JP5769499B2 - Coil spring - Google Patents

Coil spring Download PDF

Info

Publication number
JP5769499B2
JP5769499B2 JP2011119744A JP2011119744A JP5769499B2 JP 5769499 B2 JP5769499 B2 JP 5769499B2 JP 2011119744 A JP2011119744 A JP 2011119744A JP 2011119744 A JP2011119744 A JP 2011119744A JP 5769499 B2 JP5769499 B2 JP 5769499B2
Authority
JP
Japan
Prior art keywords
coil
spring
contact
coil spring
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011119744A
Other languages
Japanese (ja)
Other versions
JP2012247013A (en
Inventor
一郎 流石
一郎 流石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2011119744A priority Critical patent/JP5769499B2/en
Publication of JP2012247013A publication Critical patent/JP2012247013A/en
Application granted granted Critical
Publication of JP5769499B2 publication Critical patent/JP5769499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Springs (AREA)

Description

本発明は、捩り振動減衰器のトーション・スプリング等に供されるコイルばねに関する。   The present invention relates to a coil spring used for a torsion spring or the like of a torsional vibration attenuator.

従来、クラッチ・ディスクに使用されているトーション・スプリング等において、コイル形状に巻かれるばね素線の円形断面の外周形状に成形当接面として扁平面を設けたものがある。このコイルばねは、コイル形状が密着状態若しくはロック状態になるまでばねに負荷がかかると、扁平面が隣接するコイル部分に当接して負荷を安定して受け、コイル径方向へのずれを抑制することができる。   2. Description of the Related Art Conventionally, some torsion springs used for clutch disks have a flat surface as a molding contact surface on the outer peripheral shape of a circular cross section of a spring wire wound in a coil shape. In this coil spring, when a load is applied to the coil until the coil shape is in a close contact state or a locked state, the flat surface comes into contact with the adjacent coil portion to stably receive the load and suppress deviation in the coil radial direction. be able to.

しかし、一般にコイルばねは、ばね素線のコイル形状に対して内径側となる部分(コイル内径側部分)の応力が、同外径側となる部分(コイル外径側部分)よりも高くなる。さらに、前記扁平面を設けることにより、前記応力の偏りと併せ、ばね素線の断面周方向の応力の分散状態がさらに影響を受ける。   However, in general, in the coil spring, the stress on the inner diameter side (coil inner diameter side portion) with respect to the coil shape of the spring wire is higher than the stress on the outer diameter side (coil outer diameter side portion). Furthermore, by providing the flat surface, the stress dispersion state in the circumferential direction of the spring element wire is further influenced together with the bias of the stress.

一方、ばね素線に扁平面を設けた場合、その断面形状の扁平率が小さくなれば、扁平面が当接するときのコイル軸線方向の密着長を短くすることができ、ストロークの長い低剛性のばねを設計する上で有利でもある。   On the other hand, when a flat surface is provided on the spring wire, if the flatness of the cross-sectional shape is reduced, the contact length in the coil axis direction when the flat surface abuts can be shortened, and the low rigidity of the stroke is long. It is also advantageous in designing the spring.

図13は、扁平率T/Wの相違によるばね指数D/Wと応力比との関係を示すグラフ、図14は、扁平率T/Wの相違によるばね指数D/Wと密着高さ比との関係を示すグラフ、図15〜図18は、従来のコイルばねにおけるばね素線の断面において、有限要素法による応力分布状態の解析結果を示した断面応力分布図である。   FIG. 13 is a graph showing the relationship between the spring index D / W and the stress ratio due to the difference in flatness ratio T / W, and FIG. 14 shows the spring index D / W and the contact height ratio due to the difference in flatness ratio T / W. 15 to 18 are sectional stress distribution diagrams showing the analysis results of the stress distribution state by the finite element method in the cross section of the spring element wire in the conventional coil spring.

図15のばね素線101の符号を参照すると、Tは、コイル軸線方向の最大寸法、Wは、コイル半径方向の最大寸法、Dは、コイル中心径である。   Referring to the reference numeral of the spring element wire 101 in FIG. 15, T is the maximum dimension in the coil axial direction, W is the maximum dimension in the coil radial direction, and D is the coil center diameter.

図13は、円形断面のばね素線に扁平面を設けた場合について、ばね定数及び密着高さを一定とし、応力比を確認したものである。図14は、円形断面のばね素線に扁平面を設けた場合について、ばね定数及び応力を一定とし、密着高さ比を確認したものである。図13,図14の何れも、扁平率T/W=0.92のばね指数D/Wに対する応力の変化を1とし、この扁平率T/W=0.92に対する扁平率T/W=0.76のコイルばねについて応力比及び密着高さ比を確認した。   FIG. 13 confirms the stress ratio with a constant spring constant and a close contact height when a flat surface is provided on a spring wire having a circular cross section. FIG. 14 shows the contact height ratio with the spring constant and the stress being constant in the case where the flat surface is provided on the spring wire having a circular cross section. In both FIG. 13 and FIG. 14, the change in stress with respect to the spring index D / W when the flat rate T / W = 0.92 is 1, and the flat rate T / W = 0 with respect to this flat rate T / W = 0.92. The stress ratio and the contact height ratio of the .76 coil spring were confirmed.

図13,図14のように、扁平率T/W=0.92に対して扁平率T/W=0.76になると、応力比及び密着高さの何れも小さくなった。   As shown in FIGS. 13 and 14, when the flattening rate T / W = 0.76 with respect to the flattening rate T / W = 0.92, both the stress ratio and the contact height became small.

