JP5769668B2 - 太陽電池の製造方法および太陽電池製造装置 - Google Patents

太陽電池の製造方法および太陽電池製造装置 Download PDF

Info

Publication number
JP5769668B2
JP5769668B2 JP2012133225A JP2012133225A JP5769668B2 JP 5769668 B2 JP5769668 B2 JP 5769668B2 JP 2012133225 A JP2012133225 A JP 2012133225A JP 2012133225 A JP2012133225 A JP 2012133225A JP 5769668 B2 JP5769668 B2 JP 5769668B2
Authority
JP
Japan
Prior art keywords
electrode
solar cell
forming
film
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012133225A
Other languages
English (en)
Other versions
JP2013258280A (ja
Inventor
篤郎 濱
篤郎 濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012133225A priority Critical patent/JP5769668B2/ja
Publication of JP2013258280A publication Critical patent/JP2013258280A/ja
Application granted granted Critical
Publication of JP5769668B2 publication Critical patent/JP5769668B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Description

本発明は、太陽電池の製造方法および太陽電池製造装置に関する。
従来、太陽電池の反射防止膜については、プロセスの簡略化の要求から、均一な成膜を行い、反射防止膜上に電極を形成した後に高温焼成によって反射防止膜を突き破って基板表面付近に形成された発電層を構成する光電変換部とコンタクトをとる、所謂ファイヤスルーが広く用いられてきた。特許文献1では、上記ファイヤスルーを実施する際に、焼成によって電極が光電変換部を突き抜けたりすることなく、且つ光電変換部との良好なオーミックコンタクトを得るための電極材料の組成比が開示されている。
電極材料に関しては、昨今の流れは「低温・短時間焼成」が主流となってきており、様々なペーストメーカーが競争を繰り広げており、同時に反射防止膜に関しては、CVD法(Chemical Vapor Deposition)により成膜された、酸化珪素、窒化珪素、酸化チタンなどが広く用いられている。
特公昭61−059546号公報
しかしながら、上記従来の技術によれば、ファイヤスルーによって電極を形成するためには、電極ペーストの種類にも依存するが、おおよそ700℃以上の高温で電極を焼成する必要がある。焼成温度がこの温度に満たない場合、反射防止膜を十分に突き破ることができず、良好なコンタクトを得る事が困難である。また焼成温度が高温になると、基板のライフタイム低下を引き起こし、太陽電池の特性低下を招くおそれがあるとともに焼成後の反りが増加し、製造上割れの原因となるなどの問題が発生する。
本発明は、上記に鑑みてなされたものであって、焼成温度の低減を図ることで、反り、割れなどに起因する特性低下を抑制し、信頼性の高い太陽電池を得ることを目的とする。
上述した課題を解決し、目的を達成するために、本発明は、半導体基板上にpn接合を形成し、光電変換部を形成する工程と、前記光電変換部の受光面上に、反射防止膜を成膜する工程と、電極材料層を形成する工程と、前記電極材料層を焼成し、前記光電変換部とコンタクトする受光面側電極を形成する工程とを含み、前記反射防止膜を成膜する工程が、プラズマCVD法であり、前記反射防止膜の膜厚が、前記受光面側電極を形成する電極形成領域では選択的に薄くなるように、前記電極形成領域のパターン形状に対応した形状の反転パターンの電極形状をもつホローカソード電極を配置し、電極形成領域への成膜を抑制しながら成膜する工程であることを特徴とする。
本発明によれば、反射防止膜形成時に受光面側電極を形成する部分への反射防止膜の成膜を抑制することで、焼成工程において、電極材料層が突き破る反射防止膜が存在しないか存在していたとしても薄いため、ファイヤスルー温度を高温にすることなく良好なコンタクトを得ることができるという効果を奏する。
