JP2022061711A - Work-piece conveyance device - Google Patents

Work-piece conveyance device Download PDF

Info

Publication number
JP2022061711A
JP2022061711A JP2020169817A JP2020169817A JP2022061711A JP 2022061711 A JP2022061711 A JP 2022061711A JP 2020169817 A JP2020169817 A JP 2020169817A JP 2020169817 A JP2020169817 A JP 2020169817A JP 2022061711 A JP2022061711 A JP 2022061711A
Authority
JP
Japan
Prior art keywords
vibrating body
work
transport
vibration
wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020169817A
Other languages
Japanese (ja)
Inventor
峰尚 前田
Minehisa Maeda
哲行 木村
Tetsuyuki Kimura
孝信 大西
Takanobu Onishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinfonia Technology Co Ltd
Original Assignee
Sinfonia Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinfonia Technology Co Ltd filed Critical Sinfonia Technology Co Ltd
Priority to JP2020169817A priority Critical patent/JP2022061711A/en
Priority to KR1020210127129A priority patent/KR20220046472A/en
Priority to TW110136105A priority patent/TW202214508A/en
Priority to CN202111141954.0A priority patent/CN114291506A/en
Publication of JP2022061711A publication Critical patent/JP2022061711A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G27/00Jigging conveyors
    • B65G27/10Applications of devices for generating or transmitting jigging movements
    • B65G27/16Applications of devices for generating or transmitting jigging movements of vibrators, i.e. devices for producing movements of high frequency and small amplitude
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2201/00Indexing codes relating to handling devices, e.g. conveyors, characterised by the type of product or load being conveyed or handled
    • B65G2201/02Articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2812/00Indexing codes relating to the kind or type of conveyors
    • B65G2812/03Vibrating conveyors
    • B65G2812/0304Driving means or auxiliary devices
    • B65G2812/0308Driving means

Abstract

To provide a nonconventional work-piece conveyance device for realizing stable conveyance with small variation in amplitude, that suppresses jumping of a workpiece.SOLUTION: There are provided a vibrator 3A provided with a conveying surface 31 for performing conveying in a state where a work-piece is placed, and a vibration generating part 3B for generating vibrations of drawing an elliptic orbit to a conveying part 31 by generating a compressional wave including a compressive strain and a tensile strain in a direction along a work-piece conveyance direction, to the vibrator 3A, in at least two modes. A piezo-electric element 36 is arranged at a position of physically roughly symmetrical to an upper face side and a lower face side of the vibrator 3A to constitute the vibration generating part 3B.SELECTED DRAWING: Figure 2

Description

本発明は、搬送面に進行波を発生させることによりワークを搬送するワーク搬送装置に関する。 The present invention relates to a work transfer device that conveys a work by generating a traveling wave on the transfer surface.

近年、チップコンデンサなどの電子部品の微細化が進み、さらにその生産設備に対しては高速処理の要求が高まっている。パーツフィーダに対してもワークの高速搬送が求められているが、高速化のために振幅を増大させると、次工程設備とのインターフェース部においてワークの落下や詰まりなどの不具合が発生してしまう。そこで、駆動装置の周波数を上げ、変位振幅を小さくして搬送速度を上げることが検討されているが、人間の耳の感度が高い1kHz~4kHzに近づくため、騒音問題が発生する。また周波数を上げると、搬送路などに弾性変形が生じ易くなり、ワークの正常な搬送が妨げられてしまう。したがって、現状の板ばねで共振させる構造では、搬送速度の向上には限界がある。 In recent years, the miniaturization of electronic components such as chip capacitors has progressed, and the demand for high-speed processing has increased for the production equipment thereof. High-speed transfer of workpieces is also required for parts feeders, but if the amplitude is increased to increase the speed, problems such as dropping or clogging of workpieces will occur in the interface section with the next process equipment. Therefore, it has been studied to increase the frequency of the drive device, reduce the displacement amplitude, and increase the transport speed. However, since the sensitivity of the human ear approaches 1 kHz to 4 kHz, a noise problem occurs. Further, when the frequency is increased, elastic deformation is likely to occur in the transport path or the like, which hinders the normal transport of the work. Therefore, with the current structure that resonates with a leaf spring, there is a limit to improving the transport speed.

そこで、特許文献1に示すように、搬送部に超音波領域のたわみ進行波を生成し、搬送面を楕円振動させることでワークを搬送するパーツフィーダが提案されている。 Therefore, as shown in Patent Document 1, there has been proposed a parts feeder that transports a work by generating a bending traveling wave in an ultrasonic region in a transport portion and elliptical vibration of a transport surface.

特許文献1に記載のワーク搬送装置は、トラック状であってワークを載置する搬送面と、この搬送面に周回する進行波を発生させる進行波発生手段とを備え、進行波発生手段が発生させた進行波により搬送面上のワークを搬送するよう構成されている。 The work transport device described in Patent Document 1 includes a transport surface having a track shape on which a work is placed and a traveling wave generating means for generating a traveling wave circulating on the transport surface, and the traveling wave generating means is generated. It is configured to transport the work on the transport surface by the traveling wave.

このようなワーク搬送装置では、搬送面に撓みが発生することで、進行波は撓み進行波
となる。撓み進行波が発生すると、搬送面の各位置に搬送方向基準の側面視における楕円
運動が発生することになり、搬送面に載置されたワークはこの楕円運動における水平方向
速度成分により、進行波の進行方向とは逆方向に搬送されていく。
In such a work transfer device, the traveling wave becomes a bending traveling wave due to the occurrence of bending on the conveying surface. When a bending traveling wave is generated, an elliptical motion in the side view of the transport direction reference is generated at each position of the transport surface, and the work placed on the transport surface is a traveling wave due to the horizontal velocity component in this elliptical motion. It is transported in the direction opposite to the traveling direction of.

特許文献1では、搬送面に、幅方向に延びるスリットが周方向に複数形成されている構
成も提案されている(特許文献1の図11、図12)。このように搬送面にスリットを形
成することで、撓み進行波により搬送面に発生する楕円運動の、水平方向速度成分を大き
くできる。
Patent Document 1 also proposes a configuration in which a plurality of slits extending in the width direction are formed on the transport surface in the circumferential direction (FIGS. 11 and 12 of Patent Document 1). By forming the slit on the transport surface in this way, the horizontal velocity component of the elliptical motion generated on the transport surface due to the bending traveling wave can be increased.

特開2017-043431号公報Japanese Unexamined Patent Publication No. 2017-034331

しかしながら、従来の撓み進行波を利用したワーク搬送装置では、搬送面における楕円運動の垂直方向の振動に起因してワークの跳躍が発生する。したがって、ワークの跳躍を抑制するためには、楕円運動における垂直方向の振幅に対して水平方向の振幅を大きくすることが望ましい。スリット構造を用いた場合,水平方向の振幅を大きくする効果があるが,依然として不十分であり,また,スリット部においてワークの姿勢が乱れるなどの新たな問題が発生してしまう。 However, in the conventional work transfer device using the bending traveling wave, the work jumps due to the vertical vibration of the elliptical motion on the transfer surface. Therefore, in order to suppress the jumping of the work, it is desirable to increase the horizontal amplitude with respect to the vertical amplitude in the elliptical motion. When the slit structure is used, it has the effect of increasing the amplitude in the horizontal direction, but it is still insufficient, and new problems such as the posture of the work being disturbed at the slit portion occur.