図15のばね素線101は、ベースとなる円形の断面に扁平面103を伸線等により形成し、扁平率T/W=0.92としたものである。図16のばね素線105は、ベースとなる円形の断面に扁平面107を伸線等により形成し、扁平率T/W=0.76としたものである。   The spring element wire 101 in FIG. 15 has a flat cross section 103 formed by drawing or the like on a circular cross section serving as a base, and a flattening ratio T / W = 0.92. The spring element wire 105 in FIG. 16 has a flat cross-section 107 formed by drawing or the like in a circular cross section serving as a base, and a flatness ratio T / W = 0.76.

図15,図16の比較から明らかなように、ベースが円形断面のばね素線101,105では、扁平面103,107の形成によりコイル内径側部分109の応力を扁平面103,107にまで分散できている。しかし、円形断面の場合には、扁平率T/Wが小さくなると周方向での応力分散はできているが、応力分散の連続性が低下する結果となり、扁平面103,107の形成により扁平率T/Wを小さくして応力の均一化を図ることに限界がある。   As is clear from comparison between FIGS. 15 and 16, in the spring element wires 101 and 105 having a circular base, the stress on the coil inner diameter side portion 109 is distributed to the flat surfaces 103 and 107 by forming the flat surfaces 103 and 107. is made of. However, in the case of a circular cross section, when the flattening ratio T / W is small, stress distribution in the circumferential direction is achieved, but the continuity of the stress distribution is reduced, and the flattening ratio is formed by forming the flat planes 103 and 107. There is a limit to making the stress uniform by reducing T / W.

図17のばね素線111は、矩形の断面に形成されたものである。この矩形の断面を有するばね素線111の場合も、コイル内径側部分109の応力を分散することができると共に、密着状態で安定して負荷を受けることができる点では図15,図16と同様である。   The spring element wire 111 in FIG. 17 is formed in a rectangular cross section. In the case of the spring wire 111 having the rectangular cross section, the stress of the coil inner diameter side portion 109 can be dispersed and the load can be stably received in the close contact state, as in FIGS. 15 and 16. It is.

しかし、図17のばね素線111の場合も、応力分散の連続性に関しては、同一の扁平率T/W=0.76である図16の例と比較しても低下している。   However, in the case of the spring element wire 111 of FIG. 17 as well, the continuity of the stress dispersion is lower than that of the example of FIG. 16 where the same flatness ratio T / W = 0.76.

すなわち、従来の円形断面や矩形断面のばね素線に扁平面を設けたコイルばねでは、密着状態で負荷を安定して受けさせると共に扁平率を小さくして密着長を短くし、且つ断面形状の周方向での応力分散の連続性により応力分布の均一性を向上させることに限界があった。   That is, in a conventional coil spring in which a flat surface is provided on a spring wire having a circular cross section or a rectangular cross section, the load is stably received in a close contact state, the flatness is reduced to reduce the close contact length, and the cross sectional shape is reduced. There was a limit to improving the uniformity of the stress distribution due to the continuity of stress distribution in the circumferential direction.

これに対し、図18のばね素線113は、コイル内径側部分115を(x/a)α+(y/b)α=1で表わされる長径=a,短径=bの超楕円形状とし、αの値を、α=1.8〜2.45の範囲にとり、コイル外形側部分117をx+y=1の円形形状とした。扁平率は、T/W=0.76である
このばね素線113では、応力比及び密着高さの何れも小さく、しかも応力分散の連続性も向上している。
On the other hand, the spring element wire 113 of FIG. 18 has a coil inner diameter side portion 115 having a super-elliptical shape with a major axis = a and a minor axis = b represented by (x / a) α + (y / b) α = 1. The value of α is in the range of α = 1.8 to 2.45, and the coil outer side portion 117 has a circular shape of x 2 + y 2 = 1. The flatness is T / W = 0.76 In this spring element wire 113, both the stress ratio and the contact height are small, and the continuity of stress dispersion is also improved.

しかし、このばね素線113の場合には、扁平面119の密着形態が一義的であり、扁平面119相互が傾いていると密着時の座りが安定しないという問題がある。   However, in the case of this spring element wire 113, the contact form of the flat surface 119 is unambiguous, and if the flat surfaces 119 are inclined, there is a problem that the sitting at the time of contact is not stable.

また、コイルが湾曲形成されるものでは、各扁平面119の傾きをコイルの曲率に応じて設定しなければならないという問題もある。   In addition, when the coil is curved, there is also a problem that the inclination of each flat surface 119 must be set according to the curvature of the coil.

さらに、扁平面119相互の当接であるため、コイル径方向への横ずれを招き易いという問題もある。   Further, since the flat surfaces 119 are in contact with each other, there is a problem in that lateral displacement in the coil radial direction is likely to occur.

特開平6−300065号公報JP-A-6-300065 2008−185072号公報2008-185072

解決しようとする問題点は、従来のばね素線に成型当接面を設けたコイルばねでは、密着状態で負荷を安定して受けさせると共に扁平率を小さくして密着長を短くし、且つ断面形状の周方向での応力分散の連続性により応力分布の均一性を向上させることに限界があり、しかも横ずれを招き易かった点である。   The problem to be solved is that, in the conventional coil spring provided with a molding contact surface on the spring element wire, the load is stably received in a close contact state, the flatness is reduced to shorten the close contact length, and the cross section There is a limit to improving the uniformity of the stress distribution due to the continuity of the stress dispersion in the circumferential direction of the shape, and it is easy to cause a lateral shift.