図1は、本発明にかかる太陽電池の製造方法における反射防止膜の成膜方法で得られた実施の形態1の太陽電池を示す図である。 図2−1は、反射防止膜の成膜に用いられる太陽電池製造装置の実施の形態1のデポダウン式の成膜装置を示す断面図である。 図2−2は、反射防止膜の成膜に用いられる太陽電池製造装置の実施の形態1のデポダウン式の成膜装置を示す断面図である。 図2−3は、反射防止膜の成膜に用いられる太陽電池製造装置の実施の形態1のデポダウン式の成膜装置のカソードをはずした状態を示す上面図である。 図3は、同成膜装置で用いられるマスクを示す上面図である。 図4−1は、本発明にかかる太陽電池の製造方法の実施の形態1の工程説明図である。 図4−2は、本発明にかかる太陽電池の製造方法の実施の形態1の工程説明図であり、図4−3のC−C断面図である。 図4−3は、本発明にかかる太陽電池の製造方法の実施の形態1の工程説明図である。 図4−4は、本発明にかかる太陽電池の製造方法の実施の形態1の工程説明図である。 図4−5は、本発明にかかる太陽電池の製造方法の実施の形態1の工程説明図である。 図5−1は、反射防止膜の成膜に用いられる太陽電池製造装置の実施の形態2のデポダウン式の成膜装置を示す断面図である。 図5−2は、反射防止膜の成膜に用いられる太陽電池製造装置の実施の形態2のデポダウン式の成膜装置を示す断面図である。 図6は、反射防止膜の成膜に用いられる太陽電池製造装置の実施の形態3のデポダウン式の成膜装置を示す断面図である。 図7−1は、本発明にかかる太陽電池の製造方法の実施の形態3の工程説明図である。 図7−2は、本発明にかかる太陽電池の製造方法の実施の形態3の工程説明図である。 図7−3は、本発明にかかる太陽電池の製造方法の実施の形態3の工程説明図である。 図7−4は、本発明にかかる太陽電池の製造方法の実施の形態3の工程説明図である。 図7−5は、本発明にかかる太陽電池の製造方法の実施の形態3の工程説明図である。 図8−1は、従来例の太陽電池の製造方法の工程説明図である。 図8−2は、従来例の太陽電池の製造方法の工程説明図である。 図8−3は、従来例の太陽電池の製造方法の工程説明図である。 図8−4は、従来例の太陽電池の製造方法の工程説明図である。
以下に、本発明にかかる太陽電池製造装置を用いた太陽電池用反射防止膜の製造方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。本実施の形態では、ファイヤスルーによる太陽電池セルの製造方法の欠点を補い、量産性に優れたプロセスを可能とするものである。具体的には、反射防止膜形成時に電極部分の成膜を抑制し、従来よりさらに低温・短時間の焼成によって良好なオーミックコンタクトを得るものである。
実施の形態の説明に先立ち、反射防止膜の成膜方法について説明する。現在、反射防止膜の形成に広く用いられている成膜方法は、向い合せに位置する対向電極の一方に太陽電池用基板(以下ウエハと指称することもある)を設置し、もう一方に数100〜1000kHzの低周波電力を投入する事により、チャンバー内に導入されたSiH4、NH3を励起し、ウエハ上にSixyとして堆積させる方法である。この時、ウエハは対向電極に対して平行に設置されており、設置方法として縦置き方式と横置き方式がある。
縦置き方式は、文字通り対向電極(カソード)と接地電極(アノード)が垂直に位置しており、通常4〜6対の電極を1セットとして真空チャンバー内に設置される。この際ウエハは接地電極に設けられた爪状の突起によって保持される。縦置きのデメリットとしては上記爪状の突起によってウエハを保持するために成膜後のウエハ端部に爪状の未成膜領域が発生する。またその配置のために接地電極へのウエハの移載機構が複雑となり、スループットも低下する。
一方、横置き方式はウエハを多数枚水平方向に並べ、これと対向電極との間にプラズマを発生させ、同時に他数枚の処理を可能とする。スループットが良好であるため、量産性に優れており、現在広く用いられている。
横置き方式のウエハ配置には成膜の方向によってデポアップ式とデポダウン式がある。デポダウン式は真空チャンバー内底部にウエハを設置し、上部からの電力投入によりウエハ上部に反射防止膜を成膜する方式である。デポアップ式は真空チャンバーの天井部にウエハを保持し、ウエハ下部に反射防止膜を成膜する方式である。この方法によれば、チャンバー内に生成したダストにより、ウエハ上への反射防止膜の成膜不良が発生するのを阻止することができるが、ウエハの保持方法が難しい等、依然として課題が多い。
以下、デポアップ式の成膜装置を用いたものとデポダウン式の成膜装置を用いたものについて順次説明するが、実施の形態1ではデポアップ式の成膜装置を用いたもの、実施の形態2ではデポダウン式の成膜装置を用いたものについて順次説明する。
実施の形態1.
図1は、本発明にかかる太陽電池の製造方法における反射防止膜の成膜方法で得られた太陽電池を示す図、図2−1から図2−3は、この反射防止膜の成膜に用いられる太陽電池製造装置の実施の形態1のデポダウン式の成膜装置を示す図である。図2−1および図2−2は断面図、図2−3はカソードをはずした状態の同成膜装置の上面図であり、図2−1および図2−2は、それぞれ図2−3のA−A断面およびB−B断面に相当する部分を示す図である。図3は同成膜装置で用いられるマスクを示す上面図である。
