b. The upper vibration springs 14a and 14b and the lower vibration springs 15a and 15b are arranged by being connected to the upper mass body 12A and the lower mass body 12B via these upper and lower spring elements. The upper mass body 12A and the lower mass body 12B are moved in the transport direction D in the same manner as in the case where the upper mass body 12A and the lower mass body 12B are installed so as to incline toward the rear side in the transport direction D as they move away from the fixed position 11p in the vertical direction. On the other hand, it is vibrated in the vibration directions BVs and BVt (see FIG. 1) which are inclined. That is, the upper mass body 12A vibrates in a diagonally upward direction BVs on the front side in the transport direction D and diagonally downward on the rear side in the transport direction D, and the lower mass body 12B moves forward in the transport direction D. It vibrates in a direction BVt that is obliquely downward on the side and obliquely upward on the rear side in the transport direction D.

したがって、本実施形態の場合には、上側振動ばね14a,14bの振動角θは、垂直面に対する上記固定位置11pと上記固定位置12Ap,12Bpを結ぶ線の角度差(傾斜角)になり、これは、上記上側質量体12Aの水平面に対する振動角と一致する。同様に、下側振動ばね15a,15bの振動角も下側質量体12Bの水平面に対する振動角と一致する。なお、図6(c)に示す拡大部分断面図では、連結板12AaC、12AbCの幅方向の軸線Txa,Txb(図示しないが、連結板12BaC,12BbCの幅方向の軸線も同様。)が上記固定位置12Ap(12Bp)に一致するように図示してあるが、上記上側ばね要素(下側ばね要素)の特性に応じて上記実質的な固定位置12Ap(12Bp)の位置が軸線Txa,Txb(図示しない軸線)からずれることもあり得る。しかし、上記上側ばね要素及び下側ばね要素が上側増幅ばね17a,17b及び下側増幅ばね18a,18bに対して搬送方向Dの後方側に配置されている限り、上側振動ばね14a,14b及び下側振動ばね15a,15bには上述の振動角θが存在し、上述の向きに傾斜した方向の振動が上側質量体12A及び下側質量体12Bに生ずることには変わりがない。   Therefore, in the case of the present embodiment, the vibration angle θ of the upper vibration springs 14a and 14b is an angle difference (inclination angle) of a line connecting the fixed position 11p and the fixed positions 12Ap and 12Bp with respect to the vertical plane. Corresponds to the vibration angle of the upper mass body 12A with respect to the horizontal plane. Similarly, the vibration angles of the lower vibration springs 15a and 15b also coincide with the vibration angles of the lower mass body 12B with respect to the horizontal plane. In addition, in the enlarged partial sectional view shown in FIG. 6C, the axis Txa and Txb in the width direction of the connecting plates 12AaC and 12AbC (not shown, but the axis in the width direction of the connecting plates 12BaC and 12BbC is also the same). Although it is illustrated so as to coincide with the position 12Ap (12Bp), the position of the substantial fixed position 12Ap (12Bp) depends on the axes Txa and Txb (illustrated) according to the characteristics of the upper spring element (lower spring element). May not be the same axis). However, as long as the upper and lower spring elements are arranged on the rear side in the transport direction D with respect to the upper amplification springs 17a and 17b and the lower amplification springs 18a and 18b, the upper vibration springs 14a and 14b and the lower The vibration angle θ described above exists in the side vibration springs 15a and 15b, and the vibration in the direction inclined in the above-described direction is generated in the upper mass body 12A and the lower mass body 12B.

また、図6(d)に示すように、第1実施形態の異なる例として、スペーサ12Absp(12Bbsp)を異なる厚みのスペーサ12Absp′,12Bbsp′に変更することによって、上側増幅ばね17a,17b及び下側増幅ばね18a,18bと連結板12AaC,12AbC及び12BaC,12BbCとの間の搬送方向Dに沿った距離を増減することができるので、上記振動角θをθ′に変えることができる。図7は第2実施形態の主要構造の平面図である。この例では、スペーサ12Abspよりも厚いスペーサ12Absp′を搬送方向Dの後方側の上側連結部12AbS′に用いることにより、搬送方向Dの後方側の振動角θ′を上記第1実施形態の振動角θよりも大きく構成している。なお、この例では、図7に示す上側連結部12AbS′と、これと同様に構成された図示しない下側連結部とを除き、他の構成は第1実施形態の上述の構成と同様である。   Further, as shown in FIG. 6D, as a different example of the first embodiment, the spacers 12Absp (12Bbsp) are changed to spacers 12Absp ′ and 12Bbsp ′ having different thicknesses, so that the upper amplification springs 17a and 17b and the lower Since the distance along the conveyance direction D between the side amplification springs 18a, 18b and the connecting plates 12AaC, 12AbC and 12BaC, 12BbC can be increased or decreased, the vibration angle θ can be changed to θ ′. FIG. 7 is a plan view of the main structure of the second embodiment. In this example, the spacer 12Absp ′ thicker than the spacer 12Absp is used for the upper connecting portion 12AbS ′ on the rear side in the transport direction D, so that the vibration angle θ ′ on the rear side in the transport direction D is set to the vibration angle of the first embodiment. It is larger than θ. In this example, except for the upper connecting portion 12AbS ′ shown in FIG. 7 and a lower connecting portion (not shown) configured similarly to the above, the other configurations are the same as the above-described configuration of the first embodiment. .

本実施形態では、圧電駆動体16a,16bと上側増幅ばね17a,17b及び下側増幅ばね18a,18bによって構成される上側振動ばね14a,14bの本体及び下側振動ばね15a,15bの本体が搬送方向Dと直交する垂直面に沿った延在方向を有する垂直姿勢で設置されている。このため、上下の圧電駆動体16a,16b並びに上側増幅ばね17a,17b及び下側増幅ばね18a,18bを傾斜させずに振動系を構成できることから、圧電駆動体16a,16bを高周波数で稼働させて主要振動系を高速に加振しても、上下方向の踊りなどの不要な振動モードが生成されにくく、搬送物の搬送姿勢も安定させることができる。したがって、装置の高周波化が容易になり、高速搬送やスムーズな搬送態様を実現することが可能になる。   In the present embodiment, the main bodies of the upper vibration springs 14a and 14b and the main bodies of the lower vibration springs 15a and 15b constituted by the piezoelectric driving bodies 16a and 16b, the upper amplification springs 17a and 17b, and the lower amplification springs 18a and 18b are conveyed. It is installed in a vertical posture having an extending direction along a vertical plane perpendicular to the direction D. For this reason, since the vibration system can be configured without tilting the upper and lower piezoelectric drive bodies 16a and 16b, the upper amplification springs 17a and 17b, and the lower amplification springs 18a and 18b, the piezoelectric drive bodies 16a and 16b are operated at a high frequency. Thus, even if the main vibration system is vibrated at high speed, unnecessary vibration modes such as up and down dance are not easily generated, and the transport posture of the transported object can be stabilized. Accordingly, it is easy to increase the frequency of the apparatus, and it is possible to realize high-speed conveyance and a smooth conveyance mode.

また、上記のように上側増幅ばね17a,17bの上部接続端及び下側増幅ばね18a,18bの下部接続端よりも搬送方向Dの後方側に配置された上側連結部12AaS,12AbS及び下側連結部12BaS,12BaSを介して、上側質量体12A及び下側質量体12Bを連結することにより、上記の上側振動ばね14a,14bの本体及び下側振動ばね15a,15bの本体を垂直姿勢としたままでも、上側振動ばね14a,14b及び下側振動ばね15a,15bに振動角θ,θ′を実質的に設けることができ、かつ、上記スペーサ12Absp,12Absp′の有無や厚みの変更などにより、上記振動角θ,θ′を容易に調整することができる。このため、搬送ブロック12Auに形成された搬送路12t上において、搬送方向Dの前方側に向かう搬送の向きFに搬送物を搬送していく搬送力を生じさせることができるとともに、搬送方向Dの前後位置における上記振動角θ,θ′に対応する図1に示す振動方向BVsの調整により搬送力の大きさや搬送方向Dに沿った搬送力の分布を調整することも可能になるため、搬送物の搬送速度や搬送態様の制御が可能になる。   Further, as described above, the upper connecting portions 12AaS, 12AbS and the lower connecting portions arranged on the rear side in the transport direction D from the upper connecting ends of the upper amplifying springs 17a, 17b and the lower connecting ends of the lower amplifying springs 18a, 18b. By connecting the upper mass body 12A and the lower mass body 12B via the portions 12BaS and 12BaS, the main bodies of the upper vibration springs 14a and 14b and the main bodies of the lower vibration springs 15a and 15b are kept in a vertical posture. However, the upper vibration springs 14a and 14b and the lower vibration springs 15a and 15b can be substantially provided with vibration angles θ and θ ′, and the above-described changes can be made depending on the presence or absence of the spacers 12Absp and 12Absp ′ and the thickness. The vibration angles θ and θ ′ can be easily adjusted. For this reason, on the conveyance path 12t formed in the conveyance block 12Au, it is possible to generate a conveyance force for conveying the conveyance object in the conveyance direction F toward the front side in the conveyance direction D, and in the conveyance direction D. Since it is possible to adjust the magnitude of the conveying force and the distribution of the conveying force along the conveying direction D by adjusting the vibration direction BVs shown in FIG. 1 corresponding to the vibration angles θ and θ ′ at the front and rear positions, The conveyance speed and the conveyance mode can be controlled.

[第2実施形態]
図8(a)は、上記第1実施形態の圧電駆動体16a,16bと上側連結部12AaS,12AbS及び下側連結部12BaS,12BbSを示す断面図、図8(b)は、第2実施形態の圧電駆動体16a″,16b″と上側連結部12AaS″,12AbS″及び下側連結部12BaS″,12BbS″を示す断面図である。第2実施形態においても、圧電駆動体16a″,16b″の弾性基板16s″は、第1実施形態と同様に、圧電体16pが形成された範囲(上述の上側圧電駆動部16au,16bu及び下側圧電駆動部16ad,16bd)で厚く、上側増幅ばね17a″,17b″を構成する上方部分及び下側増幅ばね18a″,18b″を構成する下方部分で薄く構成されている。しかし、この第2実施形態では、上記上側増幅ばね17a″,17b″及び上記下側増幅ばね18a″,18b″の厚み範囲が上記上側圧電駆動部16au,16bu及び下側圧電駆動部16ad,16bdの弾性基板16s″の厚み範囲に対してδtsだけ搬送方向Dの後方側にずれている(偏っている)点で異なる。図示例では、上記上側増幅ばね17a″,17b″及び上記下側増幅ばね18a″,18b″の搬送方向Dの後方側の表面は、上記上側圧電駆動部16au,16bu及び下側圧電駆動部16ad,16bdの搬送方向Dの後方側の表面がそのまま平坦に垂直面に沿って延長されるように形成されている。一方で、上記上側増幅ばね17a″,17b″及び上記下側増幅ばね18a″,18b″の搬送方向Dの前方側の表面は、上記上側圧電駆動部16au,16bu及び下側圧電駆動部16ad,16bdの搬送方向Dの前方側の表面よりも搬送方向Dの後方側へ向けて大きく後退している。
[Second Embodiment]
FIG. 8A is a cross-sectional view showing the piezoelectric drivers 16a and 16b, the upper connecting portions 12AaS and 12AbS, and the lower connecting portions 12BaS and 12BbS according to the first embodiment, and FIG. 8B is a second embodiment. FIG. 6 is a cross-sectional view showing the piezoelectric driving bodies 16a ″ and 16b ″, the upper connecting portions 12AaS ″ and 12AbS ″, and the lower connecting portions 12BaS ″ and 12BbS ″. Also in the second embodiment, the elastic substrate 16s ″ of the piezoelectric driving bodies 16a ″ and 16b ″ is within the range in which the piezoelectric body 16p is formed (the above-described upper piezoelectric driving sections 16au and 16bu and the lower piezoelectric driving sections 16au and 16bu and the lower side). The upper piezoelectric springs 16ad, 16bd) are thick, and the upper part constituting the upper amplification springs 17a ", 17b" and the lower part constituting the lower amplification springs 18a ", 18b" are thinly formed. In the second embodiment, the thickness ranges of the upper amplification springs 17a "and 17b" and the lower amplification springs 18a "and 18b" are such that the elastic substrate 16s of the upper piezoelectric drive portions 16au and 16bu and the lower piezoelectric drive portions 16ad and 16bd. It differs in that it is shifted (biased) backward in the transport direction D by δts with respect to the thickness range of “″. In the illustrated example, the surfaces on the rear side in the transport direction D of the upper amplification springs 17a ″ and 17b ″ and the lower amplification springs 18a ″ and 18b ″ are the upper piezoelectric drive portions 16au and 16bu and the lower piezoelectric drive portion 16ad. , 16bd in the conveying direction D, the surface on the rear side is formed so as to be flat as it is extended along the vertical plane. On the other hand, the front surface in the transport direction D of the upper amplification springs 17a ″ and 17b ″ and the lower amplification springs 18a ″ and 18b ″ are formed on the upper piezoelectric driving portions 16au and 16bu and the lower piezoelectric driving portions 16ad, It is largely retracted toward the rear side in the transport direction D from the front surface in the transport direction D of 16bd.

この実施形態においても、上側圧電駆動部16au,16bu及び下側圧電駆動部16ad,16bdと、上側増幅ばね17a″,17b″及び下側増幅ばね18a″,18b″との境界領域において、弾性基板16s"の断面形状は、上側増幅ばね17a″,17b″及び下側増幅ばね18a″,18b″の延在方向に徐々に厚みが変化するように、上側増幅ばね17a″,17b″及び下側増幅ばね18a″,18b″の側に向けてテーパ状に構成されている。特に、図示例のように、上記境界領域の断面の搬送方向Dの前方側の輪郭形状が上記延在方向に沿って凹曲線状に構成され、上側増幅ばね17a",17b"及び下側増幅ばね18a",18b"の断面の搬送方向Dの前方側の面の輪郭線上に滑らかに収束するように構成される。   Also in this embodiment, the elastic substrate is formed in the boundary region between the upper piezoelectric driving portions 16au and 16bu and the lower piezoelectric driving portions 16ad and 16bd, and the upper amplification springs 17a ″ and 17b ″ and the lower amplification springs 18a ″ and 18b ″. The cross-sectional shape of 16s "is such that the upper amplification springs 17a", 17b "and the lower amplification springs 17a", 17b "and the lower amplification springs 18a", 18b "are gradually changed in thickness in the extending direction. Amplifying springs 18a ", 18b" are tapered toward the sides. In particular, as shown in the example of the drawing, the contour shape on the front side in the transport direction D of the cross section of the boundary region is along the extending direction. The upper amplification springs 17a "and 17b" and the lower amplification springs 18a "and 18b" are configured to converge smoothly on the contour line of the front surface in the conveying direction D. .

この場合には、上記固定位置12Ap″,12Bp″が上記の厚み範囲のずれδtsの分だけ搬送方向Dの後方側へずれる(偏る)ため、上記振動角θ″を第1実施形態に比べて大きく設定することができる。また、この圧電駆動体16a″,16b″では、第1実施形態で説明した上記上側連結部12AaS,12AbSを設けず、上側増幅ばね17a,17b及び下側増幅ばね18a,18bを直接に上側質量体12A及び下側質量体12Bに連結した場合でも、上記厚み範囲のずれδtsによって或る程度の振動角θを得ることができる。   In this case, since the fixed positions 12Ap ″ and 12Bp ″ are shifted (biased) to the rear side in the transport direction D by the deviation δts in the thickness range, the vibration angle θ ″ is compared with the first embodiment. The piezoelectric driving bodies 16a ″ and 16b ″ are not provided with the upper coupling portions 12AaS and 12AbS described in the first embodiment, and the upper amplification springs 17a and 17b and the lower amplification spring 18a. , 18b can be directly connected to the upper mass body 12A and the lower mass body 12B, a certain vibration angle θ can be obtained by the deviation δts in the thickness range.