水平方向に振幅の大きい振動を発生させるために、縦波進行波を利用することが考えられる。搬送面を有する振動体に、ワークの搬送方向に沿う方向の圧縮歪み及び引張歪みを含む疎密波を、少なくとも二つのモードで発生させれば、搬送面上の一点が側方視においてワーク搬送方向が長軸となる楕円軌道を描く振動を発生させることができる。ワーク搬送方向はすなわち進行波の進行方向であり、ボウルフィーダやリニアフィーダにあっては円環や長円の周方向である。 It is conceivable to use longitudinal waves to generate vibrations with large amplitude in the horizontal direction. If a sparse and dense wave including compression strain and tensile strain in the direction along the work transport direction is generated in a vibrating body having a transport surface in at least two modes, one point on the transport surface is in the work transport direction in a lateral view. Can generate vibrations that draw an elliptical orbit with a long axis. The work transport direction is, that is, the traveling direction of the traveling wave, and in the case of the bowl feeder and the linear feeder, it is the circumferential direction of the annulus and the oval.

このような縦波進行波を利用したパーツフィーダでは、搬送面の楕円振動の水平方向成分を大きくすることができるため、ワークの跳躍を引き起こす鉛直方向の振動振幅を抑えつつ、ワークを高速に搬送することが期待できる。 In a parts feeder that uses such longitudinal wave traveling waves, the horizontal component of the elliptical vibration of the transport surface can be increased, so the workpiece is transported at high speed while suppressing the vertical vibration amplitude that causes the workpiece to jump. You can expect to do it.

この場合、縦波進行波を生成するための加振源(圧電素子)を、たわみ進行波を利用する装置と同様に振動体の底面(搬送面と反対側の面)か、側面に貼付する構造が考えられる。 In this case, the vibration source (piezoelectric element) for generating the longitudinal wave traveling wave is attached to the bottom surface (the surface opposite to the transport surface) or the side surface of the vibrating body in the same manner as the device using the deflection traveling wave. The structure is conceivable.

しかしながら、このような位置から圧電素子の伸縮動作を利用して振動体に圧縮、引っ張りによる疎密波を生成しようとすると、図5に基づいて後述するように振動体に曲げを生じさせるような力(曲げモーメント)が加わるため、生成したい縦波以外にも、曲げを伴うような不要な振動を励起する場合がある。また、特に振動体の底面に加振素子を張り付ける構造では、上下非対称な構造となってしまうため、図8(b)に基づいて後述するように縦波の振動モード自体がいびつな変形形状となってしまう場合がある。 However, when an attempt is made to generate a compressional wave due to compression and tension in the vibrating body by utilizing the expansion / contraction operation of the piezoelectric element from such a position, a force that causes bending of the vibrating body as described later based on FIG. Since (bending moment) is added, it may excite unnecessary vibrations that accompany bending, in addition to the longitudinal wave that you want to generate. Further, especially in the structure in which the vibrating element is attached to the bottom surface of the vibrating body, the structure becomes asymmetrical in the vertical direction. It may become.

この結果、ワーク搬送速度のバラツキや、ワークの跳躍が発生してしまう。このような課題は、横波であるたわみ進行波を利用する装置では生じない、縦波に特有の課題である。 As a result, the work transfer speed varies and the work jumps. Such a problem is a problem peculiar to a longitudinal wave, which does not occur in a device using a deflection traveling wave which is a transverse wave.

本発明は、搬送面に進行波を発生させることでワークを搬送するワーク搬送装置において、ワークの跳躍を抑え、かつ振幅のバラツキが小さい安定した搬送を実現する、従来にはないワーク搬送装置を提供することを目的としている。 INDUSTRIAL APPLICABILITY The present invention provides a work transfer device that does not exist in the past, in which a work transfer device that transfers a work by generating a traveling wave on the transfer surface suppresses the jump of the work and realizes stable transfer with a small amplitude variation. The purpose is to provide.

本発明は、上記の目的を達成するために、次のような手段を講じたものである。 The present invention has taken the following measures in order to achieve the above object.

すなわち、本発明のワーク搬送装置は、ワークを載置した状態で搬送する搬送部を有する振動体と、前記振動体に、前記ワークの搬送方向に沿う方向の圧縮歪み及び引張歪みを含む疎密波を、少なくとも二つのモードで発生させることにより、前記搬送部に楕円軌道を描く振動を発生させる振動発生部と、を備え、前記振動発生部を、前記振動体の上面側および下面側に対して、物理的に略対称となる位置に配置して構成したことを特徴とする。 That is, the work transport device of the present invention has a vibrating body having a transporting portion for transporting the work in a mounted state, and a compression strain and a tensile strain in the vibrating body in a direction along the transport direction of the work. The transport portion is provided with a vibration generating portion that generates vibration that draws an elliptical orbit by generating the vibration in at least two modes, and the vibration generating portion is provided with respect to the upper surface side and the lower surface side of the vibrating body. It is characterized in that it is arranged and configured at positions that are physically substantially symmetrical.

ここで、「物理的に対称」とは、加振力が中立軸に作用するように加振源を配置し、かつ縦振動が生じた際の弾性力と慣性力の作用点が中立軸に凡そ一致するような構成をいう。「中立軸」とは、振動体を厚み方向から見たときに、曲げに対して引っ張りと圧縮が釣り合って応力が生じない軸をいう。このような軸が連なった面は中立面とも呼ばれる。 Here, "physically symmetric" means that the vibration source is arranged so that the vibration force acts on the neutral axis, and the point of action of the elastic force and the inertial force when longitudinal vibration occurs is on the neutral axis. A configuration that roughly matches. The "neutral axis" refers to an axis in which tension and compression are balanced against bending and stress is not generated when the vibrating body is viewed from the thickness direction. A surface in which such axes are connected is also called a neutral surface.

このようにすれば、振動体に曲げを生じさせるようなモーメントが発生しないため、不要な振動の発生を抑制することができる。この結果、振幅のバラツキが小さく、進行波比が向上して、速度のバラツキの少ない安定した搬送を実現することが可能となる。また、振動発生部を底面に配置する構成では、加振源の厚み等の形状によっては、より非対称性が大きくなってしまうため、加振源の形状などの自由な設計が困難となるが、本発明によれば上下の対称性が得られるため、設計の自由度が高くなる。このため、例えば加振源を厚くして静電容量を大きくする、などの設計も行い易いものとなる。 By doing so, since a moment that causes bending of the vibrating body is not generated, it is possible to suppress the generation of unnecessary vibration. As a result, the variation in amplitude is small, the traveling wave ratio is improved, and it is possible to realize stable transport with little variation in speed. Further, in the configuration in which the vibration generating portion is arranged on the bottom surface, the asymmetry becomes larger depending on the shape such as the thickness of the vibration source, so that it is difficult to freely design the shape of the vibration source. According to the present invention, vertical symmetry can be obtained, so that the degree of freedom in design is increased. Therefore, for example, it is easy to design such that the vibration source is thickened to increase the capacitance.

この場合、振動体の肉厚内に、当該振動体の中立軸に沿って加振源を配置していることが好ましい。上側と下側が同一単一材料である場合は厚み方向中心付近が中立軸であり、ここに加振源を配置すれば物理的対称性が得られる。また、多少の非対称があっても、中立軸の位置が厚み方向にずらせば、物理的対称性が得られる。そして、厚み内に配置するので、加振源の両側が振動体で挟まれ、割れなどの故障が生じづらいものとなる。 In this case, it is preferable that the vibration source is arranged along the neutral axis of the vibrating body within the wall thickness of the vibrating body. When the upper side and the lower side are the same single material, the neutral axis is near the center in the thickness direction, and physical symmetry can be obtained by arranging the vibration source here. Further, even if there is some asymmetry, physical symmetry can be obtained if the position of the neutral axis is shifted in the thickness direction. Since it is arranged within the thickness, both sides of the vibration source are sandwiched between the vibrating bodies, and it is difficult for a failure such as cracking to occur.