本発明は、密着状態で負荷を安定して受けさせると共に扁平率を小さくして密着長を短くし、且つ断面形状の周方向での応力分散の連続性により応力分布の均一性を向上させ、横ずれを抑制するために、コイル形状に巻かれるばね素線の断面外周形状につき、コイル外径側部分及びコイル内径側部分を、(x/a)α+(y/b)α=1で表わされる長径=a,短径=bの超楕円形状とし、前記αの値を、α=2〜3の範囲としたコイルばねであって、前記ばね素線のコイル軸線方向一側に、凹凸当接部を設け、同他側に、凸弧状当接部を設け、前記凹凸当接部は、断面弧状の凹部とこの凹部の両側及び前記コイル内外径側部分にそれぞれ連続する断面弧状の一対の凸部を備え、前記一対の凸部にコイル軸線方向に隣接するコイル部分の前記凸弧状当接部が当接してコイルが密着することを特徴とする。 The present invention stably receives a load in a close contact state and reduces the flattening ratio to shorten the contact length, and improves the uniformity of the stress distribution by the continuity of the stress distribution in the circumferential direction of the cross-sectional shape, In order to suppress the lateral displacement, the coil outer diameter side portion and the coil inner diameter side portion are expressed by (x / a) α + (y / b) α = 1 with respect to the outer peripheral shape of the cross section of the spring wire wound in the coil shape. A coil spring having a major axis = a and a minor axis = b, and a value of α in the range of α = 2 to 3, wherein the spring element wire has a concave and convex shape on one side in the coil axial direction. A contact arc is provided, and a convex arc contact portion is provided on the other side. The concave and convex contact portion includes a concave portion having a cross sectional arc shape, a pair of cross sectional arc shapes continuous to both sides of the concave portion and the inner and outer diameter side portions of the coil. Provided with a convex portion, and the coil portion adjacent to the pair of convex portions in the coil axial direction. Arc-shaped abutting portion abuts, characterized in that the coils are in close contact.

本発明のコイルばねは、上記構成であるから、コイル外径側部分及びコイル内径側部分と凹凸部及び凸弧状当接部間で応力分布の均一性を向上させ、且つ密着状態で外周凸曲面が凸部に当接することで密着状態が安定し、負荷を安定して受けさせることができる。また、凸弧状当接部が凹部に嵌合するから、コイル径方向のいわゆる横ずれを抑制できる。   Since the coil spring according to the present invention has the above-described configuration, it improves the uniformity of stress distribution between the coil outer diameter side portion, the coil inner diameter side portion, the concavo-convex portion, and the convex arc-shaped contact portion, and the outer circumferential convex curved surface in a tight contact state Is in contact with the convex portion, the contact state is stabilized, and the load can be stably received. Moreover, since the convex arc contact portion is fitted into the concave portion, so-called lateral deviation in the coil radial direction can be suppressed.

コイルばねの正面図である。(実施例1)It is a front view of a coil spring. (Example 1) ばね素線の密着を示す要部拡大断面図である。(実施例1)It is a principal part expanded sectional view which shows close_contact | adherence of a spring strand. (Example 1) ばね素線の密着を示す要部拡大断面図である。(実施例1)It is a principal part expanded sectional view which shows close_contact | adherence of a spring strand. (Example 1) ばね素線の形状を示す要部拡大断面図である。(実施例1)It is a principal part expanded sectional view which shows the shape of a spring strand. (Example 1) ばね素線の形状を示す要部拡大断面図である。(実施例1)It is a principal part expanded sectional view which shows the shape of a spring strand. (Example 1) ばね素線の密着を示す要部拡大断面図である。(実施例1)It is a principal part expanded sectional view which shows close_contact | adherence of a spring strand. (Example 1) ばね素線の密着を示す要部拡大断面図である。(実施例1)It is a principal part expanded sectional view which shows close_contact | adherence of a spring strand. (Example 1) 有限要素法による応力分布状態の解析結果を示した断面応力分布図である。(実施例1)It is a cross-sectional stress distribution diagram which showed the analysis result of the stress distribution state by the finite element method. (Example 1) 有限要素法による応力分布状態の解析結果を示した断面応力分布図である。(比較例1)It is a cross-sectional stress distribution diagram which showed the analysis result of the stress distribution state by the finite element method. (Comparative Example 1) 有限要素法による応力分布状態の解析結果を示した断面応力分布図である。(比較例2)It is a cross-sectional stress distribution diagram which showed the analysis result of the stress distribution state by the finite element method. (Comparative Example 2) 有限要素法による応力分布状態の解析結果を示した断面応力分布図である。(比較例3)It is a cross-sectional stress distribution diagram which showed the analysis result of the stress distribution state by the finite element method. (Comparative Example 3) 密着長と体荷重応力比との関係を示すグラフである。(実施例1)It is a graph which shows the relationship between contact | adherence length and body load stress ratio. (Example 1) 扁平率T/Wの相違によるばね指数D/Wと応力比との関係を示すグラフである。(従来例)It is a graph which shows the relationship between the spring index D / W and stress ratio by the difference in flatness ratio T / W. (Conventional example) 扁平率T/Wの相違によるばね指数D/Wと密着高さ比との関係を示すグラフである。(従来例)It is a graph which shows the relationship between the spring index D / W by the difference in flatness ratio T / W, and contact | adherence height ratio. (Conventional example) 有限要素法による応力分布状態の解析結果を示した断面応力分布図である。(従来例)It is a cross-sectional stress distribution diagram which showed the analysis result of the stress distribution state by the finite element method. (Conventional example) 有限要素法による応力分布状態の解析結果を示した断面応力分布図である。(従来例)It is a cross-sectional stress distribution diagram which showed the analysis result of the stress distribution state by the finite element method. (Conventional example) 有限要素法による応力分布状態の解析結果を示した断面応力分布図である。(従来例)It is a cross-sectional stress distribution diagram which showed the analysis result of the stress distribution state by the finite element method. (Conventional example) 有限要素法による応力分布状態の解析結果を示した断面応力分布図である。(従来例)It is a cross-sectional stress distribution diagram which showed the analysis result of the stress distribution state by the finite element method. (Conventional example)