[全ての実施形態に関する事項]
なお、一般的に、上記上側振動ばね14a,14b及び下側振動ばね15a,15bの振動角θ、θ′、θ″の絶対値(特に、搬送路12tが設けられている上側質量体12Aの振動方向BVsの角度)は、1〜10度、好ましくは2〜8度、望ましくは3〜6度の範囲内の水平方向に対する角度値とすることが好ましい。また、搬送方向Dの前方側の上側振動ばね14a及び下側振動ばね15aと、搬送方向Dの後方側の上側振動ばね14b及び下側振動ばね15bとを相互に同じ振動角を有する構成としてもよいが、搬送ブロック12Auの形状や構造等を始めとする全体の振動系の構成に応じて搬送路12t上の全長に亘る振動の態様及び振動の分布態様の最適化を図る上で、搬送方向Dの前後の上側振動ばね14a及び下側振動ばね15aと、上側振動ばね14b及び下側振動ばね15bとを相互に異なる振動角となるように設定してもよい。例えば、本装置に対して搬送方向Dの前方や後方に接続される他の装置との関係に応じて、搬送ブロック12Auの搬送方向Dの前方側への張り出し量が搬送方向Dの後方側への張り出し量に比べて大きいと、上側質量体12Aの重量バランスに起因して、搬送路12tの搬送方向Dに沿って実質的な振動角が変化し、搬送力がばらつくことがある。このときには、搬送方向Dの前後位置で上記振動角を異ならしめて設定することにより、搬送路12t上において搬送方向Dに沿った搬送速度の調整を行うことができる。ただし、搬送速度は搬送方向Dに沿って均一になるように調整されるとは限らず、敢えて搬送方向Dに沿って搬送速度を変えることもある。例えば、搬送路12tの途中に、搬送物の一部を搬送姿勢や物の良否等に基づいて搬送路12tから排除していくといった搬送物の選別手段を設ける場合には、搬送路12tの上流側から下流側に向かうに従って搬送速度を徐々に低下させていくことにより、結果的に搬送密度を搬送方向に均一化できるように構成することもある。これらのような様々な状況に応じて、搬送方向Dの前方位置にある上側振動ばね14a及び下側振動ばね15aの振動角と、搬送方向Dの後方位置にある上側振動ばね14b及び下側振動ばね15bの振動角とを別々に調整してもよい。
[Matters concerning all embodiments]
In general, the absolute values of the vibration angles θ, θ ′, θ ″ of the upper vibration springs 14a, 14b and the lower vibration springs 15a, 15b (in particular, the upper mass body 12A provided with the transport path 12t). The angle of the vibration direction BVs) is preferably an angle value with respect to the horizontal direction within a range of 1 to 10 degrees, preferably 2 to 8 degrees, and desirably 3 to 6 degrees. The upper vibration spring 14a and the lower vibration spring 15a, and the upper vibration spring 14b and the lower vibration spring 15b on the rear side in the transport direction D may have the same vibration angle, but the shape of the transport block 12Au, In order to optimize the vibration mode and the vibration distribution mode over the entire length on the transport path 12t according to the structure of the entire vibration system including the structure and the like, the upper vibration springs 14a before and after the transport direction D and Lower vibration spring 1 a, the upper vibration spring 14b, and the lower vibration spring 15b may be set to have mutually different vibration angles, for example, other devices connected to the front or rear in the transport direction D with respect to the apparatus. Depending on the relationship with the apparatus, if the amount of protrusion of the transport block 12Au in the transport direction D on the front side is larger than the amount of protrusion on the rear side in the transport direction D, it is caused by the weight balance of the upper mass body 12A. The substantial vibration angle may vary along the conveyance direction D of the conveyance path 12t, and the conveyance force may vary.At this time, the conveyance angle can be set by making the vibration angle different at the front and rear positions in the conveyance direction D. On the path 12t, the conveyance speed can be adjusted along the conveyance direction D. However, the conveyance speed is not necessarily adjusted so as to be uniform along the conveyance direction D, and is intentionally along the conveyance direction D. Carry For example, in the case where a transported object sorting unit is provided in the middle of the transport path 12t, such as removing a part of the transported object from the transport path 12t based on the transport posture, the quality of the product, or the like. In some cases, the transport speed is gradually decreased from the upstream side to the downstream side of the transport path 12t, so that the transport density can be made uniform in the transport direction as a result. Depending on various situations, the vibration angles of the upper vibration spring 14a and the lower vibration spring 15a at the front position in the transport direction D and the vibrations of the upper vibration spring 14b and the lower vibration spring 15b at the rear position in the transport direction D. The corners may be adjusted separately.

一方、上側振動ばね14a,14bの振動角と下側振動ばね15a,15bの振動角は上述のように相互に上下に逆向きとなるように設定される。この場合においても、上側振動ばね14a,14bの振動角と下側振動ばね15a,15bの振動角が相互に同じ絶対値を有するように構成してもよく、異なる絶対値を有するように構成してもよい。例えば、上側質量体12Aと下側質量体12Bへの重力の影響や質量の差などに応じて、搬送路12t上の搬送物の搬送状態の安定化や振動の漏出量の最小化などを図るために、上側振動ばね14a,14bの振動角と下側振動ばね15a,15bの振動角を別々に調整することが望ましい。   On the other hand, the vibration angles of the upper vibration springs 14a and 14b and the vibration angles of the lower vibration springs 15a and 15b are set so as to be opposite to each other as described above. Also in this case, the vibration angle of the upper vibration springs 14a and 14b and the vibration angle of the lower vibration springs 15a and 15b may be configured to have the same absolute value, or may be configured to have different absolute values. May be. For example, in accordance with the influence of gravity on the upper mass body 12A and the lower mass body 12B, a difference in mass, or the like, the conveyance state of the conveyed object on the conveyance path 12t is stabilized and the amount of vibration leakage is minimized. Therefore, it is desirable to separately adjust the vibration angles of the upper vibration springs 14a and 14b and the vibration angles of the lower vibration springs 15a and 15b.

次に、図9を参照して、上記各実施形態に共通に用いることのできる基台2の構造について詳細に説明する。この基台2は、上述のように、相互に別体の上側支持台2Aと下側支持台2Bにより構成され、上側支持台2Aと下側支持台2Bの間には水平防振ばね13ah、13bhが介在し、上下方向の振動を吸収しやすい防振構造を構成している。水平防振ばね13ah,13bhは、搬送方向Dに沿って延在する水平姿勢に設置された板状の板ばねである。ここで、水平防振ばね13ah,13bhは、搬送方向Dの振動を吸収しやすい上記防振ばね13a,13bが上下方向の振動は吸収しにくく構成されている点を補うものである。搬送方向Dの前方位置に設置された水平防振ばね13ahは、上記上側支持台2Aの前方取付部2Aaに対して、幅方向に配置された一対のボルト21Aa及び座金22Aaの組により固定されている。また、上記下側支持台2Bの前方取付部2Baは幅方向に伸びる帯状に突出して平坦な上端面を有し、この後方取付部2Baに対して、水平防振ばね13ahがボルト21Baにより上方から密接した状態で固定されている。一方、搬送方向Dの後方位置に設置された水平防振ばね13bhは、上記上側支持台2Aの後方取付部2Abに対して、幅方向に配置された一対のボルト21Ab及び座金22Aaの組により固定されている。また、上記下側支持台2Bの後方取付部2Bbは幅方向に伸びる帯状に突出して平坦な上端面を有し、この後方取付部2Bbに対して、水平防振ばね13bhがボルト21Bbにより上方から密接した状態で固定されている。   Next, with reference to FIG. 9, the structure of the base 2 that can be commonly used in the above embodiments will be described in detail. As described above, the base 2 is constituted by the upper support 2A and the lower support 2B which are separate from each other, and between the upper support 2A and the lower support 2B, a horizontal anti-vibration spring 13ah, 13bh intervenes to constitute a vibration-proof structure that can easily absorb vertical vibrations. The horizontal anti-vibration springs 13ah and 13bh are plate-like plate springs installed in a horizontal posture extending along the transport direction D. Here, the horizontal anti-vibration springs 13ah and 13bh make up for the point that the anti-vibration springs 13a and 13b that are easy to absorb the vibration in the transport direction D are configured not to easily absorb the vertical vibration. The horizontal anti-vibration spring 13ah installed at the front position in the conveying direction D is fixed to the front mounting portion 2Aa of the upper support 2A by a pair of bolts 21Aa and washers 22Aa arranged in the width direction. Yes. Further, the front mounting portion 2Ba of the lower support 2B protrudes in a band shape extending in the width direction and has a flat upper end surface, and a horizontal vibration-proof spring 13ah is connected to the rear mounting portion 2Ba from above by a bolt 21Ba. It is fixed in close contact. On the other hand, the horizontal anti-vibration spring 13bh installed at the rear position in the transport direction D is fixed to the rear mounting portion 2Ab of the upper support 2A by a pair of bolts 21Ab and washers 22Aa arranged in the width direction. Has been. Further, the rear mounting portion 2Bb of the lower support base 2B protrudes in a band shape extending in the width direction and has a flat upper end surface. With respect to the rear mounting portion 2Bb, a horizontal anti-vibration spring 13bh is attached from above by a bolt 21Bb. It is fixed in close contact.

また、上側支持台2Aには、少なくとも下方に開口したボルト収容部2Aaq,2Abqが設けられている。ボルト収容部2Aaqは、上記ボルト21Baを抵触しないように収容し、ボルト収容部2Abqは、上記ボルト21Bbを抵触しないように収容している。同様に、下側支持台2Bには、少なくとも上方に開口したボルト収容部2Baq,2Bbqが設けられている。ボルト収容部2Baqは、上記ボルト21Aaを抵触しないように収容し、ボルト収容部21Bbqは、上記ボルト21Abを抵触しないように収容している。図示例では、上記ボルト収容部21Aaq,21Abq,21Baq,21Bbqはそれぞれ上側支持台2A又は下側支持台2Bにおいて貫通孔として形成されている。ただし、各ボルト収容部は、対応する各ボルトに抵触しないように非接触の状態で収容可能な構造であればよく、例えば、上記の貫通孔に限らず、開口の反対側が蓋などで閉鎖されていてもよい。   The upper support 2A is provided with bolt housing portions 2Aaq and 2Abq that are opened at least downward. The bolt accommodating portion 2Aaq accommodates the bolt 21Ba so as not to conflict, and the bolt accommodating portion 2Abq accommodates the bolt 21Bb so as not to conflict. Similarly, the lower support 2B is provided with bolt housing portions 2Baq and 2Bbq that are open at least upward. The bolt accommodating portion 2Baq accommodates the bolt 21Aa so as not to conflict, and the bolt accommodating portion 21Bbq accommodates the bolt 21Ab so as not to conflict. In the illustrated example, the bolt accommodating portions 21Aaq, 21Abq, 21Baq, and 21Bbq are formed as through holes in the upper support base 2A or the lower support base 2B, respectively. However, each bolt accommodating part may be a structure that can be accommodated in a non-contact state so as not to touch each corresponding bolt. It may be.

上記のように構成された基台2においては、上記各ボルト収容部を設けることにより、上側支持台2Aと下側支持台2Bの間隔を狭めても、一方の支持台に締結されたボルト頭部といった水平防振ばねを固定するための固定構造が他方の支持台と抵触しない(接触しない)ため、基台2の高さを低減することができる。また、上側支持台2Aと下側支持台2Bの上下間隔を小さくできるため、水平防振ばね13ah,13bhの撓みによる上側支持台2Aの傾動を抑制することができる。さらに、本実施形態では、水平防振ばね13ah及び13bhが上側支持台2Aと下側支持台2Bを搬送方向Dに向けて接続されている。これにより、主要振動系が幅方向に揺動しにくくなるため、搬送物の搬送姿勢を安定させることができる。特に、水平防振ばね13ahと13bhでは、搬送方向Dに見た取り付けの向きが相互に逆向きとなっている。すなわち、水平防振ばね13ahにおいては、下側支持台2Bに対する固定位置に対して上側支持台2Aに対する固定位置が搬送方向Dの前方にあるのに対して、水平防振ばね13bhにおいては、下側支持台2Bに対する固定位置に対して上側支持台2Aに対する固定位置が搬送方向Dの後方にある。このことにより、上記主要振動系を防振ばね13a,13bを介して支持する上側支持台2Aが下側支持台2B上で上下に振動する際に、弾性変形時の円弧状の軌跡の湾曲の向きが搬送方向Dの前後となり相互に異なることから生ずる水平防振ばね13ahと13bhの相互干渉によって、上下動の振幅が大きくなるに従って急激に弾性変形しにくくなる弾性変形特性が得られる。したがって、加振手段自体の加振力に起因する微小な上下動は吸収するが、主要振動系の不安定性を招くことはなく、主要振動系に大きな上下動やピッチング動作が生じることを防止できる。   In the base 2 configured as described above, the bolt heads fastened to one of the support bases can be provided even if the distance between the upper support base 2A and the lower support base 2B is reduced by providing each of the bolt housing portions. Since the fixing structure for fixing the horizontal anti-vibration spring such as the portion does not come into contact with (but does not come into contact with) the other support base, the height of the base 2 can be reduced. Further, since the vertical distance between the upper support base 2A and the lower support base 2B can be reduced, tilting of the upper support base 2A due to the bending of the horizontal anti-vibration springs 13ah and 13bh can be suppressed. Further, in the present embodiment, the horizontal anti-vibration springs 13ah and 13bh are connected with the upper support base 2A and the lower support base 2B facing the transport direction D. Thereby, since the main vibration system becomes difficult to swing in the width direction, the transport posture of the transported object can be stabilized. In particular, in the horizontal anti-vibration springs 13ah and 13bh, the mounting directions viewed in the transport direction D are opposite to each other. That is, in the horizontal anti-vibration spring 13ah, the fixed position with respect to the upper support base 2A is in front of the conveyance direction D with respect to the fixed position with respect to the lower support base 2B, whereas in the horizontal anti-vibration spring 13bh, The fixed position with respect to the upper support base 2A is behind the transport direction D with respect to the fixed position with respect to the side support base 2B. As a result, when the upper support 2A that supports the main vibration system via the anti-vibration springs 13a and 13b vibrates up and down on the lower support 2B, the curve of the arc-shaped trajectory during elastic deformation is reduced. Due to the mutual interference between the horizontal anti-vibration springs 13ah and 13bh resulting from the fact that the direction is before and after the transport direction D, an elastic deformation characteristic is obtained that is less likely to be elastically deformed rapidly as the vertical movement amplitude increases. Therefore, although the minute vertical movement caused by the vibration force of the vibration means itself is absorbed, it does not cause instability of the main vibration system and can prevent the main vibration system from causing large vertical movement and pitching operation. .

なお、防振構造としては、搬送方向Dの振動のみを吸収できればよい場合には、防振ばね13a,13bを直接設置面に設置したり水平防振ばね13ah,13bhを有しない基台に接続したりして、主要振動系を弾性支持する防振構造を、搬送方向Dの前後位置の一対の防振ばね13a,13bのみを有する構造としても構わない。特に、500Hz以下の駆動周波数であれば、微小な上下振動が問題となることはほとんどないため、主要振動系の搬送方向Dの振動のみを吸収すれば防振の目的を達成できる。なお、上述の一対の防振ばね13a,13bと一対の水平防振ばね13ah,13bhを備えた複合防振構造では、搬送方向Dの振動と上下振動とを吸収するという基本機能に関しては、主要振動系と設置面との間に上記防振ばねと水平防振ばねが直列に接続されていればよい。例えば、上側支持台2Aを搬送方向Dの前後に分割して、上記防振ばね13a及び水平防振ばね13ahを有する防振構造部と、上記防振ばね13b及び水平防振ばね13bhを有する防振構造部とが、搬送方向Dの前後位置において相互に分離された状態で配置される構造としてもよい。また、水平防振ばね13ah,13bhの上側支持台2Aに対する固定領域の平面形状は上記二つの座金22Aa,22Abによりそれぞれ二箇所の円形状とされ、水平防振ばね13ah,13bhの下側支持台2Bに対する固定領域の平面形状は上記前方取付部2Baと後方取付部2Bbの上端面形状によりそれぞれ帯状とされている。しかし、これらの固定領域の平面形状は、水平防振ばね13ah、13bhに要求される弾性変形特性に応じて適宜に調整することができる。   If the vibration isolation structure only needs to absorb the vibration in the transport direction D, the vibration isolation springs 13a and 13b are directly installed on the installation surface or connected to a base having no horizontal vibration isolation springs 13ah and 13bh. Thus, the vibration isolation structure that elastically supports the main vibration system may be a structure having only a pair of vibration isolation springs 13a and 13b at the front and rear positions in the transport direction D. In particular, if the drive frequency is 500 Hz or less, minute vertical vibrations are hardly a problem. Therefore, if only vibrations in the conveyance direction D of the main vibration system are absorbed, the purpose of vibration isolation can be achieved. In the composite vibration-proof structure including the pair of vibration-proof springs 13a and 13b and the pair of horizontal vibration-proof springs 13ah and 13bh, the basic function of absorbing the vibration in the transport direction D and the vertical vibration is mainly The anti-vibration spring and the horizontal anti-vibration spring may be connected in series between the vibration system and the installation surface. For example, the upper support 2A is divided into front and rear in the transport direction D, and the vibration isolation structure having the vibration isolation spring 13a and the horizontal vibration isolation spring 13ah, and the vibration isolation spring 13b and the horizontal vibration isolation spring 13bh are provided. It is good also as a structure where a vibration structure part is arrange | positioned in the state mutually isolate | separated in the front-back position of the conveyance direction D. Further, the planar shape of the fixing region of the horizontal anti-vibration springs 13ah and 13bh with respect to the upper support base 2A is formed into two circular shapes by the two washers 22Aa and 22Ab, respectively. The planar shape of the fixed region with respect to 2B is formed in a band shape by the upper end surface shapes of the front mounting portion 2Ba and the rear mounting portion 2Bb. However, the planar shape of these fixed regions can be adjusted as appropriate according to the elastic deformation characteristics required for the horizontal anti-vibration springs 13ah and 13bh.