また、前記振動体を上側振動体と下側振動体で構成して、前記加振源を挟むように上側振動体と下側振動体を配置していることが好ましい。このような構成であれば、半割構造を利用して作り易く、電極も引き出し易いものとなる。 Further, it is preferable that the vibrating body is composed of an upper vibrating body and a lower vibrating body, and the upper vibrating body and the lower vibrating body are arranged so as to sandwich the vibration source. With such a configuration, it is easy to make using the half-split structure, and the electrodes can be easily pulled out.

また、前記上側振動体と下側振動体の素材又は形状の全部又は主要部が同一であり、前記加振源が略中立軸上に配置されていることが好ましい。このような場合には、上側と下側が同一単一材料である場合は厚み方向中心付近が中立軸であり、ここに加振源を配置すれば物理的対称性が得られるため、適切な構成を実現し易いものとなる。 Further, it is preferable that all or the main parts of the material or shape of the upper vibrating body and the lower vibrating body are the same, and the vibration source is arranged on a substantially neutral axis. In such a case, if the upper side and the lower side are the same single material, the neutral axis is near the center in the thickness direction, and if the vibration source is placed here, physical symmetry can be obtained. Will be easy to realize.

また、上側振動体と下側振動体との物理的な非対称性を、上側振動体又は下側振動体の一方に他方とは異なる形状を付与することによって補完していることが好ましい。上側振動体と下側振動体の形状に違いがあっても、或いは材質や厚みに違いがあっても、形状で補完することで比較的簡単、適切に物理的な対称性を確保することができる。 Further, it is preferable that the physical asymmetry between the upper vibrating body and the lower vibrating body is complemented by imparting a shape different from the other to one of the upper vibrating body or the lower vibrating body. Even if there is a difference in the shape of the upper vibrating body and the lower vibrating body, or even if there is a difference in the material and thickness, it is relatively easy and appropriate to secure physical symmetry by complementing with the shape. can.

また、前記加振源を、前記振動体の内部における上面側へ変位した位置と下面側へ変位した位置に対をなして配置していることが好ましい。このようにすれば、合成された加振力が中立軸上に作用するため、物理的対称性を確保しつつ、加振力の増大などを図ることができる。 Further, it is preferable that the vibration source is arranged in a pair at a position displaced toward the upper surface side and a position displaced toward the lower surface side inside the vibrating body. By doing so, since the combined exciting force acts on the neutral axis, it is possible to increase the exciting force while ensuring physical symmetry.

以上説明した本発明によれば、疎密波により搬送方向を長軸とする一様な楕円振動による進行波を搬送面に発生させることができるので、ワークの跳躍を抑え、かつ振幅のバラツキが小さい安定した搬送を実現することが可能になる。 According to the present invention described above, since the traveling wave due to uniform elliptical vibration having the long axis in the transport direction can be generated on the transport surface by the sparse and dense wave, the jump of the work is suppressed and the amplitude variation is small. It becomes possible to realize stable transportation.

本施形態に係るワーク搬送装置の概略構成を示す斜視図。The perspective view which shows the schematic structure of the work transfer apparatus which concerns on this embodiment. 図1の搬送部を示す図。The figure which shows the transport part of FIG. ワーク搬送装置における振動体を加振するための構成を示す概要図。The schematic diagram which shows the structure for vibrating a vibrating body in a work transfer apparatus. 加振源である圧電素子の配置構成を示す図。The figure which shows the arrangement structure of the piezoelectric element which is a vibration source. 図4の比較例を示す図。The figure which shows the comparative example of FIG. 疎密波による縦波の生成を説明する図。The figure explaining the generation of a longitudinal wave by a compressional wave. 縦波による進行波が伝搬する様子を示す図。The figure which shows how the traveling wave by a longitudinal wave propagates. 図4及び図5の加振源配置の下で振動体に現れる変形状態を表した図。The figure which showed the deformation state which appears in the vibrating body under the vibration source arrangement of FIGS. 4 and 5. ボウルフィーダの場合の中立軸と物理的対称性を説明する図。The figure explaining the neutral axis and the physical symmetry in the case of a bowl feeder. 物理的対称性を形状によって補完する構成を説明する図。The figure explaining the structure which complements the physical symmetry by the shape. 本発明の変形例を示す図4に対応した図。The figure corresponding to FIG. 4 which shows the modification of this invention. 本発明の他の変形例を示す図4に対応した図。The figure corresponding to FIG. 4 which shows the other modification of this invention.

以下、本発明の実施形態を、図面を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示す本実施形態に係るワーク搬送装置(パーツフィーダ)1は、ベース部2上に、円盤状のボウルフィーダ3と、ボウルフィーダ3の接線方向に延びるように接続されたリニアフィーダ4とを備える。 The work transfer device (parts feeder) 1 according to the present embodiment shown in FIG. 1 has a disk-shaped bowl feeder 3 and a linear feeder 4 connected so as to extend in the tangential direction of the bowl feeder 3 on the base portion 2. To prepare for.

ボウルフィーダ3は円盤状の部材であるボウルフィーダ側搬送部31を備える。このボウルフィーダ側搬送部31は、中央に位置する固定部32にてベース部2に固定されている。ボウルフィーダ側搬送部31の上面は、図示のように、中央側にワークが投入される凹部33を有し、凹部33の周囲にすり鉢状の斜面34を有しており、凹部33の周縁から斜面34の上縁部にかけて、ワークを搬送するための搬送トラックとしてらせんトラック35が形成されている。らせんトラック35は、らせんを描きながらせり上がる溝を有し、溝底が搬送面351となっている。この搬送面351が、進行波発生部3B(図3参照)により波打つように変形することで、ワークが搬送される。 The bowl feeder 3 includes a bowl feeder side transport portion 31 which is a disk-shaped member. The bowl feeder side transport portion 31 is fixed to the base portion 2 by a fixing portion 32 located at the center. As shown in the figure, the upper surface of the bowl feeder side transport portion 31 has a recess 33 in which the work is loaded, and has a mortar-shaped slope 34 around the recess 33, from the peripheral edge of the recess 33. A spiral truck 35 is formed as a transport truck for transporting the work over the upper edge of the slope 34. The spiral truck 35 has a groove that rises while drawing a spiral, and the groove bottom is a transport surface 351. The work is transported by deforming the transport surface 351 so as to undulate by the traveling wave generating portion 3B (see FIG. 3).

リニアフィーダ4は平面視で長円形状であるリニアフィーダ側搬送部41を備える。このリニアフィーダ側搬送部41は、幅方向中央に位置する固定部42にてベース部2に固定されている。リニアフィーダ4における搬送トラックは、メイントラック43とリターントラック44とにより構成されている。メイントラック43は、リニアフィーダ側搬送部41の上面に長手方向に延びる直線状の溝を有し、溝底が搬送面431となっている。リターントラック44は、リニアフィーダ側搬送部41の上面においてメイントラック43の幅方向内側に位置する長円形の溝を有し、溝底が搬送面441となっている。これら搬送面431,441が、進行波発生部4B(図3のボウルフィーダ3についての進行波発送部3Bと同様の構成)により波打つように変形することで、ワークが搬送される。 The linear feeder 4 includes a linear feeder side transport unit 41 which has an oval shape in a plan view. The linear feeder side transport portion 41 is fixed to the base portion 2 by a fixing portion 42 located at the center in the width direction. The transport truck in the linear feeder 4 is composed of a main truck 43 and a return truck 44. The main track 43 has a linear groove extending in the longitudinal direction on the upper surface of the linear feeder side transport portion 41, and the groove bottom is the transport surface 431. The return track 44 has an oval groove located inside the width direction of the main track 43 on the upper surface of the linear feeder side transport unit 41, and the groove bottom is the transport surface 441. The work is conveyed by deforming these transport surfaces 431 and 441 so as to undulate by the traveling wave generating portion 4B (similar configuration to the traveling wave shipping portion 3B for the bowl feeder 3 in FIG. 3).