密着状態で負荷を安定して受けさせると共に扁平率を小さくして密着長を短くし、且つ断面形状の周方向での応力分散の連続性により応力分布の均一性を向上させ、横ずれを抑制することを可能にするという目的を、コイル外径側部分及びコイル内径側部分を、(x/a)α+(y/b)α=1で表わされる長径=a,短径=bの曲線形状とし、前記αの値を、α=2〜3の範囲としたコイルばねであって、ばね素線のコイル軸線方向一側に、凹凸当接部を設け、同他側に、凸弧状当接部を設けることで実現した。 The load is stably received in close contact, the flatness is reduced to shorten the contact length, and the stress distribution uniformity is improved by the continuity of the stress distribution in the circumferential direction of the cross-sectional shape, thereby suppressing lateral deviation. For the purpose of making it possible, the outer diameter side portion and the inner diameter side portion of the coil are represented by (x / a) α + (y / b) α = 1 expressed by a curved shape with a major axis = a and a minor axis = b A coil spring in which the value of α is in the range of α = 2 to 3, wherein a concave and convex contact portion is provided on one side of the coil axis direction of the spring element wire, and a convex arc contact is provided on the other side. Realized by providing a part.

[コイルばね]
図1は、本発明実施例1に係るコイルばねの正面図、図2は、ばね素線の密着を示す要部拡大断面図、図3は、ばね素線の密着を示す要部拡大断面図、図4は、ばね素線の形状を示す要部拡大断面図である。
[Coil spring]
1 is a front view of a coil spring according to a first embodiment of the present invention, FIG. 2 is an enlarged cross-sectional view of a main part showing the close contact of the spring wire, and FIG. 3 is an enlarged cross-sectional view of the main part showing the close contact of the spring wire. FIG. 4 is an enlarged cross-sectional view of the main part showing the shape of the spring wire.

図1のコイルばね1は、例えばデュアルマス・フライ・ホイール又はトルクコンバーター用ロック・アップ又は湿式或いは乾式のクラッチ機構用(として設計された)フリクションディスクのトーショナル・ダンパ(捩り振動減衰器)内に組付けられるものであり、ばね素線3が、コイル形状に巻かれたものである。このコイルばね1は、自由状態でコイル軸線5が円弧形状であり、この円弧形状は、組付け状態での曲率半径Rを有している。   The coil spring 1 of FIG. 1 is for example in a torsional damper (torsional vibration attenuator) of a friction disk (designed) for a dual mass flywheel or lock-up for a torque converter or for a wet or dry clutch mechanism. The spring element wire 3 is wound in a coil shape. This coil spring 1 has a coil axis 5 in an arc shape in a free state, and this arc shape has a radius of curvature R in an assembled state.

図2〜図4のように、コイルばね1のばね素線3は、コイル内外径側部分7、9が(x/a)α+(y/b)α=1で表わされる長径=a,短径=bの曲線形状である超楕円形状となっている。αの値は、α=2〜3の範囲とした。 As shown in FIGS. 2 to 4, the spring element wire 3 of the coil spring 1 is configured such that the inner and outer diameter side portions 7 and 9 of the coil are represented by (x / a) α + (y / b) α = 1 It is a super-elliptical shape that is a curved shape with a minor axis = b. The value of α was in the range of α = 2 to 3.

コイル軸線方向の最大寸法T、コイル半径方向の最大寸法Wとすると、本実施例では、扁平率T/W=0.76に設定されている。但し、扁平率T/Wは、0.5〜0.95の範囲で選択することができる。   Assuming that the maximum dimension T in the coil axis direction and the maximum dimension W in the coil radial direction are set, the flatness ratio T / W = 0.76 is set in this embodiment. However, the aspect ratio T / W can be selected in the range of 0.5 to 0.95.

ばね素線3のコイル軸線方向一側には、凹凸当接部11が設けられ、同他側に、凸弧状当接部13が設けられている。   An uneven contact portion 11 is provided on one side of the spring element wire 3 in the coil axis direction, and a convex arc contact portion 13 is provided on the other side.

図5は、ばね素線の形状を示す要部拡大断面図である。   FIG. 5 is an enlarged cross-sectional view of the main part showing the shape of the spring wire.