[第3実施形態]
図10は、本発明に係る振動式搬送装置の第3実施形態の概略構造を示す側面図である。この第3実施形態の装置20では、搬送方向Dの前後の防振ばね13a,13bがそれぞれ搬送の向きFに対して搬送方向Dの前後の対応する圧電駆動体16a,16bよりも前方に配置されている点で上記各実施形態と異なり、その他の構造については、上記各実施形態と同様の構造を有する。より具体的には、防振ばね13a,13bの基準質量体11に対する取付位置は、搬送方向Dの前後のそれぞれ対応する圧電駆動体16a,16bの基準質量体11に対する取付位置よりもそれぞれ搬送方向Dの前方にあり、各防振ばね13a,13bはほぼ垂直下方へ伸びて基台2(実際には前述の上側支持台2A)に取り付けられている。また、基準質量体11の前方部11aaと後方部11bbは幅方向(図10の紙面と直交する方向)の両側に設けられ、先の実施形態と同様に圧電駆動体16a,16bの幅方向両側の側部接続構造に取り付けられている。なお、中間部11abは前述の実施形態と同様に構成される。また、基準質量体11の前方部11aaと後方部11bbにおいては、圧電駆動体16a,16bに対して、いずれも同じ形状・寸法の筒状のスペーサ19c、19dを介して防振ばね13a,13bが搬送方向Dの前方から取り付けられている。これにより、前方部11aaに接続された圧電駆動体16aと防振ばね13aの搬送方向Dの位置関係(前後関係)と、後方部11bbに接続された圧電駆動体16bと防振ばね13bの搬送方向Dの位置関係(前後関係)とが搬送方向Dに見て同一になるように構成されている。なお、前方部11aa及び後方部11bbに対する防振ばね13a,13b及び圧電駆動体16a,16aの取付構造はいずれも先の実施形態と同様にそれぞれ一対のボルト19a,19bにより固定された構造となっている。
[Third Embodiment]
FIG. 10 is a side view showing a schematic structure of a third embodiment of the vibratory transfer apparatus according to the present invention. In the apparatus 20 of the third embodiment, the anti-vibration springs 13a and 13b before and after in the transport direction D are arranged in front of the corresponding piezoelectric drivers 16a and 16b before and after in the transport direction D with respect to the transport direction F, respectively. Unlike the above embodiments, the other structures are the same as those in the above embodiments. More specifically, the attachment positions of the vibration-proof springs 13a and 13b with respect to the reference mass body 11 are respectively in the conveyance direction rather than the attachment positions of the corresponding piezoelectric drive bodies 16a and 16b with respect to the reference mass body 11 before and after the conveyance direction D, respectively. In front of D, the anti-vibration springs 13a and 13b extend substantially vertically downward and are attached to the base 2 (actually, the above-described upper support 2A). Further, the front portion 11aa and the rear portion 11bb of the reference mass body 11 are provided on both sides in the width direction (direction orthogonal to the paper surface of FIG. 10), and both sides of the piezoelectric drivers 16a and 16b in the width direction are the same as in the previous embodiment. Is attached to the side connection structure. The intermediate portion 11ab is configured in the same manner as in the above-described embodiment. Further, in the front portion 11aa and the rear portion 11bb of the reference mass body 11, the vibration-proof springs 13a and 13b are respectively connected to the piezoelectric drive bodies 16a and 16b via cylindrical spacers 19c and 19d having the same shape and dimensions. Are attached from the front in the transport direction D. Thereby, the positional relationship (front-rear relationship) of the piezoelectric drive body 16a connected to the front portion 11aa and the vibration isolation spring 13a in the conveyance direction D, and the conveyance of the piezoelectric drive body 16b connected to the rear portion 11bb and the vibration isolation spring 13b. The positional relationship (front-rear relationship) in the direction D is configured to be the same when viewed in the transport direction D. In addition, the attachment structure of the anti-vibration springs 13a and 13b and the piezoelectric driving bodies 16a and 16a to the front part 11aa and the rear part 11bb is a structure fixed by a pair of bolts 19a and 19b, respectively, as in the previous embodiment. ing.

振動式搬送装置が低い駆動周波数(共振周波数)に設計されている場合には、搬送の向きFに向けては斜め上方に向かい、逆向きに向けては斜め下方に向かう振動方向を有する本来の振動モード以外の他の振動モードによる搬送への影響はそれほど問題にならない。しかし、装置構造を高い搬送周波数(共振周波数)となるように設計し、搬送物を高速で搬送させるようにすると、上記の他の振動モードにより、搬送路上で搬送物が上下左右にとび跳ねやすくなり、搬送物が搬送路から飛び出したり、搬送物の搬送姿勢が搬送途中で変化したりする。また、搬送速度が搬送路に沿って大きく変化し、搬送方向Dに沿った搬送路上の搬送速度の均一性が失われ、その結果、搬送物の搬送効率(実際に搬送物が搬送路の出口に供給される速度は、搬送路に沿った最も搬送速度が低い部分により律速される。)が低下する場合もある。本実施形態では、上述のように、圧電駆動体16a,16bと防振ばね13a,13bの基準質量体11に対する接続位置の搬送方向Dに見た順番が搬送方向Dの前後において相互に同一となるように構成されることにより、基準質量体11から見たときに上側振動ばね14a,14b及び下側振動ばね15a,15bから受ける反力と、防振ばね13a,13bから受ける支持(拘束)力との間の搬送方向Dに沿った位置関係が搬送方向Dの前後で同一となるため、主要振動系全体の上下方向や幅方向の安定性が増加し、主要振動系によじれなどが生じにくくなり、上記他の振動モードの発生が抑制されるものと考えられる。実際に、本実施形態では、搬送物の上下左右方向のとび跳ねが少なくなり、また、搬送方向Dに沿った搬送速度も均一化された。   When the vibratory transfer device is designed to have a low driving frequency (resonance frequency), the original has a vibration direction that is obliquely upward toward the conveyance direction F and obliquely downward toward the opposite direction. The influence on the conveyance by the vibration mode other than the vibration mode is not so serious. However, if the device structure is designed to have a high carrier frequency (resonance frequency) and the conveyed product is conveyed at a high speed, the conveyed item can easily jump up and down and left and right on the conveyance path due to the other vibration modes described above. Therefore, the conveyed product jumps out of the conveyance path, or the conveyance posture of the conveyed product changes during the conveyance. In addition, the conveyance speed greatly changes along the conveyance path, and the uniformity of the conveyance speed on the conveyance path along the conveyance direction D is lost. As a result, the conveyance efficiency of the conveyance object (the actual conveyance object is the exit of the conveyance path) The speed supplied to is controlled by the portion with the lowest transport speed along the transport path). In the present embodiment, as described above, the order in which the piezoelectric driving bodies 16a and 16b and the vibration-proof springs 13a and 13b are connected to the reference mass body 11 in the transport direction D is the same before and after the transport direction D. By being configured as such, the reaction force received from the upper vibration springs 14a and 14b and the lower vibration springs 15a and 15b when viewed from the reference mass body 11, and the support (restraint) received from the vibration isolation springs 13a and 13b. Since the positional relationship along the transport direction D with the force is the same before and after the transport direction D, the stability of the entire main vibration system in the vertical direction and the width direction is increased, and the main vibration system is kinked. It is considered that the occurrence of the other vibration modes is suppressed. Actually, in the present embodiment, the jumping of the conveyed product in the vertical and horizontal directions is reduced, and the conveying speed along the conveying direction D is made uniform.

[全ての実施形態に関する事項]
図11は、本明細書に記載される各実施形態に係る基準質量体11、上側質量体12A及び下側質量体12Bと、上側振動ばね14a,14b及び下側振動ばね15a,15bからなる主要振動系の構成を模式的に示す概略構成図である。なお、実際には、この主要振動系が上述のように防振ばね13a,13b、水平防振ばね13ah,13bh及び基台2等によって支持されることにより、各実施形態の全体の振動系が構成される。この主要振動系の振動動作は、基準質量体11の質量M11、上側質量体12Aの質量M12A及び下側質量体12Bの質量体M12Bと、上側振動ばね14a,14b及び下側振動ばね15a,15bのばね定数と、搬送方向Dの前方側の上側振動角θauと下側振動角θad及び搬送方向Dの後方側の上側振動角θbuと下側振動角θbdによって定まる。なお、図11では、上記第1実施形態とは異なり、上側振動ばね14a,14b及び下側振動ばね15a,15bを、上記の各振動角とそれぞれ一致する傾斜角を有する傾斜ばねとして模式的に示してある。各実施形態では、当該傾斜ばねに限らず、種々の構造を有する上側振動ばね14a,14b及び下側振動ばね15a,15bが振動角を備えるように構成されている。なお、本明細書において、上側振動ばね14a,14bの振動角とは、上側振動ばね14a,14bの上側質量体12Aに対する接続点における加振方向の水平面に対する角度を言い、下側振動ばね15a,15bの振動角とは、下側振動ばね15a,15bの下側質量体12Bに対する接続点における加振方向の水平面に対する角度を言う。ここで、上側振動ばね14a,14b及び下側振動ばね15a,15bが搬送方向Dに正対する平板状の板ばねである場合には、当該板ばねの水平面に対する加振方向の角度である振動角は、当該板ばねの搬送方向Dと直交する垂直面に対する傾斜角と一致する。また、本明細書において、上側振動ばね及び下側振動ばねのばね構造が上記板ばねとは異なるものである場合においても、当該上側振動ばね及び下側振動ばねは、これらにより得られる振動角と同じ値をもつ垂直面に対する傾斜角を備えた上記板ばねと等価であると考えることができるので、上記振動角と同じ意味で傾斜角の語を用いる。
[Matters concerning all embodiments]
FIG. 11 shows a main mass composed of a reference mass body 11, an upper mass body 12A and a lower mass body 12B, upper vibration springs 14a and 14b, and lower vibration springs 15a and 15b according to each embodiment described in this specification. It is a schematic block diagram which shows the structure of a vibration system typically. Actually, the main vibration system is supported by the vibration isolation springs 13a and 13b, the horizontal vibration isolation springs 13ah and 13bh, the base 2, and the like as described above, so that the entire vibration system of each embodiment can be obtained. Composed. Oscillatory motion of the main vibration system, the mass M 11 of the reference mass 11, the mass body M 12B of mass M 12A and the bottom mass body 12B of the upper mass 12A, the upper vibration springs 14a, 14b and the lower vibration spring It is determined by the spring constants 15a and 15b, the upper vibration angle θau and the lower vibration angle θad on the front side in the transport direction D, and the upper vibration angle θbu and the lower vibration angle θbd on the rear side in the transport direction D. In FIG. 11, unlike the first embodiment, the upper vibration springs 14 a and 14 b and the lower vibration springs 15 a and 15 b are schematically illustrated as inclination springs having inclination angles that respectively match the vibration angles. It is shown. In each embodiment, not only the inclined spring but also the upper vibration springs 14a and 14b and the lower vibration springs 15a and 15b having various structures are configured to have vibration angles. In this specification, the vibration angles of the upper vibration springs 14a and 14b are angles with respect to the horizontal plane in the direction of vibration at the connection point of the upper vibration springs 14a and 14b with the upper mass body 12A. The vibration angle 15b refers to an angle with respect to the horizontal plane in the excitation direction at a connection point with respect to the lower mass body 12B of the lower vibration springs 15a and 15b. Here, when the upper vibration springs 14a and 14b and the lower vibration springs 15a and 15b are flat plate springs facing the conveyance direction D, the vibration angle which is an angle of the vibration direction of the plate springs with respect to the horizontal plane. Corresponds to an inclination angle with respect to a vertical plane perpendicular to the conveying direction D of the leaf spring. Further, in this specification, even when the spring structure of the upper vibration spring and the lower vibration spring is different from that of the leaf spring, the upper vibration spring and the lower vibration spring have the vibration angle obtained from them. Since it can be considered to be equivalent to the leaf spring having an inclination angle with respect to a vertical plane having the same value, the term inclination angle is used in the same meaning as the vibration angle.

本実施形態において、上側振動角θau、θbuは、いずれも搬送方向Dの前方側へ向けては斜め上方に向かい、搬送方向Dの後方側へ向けては斜め下方に向かう振動方向BVsを生じさせるように構成される。また、下側振動角θad,θbdは、いずれも搬送方向Dの前方側へ向けては斜め下方に向かい、搬送方向Dの後方側へ向けては斜め上方に向かう振動方向BVtを生じさせるように構成される。ここで、各実施形態では、同相加振手段を構成する圧電駆動体16a,16bにより、基準質量体11と上側質量体12Aとの間に印加される加振力Fau,Fbuと、基準質量体11と下側質量体12Bとの間に印加される加振力Fad,Fbdとが搬送方向Dに同期して与えられる。この場合に、図示のように搬送方向Dの前後位置においてそれぞれ与えられる加振力Fau,Fadと加振力Fbu,Fbdが強制振動系の外部強制力とされる必要はなく、前後位置のいずれか一方の加振力のみが外部強制力として与えられるように構成してもよく、或いは、両加振力がいずれも外部強制力ではなく、上側振動ばね14a,14b及び下側振動ばね15a,15bとは別に設けられた加振手段により主要振動系に外部強制力が与えられるように構成しても構わない。   In this embodiment, the upper vibration angles θau and θbu both generate a vibration direction BVs that is obliquely upward toward the front side in the transport direction D and that is obliquely downward toward the rear side in the transport direction D. Configured as follows. Further, the lower vibration angles θad and θbd both generate a vibration direction BVt that is directed obliquely downward toward the front side in the conveyance direction D and directed obliquely upward toward the rear side in the conveyance direction D. Composed. Here, in each embodiment, the excitation forces Fau and Fbu applied between the reference mass body 11 and the upper mass body 12A by the piezoelectric driving bodies 16a and 16b constituting the in-phase excitation means, and the reference mass Excitation forces Fad and Fbd applied between the body 11 and the lower mass body 12B are applied in synchronization with the transport direction D. In this case, as shown in the drawing, the excitation forces Fau and Fad and the excitation forces Fbu and Fbd respectively applied at the front and rear positions in the transport direction D do not need to be the external forcing force of the forced vibration system. Only one of the exciting forces may be applied as an external forcing force, or both of the exciting forces are not external forcing forces, and the upper vibration springs 14a and 14b and the lower vibration spring 15a, You may comprise so that an external forcing force may be given to a main vibration system by the vibration means provided separately from 15b.

このように構成されていると、基準質量体11に対して上側質量体12Aと下側質量体12Bは同期して搬送方向Dに振動するため、基準質量体11に対する上側質量体12Aが及ぼす回転モーメントと、下側質量体12Bが及ぼす回転モーメントとが相互に減殺し合うことから、主要振動系全体が搬送方向Dの前後に揺動するといった態様のピッチング運動を抑制することができる。また、各実施形態では、いずれも上側質量体12Aの振動方向BVsと下側質量体12Bの振動方向BVtとが相互に上下方向の逆向きに傾斜しているため、主要振動系全体の上下振動を抑制することができる。このように、各実施形態では、上記ピッチング運動や上下振動が抑制されるため、搬送物の搬送姿勢の安定化や設置面への振動の漏洩を低減することができる。特に、高周波化を進めると上記のピッチング運動や上下振動による搬送物や外部への影響は増大するものと考えられることから、近年の搬送振動の高周波化や搬送速度の増大などに対応する場合に極めて有効と思われる。   If comprised in this way, since the upper mass body 12A and the lower mass body 12B are synchronously vibrated in the transport direction D with respect to the reference mass body 11, the rotation exerted by the upper mass body 12A with respect to the reference mass body 11 Since the moment and the rotational moment exerted by the lower mass body 12B are mutually reduced, it is possible to suppress the pitching motion in such a manner that the entire main vibration system swings back and forth in the transport direction D. In each embodiment, since the vibration direction BVs of the upper mass body 12A and the vibration direction BVt of the lower mass body 12B are inclined in the opposite directions in the vertical direction, the vertical vibration of the entire main vibration system Can be suppressed. Thus, in each embodiment, since the pitching motion and the vertical vibration are suppressed, it is possible to stabilize the transport posture of the transported object and reduce the leakage of vibration to the installation surface. In particular, if the frequency is increased, the effect of the above-mentioned pitching motion and vertical vibration on the transported goods and the outside will increase, so when dealing with the recent increase in the frequency of transport vibration and the increase in transport speed. It seems very effective.

なお、図11では、振動角θau,θbu,θad,θbdに対応する傾斜角となるように上側振動ばね14a,14b及び下側振動ばね15a,15bを傾斜姿勢で図示しているため、基準質量体11Aの質量M11の重心、上側質量体12Aの質量M12Aの重心及び下側質量体12Bの質量M12Bの重心が一直線上に並んでいない。しかし、上記第1実施形態〜第3実施形態では、いずれも上側振動ばね14a,14bの本体及び下側振動ばね15a,15bの本体を構成する、圧電駆動体16a,16b並びに上側増幅ばね17a,17b及び下側増幅ばね18a,18bが垂直姿勢で設置されるため、上記の質量M11、M12A及びM12Bの3つの重心を実質的に一つの直線上に配列させることが容易になる。特に、当該3つの重心位置が垂直方向に配列するように構成することも可能である。このことは、本実施形態の同相加振手段を構成する圧電駆動体16a,16bによって主要振動系を高周波数で駆動する場合に、不要振動モードが生じたり、搬送目的にかなった振動態様が妨げられたりする虞を低減し、安定した搬送物の搬送態様を実現しつつ主要振動系の高周波化を容易に実現する上で有効である。 In FIG. 11, since the upper vibration springs 14a and 14b and the lower vibration springs 15a and 15b are illustrated in an inclined posture so as to have inclination angles corresponding to the vibration angles θau, θbu, θad, and θbd, the reference mass the center of gravity of the mass M 11 of the body 11A, the center of gravity of the mass M 12B of the center of gravity of the mass M 12A of the upper mass 12A and the bottom mass body 12B are not arranged in a straight line. However, in the first to third embodiments, the piezoelectric drivers 16a and 16b and the upper amplifying spring 17a, which constitute the main body of the upper vibration springs 14a and 14b and the main body of the lower vibration springs 15a and 15b, respectively. Since 17b and the lower amplification springs 18a and 18b are installed in a vertical posture, it becomes easy to arrange the three centroids of the masses M 11 , M 12A and M 12B substantially on one straight line. In particular, the three centroid positions can be arranged in the vertical direction. This means that when the main vibration system is driven at a high frequency by the piezoelectric driving bodies 16a and 16b constituting the in-phase excitation means of the present embodiment, an unnecessary vibration mode is generated or the vibration mode suitable for the conveyance purpose is present. This is effective in reducing the possibility of obstruction and easily realizing high frequency of the main vibration system while realizing a stable conveyance mode of the conveyed product.