本実施の形態の方法で形成された太陽電池100は、図1に要部断面図を示すように、太陽電池用基板10の受光面側に設けられる反射防止膜14を開口Oをもつ窒化シリコン膜のパターンで構成し、受光面側電極15をこの開口Oに形成することで、ファイヤスルー工程なしに太陽電池用基板とのコンタクトを取るようにしたことを特徴とするものである。他は通例の太陽電池構造をなすもので、p型シリコン基板11表面にn型シリコン拡散層12を形成してpn接合を形成するとともに、裏面側にp+型シリコン拡散層13を形成し、太陽電池用基板10を構成する。そしてこの太陽電池用基板10の受光面および裏面側に、受光面側電極15および裏面電極16を形成したものである。
このように、本実施の形態の太陽電池用基板10においては、p型シリコン基板11とn型シリコン拡散層12とによりpn接合を構成している。反射防止膜14としては窒化シリコン膜(Si34膜)が使用可能であり、本発明の実施の形態に係る成膜装置を用いて形成される。受光面側電極15及び裏面電極16としては銀(Ag)やアルミニウム(Al)等が使用可能である。
この太陽電池製造装置は、横置き型のデポダウン方式の成膜装置である。この装置は、反射防止膜14のパターンを形成するもので、受光面側電極15に対応した開口Oを形成するように、太陽電池用基板10上に当該電極形成領域を覆う、マスク5を装着したことを特徴とする。マスク5は図3に示すように、細いストライプ状パターンからなるグリッド部5gと、このグリッド部5gに直交する幅太のバス部5Bとで構成される。つまりこのマスク5で覆われた領域が反射防止膜14の開口となる。
この太陽電池製造装置は、チャンバー9と、チャンバー9内に配置され、pn接合の形成された太陽電池用基板10を保持するアノード電極2と、チャンバー9内にアノード電極2と対向して配置されたカソード電極1と、カソード電極1に、水素(H)、窒素(N)及びシリコン(Si)を含む材料ガスを供給するガス供給管6と、カソード電極1とアノード電極2との間に低周波を印加し、放電によるプラズマを生成させる電源4とを備えている。そして、ガス供給管6から、供給された材料ガスを、プラズマで励起して、太陽電池用基板10上に供給し窒化シリコン膜からなる反射防止膜14を成膜するように構成したものである。これらの構成部材は密閉容器からなるチャンバー9内に装着される。
アノード電極2はプラズマを発生させるための電極であり、太陽電池用基板10を載置するステージの機能も兼ねている。アノード電極2は図示を省略した昇降機構により上下方向の移動と回転が可能であり、必要に応じて、被処理体である太陽電池用基板10の加熱や冷却等も可能なように構成されている。
カソード電極1にはガス供給管6が接続されている。ガス供給管6は、窒素(N2)ガス、アンモニア(NH3)ガス及びシラン(SiH4)ガス等の材料ガスを供給する。本発明の実施の形態における「材料ガス」とは、成膜される膜の材料となるガスの他に、希ガスや反応性活性種となるガスを含むものを意味する。
アノード電極2は接地電位とされ、カソード電極1には電源4が接続されている。電源4は、反射防止膜としての窒化シリコン膜(Si34膜)の成膜時には、カソード電極1とアノード電極2との間に低周波を印加する。チャンバー9の底部には、図示を省略した真空排気ポンプに接続される真空排気管が設けられている。
次に、この太陽電池製造装置としての成膜装置を用いた太陽電池の製造工程について説明する。図4−1〜4−5はこの工程説明図である。
まず、p型シリコン基板11を用意する。アルカリ水溶液によるエッチングや反応性イオンエッチング(RIE)法等により表面処理を行い、p型シリコン基板11の表面に微細凹凸であるテクスチャ構造を形成する。これにより、p型シリコン基板11表面の光の反射を抑えることができる。
そして、オキシ塩化リン(POCl3)を用いた気相拡散法、燐酸(P25)を用いた塗布拡散法、リン(P)イオンを直接拡散させるイオン注入法等により、リン(P)をn型ドーパントとしてp型シリコン基板11の表面から拡散させ、n型シリコン拡散層12を形成する。そして、n型ドーパントを拡散したp型シリコン基板11の一方の面のn型拡散層をエッチング処理により除去する。
そして、エッチングしたp型シリコン基板11の表面にAlペーストを塗布し、熱処理することによって、エッチングしたp型シリコン基板11の表面からアルミニウム(Al)等のp型ドーパントを拡散させ、p+型シリコン拡散層13を形成し、太陽電池用基板10を形成する(図4−1)。
そして、図1、図2−1〜図2−3および図3に示した本発明の実施の形態に係る成膜装置を用いて、カソード電極1とアノード電極2との間に低周波を印加しながら、カソード放電による高密度のプラズマPを生成し、この太陽電池用基板10のn型シリコン拡散層12の表面に図3に示すマスク5を載置し、このマスク5を介して反射防止膜14として窒化シリコン膜(Si34膜)を成膜する。これにより、図4−2および図4−3に断面図および上面図を示すように、電極形成領域に開口Oを有する反射防止膜14を形成する。図4−2および図4−3に示すように、反射防止膜14は、電極形成領域に開口Oを有し太陽電池用基板10が部分的に露呈している。