図5のように、凹凸当接部11は、凹部15と一対の凸部17,19とを備えている。凹部15は、断面弧状、例えば半径r1の断面円弧状に形成されている。半径r1は、例えばW/2よりも大きく設定されている。凸部17,19は、凹部15の両側及びコイル内外径側部分7,9にそれぞれ連続する断面弧状、例えば半径r2の断面円弧状に形成されている。半径r2は、凹部15の両側及びコイル内外径側部分7,9を滑らかに連続させる程度のものである。   As shown in FIG. 5, the concave and convex contact portion 11 includes a concave portion 15 and a pair of convex portions 17 and 19. The recess 15 is formed in a cross-sectional arc shape, for example, a cross-sectional arc shape having a radius r1. The radius r1 is set larger than W / 2, for example. The convex portions 17 and 19 are formed in a cross-sectional arc shape continuous to both sides of the concave portion 15 and the inner and outer diameter side portions 7 and 9 of the coil, for example, a cross-sectional arc shape having a radius r2. The radius r2 is such that both sides of the recess 15 and the inner and outer diameter side portions 7 and 9 of the coil are smoothly continuous.

図2、図3のように、一対の凸部17,19にコイル軸線5方向に隣接するコイル部分の凸弧状当接部13が当接してコイルが密着する。この密着状態で凸弧状当接部13は、凹部15に嵌合し、コイル径方向のいわゆる横ずれを抑制することができる。   As shown in FIGS. 2 and 3, the convex arc-shaped contact portion 13 of the coil portion adjacent to the pair of convex portions 17 and 19 in the direction of the coil axis 5 comes into contact, and the coil comes into close contact. In this tight contact state, the convex arc-shaped contact portion 13 can be fitted into the concave portion 15 to suppress a so-called lateral shift in the coil radial direction.

この密着状態は、凹部15の曲率と同程度の凸円弧21を形成する場合に比較して、Sの範囲で相互間隔を短縮することが可能となり、その分コイルばねの密着高さを低くすることができる。   Compared with the case where the convex arc 21 having the same degree of curvature as that of the concave portion 15 is formed, this close contact state can shorten the mutual interval in the range of S, and accordingly, the close contact height of the coil spring is lowered. be able to.

凹部15と凸弧状当接部13との当接間には、コイル密着時に隙間が形成される。この隙間形成により、一対の凸部17,19が凸弧状当接部13に確実に当接し、密着時の座りを確実に安定させることができる。   A gap is formed between the contact between the concave portion 15 and the convex arc-shaped contact portion 13 when the coil is in close contact. By forming this gap, the pair of convex portions 17 and 19 can reliably come into contact with the convex arc-shaped contact portion 13, and the sitting at the time of close contact can be reliably stabilized.

密着するコイル部分相互の角度θは、コイル軸線5の円弧形状に対応するが、各コイル部分相互の各角度θが多少ずれても、凸部17,19と凸弧状当接部13とは確実に当接することができる。   The angle θ between the closely contacting coil portions corresponds to the arc shape of the coil axis 5, but the convex portions 17 and 19 and the convex arc-shaped contact portion 13 can be reliably connected even if the respective angle θ between the coil portions is slightly deviated. Can abut.

図6は、ばね素線の密着を示す要部拡大断面図、図7は、ばね素線の密着を示す要部拡大断面図である。   FIG. 6 is an enlarged cross-sectional view of the main part showing the close contact of the spring wire, and FIG. 7 is an enlarged cross-sectional view of the main part showing the close contact of the spring wire.

図6、図7は、コイルばね1Aのコイル軸線が直状である場合の密着を示している。この図6、図7のように、コイル成形時に隣接するコイル部分が相互に多少傾いても、凸部17,19と凸弧状当接部13とは確実に当接することができる。   6 and 7 show the close contact when the coil axis of the coil spring 1A is straight. As shown in FIGS. 6 and 7, even when adjacent coil portions are slightly inclined at the time of coil formation, the convex portions 17 and 19 and the convex arc-shaped contact portion 13 can be reliably in contact with each other.

[応力分散]
図8〜図11は、有限要素法による応力分布状態の解析結果であり、図8は、本実施例の断面応力分布図、図9〜図11は、比較例1〜3の断面応力分布図である。
[Stress distribution]
8 to 11 are analysis results of the stress distribution state by the finite element method, FIG. 8 is a sectional stress distribution diagram of this example, and FIGS. 9 to 11 are sectional stress distribution diagrams of Comparative Examples 1 to 3. It is.

図8〜図11は、何れもコイル外径φ19に対して設計し、荷重1Nに対する応力(MPa/N)である。   8 to 11 are all designed with respect to the coil outer diameter φ19 and are stress (MPa / N) with respect to a load of 1N.

図8の実施例では、ばね素線3では、凹凸当接部11及び凸弧状当接部13の形成によりコイル内径側部分7の応力を凹凸当接部11及び凸弧状当接部13にまで連続して分散できた。コイル内径側部分7の最大応力は、0.9500(MPa/N)であった。また、凸弧状当接部13が当接する凸部17,19の応力は、凹部15の応力よりも低くでき、繰り返しの密着に対しても耐久性を向上させることができる。   In the embodiment of FIG. 8, in the spring wire 3, the stress on the coil inner diameter side portion 7 is applied to the uneven contact portion 11 and the convex arc contact portion 13 by forming the uneven contact portion 11 and the convex arc contact portion 13. It was able to disperse continuously. The maximum stress of the coil inner diameter side portion 7 was 0.9500 (MPa / N). Moreover, the stress of the convex parts 17 and 19 with which the convex arc-shaped contact part 13 abuts can be made lower than the stress of the concave part 15, and the durability can be improved against repeated close contact.