[第4実施形態]
図12は、第4実施形態の主要振動系の構成を示す概略構成図である。この第4実施形態では、上記のように設定された振動角θau,θbu,θad,θbdを設けるために、基準質量体11に対する固定位置11pから上方にある上側振動ばね24a,24b(圧電駆動体26a,26bの上側圧電駆動部26au,26bu及び上側増幅ばね17a,17b)と、固定位置11pから下方にある下側振動ばね25a,25b(圧電駆動体26a,26bの下側圧電駆動部26ad,26bd及び下側増幅ばね18a,18b)の全体を相互に上下方向の逆向きに傾斜するように構成し、それぞれの傾斜角が上記振動角θau,θbu,θad,θbdと一致する傾斜姿勢となるように構成している。これによって、上側振動ばね14a,14bと下側振動ばね15a,15bがいずれも傾斜姿勢とされるため、第1実施形態のような上側連結部12AaS,12AbS及び下側連結部12BaS,12BbSを設けずに、振動角を得ることができる。
[Fourth Embodiment]
FIG. 12 is a schematic configuration diagram showing the configuration of the main vibration system of the fourth embodiment. In the fourth embodiment, in order to provide the vibration angles θau, θbu, θad, θbd set as described above, the upper vibration springs 24a, 24b (piezoelectric drive bodies) located above the reference mass body 11 from the fixed position 11p. 26a, 26b upper piezoelectric drive portions 26au, 26bu and upper amplification springs 17a, 17b), and lower vibration springs 25a, 25b (lower piezoelectric drive portions 26ad, 26ad, 26b, 26b, 26b below the fixed position 11p). 26bd and the lower amplifying springs 18a, 18b) are configured to incline in opposite directions in the vertical direction, and the respective inclination angles coincide with the vibration angles θau, θbu, θad, θbd. It is configured as follows. As a result, since the upper vibration springs 14a and 14b and the lower vibration springs 15a and 15b are inclined, the upper connection portions 12AaS and 12AbS and the lower connection portions 12BaS and 12BbS as in the first embodiment are provided. Without the vibration angle can be obtained.

なお、以上説明した第1〜第4実施形態では、圧電駆動体16a,16b,26a,26bと、上側増幅ばね17a,17bや下側増幅ばね18a,18bとが一体に構成されたものについて説明しているが、それぞれの実施形態において、圧電駆動体16a,16b,26a,26bと、上側増幅ばね17a,17bや下側増幅ばね18a,18bとを別々の構成部品として形成し、ボルトや座金等によって相互に連結した構造としても構わない。   In the first to fourth embodiments described above, the piezoelectric driving bodies 16a, 16b, 26a, 26b and the upper amplification springs 17a, 17b and the lower amplification springs 18a, 18b are integrally configured. However, in each of the embodiments, the piezoelectric driving bodies 16a, 16b, 26a, 26b, the upper amplification springs 17a, 17b, and the lower amplification springs 18a, 18b are formed as separate components, and bolts or washers. For example, the structures may be connected to each other.

[第5実施形態]
図13は、第5実施形態の主要振動系の構成を示す概略構成図である。この第5実施形態では、上側増幅ばね37a,37b及び下側増幅ばね38a,38bを圧電駆動体36a,36bとは別体に構成し、圧電駆動体36a,36bと上側増幅ばね37a,37b及び下側増幅ばね38a,38bをそれぞれ搬送方向Dと直交する垂直面に沿った垂直姿勢とするとともに、圧電駆動体36a,36bの上下端部と、上側増幅ばね37a,37bの下端部及び下側増幅ばね38a,38bの上端部とを搬送方向Dに厚みを有するスペーサ39au,39bu,39ad,39bdを介してボルトや座金等を用いて連結している。このようにした場合でも、上側圧電駆動部36au,36buと上側増幅ばね37a,37bにより構成される上側振動ばね34a,34bの基準質量体11に対する固定位置11pと上側質量体12Aに対する固定位置12Apとを結ぶ線(図示二点鎖線)が傾斜し、下側圧電駆動部36ad,36bdと下側振動ばね35a,35bにより構成される下側振動ばね35a,35bの基準質量体11に対する固定位置11pと下側質量体12Bに対する固定位置12Bpとを結ぶ線(図示二点鎖線)が傾斜する。このため、先の実施形態と同様に上側振動ばね34a,34b及び下側振動ばね35a,35bの上記振動角θau,θbu,θad,θbdを設定することができる。この場合には、スペーサ39au,39bu,39ad,39bdの搬送方向Dの厚みを変更することで、上記振動角θau,θbu,θad,θbdを容易に調整することができる。ここで、上側増幅ばね37a,37bの下端及び下側増幅ばね38a,38bの上端は、上側圧電駆動部36auの上側接続構造及び下側圧電駆動部36ad,36bdの下側接続構造に対して、搬送方向Dの後方側に重ねた状態で接続固定される。このようにすると、スペーサを介在させるか否かに拘わらず、或る程度の振動角を得ることができる。
[Fifth Embodiment]
FIG. 13 is a schematic configuration diagram showing the configuration of the main vibration system of the fifth embodiment. In the fifth embodiment, the upper amplification springs 37a and 37b and the lower amplification springs 38a and 38b are configured separately from the piezoelectric driving bodies 36a and 36b, and the piezoelectric driving bodies 36a and 36b and the upper amplification springs 37a and 37b and The lower amplification springs 38a and 38b are each in a vertical posture along a vertical plane orthogonal to the transport direction D, and the upper and lower ends of the piezoelectric driving bodies 36a and 36b, and the lower ends and lower sides of the upper amplification springs 37a and 37b. The upper ends of the amplification springs 38a and 38b are connected to each other using bolts, washers or the like via spacers 39au, 39bu, 39ad, and 39bd having a thickness in the transport direction D. Even in this case, the fixed position 11p of the upper vibration springs 34a and 34b constituted by the upper piezoelectric drive portions 36au and 36bu and the upper amplification springs 37a and 37b with respect to the reference mass body 11 and the fixed position 12Ap with respect to the upper mass body 12A. The line (two-dot chain line in the figure) connecting the two sides is inclined, and the fixed positions 11p of the lower vibration springs 35a and 35b constituted by the lower piezoelectric drive portions 36ad and 36bd and the lower vibration springs 35a and 35b with respect to the reference mass body 11 A line (two-dot chain line in the figure) connecting the fixed position 12Bp with respect to the lower mass body 12B is inclined. Therefore, the vibration angles θau, θbu, θad, θbd of the upper vibration springs 34a, 34b and the lower vibration springs 35a, 35b can be set as in the previous embodiment. In this case, the vibration angles θau, θbu, θad, θbd can be easily adjusted by changing the thickness of the spacers 39au, 39bu, 39ad, 39bd in the transport direction D. Here, the lower ends of the upper amplification springs 37a and 37b and the upper ends of the lower amplification springs 38a and 38b are connected to the upper connection structure of the upper piezoelectric drive unit 36au and the lower connection structure of the lower piezoelectric drive units 36ad and 36bd. The connection is fixed in a state of being overlapped on the rear side in the transport direction D. In this way, a certain vibration angle can be obtained regardless of whether or not the spacer is interposed.

なお、以上説明した各実施形態においては、上側圧電駆動部16au,16bu,26au,26bu,36au,36buと下側圧電駆動部16ad,16bd,26ad,26bd,36ad,36bdが一体に構成された圧電駆動体16a,16b,26a,26b,36a,36bを用いている。しかし、圧電駆動体の構造としては、上側圧電駆動部と下側圧電駆動部とが別々の圧電駆動体により構成され、これらの別々の圧電駆動体が基準質量体11に対してそれぞれ結合した構造であってもよい。また、弾性基板上の圧電体は上側圧電駆動部において形成された部分と下側圧電駆動部において形成された部分とが一体に構成されているが、圧電体が上側圧電駆動部と下側圧電駆動部で別々に形成され、相互に分離された構造であってもよい。   In each of the embodiments described above, the upper piezoelectric drive units 16au, 16bu, 26au, 26bu, 36au, 36bu and the lower piezoelectric drive units 16ad, 16bd, 26ad, 26bd, 36ad, 36bd are integrally formed. The drive bodies 16a, 16b, 26a, 26b, 36a, and 36b are used. However, as the structure of the piezoelectric driving body, the upper piezoelectric driving section and the lower piezoelectric driving section are constituted by separate piezoelectric driving bodies, and these separate piezoelectric driving bodies are respectively coupled to the reference mass body 11. It may be. In addition, the piezoelectric body on the elastic substrate is formed integrally with the portion formed in the upper piezoelectric drive portion and the portion formed in the lower piezoelectric drive portion. It may be a structure formed separately in the drive unit and separated from each other.

[各実施形態の作用効果]
以上説明した各実施形態の主要振動系では、搬送方向Dに見ると、基準質量体11の振動の位相は、上側質量体12A及び下側質量体12Bの振動の位相とは逆位相(位相差が180度)になる。したがって、基台2を基準として考えると、基準質量体11の振動による搬送方向Dの反力と、上側質量体12Aと下側質量体12Bの振動による合成された反力とは相互に打ち消し合う関係(相殺或いは減殺する関係)となる。その結果、防振ばね13a,13bを介して基台2側へ伝達される搬送方向Dの振動が低減される。
[Effects of each embodiment]
In the main vibration system of each embodiment described above, when viewed in the transport direction D, the phase of vibration of the reference mass body 11 is opposite to the phase of vibration of the upper mass body 12A and the lower mass body 12B (phase difference). Is 180 degrees). Therefore, considering the base 2 as a reference, the reaction force in the conveyance direction D due to the vibration of the reference mass body 11 and the combined reaction force due to the vibrations of the upper mass body 12A and the lower mass body 12B cancel each other. Relationship (offset or diminishing relationship). As a result, the vibration in the conveyance direction D transmitted to the base 2 side through the vibration-proof springs 13a and 13b is reduced.

一方、基準質量体11を基準として考えると、上側質量体12Aから受ける反力と下側質量体12Bから受ける反力はいずれも搬送方向Dに見たときには同じ向きとなるが、相互に同位相で振動する上側質量体12Aの回転モーメントと下側質量体12Bの回転モーメントは逆向きとなるため、相互に打ち消し合う関係(相殺或いは減殺する関係)となる。したがって、基準質量体11が受ける回転方向の反力は低減され、ピッチング動作が生じにくくなるとともに、防振ばね13a,13bを介して基台2側へ伝達される上下方向の振動も低減される。また、これにより、搬送路12tの長さ方向に沿った搬送物の搬送速度や搬送姿勢などの搬送状態も安定化される。   On the other hand, when the reference mass body 11 is considered as a reference, the reaction force received from the upper mass body 12A and the reaction force received from the lower mass body 12B are in the same direction when viewed in the transport direction D, but are in phase with each other. Since the rotational moment of the upper mass body 12A and the rotational moment of the lower mass body 12B that vibrate in the opposite directions are opposite to each other, they cancel each other out (cancellation or killing relationship). Accordingly, the reaction force in the rotational direction received by the reference mass body 11 is reduced, the pitching operation is less likely to occur, and the vertical vibration transmitted to the base 2 side through the vibration isolation springs 13a and 13b is also reduced. . This also stabilizes the transport state such as the transport speed and transport posture of the transported object along the length direction of the transport path 12t.

本発明では、図11に示す主要振動系において、基準質量体11に対して上側質量体12Aと下側質量体12Bが同位相で振動するように加振力を与える同相加振手段である圧電駆動体16a,16bを設けることにより、上側質量体12Aと下側質量体12Bが実質的に一つの質量体として動作する、換言すれば、同相加振手段によって一つの質量体として動作するように拘束される。このため、防振ばね13a,13bを介して基台2に対して弾性接続された一方の質量体である基準質量体11と、この基準質量体11に対して4つの振動ばね14a,14b,15a,15bを介して弾性接続された他方の質量体(上側質量体12Aと下側質量体12B)を有する、実質的に2自由度若しくは2質点の強制(減衰)振動系が構成される。この振動系では、高低2つの共振振動数ω1とω2を有するとともに、この2つの共振振動数ω1とω2の間の振動数帯域で2つの質量体が相互に逆位相で振動する。   In the present invention, in the main vibration system shown in FIG. 11, in-phase excitation means for applying an excitation force so that the upper mass body 12 </ b> A and the lower mass body 12 </ b> B vibrate in the same phase with respect to the reference mass body 11. By providing the piezoelectric driving bodies 16a and 16b, the upper mass body 12A and the lower mass body 12B substantially operate as one mass body, in other words, operate as one mass body by the in-phase excitation means. To be restrained. For this reason, the reference mass body 11 which is one mass body elastically connected to the base 2 via the vibration isolation springs 13a and 13b, and the four vibration springs 14a, 14b, A forced (damped) vibration system having two degrees of freedom or two masses is formed, which has the other mass bodies (the upper mass body 12A and the lower mass body 12B) elastically connected via 15a and 15b. This vibration system has two resonance frequencies ω1 and ω2 that are high and low, and two mass bodies vibrate in opposite phases in a frequency band between the two resonance frequencies ω1 and ω2.

これらの2つの質量体11と質量体12A及び12Bとを有する振動系の逆位相モードでは、2つの質量体間の搬送方向Dの反力が搬送方向Dに見て相互に打ち消し合う関係にあるが、実施形態では、上述のように、一方の質量体である基準質量体11に対して他方の質量体が上側質量体12Aと下側質量体12Bに二分割されて相互に反対側に弾性接続されているために、基準質量体11が受ける回転モーメントも相互に打ち消し合う関係にある。ここで、基準質量体11の質量M11の重心位置を基準とすると、上側質量体12Aの回転モーメントは、その質量と重心間距離の積、すなわちM12A×R12Aとなり、下側質量体12Bの回転モーメントは、同様にM12B×R12Bとなる。ただし、上側質量体12Aと下側質量体12Bの回転モーメントは相互に逆向きである。このような振動系の構成は、従来装置とは基本的に異なる振動態様を形成し、設置面による固定力に依存しない搬送態様を実現する。従来装置では、搬送路上の搬送物の搬送状態を確保するには、設置面への強固な固定や基台の重量化が必要であったのに対して、本発明では、極端に言えば、防振ばね13a,13bの下端を柔らかい布団のような設置面上に固定せずに載置しただけの場合、或いは、軽量化された基台2を固定せずに設置した場合でも、振動態様の変化(悪化)はほとんどなく、搬送路12t上の搬送態様もほとんど変わらない。なお、図から明らかなように、主要振動系のみで考えれば、搬送方向Dの反力を相殺する上では、実質的にM11=M12A+M12Bとすることが好ましく、上記二つの回転モーメントを相殺する上では、実質的にM12A×R12A=M12B×R12Bとすることが好ましく、ピッチング動作を低減する上では、実質的にM12A=M12BかつR12A=R12Bとすることが望ましい。 In the antiphase mode of the vibration system having these two mass bodies 11 and mass bodies 12A and 12B, the reaction forces in the transport direction D between the two mass bodies cancel each other when viewed in the transport direction D. However, in the embodiment, as described above, the other mass body is divided into the upper mass body 12A and the lower mass body 12B with respect to the reference mass body 11, which is one mass body, and elastically opposes each other. Since they are connected, the rotational moments received by the reference mass body 11 are also in a mutually canceling relationship. Here, if the position of the center of gravity of the mass M 11 of the reference mass body 11 is used as a reference, the rotational moment of the upper mass body 12A is the product of the mass and the distance between the center of gravity, that is, M 12A × R 12A , and the lower mass body 12B Similarly, the rotational moment of M 12B × R 12B is obtained. However, the rotational moments of the upper mass body 12A and the lower mass body 12B are opposite to each other. Such a configuration of the vibration system forms a vibration mode that is basically different from that of the conventional apparatus, and realizes a transfer mode that does not depend on the fixing force by the installation surface. In the conventional apparatus, in order to secure the transport state of the transported object on the transport path, it was necessary to firmly fix to the installation surface and increase the weight of the base, whereas in the present invention, extremely speaking, Vibration mode even when the lower ends of the vibration-proof springs 13a and 13b are simply placed without being fixed on an installation surface such as a soft futon, or when the lightened base 2 is installed without being fixed. There is almost no change (deterioration), and the conveyance mode on the conveyance path 12t is hardly changed. As is apparent from the figure, considering only the main vibration system, it is preferable to substantially satisfy M 11 = M 12A + M 12B in order to cancel the reaction force in the transport direction D, and the two rotational moments described above. Is substantially equal to M 12A × R 12A = M 12B × R 12B, and to reduce the pitching operation, substantially M 12A = M 12B and R 12A = R 12B . It is desirable.