この後、図4−4に示すように、反射防止膜14の開口Oから露呈する電極形成領域に、Ag粉、バインダ、フリットからなるAgペーストをスクリーン印刷することにより、Agペーストのパターンを形成する。Agペーストは、太陽電池の効率を高めるためにグリッド部とバス部とからなるパターンに形成される。
そして、図4−5に示すように、受光面に対向する裏面側にも同様に、Agペーストをスクリーン印刷することにより、Agペーストのパターンを形成する。そして、750℃またはそれ以上の温度で、10秒前後の焼成工程を経て、印刷されたAgペーストが焼成され、受光面側電極15及び裏面電極16がそれぞれ形成される。この後、半田ディップ法により受光面側電極15の表面および、裏面電極16の表面に図示しない半田層を形成する。このようにして図1に示した太陽電池100が形成される。
以上説明してきたように、本実施の形態の方法では、デポダウン式を用いた太陽電池製造装置を用い、図2−1〜図2−3に示すように、下部の接地電極であるアノード電極2上に太陽電池用基板10を移載した後、後に電極が配置される部分にマスク5を設置し、その後上部から成膜を行う。これにより、ファイヤスルーが不要となり、電極の焼成温度を大幅に低くすることができるため、高温工程が不要になることから、反りや歪の発生もなく、信頼性の高い太陽電池を得ることができる。
比較のために、図8−1〜図8−4は、従来例の太陽電池の製造方法の工程説明図を示す。実施の形態1の太陽電池の製造方法と同様に、太陽電池形成用基板10を形成した後、CVD法により、n型シリコン拡散層12全面に窒化シリコン膜からなる反射防止膜14を形成する(図8−1)。
この後、図8−2に示すように、反射防止膜14上にAgペーストをスクリーン印刷することにより、実施の形態1と同様、Agペーストのパターンを形成する。Agペーストは、太陽電池の効率を高めるためにグリッド部とバス部とからなるパターンに形成される。
そして、図8−3に示すように、受光面に対向する裏面側にも同様に、Agペーストをスクリーン印刷することにより、Agペーストのパターンを形成する。そして、750℃またはそれ以上の温度で、10秒前後の焼成工程を経て、印刷されたAgペーストが焼成され、このときファイヤスルーと呼ばれる、突き抜け現象により、Ag層がn型シリコン拡散層12に到達し、コンタクトすることで、受光面側電極15及び裏面電極16がそれぞれ形成される。この後、半田ディップ法により受光面側電極15の表面および、裏面電極16の表面に図示しない半田層を形成する。このようにして図8−4に示すように、太陽電池100が形成される。
この場合、ファイヤスルーを生じさせるために、高温で長時間の熱処理が必要となる。このため、基板に反りや歪が生じることがある。これに対し、本実施の形態では、反射防止膜14を電極形成領域には形成しないようにしているため、受光面側電極15の電極材料であるAg層の形成時にn型シリコン拡散層12とコンタクトするように形成される。このため、実際にはファイヤスルーが不要となり、Agが光電変換部を構成するn型シリコン拡散層12まで到達するための熱処理なしに、Agペースト自体の焼成温度であればよい。このため、高温の熱処理工程が不要となり、反りや歪の発生もなく、信頼性の高い太陽電池を得ることができる。
実施の形態2.
図5−1〜図5−2は、この反射防止膜の成膜に用いられる太陽電池製造装置の実施の形態2のデポアップ式の成膜装置を示す図である。図5−1および図5−2は断面図である。カソードをはずした状態の太陽電池製造装置の上面図は、前記実施の形態1の太陽電池製造装置における図2−3と同様であり、ここでは説明を省略するが、図4−1および図4−2は、それぞれ図2−3のA−A断面およびB−B断面に相当する部分を示す図である。
この太陽電池製造装置は、チャンバー9の天井部に太陽電池用基板10を支持して成膜をする、デポアップ式の成膜装置である点が異なるのみで、他は前記実施の形態1と同様である。同一部位には同一符号を付した。
この例ではアノード電極2がチャンバー9の天井部に支持されており、図3に示したのと同様のマスク5が、太陽電池用基板10の表面を支持し、アノード電極2への接続性を良好にしている。ここではアノード電極2はプラズマを発生させるための電極であり、太陽電池用基板10を載置する支持部としての機能も兼ねている。アノード電極2は図示を省略した昇降機構により上下方向の移動と回転が可能であり、必要に応じて、被処理体である太陽電池用基板10の加熱や冷却等も可能なように構成されている。
このようにデポアップ式の成膜装置の場合、あらかじめ電極の形状に加工された部材上にウエハすなわち太陽電池用基板10を移載し、この部材を上部の接地電極とウエハを介して密着させることによりウエハ全面で電気的に接地する。デポアップ式の現状の難点はウエハの保持方法であるが、この観点からもマスク5がウエハすなわち太陽電池用基板10の支持部材を兼ねているため、本方法は有用である。成膜工程は前記実施の形態1と同様であるためここでは説明を省略する。
実施の形態3.
次に本発明の実施の形態3について説明する。本実施の形態では、ホローカソード電極によって高密度プラズマを形成し、高い成膜レートを得る技術が開示されている。本技術では反射防止膜形成装置の対向電極の形状を中心に反応ガス出口を有したノズル状とすることで、この部分の成膜レートを向上させているが、ホローカソード電極1bの配置をウエハ上の後に電極の形成されない部分のみに限定することによって相対的に電極部分の反射防止膜の形成を抑制し、ファイヤスルーを、低温下で実現できるようにしている。