図9の比較例1は、円形断面のばね素線3Aのものであり、応力分散により内径側の最大応力は、0.9681(MPa/N)であった。   Comparative example 1 in FIG. 9 is of a spring element wire 3A having a circular cross section, and the maximum stress on the inner diameter side was 0.9681 (MPa / N) due to stress dispersion.

図10の比較例2は、ベースが円形断面のばね素線3Bのものであり、凹条の当接部11Bを形成したことにより応力分散が十分ではなく、コイル内径側部分7Bの最大応力は、1.027(MPa/N)であった。   In Comparative Example 2 of FIG. 10, the base is of the spring element wire 3B having a circular cross section, and the stress distribution is not sufficient due to the formation of the concave contact portion 11B, and the maximum stress of the coil inner diameter side portion 7B is 1.027 (MPa / N).

隣接するコイル部分の円弧面が嵌合当接する当接部11B内の応力は、その両側の凸部よりも大きくなった。   The stress in the contact portion 11B where the arc surface of the adjacent coil portion is fitted and contacted is larger than the convex portions on both sides thereof.

図11の比較例3は、コイル内径側部分7Cを(x/a)α+(y/b)α=1で表わされる長径=a,短径=bの超楕円形状とし、αの値を、α=1.8〜2.45の範囲にとり、コイル外形側部分9Cをx+y=1の円形形状とした、
この比較例3では、コイル内径側部分7Cから扁平面11Cに掛けて応力分散の連続性を維持でき、且つコイル内径側部分7Cの最大応力は、0.9542(MPa/N)であった。
In Comparative Example 3 of FIG. 11, the coil inner diameter side portion 7 </ b> C is a super ellipse having a major axis = a and a minor axis = b represented by (x / a) α + (y / b) α = 1, and the value of α is , Α = 1.8 to 2.45, and the coil outer side portion 9C has a circular shape of x 2 + y 2 = 1.
In Comparative Example 3, the continuity of stress dispersion was maintained from the coil inner diameter side portion 7C to the flat surface 11C, and the maximum stress of the coil inner diameter side portion 7C was 0.9542 (MPa / N).

隣接するコイル部分の扁平面が当接する扁平面11Cに高い応力部分が存在した。   A high stress portion was present on the flat surface 11C where the flat surfaces of adjacent coil portions abut.

これら比較例1〜3に対し、本発明実施例のコイルばね1は、応力分散によりコイル内径側部分7の最大応力を最小にすることができ、応力分散の連続性を維持でき、隣接するコイル部分の凸弧状当接部13が当接する凸部17,19の応力を小さくし、繰り返しの密着に対しても耐久性を向上させることができる。   Compared to Comparative Examples 1 to 3, the coil spring 1 of the embodiment of the present invention can minimize the maximum stress of the coil inner diameter side portion 7 by stress distribution, can maintain the continuity of stress distribution, and adjacent coils. The stress of the convex parts 17 and 19 with which the convex arc-shaped contact part 13 of the part abuts can be reduced, and the durability can be improved against repeated close contact.

[密着長及び応力比]
図12は、密着長と体荷重応力比との関係を示すグラフである。
[Adhesion length and stress ratio]
FIG. 12 is a graph showing the relationship between the adhesion length and the body load stress ratio.

図12において、プロットした点が本願発明実施例のものであり、縦横直線の範囲外が。比較例2レベルとなる。この図12から明らかなように、比較例2との対比において、密着長及び応力比共に低減することができた。   In FIG. 12, the plotted points are those of the embodiment of the present invention, and are outside the range of the vertical and horizontal straight lines. It becomes the comparative example 2 level. As is apparent from FIG. 12, in comparison with Comparative Example 2, both the adhesion length and the stress ratio could be reduced.

[実施例の効果]
コイル形状に巻かれるばね素線3の断面外周形状につき、コイル外径側部分9及びコイル内径側部分7を、(x/a)α+(y/b)α=1で表わされる長径=a,短径=bの超楕円形状とし、αの値を、α=2〜3の範囲としたコイルばねであって、ばね素線3のコイル軸線5方向一側に、凹凸当接部11を設け、同他側に、凸弧状当接部13を設け、凹凸当接部11は、断面弧状の凹部15とこの凹部15の両側及びコイル内外径側部分7,9にそれぞれ連続する断面弧状の一対の凸部17,19を備え、一対の凸部17,19にコイル軸線5方向に隣接するコイル部分の凸弧状当接部13が当接してコイルが密着する。
[Effect of Example]
With respect to the cross-sectional outer peripheral shape of the spring wire 3 wound in a coil shape, the coil outer diameter side portion 9 and the coil inner diameter side portion 7 are represented by (x / a) α + (y / b) α = 1, the long diameter = a, A coil spring having a super-elliptical shape with a minor axis = b and a value of α in a range of α = 2 to 3, and an uneven contact portion 11 is provided on one side of the spring element wire 3 in the coil axis 5 direction. On the other side, a convex arc-shaped contact portion 13 is provided. The concave-convex contact portion 11 includes a concave section 15 having a cross-section arc shape, a pair of cross-section arc shapes continuous to both sides of the concave section 15 and the inner and outer diameter side portions 7 and 9 of the coil. The convex arc-shaped abutting portions 13 of the coil portions adjacent to the pair of convex portions 17 and 19 in the direction of the coil axis 5 come into contact with the pair of convex portions 17 and 19 so that the coils are in close contact with each other.