以上の構成及び作用効果は、基本的に本発明の概念を示す図11に示す構成に基づくものであるが、本実施形態では、上記同相加振手段(圧電駆動体)が上側加振部(上側圧電駆動部)と下側加振部(下側圧電駆動部)をそれぞれ有して、直接かつ別々に加振力を与えることにより、装置構造を簡易化することができるとともに、例えば、搬送物や搬送路のバリエーション等に対応するための加振側の周波数や振幅等の調整を容易に行うことも可能になる。特に、本実施形態においては、上側振動ばね14a,14bに組み込まれた上側圧電駆動部16au,16buと、下側振動ばね15a,15bに組み込まれた下側圧電駆動部16ad,16bdを設け、圧電駆動方式によって加振しているため、振動系とは別途の加振機構を設ける必要がないから、装置構造をさらに簡易に構成できる。   The above configuration and operational effects are basically based on the configuration shown in FIG. 11 showing the concept of the present invention. In the present embodiment, the in-phase excitation means (piezoelectric driving body) is the upper excitation unit. (Upper piezoelectric drive unit) and lower excitation unit (lower piezoelectric drive unit) respectively, and by directly applying the excitation force separately, the device structure can be simplified, for example, It is also possible to easily adjust the frequency, amplitude, and the like on the excitation side in order to cope with variations of the conveyed product and the conveyance path. In particular, in the present embodiment, the upper piezoelectric drive portions 16au and 16bu incorporated in the upper vibration springs 14a and 14b and the lower piezoelectric drive portions 16ad and 16bd incorporated in the lower vibration springs 15a and 15b are provided. Since the vibration is generated by the driving method, it is not necessary to provide a vibration mechanism separate from the vibration system, so that the device structure can be further simplified.

本実施形態では、上側振動ばね14a,14bと下側振動ばね15a,15bとが直接に接続されるとともに、その接続点が基準質量体11に接続固定されている。したがって、上側質量体12A及び下側質量体12Bから受ける反力の基準質量体11に対する作用点は相互に一致するため、上下の反力の作用点の位置ずれに起因する不要振動や不要モーメントは発生しない。また、上側振動ばね14a,14bと下側振動ばね15a,15bとが直接に接続されているので、上側振動ばねと下側振動ばねの間の振動エネルギーの交換が容易になることから、より安定な振動系が構成できると考えられる。さらに、本実施形態では、上記の構成により、振動式搬送装置10の高さを低減することができるという効果を有する。なお、図11の振動モデルは本発明及び本実施形態を何ら限定するものではないが、M12A=M12B、R12A=R12B、上側振動ばね14a,14b及び下側振動ばね15a,15bの長さ及びばね定数は全て同一であり、防振ばね13aと13bの長さ及びばね定数も同一としている。 In the present embodiment, the upper vibration springs 14 a and 14 b and the lower vibration springs 15 a and 15 b are directly connected, and the connection point is connected and fixed to the reference mass body 11. Accordingly, since the action points of the reaction force received from the upper mass body 12A and the lower mass body 12B with respect to the reference mass body 11 coincide with each other, unnecessary vibrations and unnecessary moments due to the displacement of the action points of the upper and lower reaction forces are not generated. Does not occur. Further, since the upper vibration springs 14a and 14b and the lower vibration springs 15a and 15b are directly connected, the vibration energy can be easily exchanged between the upper vibration spring and the lower vibration spring, so that it is more stable. It is thought that a simple vibration system can be constructed. Furthermore, in this embodiment, it has the effect that the height of the vibration type conveying apparatus 10 can be reduced by said structure. Note that the vibration model of FIG. 11 does not limit the present invention and the present embodiment at all, but M 12A = M 12B , R 12A = R 12B , upper vibration springs 14 a and 14 b, and lower vibration springs 15 a and 15 b. The length and the spring constant are all the same, and the length and the spring constant of the anti-vibration springs 13a and 13b are also the same.

本実施形態では、基準質量体11に対して長さ方向の中間部位が結合された一体の圧電駆動体16a,16bを用いることにより、上側質量体12Aと下側質量体12Bの双方に対して確実にかつ安定して加振力を与えることができる。特に、圧電駆動体16a,16bは、上下一体の撓み変形により両質量体12Aと12Bに対して確実に同位相の加振力を与えることができる。また、上側振動ばね14a,14b及び下側振動ばね15a,15bにおいて基準質量体11の側に上側圧電駆動部16au,16bu及び下側圧電駆動部16ad,16bdが配置されるため、上側質量体12Aの側に配置される上側増幅ばね17a,17b又は下側質量体12Bの側に配置される下側増幅ばね18a,18bにより、上側質量体12A又は下側質量体12Bに搬送路12tを設ける場合に必要とされる充分な振幅を生じさせることができる。   In the present embodiment, by using the integral piezoelectric driving bodies 16a and 16b in which the intermediate portion in the length direction is coupled to the reference mass body 11, both the upper mass body 12A and the lower mass body 12B are used. An exciting force can be applied reliably and stably. In particular, the piezoelectric driving bodies 16a and 16b can reliably apply the same-phase excitation force to the mass bodies 12A and 12B by bending deformation integrally with the upper and lower sides. In addition, since the upper piezoelectric drive portions 16au and 16bu and the lower piezoelectric drive portions 16ad and 16bd are arranged on the reference mass body 11 side in the upper vibration springs 14a and 14b and the lower vibration springs 15a and 15b, the upper mass body 12A. When the conveying path 12t is provided in the upper mass body 12A or the lower mass body 12B by the upper amplification springs 17a, 17b or the lower mass springs 18a, 18b arranged on the lower mass body 12B side. Sufficient amplitude required for the can be generated.

本実施形態では、上述の作用効果に加えて、上側振動ばね14a,14bの実質的な傾斜角である振動角θua,θubが搬送方向Dの前方側に斜め上方に向く振動方向BVsをもたらすように設定され、下側振動ばね15a,15bの実質的な傾斜角である振動角θda,θdbが搬送方向Dの前方側に斜め下方に向く振動方向BVtをもたらすように設定されていることにより、搬送路12t上で上記振動角θau,θbuに基づく搬送力を得ることができると同時に、基準質量体11に対して同位相で上側質量体12A及び下側質量体12Bが振動する主要振動系の上下振動を低減することができる。したがって、振動系の高周波化や高速搬送などを図った場合でも、搬送物の搬送姿勢の安定化や搬送速度の均一化を確保することができ、設置面への振動の漏出を抑制することができる。   In the present embodiment, in addition to the above-described effects, the vibration angles θua and θub, which are substantial inclination angles of the upper vibration springs 14a and 14b, cause a vibration direction BVs that faces obliquely upward toward the front side in the transport direction D. And the vibration angles θda and θdb, which are substantial inclination angles of the lower vibration springs 15a and 15b, are set to bring the vibration direction BVt obliquely downward toward the front side in the transport direction D, A conveyance force based on the vibration angles θau and θbu can be obtained on the conveyance path 12t, and at the same time, the upper mass body 12A and the lower mass body 12B vibrate in the same phase with respect to the reference mass body 11. Vertical vibration can be reduced. Therefore, even when the vibration system has a high frequency or high-speed conveyance, it is possible to ensure the conveyance posture of the conveyed object and the uniform conveyance speed, and to suppress leakage of vibration to the installation surface. it can.

また、上述のように上下振動の発生が少ない主要振動系でも、高周波化を図った場合には上下振動が充分に抑制できない場合がある。しかし、本実施形態では、基台2の上側支持台2Aと下側支持台2Bの間に水平姿勢で設置された板ばねよりなる水平防振ばね13ah,13bhを介在させたことにより、上下振動を効率的に吸収し、高周波化による上下振動の増大を抑制することができるため、搬送姿勢の安定化や振動エネルギーの漏出を回避することが可能になる。特に、水平防振ばね13ahと13bhを上側支持台2Aと下側支持台2Bの間で搬送方向Dに向けて接続したことにより、上側支持台2A上に支持されている振動系を幅方向に安定させることができる。また、搬送方向Dの前後位置で水平防振ばね13ahと13bhの搬送方向Dに見た取付の向きを逆向きとしたことにより、両ばねの相互干渉によって上側支持台2A上に支持されている振動系の安定性を高めることができる。   Further, even in the main vibration system in which the occurrence of vertical vibration is small as described above, the vertical vibration may not be sufficiently suppressed when the frequency is increased. However, in this embodiment, the vertical vibration is prevented by interposing the horizontal anti-vibration springs 13ah and 13bh made of leaf springs installed in a horizontal posture between the upper support 2A and the lower support 2B of the base 2. Can be efficiently absorbed, and an increase in vertical vibration due to high frequency can be suppressed, so that it is possible to stabilize the transport posture and avoid leakage of vibration energy. In particular, by connecting the horizontal anti-vibration springs 13ah and 13bh in the transport direction D between the upper support base 2A and the lower support base 2B, the vibration system supported on the upper support base 2A is expanded in the width direction. It can be stabilized. In addition, the horizontal anti-vibration springs 13ah and 13bh are mounted on the upper support 2A by the mutual interference between the springs 13h and 13bh when the mounting directions of the horizontal anti-vibration springs 13ah and 13bh viewed in the transport direction D are reversed. The stability of the vibration system can be increased.

本願発明者らは、実際に上記第1実施形態の装置を試作し、稼働実験を行った。ここで、一例としては、基準質量体11の質量M11は710g、上側質量体12Aの質量M12Aは244.5g(12Auが190g、12Adが55.5g)、下側質量体12Bの質量M12Bは124.8g、上側支持台2Aの質量は59.5g、圧電駆動体16a,16bの長さは50mmで上下左右に対称な形状とし、振動角θau=θad=3.91度、θbu=θbd=5.3度、設置面から接続ブロック12Adの上面までの高さを72.1mm、基準質量体11、接続ブロック12Ad及び下側質量体12Bの全幅(最大幅)を35mmとした。そして、圧電駆動体16a,16bを900〜1200Hzの交番電圧で駆動して、搬送物を搬送させた結果、高振動数でも微細な電子部品等を安定した姿勢で高速に搬送できることが確認できた。この実施形態では、実質的に搬送方向Dに撓み振動する上側振動ばね14a,14bの本体及び下側振動ばね15a,15bの本体がいずれも垂直姿勢で設置されるとともに、上側振動ばね14a,14bの本体及び下側振動ばね15a,15bの本体において、上側圧電駆動部16au,16buと上側増幅ばね17a,17b、下側圧電駆動部16ad,16bdと下側増幅ばね18a,18bとがそれぞれ一体に構成されて高さの低減と振動の安定化が図られることにより、上述のような極めて高い周波数域までの高周波化と搬送速度の高速化を図ることが可能になると同時に、安定した振動態様と搬送物の安定した搬送態様を実現することが可能になっているものと考えられる。 The inventors of the present application actually made a prototype of the device of the first embodiment and conducted an operation experiment. Here, as an example, the mass M 11 of the reference mass 11 is 710 g, the mass M 12A of the upper mass 12A is 244.5 g (12Au is 190 g, 12Ad is 55.5 g), and the mass M of the lower mass 12B. 12B is 124.8 g, the mass of the upper support 2A is 59.5 g, the length of the piezoelectric driving bodies 16a and 16b is 50 mm, and they are symmetrical in the vertical and horizontal directions, and the vibration angle θau = θad = 3.91 degrees, θbu = θbd = 5.3 degrees, the height from the installation surface to the upper surface of the connection block 12Ad is 72.1 mm, and the total width (maximum width) of the reference mass body 11, the connection block 12Ad, and the lower mass body 12B is 35 mm. And as a result of driving the piezoelectric drive bodies 16a and 16b with an alternating voltage of 900 to 1200 Hz and transporting the transported object, it was confirmed that a minute electronic component or the like can be transported at a high speed in a stable posture even at a high frequency. . In this embodiment, the main bodies of the upper vibration springs 14a and 14b and the main bodies of the lower vibration springs 15a and 15b that are flexibly vibrated in the conveyance direction D are both installed in a vertical posture, and the upper vibration springs 14a and 14b. In the main body and lower vibration springs 15a and 15b, the upper piezoelectric drive portions 16au and 16bu and the upper amplification springs 17a and 17b, the lower piezoelectric drive portions 16ad and 16bd, and the lower amplification springs 18a and 18b are integrally formed. By being configured to reduce the height and stabilize the vibration, it is possible to increase the frequency up to the extremely high frequency range as described above and increase the conveyance speed, and at the same time, the stable vibration mode It is considered that it is possible to realize a stable conveyance mode of the conveyed product.

また、図13に示す第5実施形態の装置を試作し、稼働実験を行った。なお、主要振動系以外の構造は第1実施形態と同様とした。ここで、一例としては、基準質量体11の質量M11は1110g、上側質量体12Aの質量M12Aは530g(12Auが371g、12Adが159g)、下側質量体12Bの質量M12Bは666g、上側支持台2Aの質量は284g、圧電駆動体36a,36bの圧電体が積層された本体部分の長さは22mmで上下左右に対称な形状とし、上側増幅ばね37a,37b及び下側増幅ばね38a,38bの固定部分を除く長さはいずれも13mmとした。振動角はθau=θad=θbu=θbd=5.4度で、搬送方向の前後位置で相互に同じ値とし、設置面から接続ブロック12Adの上面までの高さを116.5mm、基準質量体11、接続ブロック12Ad及び下側質量体12Bの全幅(最大幅)を38mmとした。そして、圧電駆動体36a,36bを600〜700Hzの交番電圧で駆動して、搬送物を搬送させた結果、高振動数でも微細な電子部品等を安定した姿勢で高速に搬送できることが確認できた。この実施形態では、上側振動ばね34a,34b及び下側振動ばね35a,35bにおいて、上側圧電駆動部36au,36buと上側増幅ばね37a,37b、及び、下側圧電駆動部36ad,36bdと下側増幅ばね38a,38bとがそれぞれ別体で構成されているものの、上側圧電駆動部36au,36buと上側増幅ばね37a,37b、及び、下側圧電駆動部36ad,36bdと下側増幅ばね38a,38bのそれぞれは、いずれも個々に見ると垂直姿勢で設置されているため、上述のような高周波化と搬送速度の高速化を図ることが可能になると同時に、安定した振動態様と搬送物の安定した搬送態様を実現することが可能になっているものと考えられる。 In addition, an apparatus of the fifth embodiment shown in FIG. 13 was prototyped and an operation experiment was performed. The structure other than the main vibration system is the same as that of the first embodiment. Here, as an example, the mass M 11 of the reference mass 11 is 1110 g, the mass M 12A of the upper mass 12A is 530 g (371 Au of 12Au, 159 g of 12Ad), the mass M 12B of the lower mass 12B is 666 g, The mass of the upper support 2A is 284 g, the length of the main body portion where the piezoelectric bodies of the piezoelectric driving bodies 36a and 36b are stacked is 22 mm, and is symmetric in the vertical and horizontal directions, and the upper amplification springs 37a and 37b and the lower amplification spring 38a. , 38b, except for the fixed portion, was 13 mm. The vibration angle is θau = θad = θbu = θbd = 5.4 degrees, the same value at the front and rear positions in the transport direction, the height from the installation surface to the upper surface of the connection block 12Ad is 116.5 mm, and the reference mass 11 The total width (maximum width) of the connection block 12Ad and the lower mass body 12B was 38 mm. And as a result of driving the piezoelectric drive bodies 36a and 36b with an alternating voltage of 600 to 700 Hz and transporting the transported object, it was confirmed that fine electronic components and the like can be transported at a high speed in a stable posture even at a high frequency. . In this embodiment, in the upper vibration springs 34a and 34b and the lower vibration springs 35a and 35b, the upper piezoelectric drive units 36au and 36bu and the upper amplification springs 37a and 37b, and the lower piezoelectric drive units 36ad and 36bd and the lower amplification. Although the springs 38a and 38b are configured separately, the upper piezoelectric drive units 36au and 36bu and the upper amplification springs 37a and 37b, and the lower piezoelectric drive units 36ad and 36bd and the lower amplification springs 38a and 38b, respectively. Since each of them is installed in a vertical posture when viewed individually, it is possible to increase the frequency and the transport speed as described above, and at the same time, stable vibration mode and stable transport of transported items. It is considered that the aspect can be realized.