装置構成としては、低周波電源4aに接続されたカソード電極1aに加え、高周波電源4bに接続されたホローカソード電極1bを追加した点が異なる。この装置ではホローカソード電極1bにより形成した、高密度のプラズマPを用いて成膜を行うので、通常の平行平板型プラズマCVD装置と比して成膜速度を向上させることができる。更に、ホローカソード電極1bとアノード電極2との間に高周波を印加することにより、イオン照射率を高めてH+イオンを太陽電池用基板10の下地層に照射し、下地層に拡散させ、粒界パッシベーションを促進させることができる。よって成膜速度を向上しつつ、下地層において高い水素パッシベーション効果を得ることができる。なお、低周波電源は、50〜450kHzの範囲であることが好ましい。50kHzよりも小さいと放電が不安定であり、450kHzよりも大きいと水素パッシベーション効果が少なくなる。
次にこの太陽電池製造装置を用いた、太陽電池の製造方法について説明する。図7−1〜7−5はこの工程説明図である。
図4−1に示したように太陽電池用基板10を形成する工程までは前記実施の形態1と同様であるので、ここでは説明を省略する。
そして、図6に示した本発明の実施の形態3に係る成膜装置を用いて、高周波電源4bに接続されたホローカソード電極1bとアノード電極2との間に高周波を印加しながら、カソード放電による高密度のプラズマPを生成し、反射防止膜14を形成する。ホローカソード電極1bに近接した領域ではより高密度のプラズマPが生成されることにより、反射防止膜14の膜厚が大きくなる。つまり反射防止膜14の膜厚が、電極形成領域でより小さくなる。このようにして、この太陽電池用基板10のn型シリコン拡散層12の表面に図7−1に示すように、反射防止膜の膜厚が、前記電極形成領域でより小さくなるように構成すべく、電極形成領域の窒化シリコン膜(Si34膜)が選択的に薄くなるように、窒化シリコン膜(Si34膜)を成膜する。これにより、図7−1および図7−2に断面図および上面図を示すように、電極形成領域の膜厚が薄い肉薄領域14Sを有する反射防止膜14を形成する。図7−1および図7−2に示すように、反射防止膜14は、電極形成領域に開口は形成されないが、大幅に膜厚が小さくなっている。
この後、図7−3に示すように、電極形成領域で膜厚が薄く形成された肉薄領域14Sを有する反射防止膜14上に、Ag粉、バインダ、フリットからなるAgペーストをスクリーン印刷することにより、Agペーストのパターンを形成する。Agペーストは、太陽電池の効率を高めるためにグリッド部とバス部とからなるパターンに形成される。
そして、図7−4に示すように、受光面に対向する裏面側にも同様に、Agペーストをスクリーン印刷することにより、Agペーストのパターンを形成する。そして、750℃またはそれ以上の温度で、10秒前後の焼成工程を経て、印刷されたAgペーストが焼成され、図7−5に示すように受光面側電極15では肉薄領域14Sを貫通するファイヤスルーが生じ、受光面側電極15が太陽電池用基板10にコンタクトする。
この後、前記実施の形態1と同様にした、半田ディップ法により受光面側電極15の表面および、裏面電極16の表面に図示しない半田層を形成する。このようにして図7−5に示すように太陽電池100が形成される。
以上説明してきたように、本実施の形態の方法では、ホローカソード電極を用いて、電極形成領域で反射防止膜が薄くなるようにし、低温でファイヤスルーが実現できるようにしているため、電極の焼成温度を大幅に低くすることができるため、高温工程が不要になることから、反りや歪の発生もなく、信頼性の高い太陽電池を得ることができる。
なお、焼成工程で適用される温度および時間は、Agペーストなどの使用する導電性ペーストの種類によってさまざまであるが、実施の形態1の場合のようにファイヤスルーにより反射防止膜を突き破る必要のない場合は、単に導電性ペーストに適切な焼成条件であればよい。つまり導電性ペーストの金属材料が前記光電変換部まで拡散しコンタクトする温度領域で焼成するようにするのが望ましい。また、前記実施の形態3の方法の場合のように、薄く形成された反射防止膜を突き破る場合にも、従来よりはより低く、短い焼成条件で十分なコンタクトを得ることが可能となる。したがって、焼成のための高温工程が不要となるため、反りや歪の低減を図ることが可能となる。
以上のように、本発明にかかる太陽電池の製造方法は、反りや歪のない、太陽電池の製造に有用であり、特に、大型の太陽電池を精度よく形成するのに適している。
1、1a カソード電極
1b ホローカソード電極
2 アノード電極
4 電源
4a 低周波電源
4b 高周波電源
5 マスク
6 ガス供給管
9 チャンバー
10 太陽電池用基板
11 p型シリコン基板
12 n型シリコン拡散層
13 p+型シリコン拡散層
14 反射防止膜
14S 肉薄領域(反射防止膜)
15 受光面側電極
16 裏面電極
O 開口