このため、ねじりダンパ用コイルばね等に必要とされる長いストロークで低剛性のばねを設計する上で十分な品質を得ることが容易となる。また、動的状態でのノイズや振動の発生を低減するフィルタ機能を容易に向上させることができる。この機能は、エンジン系統に組み付けられるトーショナル・ダンパ(ねじれ振動ダンパ)に要求される。   For this reason, it becomes easy to obtain a sufficient quality for designing a low-rigidity spring with a long stroke required for a coil spring for a torsion damper. Further, it is possible to easily improve the filter function for reducing the occurrence of noise and vibration in the dynamic state. This function is required for a torsional damper (torsional vibration damper) assembled in an engine system.

しかも、凸弧状当接部13が当接する凸部17,19の応力を低減し、耐久性を向上させることができる。   In addition, it is possible to reduce the stress of the convex portions 17 and 19 with which the convex arc-shaped abutting portion 13 abuts and improve the durability.

ばね素線3の断面外周形状のコイル軸線方向の最大寸法をT、コイル半径方向の最大寸法をWとし、扁平率T/W=0.5〜0.95とした。   The maximum dimension in the coil axis direction of the outer peripheral cross section of the spring wire 3 was T, the maximum dimension in the coil radial direction was W, and the flatness ratio T / W was 0.5 to 0.95.

このため、密着長及び応力比共に低減することができる。   For this reason, both the adhesion length and the stress ratio can be reduced.

凹凸当接部11及び凸弧状当接部13を当接させるため、コイル密着状態でのコイル軸線5方向の負荷を確実に受けることができ、コイル径方向へのずれを確実に抑制することができる。   Since the uneven contact portion 11 and the convex arc contact portion 13 are brought into contact with each other, a load in the direction of the coil axis 5 in the coil contact state can be reliably received, and displacement in the coil radial direction can be reliably suppressed. it can.

凹凸当接部11及び凸弧状当接部13により、コイル軸線5が円弧形状の場合であっても、コイル軸線5方向の負荷を確実に受けることができ、コイル径方向へのずれを確実に抑制することができる。   The uneven contact portion 11 and the convex arc contact portion 13 can reliably receive a load in the direction of the coil axis 5 even when the coil axis 5 has an arc shape, and reliably shift in the coil radial direction. Can be suppressed.

コイル内外径側部分7,9が曲線形状の超楕円形状であり、凹凸当接部11及び凸弧状当接部13を備えることで、扁平率を小さくして密着長を短くし、且つ断面形状の周方向での応力分散の連続性により応力分布の均一性を向上させることができる。   The coil inner and outer diameter side portions 7 and 9 are curved super-elliptical shapes, and are provided with the concave and convex contact portion 11 and the convex arc-shaped contact portion 13, thereby reducing the flatness and shortening the contact length and the cross-sectional shape. The uniformity of stress distribution can be improved by the continuity of the stress dispersion in the circumferential direction.

ばね素線3のコイル形状は、自由状態でコイル軸線が円弧形状であるため、コイル軸線5を円弧形状に組み付けることが容易となる。   Since the coil axis of the spring element wire 3 is in a free state and the coil axis is an arc, the coil axis 5 can be easily assembled into an arc.

ばね素線3のコイル形状は、組み付け状態でコイル軸線5の曲率半径Rを有する形状に設定することもできる。この場合、凹凸当接部11及び凸弧状当接部13がコイル軸線5の曲率に応じて当接する。   The coil shape of the spring wire 3 can also be set to a shape having the curvature radius R of the coil axis 5 in the assembled state. In this case, the uneven contact portion 11 and the convex arc contact portion 13 contact according to the curvature of the coil axis 5.

コイルばね1は、デュアルマス・フライ・ホイール又はトルクコンバーター用ロック・アップ又は湿式或いは乾式のクラッチ機構のトーショナル・ダンパ(ねじれ振動吸収装置)に組み付けることができる。このため、長いストロークで低剛性のコイルばねの適用が可能となる。   The coil spring 1 can be assembled to a torsional damper (torsional vibration absorber) of a dual mass flywheel or a lock-up for a torque converter or a wet or dry clutch mechanism. For this reason, it is possible to apply a coil spring having a long stroke and a low rigidity.

1,1A コイルばね
3 ばね素線
5 コイル軸線
7 コイル内径側部分
9 コイル外径側部分
11 凹凸当接部
13 凸弧状当接部
15 凹部
17,19 凸部
1, 1A coil spring 3 spring element wire 5 coil axis 7 coil inner diameter side portion 9 coil outer diameter side portion
11 Uneven contact part
13 Convex arc contact part
15 recess
17, 19 Convex

Claims (7)