本発明において、基準質量体11の質量M11は上側質量体12Aと下側質量体12Bの質量の和M12A+M12Bとほぼ同等(例えば、両者の質量の差が両者の中間値の10%以下)か、或いは、その質量の和M12A+M12Bよりも大きいことが安定した振動態様を得る上で好ましい。ただし、主要振動系が基準質量体11を介して弾性支持されていること、すなわち、基準振動体11が防振ばね13a,13b,13ah,13bhに接続されている構造、並びに、搬送路が上側質量体12A(下側質量体12Bでもよい。)に設けられることを考慮すると、主要振動系の安定性や搬送路の振幅を大きくするためには、基準質量体11の質量M11は基本的には大きいほど好ましく、特に、上記和M12A+M12Bの2倍以上であることが望ましい。また、上側質量体12Aの質量M12Aと下側質量体12Bの質量M12Bはほぼ同等であることが好ましいが、搬送路12tで必要とされる振幅、下方にある防振構造の影響などを考慮すると、上記の数値を見ればわかるように、両者の質量比が2倍程度であれば大きな問題はない。上記第1の実施形態の試作例では、搬送路12tを上側質量体12Aに設けるとともに、M12AをM12Bよりも大きくし、M12Bの約2倍としている。 In the present invention, the mass M 11 of the reference mass 11 is substantially equal to the sum M 12A + M 12B of the mass of the upper mass 12A and the lower mass 12B (for example, the difference between the masses is 10% of the intermediate value between them) Or less than the sum M 12A + M 12B of the mass is preferable for obtaining a stable vibration mode. However, the main vibration system is elastically supported via the reference mass body 11, that is, the structure in which the reference vibration body 11 is connected to the anti-vibration springs 13a, 13b, 13ah, 13bh, and the conveyance path is on the upper side. In consideration of being provided in the mass body 12A (or the lower mass body 12B), the mass M11 of the reference mass body 11 is fundamental in order to increase the stability of the main vibration system and the amplitude of the conveyance path. Is preferably as large as possible, and is particularly preferably at least twice the sum M 12A + M 12B . Further, it is preferable mass M 12B of mass M 12A and the bottom mass body 12B of the upper mass 12A is almost equal, the amplitude required in the transport path 12t, the influence of the vibration damping system in the lower Considering this, as can be seen from the above numerical values, there is no significant problem as long as the mass ratio between the two is about twice. Above the prototype of the first embodiment, provided with a conveying path 12t in the upper mass 12A, the M 12A is larger than M 12B, is about twice the M 12B.

[第6実施形態]
次に、図14乃至図20を参照して、本発明に係る振動式搬送装置の第6実施形態について説明する。この第6実施形態の装置30は、上記第5実施形態をより具体化した装置全体に適用した例を示すものである。ここで、第6実施形態の第5実施形態に対応する各構成部分には第5実施形態と同一符号を付し、実質的に第5実施形態と同様の構成については説明を省略する。本実施形態では、先の各実施形態と基本的に同様の基準質量体11、上側質量体12A及び下側質量体12Bを有し、第3実施形態と同様に取り付けられた防振ばね13a,13bを有する。本実施形態では、第3実施形態と同様に、搬送方向の前後において基準質量体11に対する防振ばね13a,13bの取付位置が基準質量体11に対する上下振動ばねや圧電駆動体の結合位置に対して同じ側(図示例では搬送方向の前方側)に配置されることで、第3実施形態において説明した作用効果が特に顕著に得られることが確認されている。また、本実施形態では、第5実施形態と同様の上側振動ばね34a,34b及び下側振動ばね35a,35bを備えている。ただし、基台2は先の実施形態とは異なり、水平防振ばね13ah、13bhを介した上側支持台2Aと下側支持台2Bの2体構造を備えず、一体に構成されている。また、図14の手前側に示すように、回収側搬送ユニット40が付加された構造を備えている。この回収側搬送ユニット40は、回収側接続ブロック42Ad上に設置される図示しない回収側搬送ブロックに形成された回収路42tに沿って、図15に示す搬送ブロック12Auに形成された搬送路12tの搬送の向きFとは逆向きの回収の向きBに搬送物を搬送することができるように構成される。
[Sixth Embodiment]
Next, with reference to FIG. 14 thru | or FIG. 20, 6th Embodiment of the vibration type conveying apparatus which concerns on this invention is described. The device 30 according to the sixth embodiment shows an example in which the device according to the fifth embodiment is applied to the entire device. Here, components corresponding to the fifth embodiment of the sixth embodiment are denoted by the same reference numerals as those of the fifth embodiment, and description of substantially the same configurations as those of the fifth embodiment will be omitted. In the present embodiment, a vibration isolating spring 13a having a reference mass body 11, an upper mass body 12A, and a lower mass body 12B that are basically the same as those of the previous embodiments and attached in the same manner as in the third embodiment. 13b. In the present embodiment, as in the third embodiment, the mounting positions of the anti-vibration springs 13a and 13b with respect to the reference mass body 11 before and after the conveyance direction are relative to the coupling position of the vertical vibration spring and the piezoelectric drive body with respect to the reference mass body 11. It is confirmed that the operational effects described in the third embodiment can be obtained particularly remarkably by being arranged on the same side (the front side in the transport direction in the illustrated example). In the present embodiment, upper vibration springs 34a and 34b and lower vibration springs 35a and 35b similar to those in the fifth embodiment are provided. However, unlike the previous embodiment, the base 2 does not include the two-body structure of the upper support base 2A and the lower support base 2B via the horizontal anti-vibration springs 13ah and 13bh, and is configured integrally. Further, as shown in the front side of FIG. 14, a collection side transport unit 40 is added. This collection side conveyance unit 40 is arranged along a collection path 42t formed in a collection side conveyance block (not shown) installed on the collection side connection block 42Ad, along the conveyance path 12t formed in the conveyance block 12Au shown in FIG. The transported object can be transported in the collection direction B opposite to the transport direction F.

図14は、上記回収側搬送ユニット40を含むが、搬送ブロック12Auを取り除いた装置構造を示し、図15は、搬送ブロック12Auを含むが、上記回収側搬送ユニット40を取り除いた装置構造を示している。回収側搬送ユニット40は、基台2の側面に取付固定された基台ブロック42と、この基台ブロック42に下端が搬送方向Dの前後にそれぞれ取り付けられた板状の防振ばね43a,43bとを有する。防振ばね43a,43bの上端は、上下方向に延長された形状の接続部材44a,44bの上下方向の中間位置にある外側面部にそれぞれ取り付けられている。接続部材44a,44bの上端にある外側面部には板状の増幅ばね47a,47bの下端が接続され、この増幅ばね47a,47bの上端は搬送方向Dの前後においてそれぞれ上記接続ブロック42Adに接続されている。   FIG. 14 shows the apparatus structure including the recovery side transport unit 40 but without the transport block 12Au, and FIG. 15 shows the apparatus structure including the transport block 12Au but without the recovery side transport unit 40. Yes. The collection-side transport unit 40 includes a base block 42 attached and fixed to the side surface of the base 2, and plate-shaped anti-vibration springs 43 a and 43 b each having a lower end attached to the base block 42 before and after the transport direction D. And have. The upper ends of the anti-vibration springs 43a and 43b are respectively attached to outer surface portions at intermediate positions in the vertical direction of the connecting members 44a and 44b having a shape extending in the vertical direction. The lower end portions of the plate-like amplification springs 47a and 47b are connected to the outer surface portions at the upper ends of the connection members 44a and 44b. ing.

また、上記接続部材44a,44bの搬送方向Dの前後内側には慣性質量体41が配置されている。この慣性質量体41の前端及び後端と、上記接続部材44a,44bの下端の内側面との間には、板状の圧電駆動体46a,46bが接続されている。これらの圧電駆動体46a,46bは、それぞれ、弾性基板上に積層された圧電体を有し、図示しない駆動回路から供給される交番電圧に応じて相互に搬送方向Dに見て同位相となるように撓み変形し、その結果、上記接続部材44a,44b及び上記増幅ばね47a,47bを介して上記回収側接続ブロック42Adを搬送方向Dに加振する。ここで、回収側搬送ブロック12Auに形成された搬送路12tにおいて搬送物が整列されたり選別されたりする過程で、既定の姿勢に整列されなかったものや不良品などといった何らかの理由でそのまま搬送されていくべきではない搬送物は、搬送路12tの形状や気流吹付手段や機械的動作機構などの公知の排除手段によって搬送路12t上から排除され、側方に配置された上記回収路42tに回収される。そして、回収された搬送物は、上記圧電駆動体46a,46bによって生ずる振動に基づき、図示しない回収側搬送ブロックに形成された回収路42t上を上記搬送の向きFとは逆向きの回収の向きBに搬送され、搬送路12tの上流側に戻されるか、或いは、廃棄される。なお、図16及び図17に示す側板39及び49は、それぞれ主振動系及び回収側搬送ユニットを幅方向両側から覆うカバーである。   An inertia mass body 41 is disposed on the front and rear inner sides of the connection members 44a and 44b in the transport direction D. Between the front end and the rear end of the inertia mass body 41 and the inner surfaces of the lower ends of the connection members 44a and 44b, plate-like piezoelectric drive bodies 46a and 46b are connected. These piezoelectric driving bodies 46a and 46b each have a piezoelectric body laminated on an elastic substrate, and are in phase with each other when viewed in the transport direction D according to an alternating voltage supplied from a driving circuit (not shown). As a result, the recovery side connection block 42Ad is vibrated in the transport direction D through the connection members 44a and 44b and the amplification springs 47a and 47b. Here, in the process in which the transported objects are aligned or sorted in the transport path 12t formed in the collection-side transport block 12Au, the transported objects are transported as they are for some reason such as those that are not aligned in a predetermined posture or defective products. The transported material that should not go is removed from the transport path 12t by a well-known exclusion means such as the shape of the transport path 12t, an airflow spraying means, or a mechanical operation mechanism, and is recovered in the recovery path 42t disposed on the side. The Then, the recovered transported object is recovered in a direction opposite to the transport direction F on a recovery path 42t formed in a recovery-side transport block (not shown) based on vibrations generated by the piezoelectric drivers 46a and 46b. It is transported to B and returned to the upstream side of the transport path 12t or discarded. Note that the side plates 39 and 49 shown in FIGS. 16 and 17 are covers that cover the main vibration system and the recovery-side transport unit from both sides in the width direction, respectively.

図15に示すように、本実施形態は、図13に示すものと同じ主要振動系を有するとともに、搬送方向Dの前後で基準質量体11を支持する、搬送方向Dに向いた板面を備える板状の防振ばね13a,13bを備えている。ここで、防振ばね13a,13bは、基準質量体11の前方部と後方部において、ボルト19a,19b及びスペーサ19c,19dによりそれぞれ基準質量体11に対して取り付けられている。このとき、防振ばね13aは圧電駆動体16aに対して搬送方向Dの前方位置においてスペーサ19cを介して基準質量体11の前方部に接続され、防振ばね13bも圧電駆動体16bに対して搬送方向Dの前方位置においてスペーサ19dを介して基準質量体11の後方部に接続されている。スペーサ19cと19dは搬送方向Dに見て同じ厚みを有し、これにより、圧電駆動体16aと防振ばね13aの上端部の間隔と、圧電駆動体16bと防振ばね13bの上端部の間隔は等しくなっている。   As shown in FIG. 15, the present embodiment includes the same main vibration system as that shown in FIG. 13, and a plate surface facing the transport direction D that supports the reference mass body 11 before and after the transport direction D. Plate-shaped vibration-proof springs 13a and 13b are provided. Here, the anti-vibration springs 13a and 13b are attached to the reference mass body 11 by bolts 19a and 19b and spacers 19c and 19d, respectively, at the front and rear portions of the reference mass body 11. At this time, the vibration isolating spring 13a is connected to the front portion of the reference mass body 11 via the spacer 19c at the front position in the transport direction D with respect to the piezoelectric driving body 16a, and the vibration isolating spring 13b is also connected to the piezoelectric driving body 16b. It is connected to the rear portion of the reference mass body 11 via a spacer 19d at a front position in the transport direction D. The spacers 19c and 19d have the same thickness as viewed in the transport direction D, and thereby the distance between the upper end portions of the piezoelectric drive body 16a and the vibration isolation spring 13a and the distance between the upper end portions of the piezoelectric drive body 16b and the vibration isolation spring 13b. Are equal.

本実施形態において、基準質量体11、上側質量体12A及び下側質量体12Bの重心位置11g、12Ag、12Bgは、静止状態において、搬送方向Dの同じ位置にあることが好ましい。すなわち、上記重心位置11g、12Ag及び12Bgは同一の垂直線上に全て配置されることが好ましい。しかしながら、実際には、搬送路12tを備えた上側質量体12Aは、振動式搬送装置30の設置場所の条件や、搬送物の搬送経路の前後の状況に応じて、種々の形状、構造とすることが要求される。特に、上側質量体12Aの搬送方向Dの前後のオーバーハング(張り出し長さ)は、前後の装置構成に応じて設定される。図15に示す装置30では、上側質量体12Aの搬送ブロック12Auは搬送方向Dの後方よりも前方に大きく張り出し、その重心位置12Agは、基準質量体11の重心位置11gよりも搬送方向Dの前方に配置される。そして、上側質量体12Aの重心位置12Agの基準質量体11の重心位置11gからの搬送方向Dの位置ずれに対応して、基準質量体11が上側質量体12Aと下側質量体12Bから受ける反力に起因する上下方向の振動を低減するために、下側質量体12Bの重心位置12Bgを、上記重心位置12Agと同様に、基準質量体11の重心位置11gよりも搬送方向Dの前方に配置している。この結果、主要振動系の全体の重心位置は、基準質量体11の重心位置11gよりもやや搬送方向Dの前方に配置される。このとき、防振ばね13aと13bの取付位置は、主要振動系の全体の重心位置(図示せず)に対して搬送方向Dに見て均等な距離にあることが好ましい。図示例では、防振ばね13aの取付位置と防振ばね13bの取付位置の中間点と、主要振動系の重心位置とが搬送方向Dに見て同じ位置に配置されるように構成されている。   In the present embodiment, the center-of-gravity positions 11g, 12Ag, and 12Bg of the reference mass body 11, the upper mass body 12A, and the lower mass body 12B are preferably at the same position in the transport direction D in a stationary state. That is, the center-of-gravity positions 11g, 12Ag, and 12Bg are all preferably arranged on the same vertical line. However, in actuality, the upper mass body 12A provided with the transport path 12t has various shapes and structures according to the conditions of the installation location of the vibration type transport device 30 and the situation before and after the transport path of the transported object. Is required. In particular, the overhang (overhang length) before and after the upper mass body 12A in the transport direction D is set according to the front and rear apparatus configurations. In the apparatus 30 shown in FIG. 15, the transport block 12Au of the upper mass body 12A projects farther forward than the rear in the transport direction D, and its center-of-gravity position 12Ag is ahead of the center-of-gravity position 11g of the reference mass 11 in the transport direction D. Placed in. Then, in response to the positional deviation in the transport direction D from the gravity center position 11g of the reference mass body 11 of the gravity center position 12Ag of the upper mass body 12A, the reference mass body 11 receives from the upper mass body 12A and the lower mass body 12B. In order to reduce the vertical vibration caused by the force, the gravity center position 12Bg of the lower mass body 12B is arranged in front of the conveyance position D with respect to the gravity center position 11g of the reference mass body 11 in the same manner as the gravity center position 12Ag. doing. As a result, the overall center of gravity position of the main vibration system is arranged slightly in front of the center of gravity position 11 g of the reference mass body 11 in the transport direction D. At this time, it is preferable that the mounting positions of the anti-vibration springs 13a and 13b are at an equal distance when viewed in the transport direction D with respect to the center of gravity position (not shown) of the entire main vibration system. In the illustrated example, the intermediate point between the attachment position of the vibration isolation spring 13a and the attachment position of the vibration isolation spring 13b and the center of gravity position of the main vibration system are arranged at the same position when viewed in the transport direction D. .

図20は、本実施形態の上側振動ばね34aを構成する圧電駆動体16aの上側圧電駆動部16Au及び上側増幅ばね37aの拡大左側面図である。圧電駆動体36aは、第1実施形態と同様に、弾性基板36sと、この弾性基板36sに積層された圧電体36pとを有し、弾性基板36sに設けられた側部接続構造により幅方向両側で基準質量体11の前方部に固定される。また、圧電体36pは、幅方向に見て側部接続構造の間に配置されるとともに、側部接続構造の高さより上下に張り出し、上側圧電駆動部36auと下側圧電駆動部36ad(図示せず)にわたって一体に形成されている。弾性基板36sは、圧電体36pが形成されている領域からさらに上下にそれぞれ延出した、上部接続構造36su及び下部接続構造36sd(図示せず)が設けられる。なお、下側圧電駆動部36adは上側圧電駆動部36auに対して幅方向両側の側部接続構造を結ぶ幅方向の水平線36oに対して上下に対称に構成され、また、圧電駆動体36bは圧電駆動体36aと同一に構成されているので、それぞれについては、以下の説明に関し省略する。   FIG. 20 is an enlarged left side view of the upper piezoelectric drive portion 16Au of the piezoelectric drive body 16a and the upper amplification spring 37a constituting the upper vibration spring 34a of the present embodiment. Similarly to the first embodiment, the piezoelectric driving body 36a includes an elastic substrate 36s and a piezoelectric body 36p laminated on the elastic substrate 36s, and both sides in the width direction are formed by side connection structures provided on the elastic substrate 36s. Is fixed to the front portion of the reference mass body 11. The piezoelectric body 36p is disposed between the side connection structures when viewed in the width direction, and projects upward and downward from the height of the side connection structure, and an upper piezoelectric drive section 36au and a lower piezoelectric drive section 36ad (not shown). Z). The elastic substrate 36s is provided with an upper connection structure 36su and a lower connection structure 36sd (not shown) that extend further upward and downward from the region where the piezoelectric body 36p is formed. The lower piezoelectric drive unit 36ad is configured to be vertically symmetrical with respect to the horizontal horizontal line 36o connecting the side connection structures on both sides in the width direction with respect to the upper piezoelectric drive unit 36au, and the piezoelectric drive unit 36b is piezoelectric. Since the configuration is the same as that of the driving body 36a, each of them will be omitted with respect to the following description.

本実施形態の上側圧電駆動部36auは、スペーサ39sを介して上側増幅ばね37aにボルト39t等により接続固定される。このとき、上側圧電駆動部36auの上側接続構造36suに対して、上側増幅ばね37aの下端はスペーサ39sを介して搬送方向Dの後方から重ねて固定される。これにより、圧電駆動体36aの厚み方向の中心線36xと、上側増幅ばね37aの厚み方向の中心線37xとは、搬送方向Dに見てずれた位置に配置されるように構成される。この中心線36xと37xのずれにより、図13と同様に、上側質量体12A(接続ブロック12Ad)に対する上側振動ばね34aの振動角θが設定される。本実施形態では、スペーサ39sの有無や厚みを変えることによって上記振動角θを調整することができる。   The upper piezoelectric drive unit 36au of the present embodiment is connected and fixed to the upper amplification spring 37a by a bolt 39t or the like via a spacer 39s. At this time, with respect to the upper connection structure 36su of the upper piezoelectric drive unit 36au, the lower end of the upper amplification spring 37a is overlapped and fixed from the rear in the transport direction D via the spacer 39s. Thereby, the center line 36x in the thickness direction of the piezoelectric driving body 36a and the center line 37x in the thickness direction of the upper amplification spring 37a are arranged so as to be shifted from each other when viewed in the transport direction D. Due to the deviation between the center lines 36x and 37x, the vibration angle θ of the upper vibration spring 34a with respect to the upper mass body 12A (connection block 12Ad) is set as in FIG. In the present embodiment, the vibration angle θ can be adjusted by changing the presence or absence and thickness of the spacer 39s.

図20の右側の図に示すように、全体に均一な厚みtを有する弾性基板36s′を用いる場合には、圧電駆動体36の中心線36xと上側増幅ばね37aの中心線37xとの間隔は0.5(t+t1)+tsとなる。ここで、tは上側増幅ばね37aの厚み、tsはスペーサ39sの厚みである。このとき、実質的な振動角θ′は、水平線36oと上側増幅ばね37aの上側質量体12Aに対する接続点とを結ぶ線分の垂線に対する搬送方向Dに見た傾斜角となる。しかし、本実施形態のように、圧電駆動体36aの駆動周波数が高周波数化すると、弾性基板36sの厚みtが大きくなるため、振動角θ′が大きくなりすぎ、その結果、上側質量体12Aの振動の上下方向成分が増大して、搬送路12t上の搬送物が上下方向に踊り、搬送物の搬送姿勢や搬送速度のばらつき、搬送速度の全般的な低下を招く虞がある。また、一般に、振動周波数が高くなると、低い振動周波数の場合よりも振動角θを小さくした方が振動系の安定性及び搬送物の搬送姿勢の安定性が高くなり、搬送効率が向上するので、結果として、搬送速度も増加する。そこで、本実施形態では、弾性基板36sの上側接続構造36suの厚み範囲を搬送方向Dの前方へずらし、振動角θを小さく設定することができるようにしている。図示例では、上側接続構造36suの搬送方向Dの後方側にある表面が圧電体36pが積層されている部分よりも(t−t)だけ搬送方向Dの前方側に配置されるように段差状に構成して、上側接続構造36suの厚みtを上記厚みtより小さくしている。これにより、中心線36xと37xの搬送方向Dのずれ量は(t−0.5t+0.5t+ts)となり、上記間隔0.5(t+t)+tsよりも(t−t)だけ小さくなる。この場合においても、圧電駆動体36aの圧電体36pが積層された部分と上側接続構造36suとの境界部分の断面形状(図示例では搬送方向Dの後方側(図示左側)の表面)は、上側接続構造36suに向けて徐々に厚みが変化(減少)して平坦な表面に収束するように凹曲線状の輪郭を有することが好ましい。 As shown on the right side of FIG. 20, in the case of using the elastic substrate 36 s' having a uniform thickness t 0 throughout, the distance between the center line 37x centerline 36x and the upper amplification spring 37a of the piezoelectric driving body 36 Becomes 0.5 (t 0 + t 1 ) + ts. Here, t 1 is the thickness of the upper amplification springs 37a, ts is the thickness of the spacer 39s. At this time, the substantial vibration angle θ ′ is an inclination angle as viewed in the transport direction D with respect to a perpendicular line connecting the horizontal line 36o and the connection point of the upper amplification spring 37a to the upper mass body 12A. However, as in this embodiment, when the drive frequency of the piezoelectric driving body 36a is higher frequency, since the thickness t 0 of the elastic substrate 36s increases, the vibration angle theta 'becomes too large, as a result, the upper mass 12A The vertical component of the vibration increases, and the conveyed product on the conveying path 12t dances in the vertical direction, leading to variations in the conveying posture and conveying speed of the conveyed item, and a general decrease in conveying speed. In general, when the vibration frequency increases, the vibration system stability and the stability of the transport posture of the transported object become higher when the vibration angle θ is smaller than when the vibration frequency is low, and the transport efficiency is improved. As a result, the conveyance speed also increases. Therefore, in the present embodiment, the thickness range of the upper connection structure 36su of the elastic substrate 36s is shifted forward in the transport direction D so that the vibration angle θ can be set small. In the illustrated example, the surface on the rear side in the transport direction D of the upper connection structure 36su is disposed on the front side in the transport direction D by (t 0 -t 2 ) from the portion where the piezoelectric bodies 36p are stacked. constructed stepwise, the thickness t 2 of the upper connecting structure 36su are smaller than the thickness t 0. Thus, the displacement amount in the conveying direction D of the center line 36x and 37x (t 2 -0.5t 0 + 0.5t 1 + ts) , and the above distance 0.5 (t 0 + t 1) + than ts (t 0 - It becomes smaller by t 2 ). Also in this case, the cross-sectional shape (the surface on the rear side (left side in the drawing) in the conveyance direction D in the illustrated example) of the boundary portion between the portion where the piezoelectric body 36p of the piezoelectric driving body 36a is laminated and the upper connection structure 36su is the upper side. It is preferable to have a concave contour so that the thickness gradually changes (decreases) toward the connection structure 36su and converges on a flat surface.

本実施形態では、第5実施形態と同様に、上側増幅ばね37a,37b及び下側増幅ばね38a,38bは、上側圧電駆動部36au,36buの上側接続構造及び下側圧電駆動部36ad,36bdの下側接続構造に対して搬送方向Dの後方側に重ねた状態で接続固定される。このようにすると、スペーサを介在させるか否かに拘わらず、或る程度の振動角を得ることができる。また、上側圧電駆動部36au,36buの上側接続構造及び下側圧電駆動部36ad,36bdの下側接続構造を圧電体36pが積層された部分より薄く構成することにより、当該上側接続構造の下部及び下側接続構造の上部(圧電体36pが積層された部分の側においてボルトや座金等により固定されていない部分)を上側増幅ばね37a,37b及び下側増幅ばね38a,38bとともに圧電体36pにより生ずる撓み変形の増幅作用を果たす部分として機能するように構成できるため、上側増幅ばね37a,37b及び下側増幅ばね38a,38bの長さを短く構成し、結果として装置全体の高さを低減することが可能になる。   In the present embodiment, as in the fifth embodiment, the upper amplification springs 37a and 37b and the lower amplification springs 38a and 38b are connected to the upper connection structure of the upper piezoelectric drive portions 36au and 36bu and the lower piezoelectric drive portions 36ad and 36bd. It is connected and fixed in a state where it is stacked on the rear side in the transport direction D with respect to the lower connection structure. In this way, a certain vibration angle can be obtained regardless of whether or not the spacer is interposed. Further, by configuring the upper connection structure of the upper piezoelectric drive portions 36au and 36bu and the lower connection structure of the lower piezoelectric drive portions 36ad and 36bd to be thinner than the portion where the piezoelectric bodies 36p are laminated, The upper part of the lower connection structure (the part not fixed by bolts, washers or the like on the side where the piezoelectric body 36p is laminated) is generated by the piezoelectric body 36p together with the upper amplification springs 37a and 37b and the lower amplification springs 38a and 38b. Since it can be configured to function as a part that performs the amplification action of the bending deformation, the length of the upper amplification springs 37a and 37b and the lower amplification springs 38a and 38b is made shorter, and as a result, the height of the entire apparatus is reduced. Is possible.

本実施形態の装置30を試作し、実際に駆動することにより、搬送ブロック12Auの振動状態の測定と、搬送物の搬送状態の観測を行った。試作装置は、図15に示す上側質量体12Aの質量が620g、重心位置12Agの高さが110mm、基準質量体11の質量が1230g、重心位置11gの高さが67mm、下側質量体12Bの質量が720g、重心位置12Bgの高さが27.5mmであり、また、基準質量体11の重心位置11gに対して、上側質量体12Aの重心位置12Agは搬送の向きFの側に9.8mmずれた位置にあり、下側質量体12Bの重心位置12Bgは搬送の向きFの側に1.5mmずれた位置にあった。上側振動ばね34a,34b及び下側振動ばね35a,35bはいずれも3.24度を基準とし、搬送路12tに沿って均一な搬送速度が得られるように調整した。この試作装置を共振周波数のやや上の343.4Hzで稼働させ、搬送路12tを備えた搬送ブロック12Auの搬送方向Dの振幅(実際には搬送路12tの出口端12toの振幅)をレーザ変位計により測定して0.105mmとなるように設定し、長さが0.6mm、高さ及び幅が0.3mmの直方体状の電子部品を搬送物として搬送した。このとき、搬送ブロック12Auの図示P〜Pの各部の上下方向の振幅と、図示P〜Pの各部の幅方向の振幅をレーザ変位計により測定した。その結果、本試作装置では、搬送速度3.8m/分、上下方向の振幅の平均値は0.0085mm、幅方向の振幅の平均値は0.0083mmとなり、搬送路12tの全長にわたり均一な搬送速度が得られるとともに、搬送物のとび跳ねや姿勢変化も少なかった。また、搬送物がスムーズに搬送されていく範囲で駆動電圧を上げると、最大で搬送速度は10m/分まで上昇し、このときの搬送方向の振幅は0.26mm、上下方向の振幅の平均値は0.02mm、幅方向の振幅の平均値は0.012mmであり、問題は生じなかった。特に、搬送速度を高めても搬送物の姿勢は安定し、上記各部P〜Pの振幅のばらつきも少なく、搬送路12tに沿った搬送速度の均一性も十分であった。 By prototyping the apparatus 30 of this embodiment and actually driving it, the vibration state of the transport block 12Au and the transport state of the transported object were observed. In the prototype device, the mass of the upper mass body 12A shown in FIG. 15 is 620 g, the height of the gravity center position 12Ag is 110 mm, the mass of the reference mass body 11 is 1230 g, the height of the gravity center position 11g is 67 mm, and the lower mass body 12B The mass is 720 g, the height of the gravity center position 12Bg is 27.5 mm, and the gravity center position 12Ag of the upper mass body 12A is 9.8 mm on the side of the conveyance direction F with respect to the gravity center position 11g of the reference mass body 11. The center of gravity 12Bg of the lower mass body 12B was at a position shifted by 1.5 mm toward the conveyance direction F. The upper vibration springs 34a and 34b and the lower vibration springs 35a and 35b are all adjusted with reference to 3.24 degrees so that a uniform conveyance speed is obtained along the conveyance path 12t. This prototype is operated at 343.4 Hz slightly above the resonance frequency, and the amplitude in the transport direction D of the transport block 12Au provided with the transport path 12t (actually the amplitude of the exit end 12to of the transport path 12t) is measured by a laser displacement meter. A rectangular parallelepiped electronic component having a length of 0.6 mm, a height and a width of 0.3 mm was transported as a transported object. At this time, the vertical amplitude of each part shown P 1 to P 4 of the transfer block 12Au, and the amplitude of the width direction of each part shown P 5 to P 7 was measured by a laser displacement meter. As a result, in this prototype device, the conveyance speed is 3.8 m / min, the average amplitude in the vertical direction is 0.0085 mm, the average amplitude in the width direction is 0.0083 mm, and uniform conveyance is performed over the entire length of the conveyance path 12t. The speed was obtained, and the jumping of the transported object and the posture change were few. Also, when the drive voltage is increased within the range in which the conveyed product is smoothly conveyed, the conveyance speed is increased up to 10 m / min. The amplitude in the conveyance direction at this time is 0.26 mm, and the average value of the amplitude in the vertical direction 0.02 mm and the average amplitude in the width direction was 0.012 mm, and no problem occurred. In particular, even if the transport speed was increased, the posture of the transported object was stable, there was little variation in the amplitudes of the respective parts P 1 to P 7 , and the uniformity of the transport speed along the transport path 12t was sufficient.

なお、本発明の振動式搬送装置は、上述の図示例に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記第2実施形態〜第6実施形態ではそれぞれ特徴的な構成(連結部におけるスペーサの有無、連結部の有無、振動ばね全体の傾斜の有無、振動ばねの段差連結構造の有無、圧電駆動部と増幅ばねの一体構造と別体構造、圧電駆動体と防振ばねの位置関係など)で第1実施形態を置換した構成を有するが、各実施形態間でそれぞれの特徴点を相互に任意に置換して採用することにより、容易に他の実施形態を実現することができる。   Note that the vibratory conveyance device of the present invention is not limited to the illustrated examples described above, and it is needless to say that various changes can be made without departing from the spirit of the present invention. For example, each of the second to sixth embodiments has a characteristic configuration (the presence or absence of a spacer in the connecting portion, the presence or absence of the connecting portion, the presence or absence of the inclination of the entire vibration spring, the presence or absence of a step connection structure of the vibration spring, and piezoelectric drive. The structure of the first embodiment is replaced with an integral structure and a separate structure of the amplifying spring and a separate structure, the positional relationship between the piezoelectric drive body and the vibration-proof spring, etc., but each feature point between the embodiments is arbitrarily arbitrary. Other embodiments can be easily realized by substituting.

10…振動式搬送装置、11…基準質量体、11a…前方取付位置、11b…後方取付位置、11aa…前方部、11ab…中間部、11bb…後方部、12A…上側質量体、12Au…搬送ブロック、12Ad…接続ブロック、12B…下側質量体、12c…搬送路、12AaS,12AbS…上側連結部、12BaS,12BbS…下側連結部、12AaC,12AbC,12BaC,12BbC…連結板、13a,13b…防振ばね、14a,14b…上側振動ばね、15a,15b…下側振動ばね、16a,16b…圧電駆動体、16au,16bu…上側圧電駆動部、16ad,16bd…下側圧電駆動部、16s…弾性基板、16p…圧電体、16t…側部接続構造、17a,17b…上側増幅ばね、18a,18b…下側増幅ばね、19a,19b…ボルト、2…基台(設置面)、2A…上側支持台、2B…下側支持台、13ah,13bh…水平防振ばね、D…搬送方向、F…搬送の向き、BVs,BVt…振動方向、θ、θ′、θ″…振動角(傾斜角)40…回収側搬送ユニット DESCRIPTION OF SYMBOLS 10 ... Vibration type conveying apparatus, 11 ... Reference | standard mass body, 11a ... Front mounting position, 11b ... Back mounting position, 11aa ... Front part, 11ab ... Middle part, 11bb ... Back part, 12A ... Upper mass body, 12Au ... Transport block , 12Ad ... connection block, 12B ... lower mass body, 12c ... transport path, 12AaS, 12AbS ... upper connection part, 12BaS, 12BbS ... lower connection part, 12AaC, 12AbC, 12BaC, 12BbC ... connection plate, 13a, 13b ... Anti-vibration springs, 14a, 14b ... upper vibration springs, 15a, 15b ... lower vibration springs, 16a, 16b ... piezoelectric drive bodies, 16au, 16bu ... upper piezoelectric drive parts, 16ad, 16bd ... lower piezoelectric drive parts, 16s ... Elastic substrate, 16p ... piezoelectric body, 16t ... side connection structure, 17a, 17b ... upper amplification spring, 18a, 18b ... lower amplification 19a, 19b ... bolts, 2 ... base (installation surface), 2A ... upper support, 2B ... lower support, 13ah, 13bh ... horizontal anti-vibration spring, D ... transport direction, F ... transport direction, BVs , BVt: Vibration direction, θ, θ ′, θ ″: Vibration angle (tilt angle) 40: Recovery side transport unit

Claims (14)

搬送方向の前後位置にそれぞれ設けられ、前記搬送方向に向いた板面を備えた板ばねからなる一対の防振ばねと、
前記一対の防振ばねによって前記搬送方向の前後位置で支持された基準質量体と、
前記基準質量体の上方に配置された上側質量体と、
前記基準質量体の下方に配置された下側質量体と、
前記基準質量体と前記上側質量体とを前記搬送方向の前後位置でそれぞれ弾性接続する、前記搬送方向に向いた板ばね構造を含む一対の上側振動ばねと、
前記基準質量体と前記下側質量体とを前記搬送方向の前後位置でそれぞれ弾性接続する、前記搬送方向に向いた板ばね構造を含む一対の下側振動ばねと、
前記基準質量体と前記上側質量体との間、及び、前記基準質量体と前記下側質量体との間の双方に加振力を与え、前記搬送方向に同位相の振動を生じさせる同相加振手段と、
を具備し、
前記上側質量体と前記下側質量体の少なくとも一方に搬送物を搬送する搬送路が設けられ、
前記上側振動ばねと前記下側振動ばねは、相互に上下方向の逆側に傾斜する振動角を有し、前記同相加振手段の前記加振力により、前記上側質量体と前記下側質量体が相互に上下方向の逆側に傾斜した方向に振動する、
ことを特徴とする振動式搬送装置。
A pair of anti-vibration springs, each of which is provided at a front and rear position in the transport direction, and is composed of a leaf spring having a plate surface facing the transport direction;
A reference mass body supported at the front and rear positions in the transport direction by the pair of vibration-proof springs;
An upper mass disposed above the reference mass;
A lower mass disposed below the reference mass;
A pair of upper vibration springs including a leaf spring structure facing in the transport direction, which elastically connects the reference mass body and the upper mass body at front and rear positions in the transport direction;
A pair of lower vibration springs including a leaf spring structure facing the transport direction, which elastically connects the reference mass body and the lower mass body at front and rear positions in the transport direction;
An in-phase that generates an in-phase vibration in the transport direction by applying an excitation force between the reference mass body and the upper mass body and between the reference mass body and the lower mass body. Vibration means;
Comprising
A conveyance path for conveying a conveyance object is provided in at least one of the upper mass body and the lower mass body,
The upper oscillating spring and the lower oscillating spring have vibration angles that are inclined in opposite directions in the vertical direction, and the upper mass body and the lower mass are generated by the excitation force of the in-phase excitation means. The body vibrates in the direction inclined to the opposite sides of the vertical direction,
A vibratory conveying device characterized by the above.
前記上側振動ばねは複数のばね要素を有し、前記基準質量体の側の前記ばね要素に対して前記上側質量体の側の前記ばね要素が前記搬送方向の一方側に配置されたばね構造を有し、
前記下側振動ばねは複数のばね要素を有し、前記基準質量体の側の前記ばね要素に対して前記下側質量体の側の前記ばね要素が前記搬送方向の前記一方側に配置されたばね構造を有する、
ことを特徴とする請求項1に記載の振動式搬送装置。
The upper vibration spring has a plurality of spring elements, and has a spring structure in which the spring element on the upper mass body side is arranged on one side in the transport direction with respect to the spring element on the reference mass body side. And
The lower vibration spring has a plurality of spring elements, and the spring element on the lower mass body side is arranged on the one side in the transport direction with respect to the spring element on the reference mass body side. Having a structure,
The vibration type conveying apparatus according to claim 1.
前記上側振動ばねは、上側振動ばね本体と、該上側振動ばね本体の上端部を前記上側質量体に対して前記搬送方向に連結する上側連結部とを有し、該上側連結部には、前記基準質量体の側のばね要素に相当する前記上側振動ばね本体よりも前記搬送方向の前記一方側に配置された、前記上側質量体の側のばね要素に相当する上側ばね要素が設けられ、該上側ばね要素は、前記上側振動ばね本体に対して前記上側質量体が前記搬送方向及び垂直方向と直交する軸線周りに回動可能な態様で弾性変形し、
前記下側振動ばねは、下側振動ばね本体と、該下側振動ばね本体の下端部を前記下側質量体に対して前記搬送方向に連結する下側連結部とを有し、該下側連結部には、前記基準質量体の側のばね要素に相当する前記下側振動ばね本体よりも前記搬送方向の前記一方側に配置された、前記下側質量体の側のばね要素に相当する下側ばね要素が設けられ、該下側ばね要素は、前記下側振動ばね本体に対して前記下側質量体が前記搬送方向及び垂直方向と直交する軸線周りに回動可能な態様で弾性変形する、
ことを特徴とする請求項2に記載の振動式搬送装置。
The upper vibrating spring, an upper vibration spring body, and an upper connecting portion which connects to the transport direction of the upper end of the upper vibrating spring body with respect to the upper mass, the upper-side connecting portion, wherein than the upper oscillating spring body corresponding to the spring element on the side of the reference mass, the disposed in the one side in the transport direction, the upper spring element is provided which corresponds to the spring element on the side of the upper mass, The upper spring element is elastically deformed with respect to the upper vibration spring main body in such a manner that the upper mass body is rotatable around an axis perpendicular to the transport direction and the vertical direction,
The lower vibration spring includes a lower vibration spring main body, and a lower connection portion that connects a lower end portion of the lower vibration spring main body to the lower mass body in the transport direction. the connecting portion than the lower vibrating spring body corresponding to the spring element on the side of the reference mass, the disposed in the one side of the conveying direction, corresponding to the spring element on the side of the lower mass The lower spring element is elastic in such a manner that the lower mass body can rotate about an axis perpendicular to the transport direction and the vertical direction with respect to the lower vibration spring body. Deform,
The vibratory transfer device according to claim 2, wherein
前記上側振動ばね本体は前記基準質量体と前記上側質量体との間において垂直方向に延在する姿勢で配置され、
前記下側振動ばね本体は前記基準質量体と前記下側質量体との間において垂直方向に延在する姿勢で配置される、
ことを特徴とする請求項3に記載の振動式搬送装置。
The upper vibration spring body is arranged in a posture extending in a vertical direction between the reference mass body and the upper mass body,
The lower vibration spring body is disposed in a posture extending in a vertical direction between the reference mass body and the lower mass body,
The vibratory transfer apparatus according to claim 3.
前記上側振動ばねは、前記基準質量体の側のばね要素に相当する下側板ばね部分と、該下側板ばね部分の上端に対して前記搬送方向の前記一方側にずらして連結された下端を備えた、前記上側質量体の側のばね要素に相当する上側板ばね部分とを有し、
前記下側振動ばねは、前記基準質量体の側のばね要素に相当する上側板ばね部分と、該上側板ばね部分の下端に対して前記搬送方向の前記一方側にずらして連結された上端を備えた、前記下側質量体の側のばね要素に相当する下側板ばね部分とを有する、
ことを特徴とする請求項2に記載の振動式搬送装置。
The upper vibration spring includes a lower leaf spring portion corresponding to a spring element on the reference mass body side, and a lower end connected to the upper end of the lower leaf spring portion while being shifted to the one side in the transport direction. An upper leaf spring portion corresponding to a spring element on the upper mass body side ,
The lower vibration spring has an upper leaf spring portion corresponding to a spring element on the reference mass body side, and an upper end connected to the lower end of the upper leaf spring portion while being shifted to the one side in the transport direction. A lower leaf spring portion corresponding to a spring element on the lower mass body side ,
The vibratory transfer device according to claim 2, wherein
前記上側振動ばねの前記上側板ばね部分及び前記下側板ばね部分はそれぞれ垂直方向に延在する姿勢で配置され、
前記下側振動ばねの前記下側板ばね部分及び前記上側板ばね部分はそれぞれ垂直方向に延在する姿勢で配置される、
ことを特徴とする請求項5に記載の振動式搬送装置。
The upper leaf spring portion and the lower leaf spring portion of the upper vibration spring are each arranged in a posture extending in a vertical direction,
The lower leaf spring portion and the upper leaf spring portion of the lower vibration spring are each arranged in a posture extending in a vertical direction.
The vibratory transfer device according to claim 5.
前記同相加振手段は、
前記基準質量体と前記上側質量体との間に直接に前記加振力を与える上側加振部を構成するとともに前記上側振動ばねの長さ方向の一部に組み込まれる上側圧電駆動部と、前記基準質量体と前記下側質量体との間に直接に前記加振力を与える下側加振部を構成するとともに前記下側振動ばねの長さ方向の一部に組み込まれる下側圧電駆動部とを有し、
前記基準質量体に対して上下方向の中間部において幅方向両側が結合され、前記基準質量体の上方に延在する部分が前記上側圧電駆動部を形成するとともに前記基準質量体の下方に延在する部分が前記下側圧電駆動部を形成し、全体として前記搬送方向に向いた板面が上下一体に撓み変形する板状の圧電駆動体により構成される、
ことを特徴とする請求項1乃至6のいずれか一項に記載の振動式搬送装置。
The in-phase excitation means includes
An upper piezoelectric drive unit that constitutes an upper excitation unit that directly applies the excitation force between the reference mass body and the upper mass body and is incorporated in a part of the upper vibration spring in the length direction; A lower piezoelectric drive unit that constitutes a lower excitation unit that directly applies the excitation force between a reference mass body and the lower mass body and is incorporated in a part of the length of the lower oscillation spring And
Both sides in the width direction are coupled to the reference mass body at the intermediate portion in the vertical direction, and a portion extending above the reference mass body forms the upper piezoelectric drive unit and extends below the reference mass body The portion to be formed forms the lower piezoelectric drive unit, and the plate surface facing in the transport direction as a whole is constituted by a plate-like piezoelectric drive body that bends and deforms integrally vertically.
The vibration type conveying apparatus according to any one of claims 1 to 6.
前記上側振動ばねは、前記基準質量体の上方に伸びる前記上側圧電駆動部と、前記上側圧電駆動部の上端に接続された、前記搬送方向に向いた板面を備えた板状の上側増幅ばねと、を有し、
前記下側振動ばねは、前記基準質量体の上方に伸びる前記下側圧電駆動部と、前記下側圧電駆動部の下端に接続された、前記搬送方向に向いた板面を備えた板状の下側増幅ばねと、を有する、
ことを特徴とする請求項7に記載の振動式搬送装置。
The upper vibration spring is a plate-like upper amplification spring provided with the upper piezoelectric drive part extending above the reference mass body and a plate surface connected to the upper end of the upper piezoelectric drive part and facing the transport direction. And having
The lower vibration spring has a plate-like shape provided with the lower piezoelectric drive unit extending above the reference mass body and a plate surface connected to the lower end of the lower piezoelectric drive unit and facing the transport direction. A lower amplification spring,
The vibratory conveyance device according to claim 7.
前記上側圧電駆動部及び前記下側圧電駆動部は、弾性基板と、該弾性基板上に積層された圧電体とを有し、
前記上側増幅ばね及び前記下側増幅ばねは、前記上側圧電駆動体及び前記下側圧電駆動体の前記弾性基板とそれぞれ一体に構成されていることを特徴とする請求項8に記載の振動式搬送装置。
The upper piezoelectric drive unit and the lower piezoelectric drive unit have an elastic substrate and a piezoelectric body laminated on the elastic substrate,
9. The vibratory conveyance according to claim 8, wherein the upper amplification spring and the lower amplification spring are integrally formed with the elastic substrate of the upper piezoelectric drive body and the lower piezoelectric drive body, respectively. apparatus.
前記弾性基板は、前記上側圧電駆動部及び前記下側圧電駆動部において厚く、前記上側増幅ばね及び前記下側増幅ばねにおいて薄いことを特徴とする請求項9に記載の振動式搬送装置。   10. The vibratory transfer device according to claim 9, wherein the elastic substrate is thick in the upper piezoelectric drive unit and the lower piezoelectric drive unit and thin in the upper amplification spring and the lower amplification spring. 前記上側圧電駆動部及び前記下側圧電駆動部は、弾性基板と、該弾性基板上に積層された圧電体とを有するとともに、前記弾性基板は前記圧電体が積層された部分から上方及び下方へ延出してなる上側接続構造及び下側接続構造を備え、
前記上側増幅ばねの下端は、前記上側接続構造に対して前記搬送方向の前記一方側に重ねられた状態で接続固定され、前記下側増幅ばねの上端は、前記下側接続構造に対して前記搬送方向の前記一方側に重ねられた状態で接続固定されることを特徴とする請求項8に記載の振動式搬送装置。
The upper piezoelectric drive unit and the lower piezoelectric drive unit include an elastic substrate and a piezoelectric body stacked on the elastic substrate, and the elastic substrate moves upward and downward from a portion where the piezoelectric body is stacked. It has an upper connection structure and a lower connection structure that extend,
A lower end of the upper amplification spring is connected and fixed in a state of being overlapped on the one side in the transport direction with respect to the upper connection structure, and an upper end of the lower amplification spring is connected to the lower connection structure. 9. The vibratory transfer device according to claim 8, wherein the connection is fixed in a state of being overlapped on the one side in the transfer direction.
前記一対の防振ばねは、前記搬送方向の前後の支持箇所において、前記上側振動ばね及び前記下側振動ばねが前記基準質量体に結合する位置に対して、いずれも前記搬送方向の同じ側において前記基準質量体をそれぞれ支持することを特徴とする請求項1乃至11のいずれか一項に記載の振動式搬送装置。 The pair of the vibration-proof springs, the front and rear support portions of the transport direction, the upper vibration spring and if the lower vibration with respect to the position of binding to the negative the reference mass, either the same side of the transport direction The vibratory transfer device according to claim 1, wherein the reference mass body is supported in each of the first to second embodiments. 前記基準質量体は、前記搬送方向の前後位置において、前記防振ばねと、前記搬送方向に沿った水平姿勢で配置される板ばねで構成される水平防振ばねとが直列に接続された一対の防振構造によりそれぞれ支持されていることを特徴とする請求項1乃至12のいずれか一項に記載の振動式搬送装置。   The reference mass body is a pair in which the anti-vibration spring and a horizontal anti-vibration spring composed of a leaf spring arranged in a horizontal posture along the conveyance direction are connected in series at the front and rear positions in the conveyance direction. The vibration-type transfer device according to any one of claims 1 to 12, wherein each of the vibration-type transfer devices is supported by an anti-vibration structure. 前記防振ばねを介して前記基準質量体を支持する基台が設けられ、前記基台は、前記防振ばねが接続された上側支持台と、前記水平防振ばねを介して前記上側支持台を支持する下側支持台とを有することを特徴とする請求項13に記載の振動式搬送装置。   A base for supporting the reference mass body is provided via the vibration isolation spring, and the base includes an upper support base to which the vibration isolation spring is connected, and the upper support base via the horizontal vibration isolation spring. The vibration-type transfer device according to claim 13, further comprising a lower support base that supports the support.
JP2014001447A 2014-01-08 2014-01-08 Vibrating transfer device Active JP5775183B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2014001447A JP5775183B2 (en) 2014-01-08 2014-01-08 Vibrating transfer device
KR1020140145150A KR20150083011A (en) 2014-01-08 2014-10-24 Vibratory Conveying Apparatus
CN201410767810.XA CN104760803A (en) 2014-01-08 2014-12-12 Vibratory conveying apparatus
TW104100374A TW201529447A (en) 2014-01-08 2015-01-07 Vibratory conveying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014001447A JP5775183B2 (en) 2014-01-08 2014-01-08 Vibrating transfer device

Publications (2)

Publication Number Publication Date
JP2015129041A JP2015129041A (en) 2015-07-16
JP5775183B2 true JP5775183B2 (en) 2015-09-09

Family

ID=53642979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001447A Active JP5775183B2 (en) 2014-01-08 2014-01-08 Vibrating transfer device

Country Status (4)

Country Link
JP (1) JP5775183B2 (en)
KR (1) KR20150083011A (en)
CN (1) CN104760803A (en)
TW (1) TW201529447A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009454A (en) * 2016-07-19 2018-01-29 (주) 피토 The apparatus of loading unit for electrical part and the method of controlling that

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6781369B2 (en) * 2016-04-11 2020-11-04 シンフォニアテクノロジー株式会社 Parts feeder
CN107884714A (en) * 2017-11-09 2018-04-06 奥士康科技股份有限公司 A kind of PCB gantry electroplating device vibrating motor detector
JP6819010B2 (en) * 2019-03-27 2021-01-27 シンフォニアテクノロジー株式会社 Work transfer device
TWI777836B (en) * 2021-10-29 2022-09-11 產台股份有限公司 Vibratory conveyor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180009454A (en) * 2016-07-19 2018-01-29 (주) 피토 The apparatus of loading unit for electrical part and the method of controlling that
KR101867273B1 (en) * 2016-07-19 2018-06-15 (주)피토 The apparatus of loading unit for electrical part and the method of controlling that

Also Published As

Publication number Publication date
TW201529447A (en) 2015-08-01
JP2015129041A (en) 2015-07-16
KR20150083011A (en) 2015-07-16
CN104760803A (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5775183B2 (en) Vibrating transfer device
JP4303258B2 (en) Vibrating transfer device
JP5460903B1 (en) Vibrating transfer device
TWI457264B (en) Vibrating conveyor
TWI591005B (en) Vibration device, object handling equipment and articles were installed
WO2012147838A1 (en) Article separation and conveyance device
JP4280293B2 (en) Vibrating transfer device
WO2014163105A1 (en) Vibrating component conveying device
KR101316442B1 (en) Parts feeder
JP5684881B1 (en) Vibrating transfer device
TW201739680A (en) Apparatus for transport of goods which can transport goods with accuracy and stability
JP5791993B2 (en) Vibrating bowl feeder
KR102018933B1 (en) Vibration-type component transport device
JP5168999B2 (en) Parts conveyor
JP6163343B2 (en) Vibrating parts conveyor
JP6049244B2 (en) Drive unit for parts feeder
JP6267940B2 (en) Vibrating parts conveyor
TWI490153B (en) Part supply device
WO2015122327A1 (en) Vibrating-type parts transporting device
JP2022061711A (en) Work-piece conveyance device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150702

R150 Certificate of patent or registration of utility model

Ref document number: 5775183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250