Claims (3)

  1. 半導体基板上にpn接合を形成し、光電変換部を形成する工程と、
    前記光電変換部の受光面上に、反射防止膜を成膜する工程と、
    電極材料層を形成する工程と、
    前記電極材料層を焼成し、前記光電変換部とコンタクトする受光面側電極を形成する工程とを含み、
    前記反射防止膜を成膜する工程が、プラズマCVD法であり、前記反射防止膜の膜厚が、前記受光面側電極を形成する電極形成領域を除く領域ではより厚くなるように、前記電極形成領域のパターン形状に対応した形状の反転パターンの電極形状をもつホローカソード電極を配置し、電極形成領域への成膜を抑制しながら成膜する工程であることを特徴とする太陽電池の製造方法。
  2. 前記電極材料層を形成する工程は、金属材料を含むペースト材料を受光面側電極形状に形成する工程であり、
    前記焼成する工程は、前記金属材料が前記光電変換部まで拡散しコンタクトする温度領域で焼成する工程であることを特徴とする請求項1に記載の太陽電池の製造方法。
  3. 請求項1または2に記載の太陽電池の製造方法において、反射防止膜を成膜するための装置であって、
    カソード電極とアノード電極とを備えた、平行平板型電極と、
    前記電極形状の反転パターンをなす通電部を備えたホローカソード電極とを有し、
    前記反射防止膜の膜厚が、前記電極形成領域でより小さくなるように構成されたことを特徴とする太陽電池製造装置。
JP2012133225A 2012-06-12 2012-06-12 太陽電池の製造方法および太陽電池製造装置 Expired - Fee Related JP5769668B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012133225A JP5769668B2 (ja) 2012-06-12 2012-06-12 太陽電池の製造方法および太陽電池製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012133225A JP5769668B2 (ja) 2012-06-12 2012-06-12 太陽電池の製造方法および太陽電池製造装置