コイル形状に巻かれるばね素線の断面外周形状につき、
コイル外径側部分及びコイル内径側部分を、(x/a)α+(y/b)α=1で表わされる長径=a,短径=bの曲線形状とし、
前記αの値を、α=2〜3の範囲としたコイルばねであって、
前記ばね素線のコイル軸線方向一側に、凹凸当接部を設け、同他側に、凸弧状当接部を設け、
前記凹凸当接部は、断面弧状の凹部とこの凹部の両側及び前記コイル内外径側部分にそれぞれ連続する断面弧状の一対の凸部を備え、
前記一対の凸部にコイル軸線方向に隣接するコイル部分の前記凸弧状当接部が当接してコイルが密着する、
ことを特徴とするコイルばね。
For the outer peripheral shape of the cross section of the spring wire wound in the coil shape,
The coil outer diameter side portion and the coil inner diameter side portion are formed into a curved shape with a major axis = a and a minor axis = b represented by (x / a) α + (y / b) α = 1,
A coil spring in which the value of α is in the range of α = 2 to 3,
On the one side in the coil axial direction of the spring element wire, an uneven contact portion is provided, and on the other side, a convex arc contact portion is provided,
The concave-convex contact portion includes a concave portion having an arc-shaped cross section and a pair of convex portions having an arc-shaped cross section that are continuous with both sides of the concave portion and the inner and outer diameter side portions of the coil,
The convex arc contact portion of the coil portion adjacent to the pair of convex portions in the coil axis direction comes into contact with the coil,
A coil spring characterized by that.
請求項1記載のコイルばねであって、
前記ばね素線の断面外周形状のコイル軸線方向の最大寸法をT、コイル半径方向の最大寸法をWとし、
扁平率T/W=0.5〜0.95とした、
ことを特徴とするコイルばね。
The coil spring according to claim 1,
The maximum dimension in the coil axis direction of the outer peripheral cross section of the spring element wire is T, and the maximum dimension in the coil radial direction is W,
Flatness ratio T / W = 0.5 to 0.95,
A coil spring characterized by that.
請求項1又は2記載のコイルばねであって、
前記凹凸部は、断面円弧状で連続する、
ことを特徴とするコイルばね。
The coil spring according to claim 1 or 2,
The concavo-convex portion is continuous in an arc shape in cross section,
A coil spring characterized by that.
請求項1〜3の何れかに記載のコイルばねであって、
前記凹部と前記凸弧状当接部との当接間には、コイル密着時に隙間が形成される、
ことを特徴とするコイルばね。
The coil spring according to any one of claims 1 to 3,
Between the contact between the concave portion and the convex arc-shaped contact portion, a gap is formed at the time of coil contact,
A coil spring characterized by that.
請求項1〜4の何れかに記載のコイルばねであって、
前記ばね素線のコイル形状は、自由状態でコイル軸線が円弧状である、
ことを特徴とするコイルばね。
The coil spring according to any one of claims 1 to 4,
The coil shape of the spring element wire is a free state in which the coil axis is arcuate,
A coil spring characterized by that.
請求項1〜5の何れかに記載のコイルばねであって、
前記ばね素線のコイル形状は、コイル軸線が組付け状態での曲率半径を有した円弧状である
ことを特徴とするコイルばね。
The coil spring according to any one of claims 1 to 5,
The coil shape of the spring element wire is an arc shape having a radius of curvature when the coil axis is assembled.
請求項1〜6の何れかに記載のコイルばねであって、
デュアルマス・フライ・ホイール又はトルクコンバーター用ロック・アップ又は湿式或いは乾式のクラッチ機構用フリクションディスクのトーショナル・ダンパ(捩り振動減衰器)内に組付けられる
ことを特徴とするコイルばね。
The coil spring according to any one of claims 1 to 6,
A coil spring characterized by being assembled in a torsional damper (torsional vibration damper) of a friction disk for a dual mass flywheel or a lock-up for a torque converter or a wet or dry clutch mechanism.
JP2011119744A 2011-05-27 2011-05-27 Coil spring Active JP5769499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011119744A JP5769499B2 (en) 2011-05-27 2011-05-27 Coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011119744A JP5769499B2 (en) 2011-05-27 2011-05-27 Coil spring

Publications (2)

Publication Number Publication Date
JP2012247013A JP2012247013A (en) 2012-12-13
JP5769499B2 true JP5769499B2 (en) 2015-08-26

Family

ID=47467642

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011119744A Active JP5769499B2 (en) 2011-05-27 2011-05-27 Coil spring

Country Status (1)

Country Link
JP (1) JP5769499B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2697602B1 (en) * 1992-11-05 1995-01-20 Duchemin Michel Helical spring, its manufacturing process and wire used for its manufacture.
JP5268261B2 (en) * 2007-01-26 2013-08-21 日本発條株式会社 Coil spring

Also Published As

Publication number Publication date
JP2012247013A (en) 2012-12-13

Similar Documents

Publication Publication Date Title
JP5268261B2 (en) Coil spring
WO2014148364A1 (en) Spring rubber seat, and strut-type suspension
KR101436761B1 (en) Tank rubber cushion
JP2018096400A (en) Sealing structure
KR101380074B1 (en) Freewheel clutch
JP2010007772A (en) Spring seat
JP2007292271A (en) Spring seat member and spring assembly
JP5383372B2 (en) Coil spring
JP5769499B2 (en) Coil spring
WO2014181671A1 (en) Center bearing support
JP5827637B2 (en) Coil spring
JP6678546B2 (en) Spring seat member and spring assembly
WO2020241285A1 (en) Tire
US20150354637A1 (en) Tolerance ring
JP2021028542A (en) Coil spring assembly
JPWO2016157881A1 (en) Spring seat member and spring assembly
JP2014202305A (en) Spring supporting structure
JP2017517701A (en) Torsional vibration damper
JP4026609B2 (en) Cylindrical dynamic damper
JP2010216579A (en) Dynamic damper and propeller shaft
JP5281927B2 (en) Spring laminated structure
JP2013050176A (en) Cylindrical vibration damper
JP2018132089A (en) Torsion damper
JP7157698B2 (en) tire
JP2012530225A (en) Elastic coupling of disk structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150623

R150 Certificate of patent or registration of utility model

Ref document number: 5769499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250