各フィーダ3、4において、複数のワークは搬送面351、431、441上で隣り合って整列された状態で搬送されることもできるし、間隔を空けて搬送されることもできる。 In each of the feeders 3 and 4, a plurality of workpieces may be transported in a state of being aligned adjacent to each other on the transport surfaces 351 and 431, 441, or may be transported at intervals.

メイントラック43上のワークのうち姿勢等が不適切なワークは、図示しない移動手段(エアノズル等)によって、メイントラック43からリターントラック44に移動させられる。図の概略図ではリターントラック44が循環するように描かれているが、実際にはリターントラック44に移されたワークはボウルリーダ3に帰還されるか、メイントラック43に再度合流するなど、適宜の構成が採用されている。 Among the works on the main track 43, the work having an inappropriate posture or the like is moved from the main track 43 to the return track 44 by a moving means (air nozzle or the like) (not shown). In the schematic diagram of the figure, the return track 44 is drawn to circulate, but in reality, the work transferred to the return track 44 is returned to the bowl leader 3 or rejoined to the main track 43 as appropriate. The configuration of is adopted.

ボウルフィーダ3とリニアフィーダ4において、ワークを搬送させるための機構は共通するため、以下においてはボウルフィーダ3又はリニアフィーダ4の何れかを例に挙げて本実施形態の構成を説明する。 Since the mechanism for transporting the work is common between the bowl feeder 3 and the linear feeder 4, the configuration of the present embodiment will be described below by taking either the bowl feeder 3 or the linear feeder 4 as an example.

先ず基本構成をボウルフィーダ3を例に挙げて説明すると、図1~図3に示すように、ボウルフィーダ3は振動体3Aと振動発生部3Bを備える。振動体3Aは前記ボウルフィーダ側搬送部31の一部であって、円環状のものとして表わしてある。振動体3Aは弾性体であって、波動を伝達する媒質となる材質で形成されている。本実施形態の振動体3Aは下面や側面に加振源を貼り付けた中実金属製のものではなく、内部に加振源である圧電素子36を埋め込んだ構造を有している。これについては後述する。 First, the basic configuration will be described by taking the bowl feeder 3 as an example. As shown in FIGS. 1 to 3, the bowl feeder 3 includes a vibrating body 3A and a vibration generating unit 3B. The vibrating body 3A is a part of the bowl feeder side transport portion 31, and is represented as an annular one. The vibrating body 3A is an elastic body and is made of a material that serves as a medium for transmitting waves. The vibrating body 3A of the present embodiment is not made of solid metal having a vibration source attached to the lower surface or the side surface, but has a structure in which a piezoelectric element 36 which is a vibration source is embedded inside. This will be described later.

振動発生部3Bは、振動体3Aに疎密波を発生させるべく、図3に示すように加振源である圧電素子36に加振部37から交番電圧を印加して、圧電素子36に周方向(ワーク搬送方向、進行波の進行方向)への伸長動作と収縮動作を行わせる。この疎密波は、振動体3Aにおけるポアソン効果によって、図4に示すようにワークの搬送方向に沿う方向(周方向)に図中矢印(実践)A1のような引張歪み、及び矢印(破線)A2のような圧縮歪みとともに、搬送方向と直交する厚み方向へ収縮する変位B1、及び膨張する変位B2を引き起こす。 As shown in FIG. 3, the vibration generating section 3B applies an alternating voltage from the vibrating section 37 to the piezoelectric element 36, which is a vibrating source, in order to generate a sparse and dense wave in the vibrating body 3A, and is circumferential to the piezoelectric element 36. The extension operation and the contraction operation in the (work transport direction, traveling direction of the traveling wave) are performed. Due to the Poisson effect in the vibrating body 3A, this sparse and dense wave causes tensile strain as shown by the arrow (practice) A1 in the figure and arrow (broken line) A2 in the direction (circumferential direction) along the transport direction of the work as shown in FIG. Along with such compression strain, displacement B1 that contracts in the thickness direction orthogonal to the transport direction and displacement B2 that expands are caused.

振動体3Aは、図6に示すように、周方向に沿って引張歪みと圧縮歪みが交互に発生するような、疎密波である縦波の定在波モード(固有モード)を複数有する。本実施形態において、固有周波数がほぼ等しく、空間的な位相が90°ずれた二つの定在波である0°モードの定在波と90°モードの定在波とが合成されることで、図7に示す山となる部分と谷となる部分が例えば矢印に示す時計回りに進行する進行波となる。なお、「定在波」とは、振動体3Aの周方向における一定の位置で発生する波(縦波)のことである。 As shown in FIG. 6, the vibrating body 3A has a plurality of standing wave modes (natural modes) of longitudinal waves, which are sparse and dense waves, in which tensile strain and compression strain are alternately generated along the circumferential direction. In the present embodiment, a standing wave in 0 ° mode and a standing wave in 90 ° mode, which are two standing waves having almost the same natural frequency and a spatial phase shift of 90 °, are combined. The peaks and valleys shown in FIG. 7 are, for example, traveling waves traveling clockwise as shown by the arrows. The "standing wave" is a wave (longitudinal wave) generated at a fixed position in the circumferential direction of the vibrating body 3A.

縦波の定在波における媒質の動きそれ自体のメカニズムについては既知であるため、詳細な説明は省略する。 Since the mechanism of the movement of the medium itself in the standing wave of the longitudinal wave is known, detailed description thereof will be omitted.

媒質は、図6(a)、(b)の各々において、上側の図は疎密波によって振動体3Aが変形した様子を示し、下側の図は疎密状態を疎密を表わす縦線を使ってわかり易く併記したものである。これらの図からわかるように、図6(a)、(b)では周方向に沿って疎の部分と密の部分が時間とともに周期的に入れ替わっている。図6(a)において位置A及び位置Bは縦波の変位分布における「腹」の位置、位置C及び位置Dは「節」となる位置である。位置Cは引張歪みが発生したことで媒質は「疎」となっており、位置Dは圧縮歪みが発生したことで媒質は「密」となっている。図6(a)と図6(b)を比較すると、腹A、Bの位置の歪み状態は変わらず、節C、Dの疎密が反転している。 As for the medium, in each of FIGS. 6 (a) and 6 (b), the upper figure shows the state in which the vibrating body 3A is deformed by the sparse and dense wave, and the lower figure shows the sparse and dense state by using vertical lines indicating sparse and dense. It is written together. As can be seen from these figures, in FIGS. 6A and 6B, the sparse part and the dense part are periodically replaced with time along the circumferential direction. In FIG. 6A, the position A and the position B are the positions of the “antinode” in the displacement distribution of the longitudinal wave, and the positions C and D are the positions of the “nodes”. At position C, the medium is "sparse" due to the occurrence of tensile strain, and at position D, the medium is "dense" due to the occurrence of compressive strain. Comparing FIGS. 6 (a) and 6 (b), the distorted states of the positions of the bellies A and B do not change, and the density of the nodes C and D is reversed.

振動体3Aは、周方向に伸縮することに伴い、ポアソン比に応じた変化量で厚み方向にも膨張、収縮する。ポアソン比の定義から、厚み方向の歪みは周方向の歪みと逆関係になる。つまり振動体3Aは、引っ張り位置Cでは厚み方向に収縮し、圧縮位置Dでは厚み方向に膨張している。90°位相の異なる変位が0°モードと90°モードの位置に生成されることで、図6(b)に示すように、進行方向を長軸とする扁平な楕円振動Rが形成される。 As the vibrating body 3A expands and contracts in the circumferential direction, it expands and contracts in the thickness direction by the amount of change according to the Poisson's ratio. From the definition of Poisson's ratio, the strain in the thickness direction is inversely related to the strain in the circumferential direction. That is, the vibrating body 3A contracts in the thickness direction at the pulling position C and expands in the thickness direction at the compression position D. By generating displacements having different 90 ° phases at the positions of the 0 ° mode and the 90 ° mode, a flat elliptical vibration R having the traveling direction as the long axis is formed as shown in FIG. 6 (b).

この楕円振動Rの上側の部分でワークWが搬送面と接触して搬送力Mが発生する。縦波は横波に比べて楕円の長軸が搬送方向を向き、上下変位が小さいため、ワークWの跳躍が小さく、有効な搬送力Mが発現する。 The work W comes into contact with the transport surface at the upper portion of the elliptical vibration R, and a transport force M is generated. In the longitudinal wave, the long axis of the ellipse faces the transport direction as compared with the transverse wave, and the vertical displacement is small, so that the jump of the work W is small and an effective transport force M is exhibited.

振動発生部3Bは、図3に示すように、振動体3Aに前記圧縮歪み及び前記引張歪みを与える複数の加振源たる圧電素子36を有している。本実施形態では、図5に示すように振動体3Aの下面(または側面)に圧電素子36が貼付されているのではなく、図4に示すように振動体3Aの厚み内に圧電素子36を配置することによって振動体Aを構成している。各圧電素子36は、図3に示すように、定在波モードの波長の1/2(λ/2)のピッチで分極方向(図示「+」「-」)が入れ替わるように配置された第1群(第1圧電素子群)36Aと、この第1群36Aとは1/4波長(λ/4)分周方向にずれた位置に配置されていて、第1群36Aと同じく定在波モードの波長の1/2のピッチで分極方向が入れ替わるように配置された第2群(第2圧電素子群)36Bから構成されている。つまり、複数の変位発生部36は、前記モードの数(本実施形態は二つ)に対応した数の群36A,36Bに分かれて属している。 As shown in FIG. 3, the vibration generating unit 3B has a plurality of vibration source piezoelectric elements 36 that apply the compression strain and the tension strain to the vibrating body 3A. In the present embodiment, the piezoelectric element 36 is not attached to the lower surface (or side surface) of the vibrating body 3A as shown in FIG. 5, but the piezoelectric element 36 is placed within the thickness of the vibrating body 3A as shown in FIG. The vibrating body A is configured by arranging the vibrating body A. As shown in FIG. 3, each piezoelectric element 36 is arranged so that the polarization directions (“+” and “−” in the figure) are switched at a pitch of 1/2 (λ / 2) of the wavelength of the stationary wave mode. The first group (first piezoelectric element group) 36A and the first group 36A are arranged at positions deviated from each other in the frequency division direction by 1/4 wavelength (λ / 4), and the standing wave is the same as the first group 36A. It is composed of a second group (second piezoelectric element group) 36B arranged so that the polarization directions are switched at a pitch of 1/2 of the wavelength of the mode. That is, the plurality of displacement generation units 36 are divided into groups 36A and 36B having numbers corresponding to the number of modes (two in this embodiment).

加振部37は図3に示すように、圧電素子36に対して、疎密波が発生する固有モードに対応した周波数の正弦波を印加する制御部371を備え、制御部371は圧電素子36に接続されている。制御部371は、圧電素子36に対して、複数の群の各々36A,36Bにて異なる位相の正弦波を入力する。具体的には、交流電圧に係る正弦波を二系統に分け、一方の系統については、移相器371dにより時間的な位相をずらせる。図示していないが、制御部371では正弦波の周波数を増減させる調整が可能である。元の正弦波と移相された正弦波371aをそれぞれアンプ371b、371cで増幅した上、通電端37a、37bを介して各群36A,36Bに属する圧電素子36に印加する。本実施形態では、各群36A,36Bに属する圧電素子36に対し、0°モード、90°モードにおける固有周波数にほぼ一致する周波数で、かつ、0°モードと90°モードの定在波が時間的な位相で90°ずれて発生するように、移相器371dにおいて時間的な位相差を持った正弦波が印加される。 As shown in FIG. 3, the vibrating unit 37 includes a control unit 371 that applies a sine wave having a frequency corresponding to a unique mode in which a longitudinal wave is generated to the piezoelectric element 36, and the control unit 371 is attached to the piezoelectric element 36. It is connected. The control unit 371 inputs sine waves having different phases to the piezoelectric element 36 at each of the plurality of groups 36A and 36B, respectively. Specifically, the sine wave related to the AC voltage is divided into two systems, and the phase shifter 371d shifts the phase of one system in time. Although not shown, the control unit 371 can adjust the frequency of the sine wave to increase or decrease. The original sine wave and the phase-shifted sine wave 371a are amplified by the amplifiers 371b and 371c, respectively, and then applied to the piezoelectric elements 36 belonging to each group 36A and 36B via the energized ends 37a and 37b. In the present embodiment, for the piezoelectric element 36 belonging to each group 36A and 36B, the frequency is almost the same as the natural frequency in the 0 ° mode and the 90 ° mode, and the standing wave in the 0 ° mode and the 90 ° mode is the time. A sine wave having a temporal phase difference is applied in the phase shifter 371d so that the phase shifts by 90 °.

各圧電素子36は、縦波定在波モードの変位分布における腹の位置に配置される。制御部371から圧電素子36に印加された正弦波により、空間的に位相が90°ずれた2つの定在波モードのうち、一方の定在波モードを一方の圧電素子群36Aによって加振し、もう一方の定在波モードをもう一方の圧電素子群36Bによって時間的に位相を90°ずらして加振する。 Each piezoelectric element 36 is arranged at an antinode position in the displacement distribution of the longitudinal wave standing wave mode. Of the two standing wave modes that are spatially out of phase by 90 ° due to the sine wave applied from the control unit 371 to the piezoelectric element 36, one standing wave mode is vibrated by the one piezoelectric element group 36A. The other standing wave mode is vibrated by the other piezoelectric element group 36B with the phase shifted by 90 ° in time.

これにより、図6、図7に示したように、振動体3Aに横波(撓み進行波の場合)ではなく縦波の定在波が発生する。そして、空間的、時間的に位相がずれた複数(本実施形態では二つ)の定在波モードにて定在波を発生させることで、進行波を周方向に進行させることができる。 As a result, as shown in FIGS. 6 and 7, a standing wave of a longitudinal wave is generated in the vibrating body 3A instead of a transverse wave (in the case of a bending progressive wave). Then, by generating a standing wave in a plurality of (two in this embodiment) standing wave modes that are spatially and temporally out of phase, the traveling wave can be made to travel in the circumferential direction.

本実施形態において、図4に示すように加振源である圧電素子36を振動体3Aの肉厚内に配置したのは、圧電素子36の位置を、振動体3Aの上面側および下面側に対して、物理的に略対称とするためである。すなわち、かかる配置構成は、縦振動が生じた際の弾性力と慣性力の作用点を中立軸Nに凡そ一致させることを目的としている。中立軸Nとは、前述したように、振動体3Aを厚み方向(縦断面方向)から見たときに、曲げに対して引っ張りと圧縮が釣り合って応力が生じない軸をいう。具体的に本実施形態は、加振源である圧電素子36を挟むように上側振動体3A1と下側振動体3A2を配置した構成、好ましくは半割によるサンドイッチ構造のもので、上側振動体3A1と下側振動体3A2の素材を同一、厚み等の形状を略同一とし、振動体3Aの中立軸Nに沿って加振源である圧電素子36を配置している。 In the present embodiment, as shown in FIG. 4, the piezoelectric element 36, which is a vibration source, is arranged within the wall thickness of the vibrating body 3A because the position of the piezoelectric element 36 is located on the upper surface side and the lower surface side of the vibrating body 3A. On the other hand, this is to make it physically substantially symmetrical. That is, the purpose of such an arrangement configuration is to make the points of action of the elastic force and the inertial force when the longitudinal vibration occurs approximately coincide with the neutral axis N. As described above, the neutral axis N refers to an axis in which tension and compression are balanced against bending and stress is not generated when the vibrating body 3A is viewed from the thickness direction (longitudinal cross-sectional direction). Specifically, the present embodiment has a configuration in which the upper vibrating body 3A1 and the lower vibrating body 3A2 are arranged so as to sandwich the piezoelectric element 36 which is the vibration source, preferably a sandwich structure with a half split, and the upper vibrating body 3A1. The material of the lower vibrating body 3A2 is the same, the shape such as the thickness is substantially the same, and the piezoelectric element 36 which is the vibration source is arranged along the neutral axis N of the vibrating body 3A.

図4対して、図5の構成は、圧電素子36の伸縮が振動体3Aの下面(又は側面)で起こり、この位置から振動体3A全体に対する搬送方向への圧縮、引っ張りが行われるため、同図に矢印で示すように、圧電素子36から遠い位置ほど曲げモーメントによる振動体3Aの曲げ方向の変位が大きくなる。 In contrast to FIG. 4, the configuration of FIG. 5 is the same because the expansion and contraction of the piezoelectric element 36 occurs on the lower surface (or side surface) of the vibrating body 3A, and compression and pulling are performed from this position in the transport direction with respect to the entire vibrating body 3A. As shown by an arrow in the figure, the farther the position is from the piezoelectric element 36, the larger the displacement of the vibrating body 3A due to the bending moment in the bending direction.

図8(a)は、図4に示した圧電素子配置の下で振動体3Aに現れる変形状態を表した図であり、図8(b)は、図5に示した圧電素子配置の下で振動体3Aに現れる変形状態を表した図である。 FIG. 8A is a diagram showing a deformation state appearing in the vibrating body 3A under the piezoelectric element arrangement shown in FIG. 4, and FIG. 8B is a diagram showing the deformation state appearing in the vibrating body 3A under the piezoelectric element arrangement shown in FIG. It is a figure showing the deformation state appearing in the vibrating body 3A.

図8(a)において、水平方向の圧縮、引っ張り状態は疎密を表わす縦線の間隔で表される。符号Pで示す箇所は水平方向の変位が小さい箇所、符号Qで示す箇所は水平方向の変位が大きい箇所である。水平方向の変位が小さい箇所Pでは逆に厚み方向の変位が大きくなり、水平方向の変位が大きい箇所Qでは厚み方向の変位が小さくなっている。これらのP、Qの位置において疎密を表わす縦線の間隔や縦線の形、延びている方向を見ると、P、Qの付近で中立軸Nを越えて上下に亘る縦線で描かれる疎密を表わす線が中立軸Nに対して略直交して対称的に延びている。上側の搬送面351を見ると、山となる位置と谷となる位置が所定周期で滑らかに連続しており、搬送面351に一様な楕円振動によって理想的な縦波進行波が形成されていることがわかる。 In FIG. 8A, the horizontal compression and tension states are represented by the intervals of vertical lines indicating sparseness and density. The place indicated by the reference numeral P is a place where the displacement in the horizontal direction is small, and the place indicated by the reference numeral Q is a place where the displacement in the horizontal direction is large. On the contrary, the displacement in the thickness direction is large in the place P where the displacement in the horizontal direction is small, and the displacement in the thickness direction is small in the place Q where the displacement in the horizontal direction is large. Looking at the intervals between the vertical lines that represent sparseness at these P and Q positions, the shape of the vertical lines, and the extending direction, the sparseness is drawn by vertical lines that extend above and below the neutral axis N near P and Q. Is approximately orthogonal to the neutral axis N and extends symmetrically. Looking at the upper transport surface 351, the peak position and the valley position are smoothly continuous at a predetermined cycle, and an ideal longitudinal wave traveling wave is formed on the transport surface 351 by uniform elliptical vibration. You can see that there is.

これに対して、図(b)では、上記P、Qに対応する位置P´、Q´で中立軸Nを越えて上下に亘る縦線で描かれる疎密を表わす線が、曲げモーメントによって中立軸Nに対して直交方向から非対称に湾曲した方向に延び、また不規則に歪んでおり、上側の搬送面351´を見ると、山となる位置と谷となる位置がいびつで不連続であり、搬送面351´に滑らかな進行波が形成されていない。 On the other hand, in FIG. It extends from the direction orthogonal to N in an asymmetrically curved direction and is irregularly distorted. Looking at the upper transport surface 351', the peak position and the valley position are distorted and discontinuous. A smooth traveling wave is not formed on the transport surface 351'.

このことから、図8(b)に比べて図8(a)は、ワークの跳躍を抑え、かつ振幅のバラツキが小さい安定した搬送が実現できていることがわかる。 From this, it can be seen that in FIG. 8A, the jumping of the work is suppressed as compared with FIG. 8B, and stable transfer with a small amplitude variation can be realized.

なお、ボウルフィーダ3においては、図2では振動体を円環状として説明したが、必要に応じて図9(a)に示すように上面と下面の略中央位置にすり鉢状に中立軸Nが存する場合には、当該中立軸Nに沿って圧電素子を配する態様、或いは、図9(b)に示すようにボウルフィーダ3の凹部34と物理的に等価なダミーの凹部34´を下面側に形成する場合には、平面的な中立軸Nに沿って圧電素子を配する態様などを、適宜採用することで物理的対称性を確保することができる。 In the bowl feeder 3, the vibrating body is described as an annular shape in FIG. 2, but if necessary, a neutral shaft N exists in a mortar shape at substantially the center of the upper surface and the lower surface as shown in FIG. 9A. In this case, the piezoelectric element is arranged along the neutral axis N, or as shown in FIG. 9B, a dummy recess 34'which is physically equivalent to the recess 34 of the bowl feeder 3 is provided on the lower surface side. In the case of forming, physical symmetry can be ensured by appropriately adopting an embodiment in which the piezoelectric element is arranged along the planar neutral axis N.

また、トラックについても、例えば図10に示すように上側振動体3A1のトラック35と物理的対称性を確保できるようなダミーのトラック35´が、必要に応じて下側振動体3A2の下面側にも確保される。すなわち、図9(b)の場合を含め、必要に応じて上側振動体3A2と下側振動体3A2との物理的な非対称性を、上側振動体3A1又は下側振動体3A2の一方に他方とは異なる形状を付与することによって補完することができる。このため、上側振動体3A1と下側振動体3A2の形状に違いがあっても、或いは材質や厚みに違いがあっても、形状的な補完を利用することで物理的な対称性を確保することができる。この意味でも、図10に示すようにダミーのトラック35´の形状は、搬送部のトラック35と必ずしも同形状である必要はない。 As for the track, for example, as shown in FIG. 10, a dummy track 35'that can secure physical symmetry with the track 35 of the upper vibrating body 3A1 is provided on the lower surface side of the lower vibrating body 3A2 as needed. Is also secured. That is, including the case of FIG. 9B, the physical asymmetry between the upper vibrating body 3A2 and the lower vibrating body 3A2 is, if necessary, one of the upper vibrating body 3A1 or the lower vibrating body 3A2 and the other. Can be complemented by imparting different shapes. Therefore, even if there is a difference in the shape of the upper vibrating body 3A1 and the lower vibrating body 3A2, or even if there is a difference in the material and the thickness, physical symmetry is ensured by using the shape complement. be able to. In this sense as well, as shown in FIG. 10, the shape of the dummy truck 35'is not necessarily the same as that of the truck 35 of the transport portion.

上記図9(a)、(b)、図10のごとき対策は、リニアフィーダ4においても同様に採用し得る。 The measures shown in FIGS. 9 (a), 9 (b) and 10 above can be similarly adopted in the linear feeder 4.

以上のように、本実施形態のワーク搬送装置は、ワークを載置した状態で搬送する搬送部31、41を有する振動体3A、4Aと、振動体3A、4Aに、ワークの搬送方向に沿う方向の圧縮歪み及び引張歪みを含む疎密波を、少なくとも二つのモードで発生させることにより、搬送部31、41に楕円軌道を描く振動を発生させる振動発生部3B、4Bと、を備え、振動発生部3B、4Bを、振動体3A、4Aの上面側および下面側に対して、物理的に略対称となる位置に振動発生部3B、4Bの加振源である圧電素子36、46を配置して構成したことを特徴とする。 As described above, the work transfer device of the present embodiment is along the transfer direction of the work to the vibrating bodies 3A and 4A having the transporting portions 31 and 41 for transporting the work in a mounted state and the vibrating bodies 3A and 4A. The transport units 31 and 41 are provided with vibration generating units 3B and 4B that generate vibrations that draw an elliptical trajectory by generating a compressional strain and a tensile strain in the direction in at least two modes, and generate vibration. Piezoelectric elements 36 and 46, which are vibration sources of the vibration generating parts 3B and 4B, are arranged at positions where the parts 3B and 4B are physically substantially symmetrical with respect to the upper surface side and the lower surface side of the vibrating bodies 3A and 4A. It is characterized by being configured in.

このようにすれば、振動体3A、4Aに曲げを生じさせるようなモーメントが発生しないため、不要な振動の発生を抑制することができる。この結果、振幅のバラツキが小さく、進行波比が向上して、速度のバラツキの少ない安定した搬送を実現することが可能となる。 By doing so, since a moment that causes bending is not generated in the vibrating bodies 3A and 4A, it is possible to suppress the generation of unnecessary vibration. As a result, the variation in amplitude is small, the traveling wave ratio is improved, and it is possible to realize stable transport with little variation in speed.

また、加振源である圧電素子36を底面に配置する構成では、圧電素子36の厚み等の形状によっては、より非対称性が大きくなってしまうため、圧電素子36の形状などの自由な設計が困難であったが、本実施形態によれば上下の対称性が得られるため、設計の自由度が高くなる。このため、例えば圧電素子36を厚くして静電容量を大きくする、などの設計も行い易いものとなる。 Further, in the configuration in which the piezoelectric element 36 which is the vibration source is arranged on the bottom surface, the asymmetry becomes larger depending on the shape such as the thickness of the piezoelectric element 36, so that the shape of the piezoelectric element 36 can be freely designed. Although it was difficult, according to this embodiment, vertical symmetry can be obtained, so that the degree of freedom in design is increased. Therefore, for example, it becomes easy to design such that the piezoelectric element 36 is thickened to increase the capacitance.

また、振動体3A、4Aの肉厚内に、振動体3A、4Aの中立軸Nに沿って加振源である圧電素子36を配置している。このため、厚み内に配置するので、圧電素子36の両側が振動体で挟まれ、割れなどの故障が生じづらいものとなる。 Further, the piezoelectric element 36, which is a vibration source, is arranged along the neutral axis N of the vibrating bodies 3A and 4A within the wall thickness of the vibrating bodies 3A and 4A. Therefore, since the piezoelectric element 36 is arranged within the thickness, both sides of the piezoelectric element 36 are sandwiched by the vibrating body, and it is difficult for a failure such as cracking to occur.

さらに、振動体3A、4Aを上側振動体3A1(4A1)と下側振動体3A2(4A2)で構成して、加振源である圧電素子36、46を挟むように、上側振動体3A1(4A1)と下側振動体3A2(4A2)を配置している。このため、半割構造を利用して作り易く、電極も引き出し易いものとなる。 Further, the vibrating bodies 3A and 4A are composed of the upper vibrating body 3A1 (4A1) and the lower vibrating body 3A2 (4A2), and the upper vibrating body 3A1 (4A1) sandwiches the piezoelectric elements 36 and 46 which are vibration sources. ) And the lower vibrating body 3A2 (4A2) are arranged. Therefore, it is easy to make by using the half-split structure, and the electrode can be easily pulled out.

また、上側振動体3A1(4A1)と下側振動体3A2(4A2)の素材又は形状の全部が同一であり、加振源が略中立軸N上に配置されている。このため、シンプルな構造で物理的対称性を得ることができる。 Further, all the materials or shapes of the upper vibrating body 3A1 (4A1) and the lower vibrating body 3A2 (4A2) are the same, and the vibration source is arranged on the substantially neutral axis N. Therefore, physical symmetry can be obtained with a simple structure.

さらに、上側振動体3A1(4A1)と下側振動体3A2(4A2)との物理的な非対称性を、上側振動体3A1(4A1)又は下側振動体3A2(4A2)の一方に他方とは異なる形状を付与することによって補完することもできる。これにより、上側振動体3A1(4A1)と下側振動体3A2(4A2)の形状に違いがあっても、或いは材質や厚みに違いがあっても、形状で補完することで、比較的簡単、適切に物理的な対称性を確保することができる。 Further, the physical asymmetry between the upper vibrating body 3A1 (4A1) and the lower vibrating body 3A2 (4A2) is different from the other in one of the upper vibrating body 3A1 (4A1) or the lower vibrating body 3A2 (4A2). It can also be complemented by giving a shape. As a result, even if there is a difference in the shape of the upper vibrating body 3A1 (4A1) and the lower vibrating body 3A2 (4A2), or even if there is a difference in the material and thickness, it is relatively easy to supplement with the shape. Appropriate physical symmetry can be ensured.

以上を通じて本実施形態のワーク搬送装置は、疎密波により搬送方向を長軸とする楕円振動に基づく進行波を搬送面に進行波を発生させることができ、ワークの跳躍を抑え、かつ振幅のバラツキが小さい安定した搬送を実現することが可能になる。 Through the above, the work transfer device of the present embodiment can generate a traveling wave on the transport surface based on elliptical vibration having a long axis in the transport direction by a sparse and dense wave, suppresses the jump of the work, and has a variation in amplitude. It is possible to realize stable transportation with a small amplitude.

以上、本発明の一実施形態について説明したが、各部の具体的な構成は上述した実施形態のみに限定されるものではない。 Although one embodiment of the present invention has been described above, the specific configuration of each part is not limited to the above-described embodiment.

例えば、振動体の上側と下側が単一材料である場合は厚み方向中心付近が中立軸であり、ここに加振源を配置すれば物理的対称性が得られるが、多少の非対称があっても、中立軸の位置を厚み方向にずらすことで、物理的対称性が得られるように調整することができる。 For example, when the upper and lower sides of the vibrating body are made of a single material, the neutral axis is near the center in the thickness direction, and if a vibration source is placed here, physical symmetry can be obtained, but there is some asymmetry. However, by shifting the position of the neutral axis in the thickness direction, it can be adjusted so that physical symmetry can be obtained.

また、図11に示すように、上側振動体3A1又は下側振動体3A2の何れかの表面に、例えば樹脂などの密度およびヤング率が十分小さい材料、或いはコーティング等の薄い材料からなる表面層30が設けられていても、中立軸Nの位置や、弾性力、慣性力にほとんど寄与しない場合は、物理的な対称性を保つことができる。勿論、上述したように、必要に応じて中立軸Nをずらし、或いは下側振動体3A2(4A2)等に形状による補完を行って、物理的な対称性を高めてもよい。 Further, as shown in FIG. 11, a surface layer 30 made of a material having a sufficiently low density and Young's modulus such as a resin or a thin material such as a coating on the surface of either the upper vibrating body 3A1 or the lower vibrating body 3A2. However, if it hardly contributes to the position of the neutral axis N, the elastic force, and the inertial force, the physical symmetry can be maintained. Of course, as described above, the neutral axis N may be shifted as necessary, or the lower vibrating body 3A2 (4A2) or the like may be complemented by the shape to enhance the physical symmetry.

さらに、図11に示すように、加振源である圧電素子36を、振動体3Aの内部における上面側へ変位した位置と下面側へ変位した位置に上下対称な位置関係に対をなして配置してもよい。このようにすれば、合成された加振力が中立軸N上に作用するため、物理的対称性を確保しつつ、加振力の増大などを図ることができる。 Further, as shown in FIG. 11, the piezoelectric element 36, which is a vibration source, is arranged in a pair in a vertically symmetrical positional relationship between the position displaced toward the upper surface side and the position displaced toward the lower surface side inside the vibrating body 3A. You may. By doing so, since the combined exciting force acts on the neutral axis N, it is possible to increase the exciting force while ensuring physical symmetry.

その他、圧電素子を多層構造にしたり、加振源を圧電素子以外で構成するなど、本発明の趣旨を逸脱しない範囲で種々変形が可能である。 In addition, various modifications can be made without departing from the spirit of the present invention, such as making the piezoelectric element a multi-layer structure or configuring the vibration source other than the piezoelectric element.

また、上側弾性体と下側弾性体とで剛性などの特性に起因して多少厚みが異なっても、上側弾性体と下側弾性体で材質を異ならせることで、その物理的対称性のアンバランスを吸収することができる。 In addition, even if the thickness of the upper elastic body and the lower elastic body are slightly different due to the characteristics such as rigidity, the physical symmetry of the upper elastic body and the lower elastic body can be changed by different materials. Can absorb the balance.

3A、4A…振動体
31、41…搬送部
3B、4B…振動発生部
3A1、4A1…上側振動体
3A2、4A2…下側振動体
36、46…加振源(圧電素子)
N…中立軸
3A, 4A ... Vibrating body 31, 41 ... Conveying part 3B, 4B ... Vibration generating part 3A1, 4A1 ... Upper vibrating body 3A2, 4A2 ... Lower vibrating body 36, 46 ... Excitation source (piezoelectric element)
N ... Neutral axis

Claims (3)

ワークを載置した状態で搬送する搬送面を有する振動体と、
前記振動体に、前記ワークの搬送方向に沿う方向の圧縮歪み及び引張歪みを含む疎密波を、少なくとも二つのモードで発生させることにより、前記搬送部に楕円軌道を描く振動を発生させる振動発生部と、を備え、
前記振動発生部を、前記振動体の上面側および下面側に対して、物理的に略対称となる位置に配置して構成したことを特徴とするワーク搬送装置。
A vibrating body having a transport surface for transporting the workpiece in a mounted state,
A vibration generating unit that generates a vibration that draws an elliptical orbit in the transporting unit by generating a compressional strain and a tensile strain in the vibrating body in at least two modes. And, with
A work transfer device characterized in that the vibration generating portion is arranged at positions that are physically substantially symmetrical with respect to the upper surface side and the lower surface side of the vibrating body.
前記振動体の肉厚内に、当該振動体の中立軸に沿って加振源を配置している、請求項1に記載のワーク搬送装置。 The work transfer device according to claim 1, wherein the vibration source is arranged along the neutral axis of the vibrating body within the wall thickness of the vibrating body. 前記振動体を上側振動体と下側振動体で構成して、前記加振源を挟むように上側振動体と下側振動体を配置している、請求項1又は2に記載のワーク搬送装置。 The work transfer device according to claim 1 or 2, wherein the vibrating body is composed of an upper vibrating body and a lower vibrating body, and the upper vibrating body and the lower vibrating body are arranged so as to sandwich the vibration source. ..
JP2020169817A 2020-10-07 2020-10-07 Work-piece conveyance device Pending JP2022061711A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020169817A JP2022061711A (en) 2020-10-07 2020-10-07 Work-piece conveyance device
KR1020210127129A KR20220046472A (en) 2020-10-07 2021-09-27 Workpiece conveyance apparatus
TW110136105A TW202214508A (en) 2020-10-07 2021-09-28 Workpiece transfer device Capable of realizing stable transfer with small amplitude variation while suppressing the jump of the workpiece
CN202111141954.0A CN114291506A (en) 2020-10-07 2021-09-28 Workpiece conveying device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020169817A JP2022061711A (en) 2020-10-07 2020-10-07 Work-piece conveyance device

Publications (1)

Publication Number Publication Date
JP2022061711A true JP2022061711A (en) 2022-04-19

Family

ID=80964391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020169817A Pending JP2022061711A (en) 2020-10-07 2020-10-07 Work-piece conveyance device

Country Status (4)

Country Link
JP (1) JP2022061711A (en)
KR (1) KR20220046472A (en)
CN (1) CN114291506A (en)
TW (1) TW202214508A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6817513B2 (en) 2015-08-24 2021-01-20 シンフォニアテクノロジー株式会社 Work transfer device

Also Published As

Publication number Publication date
TW202214508A (en) 2022-04-16
KR20220046472A (en) 2022-04-14
CN114291506A (en) 2022-04-08

Similar Documents

Publication Publication Date Title
JP4209465B2 (en) Drive device
US7583008B2 (en) Vibration wave driven apparatus and vibrator
US8350446B2 (en) Vibratory actuator and drive device using the same
JP5775183B2 (en) Vibrating transfer device
JP2022061711A (en) Work-piece conveyance device
KR20190008089A (en) Work transfer device
JP6819010B2 (en) Work transfer device
JPH11346487A (en) Oscillation wave unit and oscillation wave driver
JP2008172885A (en) Ultrasonic actuator
KR20180076999A (en) Work conveying apparatus and adjustment method in work conveying apparatus
JPS62193569A (en) Ultrasonic motor
JPH03124645A (en) Card carrying device
JPH04281A (en) Micro-slide device
JP2005245055A (en) Oscillatory wave drive unit
JP2019163112A (en) Workpiece conveyance device
JPH0614567A (en) Oscillation linear driver and printer employing linear driver
JP2715156B2 (en) Card carrier
JP2018095460A (en) Workpiece transport device
JPH01177879A (en) Oscillatory wave linear motor
JP2018104191A (en) Work-piece conveying device
CN107380923A (en) Part feeding machine
UA70782A (en) Wave piezoelectric motor wave piezoelectric motor
JPH02215631A (en) Card carrying device
JP2018108001A (en) Work-piece transfer device
JP2000092867A (en) Oscillating actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230808

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240319