Publications (2)

Publication Number Publication Date
JP2013258280A JP2013258280A (ja) 2013-12-26
JP5769668B2 true JP5769668B2 (ja) 2015-08-26

Family

ID=49954467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012133225A Expired - Fee Related JP5769668B2 (ja) 2012-06-12 2012-06-12 太陽電池の製造方法および太陽電池製造装置

Country Status (1)

Country Link
JP (1) JP5769668B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6664207B2 (ja) * 2015-12-11 2020-03-13 三菱電機株式会社 太陽電池の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5501549B2 (ja) * 2006-03-29 2014-05-21 京セラ株式会社 光電変換素子、およびそれから構成される光電変換モジュール
US20090139558A1 (en) * 2007-11-29 2009-06-04 Shunpei Yamazaki Photoelectric conversion device and manufacturing method thereof
JP2009272428A (ja) * 2008-05-07 2009-11-19 Shimadzu Corp 反射防止膜成膜方法および反射防止膜成膜装置
JP2010258103A (ja) * 2009-04-22 2010-11-11 Serubakku:Kk 光電変換デバイスの製造方法および製造装置

Also Published As

Publication number Publication date
JP2013258280A (ja) 2013-12-26

Similar Documents

Publication Publication Date Title
US9324887B2 (en) Solar cell element, segmented solar cell element, solar cell module, and electronic appliance
US9087940B2 (en) Photovoltaic solar cell and method for producing a photovoltaic solar cell
US8460469B2 (en) Apparatus for etching substrate and method of etching substrate using the same
KR20120000501A (ko) 플라즈마 처리 챔버를 위한 서셉터
JP2014220276A (ja) 太陽電池の製造方法及び太陽電池
JP5520834B2 (ja) パッシベーション膜の成膜方法、及び太陽電池素子の製造方法
JP5018688B2 (ja) 成膜装置及び成膜方法
US20130109133A1 (en) Rear-point-contact process or photovoltaic cells
KR101444709B1 (ko) 기판형 태양전지 및 그 제조방법
JP5769668B2 (ja) 太陽電池の製造方法および太陽電池製造装置
JP4716881B2 (ja) 太陽電池の作製方法
JP2006344883A (ja) 太陽電池の製造方法
KR101555955B1 (ko) 기판형 태양전지의 제조방법
US20220173264A1 (en) Method for producing back contact solar cell
JP2009272428A (ja) 反射防止膜成膜方法および反射防止膜成膜装置
US11038078B2 (en) Method for manufacturing high efficiency solar cell
JP2012074669A (ja) 太陽電池の製造方法
JP5977540B2 (ja) 太陽電池の製造方法、製造装置及び太陽電池
JP2011171600A (ja) 不純物拡散成分の拡散方法、および太陽電池の製造方法
JP6346022B2 (ja) 薄膜形成方法および太陽電池素子の製造方法
JP2015211094A (ja) 太陽電池素子の製造方法
JP2013222794A (ja) 太陽電池の製造方法
JP5105427B2 (ja) 焼成電極の形成方法とそれを利用する光電変換素子の製造方法。
JP2012109563A (ja) 太陽電池の製造方法
JP2011199277A (ja) 表面処理方法及び太陽電池セルの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150623

R150 Certificate of patent or registration of utility model

Ref document number: 5769668

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees