JP5766165B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP5766165B2
JP5766165B2 JP2012219197A JP2012219197A JP5766165B2 JP 5766165 B2 JP5766165 B2 JP 5766165B2 JP 2012219197 A JP2012219197 A JP 2012219197A JP 2012219197 A JP2012219197 A JP 2012219197A JP 5766165 B2 JP5766165 B2 JP 5766165B2
Authority
JP
Japan
Prior art keywords
piston
eccentric
rotary compressor
inner peripheral
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012219197A
Other languages
Japanese (ja)
Other versions
JP2014070619A (en
Inventor
谷 真男
谷  真男
太郎 加藤
太郎 加藤
浮岡 元一
元一 浮岡
聡経 新井
聡経 新井
尚久 五前
尚久 五前
佐藤 幸一
幸一 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012219197A priority Critical patent/JP5766165B2/en
Priority to CZ2013-722A priority patent/CZ306348B6/en
Priority to CN201310459340.6A priority patent/CN103711699B/en
Priority to CN201320596122.2U priority patent/CN203488374U/en
Priority to KR1020130116050A priority patent/KR101539853B1/en
Publication of JP2014070619A publication Critical patent/JP2014070619A/en
Application granted granted Critical
Publication of JP5766165B2 publication Critical patent/JP5766165B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Description

本発明は、空気調和機や冷蔵庫等の冷凍空調装置の冷凍サイクルに用いられる、冷媒ガスの圧縮を行う回転圧縮機に関するものである。   The present invention relates to a rotary compressor for compressing refrigerant gas used in a refrigeration cycle of a refrigerating and air-conditioning apparatus such as an air conditioner or a refrigerator.

従来より、クランク軸の偏芯部に摺動自在に取り付けられたピストンと、円筒状のシリンダ室が形成され、該シリンダ室に前記ピストンが配置されたシリンダと、シリンダ室内を低圧空間と高圧空間とに仕切るベーンを備えた回転圧縮機(ロータリ圧縮機)が提案されている。このような回転圧縮機は、シリンダ室内周面、ピストン外周面及びベーンで仕切られた空間が圧縮室となり、シリンダ室内でピストンが偏芯回転運動することで、シリンダ室内に吸入された冷媒を圧縮する。このような従来の回転圧縮機には、ピストンを複数の部材に分割して構成したものも提案されている。   Conventionally, a piston slidably attached to the eccentric part of the crankshaft, a cylindrical cylinder chamber is formed, the cylinder in which the piston is arranged, a low pressure space and a high pressure space in the cylinder chamber There has been proposed a rotary compressor (rotary compressor) having vanes for partitioning. In such a rotary compressor, the space partitioned by the cylinder chamber inner circumferential surface, the piston outer circumferential surface and the vane becomes a compression chamber, and the piston is eccentrically rotated in the cylinder chamber to compress the refrigerant sucked into the cylinder chamber. To do. Such a conventional rotary compressor has also been proposed in which a piston is divided into a plurality of members.

例えば、ピストンを複数の部材に分割して構成した従来の回転圧縮機には、ベーンとピストン外周面との摺動によって生じるピストン外周面の摩耗の防止を図ったものとして、「ロータリ圧縮機のピストンを外側の第1のローラ16aと内側の第2のローラ16bの二重に構成し、前記第2のローラ16bの内面と外面とが連通する穴24を設ける。」(特許文献1参照)というものが提案されている。   For example, in a conventional rotary compressor configured by dividing a piston into a plurality of members, it is assumed that the piston outer peripheral surface is prevented from being worn by sliding between the vane and the piston outer peripheral surface. The piston is composed of a double first roller 16a on the outside and a second roller 16b on the inside, and a hole 24 is provided in which the inner surface and the outer surface of the second roller 16b communicate with each other. " This has been proposed.

特開平5−256282号公報(要約、図1,2)Japanese Patent Laid-Open No. 5-256282 (summary, FIGS. 1 and 2)

特許文献1に記載の回転圧縮機は、偏芯部に摺動自在に取り付けられた内周側ピストン(特許文献1では第2のローラ16bと記載)が円筒形状の一体物で成形されている。そして、この内周側ピストンは、偏芯部と隣接したクランク軸の主軸又は副軸を内周側ピストンに通した後、偏芯部に取り付けられる。このため、特許文献1に記載の回転圧縮機は、偏芯部の反偏芯側の外周面(偏芯部における偏芯方向と反対側の外周面)が主軸又は副軸の外周面よりも突出した構成にする必要があった。又は、偏芯部の反偏芯側の外周面と主軸又は副軸の外周面を同一面状に形成する必要があった。   In the rotary compressor described in Patent Document 1, an inner peripheral piston (described as the second roller 16b in Patent Document 1) that is slidably attached to the eccentric part is formed as a cylindrical one-piece. . And this inner peripheral side piston is attached to an eccentric part, after passing the main axis | shaft or subshaft of the crankshaft adjacent to the eccentric part through an inner peripheral side piston. For this reason, in the rotary compressor described in Patent Document 1, the outer peripheral surface of the eccentric portion on the side opposite to the eccentric side (the outer peripheral surface on the side opposite to the eccentric direction in the eccentric portion) is more than the outer peripheral surface of the main shaft or the sub shaft. It was necessary to have a protruding configuration. Alternatively, it is necessary to form the outer peripheral surface of the eccentric portion opposite to the eccentric side and the outer peripheral surface of the main shaft or the sub shaft in the same plane.

つまり、図7(a)に示すように、偏芯部4cの半径をRe、偏芯部4cの偏芯量(主軸4a及び副軸4bの中心軸と偏芯部4cの中心軸との距離)をeとした場合、主軸4a及び副軸4bの中心軸から偏芯部4cの反偏芯側の外周面までの距離は、Re−eとなる。このため、特許文献1に記載の回転圧縮機は、内周側ピストン50を主軸4a側から偏芯部4cに取り付ける場合には、主軸4aの半径をRmとすると、Re−e≧Rmとなるようにクランク軸4を形成する必要があった。また、特許文献1に記載の回転圧縮機は、内周側ピストン50を副軸4b側から偏芯部4cに取り付ける場合には、副軸4bの半径をRaとすると、Re−e≧Raとなるようにクランク軸4を形成する必要があった。
なぜならば、図7(b)に示すように、偏芯部4cの反偏芯側の外周面が主軸4a又は副軸4bの外周面よりも凹んだ構成になっていると(つまり、内周側ピストン50を主軸4a側から偏芯部4cに取り付ける場合にRe−e<Rmとなっており、内周側ピストン50を副軸4b側から偏芯部4cに取り付ける場合にRe−e<Raとなっていると)、内周側ピストン50を偏芯部4cに取り付けようとした際、偏芯部4cと内周側ピストン50が干渉してしまい、内周側ピストン50を偏芯部4cに取り付けることができないからである。
That is, as shown in FIG. 7A, the radius of the eccentric portion 4c is Re, and the eccentric amount of the eccentric portion 4c (the distance between the central axis of the main shaft 4a and the sub shaft 4b and the central axis of the eccentric portion 4c). ) Is e, the distance from the central axis of the main shaft 4a and the sub shaft 4b to the outer peripheral surface of the eccentric portion 4c on the side opposite to the eccentric side is Re-e. For this reason, in the rotary compressor described in Patent Document 1, when the inner peripheral side piston 50 is attached to the eccentric portion 4c from the main shaft 4a side, if the radius of the main shaft 4a is Rm, Re−e ≧ Rm. Thus, the crankshaft 4 had to be formed. Further, in the rotary compressor described in Patent Document 1, when the inner peripheral piston 50 is attached to the eccentric portion 4c from the sub shaft 4b side, assuming that the radius of the sub shaft 4b is Ra, Re-e ≧ Ra It was necessary to form the crankshaft 4 so as to be.
This is because, as shown in FIG. 7 (b), the outer peripheral surface of the eccentric portion 4c on the side opposite to the eccentric side is recessed from the outer peripheral surface of the main shaft 4a or the sub shaft 4b (that is, the inner periphery). Re-e <Rm when the side piston 50 is attached to the eccentric portion 4c from the main shaft 4a side, and Re-e <Ra when the inner peripheral side piston 50 is attached to the eccentric portion 4c from the sub shaft 4b side. When the inner peripheral side piston 50 is to be attached to the eccentric part 4c, the eccentric part 4c interferes with the inner peripheral side piston 50, and the inner peripheral side piston 50 is displaced from the eccentric part 4c. It is because it cannot be attached to.

一方、回転圧縮機の能力拡大(高出力化)のために押しのけ容積を拡大しようとすると、ピストンの外径の拡大を抑制しながら、ピストンの偏芯量(クランク軸の主軸及び副軸からの偏芯量)を大きくする必要がある。つまり、回転圧縮機の能力拡大のために押しのけ容積を拡大しようとすると、偏芯部の外径の拡大を抑制しながら、偏芯部の偏芯量(クランク軸の主軸及び副軸からの偏芯量)を大きくする必要がある。そして、偏芯部の外径の拡大を抑制しながら、偏芯部の偏芯量を大きくしていくと、偏芯部4cの反偏芯側の外周面が主軸4a又は副軸4bの外周面よりも凹んだ状態(つまり、Re−e<Rm、又は、Re−e<Raの状態)になっていく。
しかしながら、図7で説明したように、特許文献1に記載の回転圧縮機は、偏芯部の反偏芯側の外周面と主軸又は副軸の外周面との関係をRe−e≧Rm、又は、Re−e≧Raにしなければ、ピストンを偏芯部に取り付けることができない。このため、特許文献1に記載の回転圧縮機は、偏芯部4cの反偏芯側の外周面が主軸4a又は副軸4bの外周面よりも凹んだ状態にまで、偏芯部の外径の拡大を抑制しながら、偏芯部の偏芯量を大きくすることができず、回転式圧縮機の能力拡大に限界があるという課題があった。
On the other hand, if the displacement volume is increased to increase the capacity of the rotary compressor (high output), the eccentric amount of the piston (from the main shaft and the sub shaft of the crankshaft) is suppressed while suppressing the expansion of the outer diameter of the piston. It is necessary to increase the eccentricity). In other words, if the displacement volume is increased to increase the capacity of the rotary compressor, the eccentric amount of the eccentric portion (the deviation from the main shaft and the sub shaft of the crankshaft) is suppressed while suppressing the increase in the outer diameter of the eccentric portion. It is necessary to increase the core amount. When the eccentric amount of the eccentric portion is increased while suppressing the expansion of the outer diameter of the eccentric portion, the outer peripheral surface of the eccentric portion 4c on the side opposite to the eccentric side is the outer periphery of the main shaft 4a or the sub shaft 4b. It becomes a state of being recessed from the surface (that is, a state of Re-e <Rm or Re-e <Ra).
However, as described with reference to FIG. 7, the rotary compressor described in Patent Document 1 has a relationship between the outer peripheral surface of the eccentric portion on the side opposite to the eccentric side and the outer peripheral surface of the main shaft or the sub shaft. Or, unless Re−e ≧ Ra, the piston cannot be attached to the eccentric portion. For this reason, in the rotary compressor described in Patent Document 1, the outer diameter of the eccentric portion is such that the outer peripheral surface of the eccentric portion 4c on the side opposite to the eccentric side is recessed from the outer peripheral surface of the main shaft 4a or the sub shaft 4b. However, the amount of eccentricity of the eccentric portion cannot be increased while the expansion of the capacity of the rotary compressor is limited.

ここで、回転圧縮機の押しのけ容積を大きくする方法として、偏芯部及びピストンの偏芯量をそのままにし、ピストン及びシリンダの高さを高くすることも考えられる。しかしながら、ピストンの偏芯側の外周面(偏芯部の偏芯方向側の外周面)とシリンダ室内周面との間は、シリンダ室内を低圧空間と高圧空間とに仕切るシール部となっている。このため、ピストン及びシリンダの高さを高くすると、当該シール部の長さが増大してしまう。したがって、ピストン及びシリンダの高さを高くして回転圧縮機の能力拡大を図ろうとした場合、高圧空間側の冷媒ガスが低圧空間側に漏れて、圧縮室内(シリンダ室内)に吸入する冷媒ガスの重量流量が低下してしまい、回転圧縮機の著しい効率の悪化を招くという課題があった。   Here, as a method of increasing the displacement volume of the rotary compressor, it is also conceivable to increase the heights of the piston and the cylinder while leaving the eccentric amounts of the eccentric portion and the piston as they are. However, between the outer peripheral surface on the eccentric side of the piston (the outer peripheral surface on the eccentric direction side of the eccentric portion) and the peripheral surface of the cylinder chamber is a seal portion that partitions the cylinder chamber into a low pressure space and a high pressure space. . For this reason, if the height of a piston and a cylinder is made high, the length of the said seal part will increase. Therefore, when attempting to increase the capacity of the rotary compressor by increasing the height of the piston and cylinder, the refrigerant gas on the high pressure space side leaks to the low pressure space side and the refrigerant gas sucked into the compression chamber (cylinder chamber) There has been a problem that the weight flow rate is lowered and the efficiency of the rotary compressor is significantly deteriorated.

本発明は、上記のような課題を解決するためになされたものであり、シリンダ室内の高圧側空間と低圧側空間との間のシール性が悪化することを防止しつつ、回転圧縮機の押しのけ容積を大きくすることが可能な回転圧縮機を提供することを目的とする。   The present invention has been made in order to solve the above-described problems, and is capable of pushing the rotary compressor away while preventing the sealing performance between the high-pressure side space and the low-pressure side space in the cylinder chamber from being deteriorated. An object of the present invention is to provide a rotary compressor capable of increasing the volume.

本発明に係る回転圧縮機は、固定子及び回転子を有する電動機と、前記回転子に固定された主軸、前記主軸の軸方向の反対側に設けられた副軸、及び前記主軸と前記副軸との間に形成された偏芯部を有し、前記電動機により駆動されるクランク軸と、前記偏芯部に摺動自在に取り付けられたピストン、円筒状のシリンダ室が形成され、該シリンダ室に前記偏芯部及び前記ピストンが配置されたシリンダ、及び、前記シリンダ室内を低圧空間と高圧空間とに仕切るベーンを有する圧縮機構部と、前記電動機、前記クランク軸及び前記圧縮機構部を収納する密閉容器と、を備えた回転圧縮機であって、前記ピストンは、前記偏芯部の外周面に摺動自在に設けられた内周側ピストンと、該内周側ピストンの外周面に設けられた外周側ピストンとで構成され、前記内周側ピストンは、複数の円弧状部材で構成されており、前記副軸の半径をRa、前記偏芯部の半径をRe、前記内周側ピストンの半径をRp、及び、前記偏芯部の偏芯量をeとするとき、Re−e<Ra<Rp−eなる関係を有するものである。 The rotary compressor according to the present invention includes an electric motor having a stator and a rotor, a main shaft fixed to the rotor, a sub shaft provided on the opposite side of the main shaft in the axial direction, and the main shaft and the sub shaft. A crankshaft driven by the electric motor, a piston slidably attached to the eccentric portion, and a cylindrical cylinder chamber are formed. The cylinder in which the eccentric part and the piston are arranged, the compression mechanism part having a vane that partitions the cylinder chamber into a low pressure space and a high pressure space, the electric motor, the crankshaft, and the compression mechanism part are housed. A rotary container including a hermetic container, wherein the piston is provided on an outer peripheral surface of the eccentric portion and an outer peripheral surface of the inner peripheral piston. The outer peripheral piston Is, the inner peripheral side piston is constituted by a plurality of arcuate members, the radius of the minor axis Ra, the radius of the eccentric portion Re, the radius of the inner peripheral side piston Rp, and the When the eccentric amount of the eccentric portion is e, the relationship is Re-e <Ra <Rp-e .

本発明に係る回転圧縮機においては、ピストンは、偏芯部の外周面に摺動自在に設けられた内周側ピストンと、該内周側ピストンの外周面に設けられた外周側ピストンとで構成されている。また、内周側ピストンは、複数の円弧状部材で構成されている。このため、本発明に係る回転圧縮機は、複数の円弧状部材で偏芯部を挟み込むように(偏芯部の中心軸と垂直な方向から)、各円弧状部材つまり内周側ピストンを取り付けることができる。このため、偏芯部の反偏芯側の外周面が主軸又は副軸の外周面よりも凹んだ構成にクランク軸がなっていたとしても、内周側ピストンを偏芯部に取り付けることができる。したがって、本発明に係る回転圧縮機は、ピストン及びシリンダの高さを高くすることなく、押しのけ容積を大きくすることができる。
すなわち、本発明に係る回転圧縮機は、ピストンとシリンダ室内周面との間のシール部における冷媒漏れによって発生する著しい効率の悪化を招くことなく、押しのけ容積を大きくすることができる。換言すると、本発明に係る回転圧縮機は、押しのけ容積を変更しない場合、従来の回転圧縮機よりもピストン及びシリンダの高さを低くすることができ、ピストンとシリンダ室内周面との間のシール部における冷媒漏れを従来よりも抑制することができる。
したがって、本発明は、従来よりも高出力化及び高効率化が可能な回転圧縮機を提供することができる。
In the rotary compressor according to the present invention, the piston includes an inner peripheral side piston slidably provided on the outer peripheral surface of the eccentric portion and an outer peripheral side piston provided on the outer peripheral surface of the inner peripheral side piston. It is configured. Further, the inner circumferential side piston is composed of a plurality of arcuate members. For this reason, the rotary compressor according to the present invention attaches each arc-shaped member, that is, the inner peripheral piston so that the eccentric portion is sandwiched between the plurality of arc-shaped members (from the direction perpendicular to the central axis of the eccentric portion). be able to. For this reason, even if the crankshaft has a configuration in which the outer peripheral surface of the eccentric portion on the side opposite to the eccentric side is recessed from the outer peripheral surface of the main shaft or the auxiliary shaft, the inner peripheral piston can be attached to the eccentric portion. . Therefore, the rotary compressor according to the present invention can increase the displacement volume without increasing the height of the piston and the cylinder.
That is, the rotary compressor according to the present invention can increase the displacement volume without causing a significant deterioration in efficiency caused by refrigerant leakage at the seal portion between the piston and the cylinder chamber peripheral surface. In other words, in the rotary compressor according to the present invention, when the displacement volume is not changed, the height of the piston and the cylinder can be made lower than that of the conventional rotary compressor, and the seal between the piston and the cylinder inner peripheral surface can be obtained. The refrigerant leakage in the section can be suppressed more than before.
Therefore, the present invention can provide a rotary compressor that can achieve higher output and higher efficiency than conventional ones.

本発明の実施の形態に係る回転圧縮機を示す縦断面図である。It is a longitudinal section showing a rotary compressor concerning an embodiment of the invention. 本発明の実施の形態に係る回転圧縮機の圧縮機構部を示す横断面図である。It is a cross-sectional view which shows the compression mechanism part of the rotary compressor which concerns on embodiment of this invention. 本発明の実施の形態に係る回転圧縮機の内周側ピストンを説明するための説明図であり、(a)がクランク軸及び内周側ピストンを示す縦断面図、(b)が内周側ピストンを示す平面図である。It is explanatory drawing for demonstrating the inner peripheral side piston of the rotary compressor which concerns on embodiment of this invention, (a) is a longitudinal cross-sectional view which shows a crankshaft and an inner peripheral side piston, (b) is an inner peripheral side. It is a top view which shows a piston. 本発明の実施の形態に係る回転圧縮機における偏芯部へのピストン取り付け方法を説明するための図であり、クランク軸の偏芯部へ内周側ピストンを組み付ける前の状態を示す斜視図である。It is a figure for demonstrating the piston attachment method to the eccentric part in the rotary compressor which concerns on embodiment of this invention, and is a perspective view which shows the state before attaching an inner peripheral side piston to the eccentric part of a crankshaft. is there. 本発明の実施の形態に係る回転圧縮機における偏芯部へのピストン取り付け方法を説明するための図であり、クランク軸の偏芯部に内周側ピストンが取り付けられた後、該内周側ピストンに外周側ピストンを取り付ける前の状態を示す斜視図である。It is a figure for demonstrating the piston attachment method to the eccentric part in the rotary compressor which concerns on embodiment of this invention, and after this inner peripheral side piston is attached to the eccentric part of a crankshaft, this inner peripheral side It is a perspective view which shows the state before attaching an outer peripheral side piston to a piston. 本発明の実施の形態に係る回転圧縮機における偏芯部へのピストン取り付け方法を説明するための図であり、クランク軸の偏芯部に内周側ピストンが取り付けられた後、さらに該内周側ピストンに外周側ピストンを取り付けた状態を示す図である。It is a figure for demonstrating the piston attachment method to the eccentric part in the rotary compressor which concerns on embodiment of this invention, After an inner peripheral side piston is attached to the eccentric part of a crankshaft, it is further this inner periphery It is a figure which shows the state which attached the outer peripheral side piston to the side piston. 従来の回転圧縮機の偏芯部近傍を示す詳細図である。It is detail drawing which shows the eccentric part vicinity of the conventional rotary compressor.

実施の形態.
図1は、本発明の実施の形態に係る回転圧縮機を示す縦断面図である。図2は、この回転圧縮機の圧縮機構部を示す横断面図である。また、図3は、この回転圧縮機の内周側ピストンを説明するための説明図であり、(a)がクランク軸及び内周側ピストンを示す縦断面図、(b)が内周側ピストンを示す平面図である。
以下、これら図1〜図3を用いて、本実施の形態に係る回転圧縮機の構成を説明する。
Embodiment.
FIG. 1 is a longitudinal sectional view showing a rotary compressor according to an embodiment of the present invention. FIG. 2 is a cross-sectional view showing a compression mechanism portion of the rotary compressor. FIG. 3 is an explanatory view for explaining the inner peripheral side piston of the rotary compressor, wherein (a) is a longitudinal sectional view showing the crankshaft and the inner peripheral side piston, and (b) is an inner peripheral side piston. FIG.
Hereinafter, the configuration of the rotary compressor according to the present embodiment will be described with reference to FIGS.

回転圧縮機100は、密閉容器1内に、固定子2aと回転子2bとからなる電動機2と、電動機2により駆動される圧縮機構部3とを収納している。電動機2の回転力は、クランク軸4を介して圧縮機構部3に伝達される。また、密閉容器1内には、圧縮機構部3の潤滑する潤滑油(冷凍機油)が貯留されている。   The rotary compressor 100 stores an electric motor 2 including a stator 2 a and a rotor 2 b and a compression mechanism unit 3 driven by the electric motor 2 in a hermetic container 1. The rotational force of the electric motor 2 is transmitted to the compression mechanism unit 3 via the crankshaft 4. In the sealed container 1, lubricating oil (refrigeration machine oil) that is lubricated by the compression mechanism unit 3 is stored.

クランク軸4は、電動機2の回転子2bに固定される主軸4aと、主軸4aの反対側に設けられる副軸4bと、主軸4aと副軸4bとの間に形成される偏芯部4cとを有する。   The crankshaft 4 includes a main shaft 4a fixed to the rotor 2b of the electric motor 2, a sub shaft 4b provided on the opposite side of the main shaft 4a, and an eccentric portion 4c formed between the main shaft 4a and the sub shaft 4b. Have

また、本実施の形態では、クランク軸4の形状を以下のように形成している。つまり、本実施の形態では、回転圧縮機100の押しのけ容積を拡大するため、偏芯部4cの外径の拡大を抑制しながら、偏芯部4cの偏芯量(主軸4a及び副軸4bからの偏芯量)を大きくしている。このため、クランク軸4は、偏芯部4cの反偏芯側の外周面(偏芯部4cにおける偏芯方向と反対側の外周面)が主軸4a及び副軸4bの外周部よりも凹んだ形状となっている。換言すると、偏芯部4cの半径をRe、偏芯部4cの偏芯量(主軸4a及び副軸4bの中心軸と偏芯部4cの中心軸との距離)をeとした場合、主軸4a及び副軸4bの中心軸から偏芯部4cの反偏芯側の外周面までの距離は、Re−eとなる。このため、主軸4aの半径をRmとし、副軸4bの半径をRaとすると、回転圧縮機100のクランク軸4は、Re−e<Rmとなっており、Re−e<Raとなっている。   In this embodiment, the shape of the crankshaft 4 is formed as follows. That is, in the present embodiment, the displacement of the rotary compressor 100 is increased, so that the eccentric amount of the eccentric portion 4c (from the main shaft 4a and the sub shaft 4b is suppressed while suppressing the increase in the outer diameter of the eccentric portion 4c. The eccentric amount) is increased. For this reason, the crankshaft 4 has an outer peripheral surface (an outer peripheral surface opposite to the eccentric direction in the eccentric portion 4c) of the eccentric portion 4c that is recessed from the outer peripheral portions of the main shaft 4a and the auxiliary shaft 4b. It has a shape. In other words, when the radius of the eccentric portion 4c is Re and the eccentric amount of the eccentric portion 4c (the distance between the central axis of the main shaft 4a and the auxiliary shaft 4b and the central axis of the eccentric portion 4c) is e, the main shaft 4a The distance from the central axis of the sub shaft 4b to the outer peripheral surface of the eccentric portion 4c on the opposite eccentric side is Re-e. Therefore, if the radius of the main shaft 4a is Rm and the radius of the sub shaft 4b is Ra, the crankshaft 4 of the rotary compressor 100 satisfies Re-e <Rm and Re-e <Ra. .

このように構成されたクランク軸4は、主軸受5及び副軸受6によって回転自在に支持されている。詳しくは、主軸受5は、圧縮機構部3の上部に設けられており、クランク軸4の主軸4aを回転自在に支持する。また、副軸受6は、圧縮機構部3の下部に設けられており、クランク軸4の副軸4bを回転自在に支持する。   The crankshaft 4 configured in this manner is rotatably supported by the main bearing 5 and the auxiliary bearing 6. In detail, the main bearing 5 is provided in the upper part of the compression mechanism part 3, and supports the main axis | shaft 4a of the crankshaft 4 rotatably. Further, the auxiliary bearing 6 is provided at the lower part of the compression mechanism section 3 and rotatably supports the auxiliary shaft 4b of the crankshaft 4.

圧縮機構部3は、シリンダ7、ピストン20、及びベーン9等を備える。   The compression mechanism unit 3 includes a cylinder 7, a piston 20, a vane 9, and the like.

シリンダ7は、密閉容器1の内周部に固定されており、その中心部に円筒状のシリンダ室を有している。そして、このシリンダ室には、クランク軸4の偏芯部4cに摺動自在に嵌合するピストン20が設けられている。また、シリンダ7のシリンダ室の軸方向両端面は、主軸受5と副軸受6とで閉塞されている。さらに、シリンダ7には、偏芯部4cの回転に従って往復運動するベーン9が設けられる。つまり、ピストン20の外周面、シリンダ室の内周面及びベーン9によって仕切られた空間が圧縮室となる。また、ベーン9によって、この圧縮室内(シリンダ室内)は高圧側空間と低圧側とに仕切られている。   The cylinder 7 is fixed to the inner peripheral portion of the sealed container 1 and has a cylindrical cylinder chamber at the center thereof. The cylinder chamber is provided with a piston 20 that is slidably fitted to the eccentric portion 4 c of the crankshaft 4. Further, both end surfaces in the axial direction of the cylinder chamber of the cylinder 7 are closed by the main bearing 5 and the auxiliary bearing 6. Further, the cylinder 7 is provided with a vane 9 that reciprocates according to the rotation of the eccentric portion 4c. That is, the space partitioned by the outer peripheral surface of the piston 20, the inner peripheral surface of the cylinder chamber, and the vane 9 is a compression chamber. The compression chamber (cylinder chamber) is partitioned by the vane 9 into a high pressure side space and a low pressure side.

ここで、本実施の形態では、ピストン20を図2及び図3のように構成している。
つまり、ピストン20は、偏芯部4cの外周面に摺動自在に設けられた内周側ピストン21と、該内周側ピストン21の外周面に例えば摺動自在に設けられた外周側ピストン22とで構成されている。また、内周側ピストン21は、偏芯部4cの中心軸に沿った断面で分割された複数の円弧状部材21aで構成されている。なお、本実施の形態では、2つの円弧状部材21aによって、内周側ピストン21が構成されている。
Here, in the present embodiment, the piston 20 is configured as shown in FIGS.
That is, the piston 20 includes an inner peripheral piston 21 slidably provided on the outer peripheral surface of the eccentric portion 4c, and an outer peripheral piston 22 provided slidably on the outer peripheral surface of the inner peripheral piston 21, for example. It consists of and. Moreover, the inner peripheral side piston 21 is comprised by the some circular-arc-shaped member 21a divided | segmented by the cross section along the central axis of the eccentric part 4c. In the present embodiment, the inner circumferential side piston 21 is constituted by two arc-shaped members 21a.

このように構成された回転圧縮機100は、回転子2bが回転することで回転子2bに嵌入されたクランク軸4が回転する。これにより、クランク軸4の偏芯部4cに摺動自在に取り付けられたピストン20が、シリンダ7のシリンダ室内で偏芯回転運動する。そして、ピストン20の偏芯回転運動に伴って、シリンダ7の高圧側空間の容積が徐々に減少し、高圧側空間内の冷媒ガスが圧縮される。この圧縮された冷媒ガスは、密閉容器1内に吐出された後、吐出管11から外部へ送り出される。なお、密閉容器1に隣接してアキュムレータ12が設けられており、このアキュムレータ12は、吸入連結管10を介して、シリンダ7のシリンダ室と連通している。つまり、アキュムレータ12及び吸入連結管10を介して、シリンダ7のシリンダ室に冷媒ガスが送られる。   In the rotary compressor 100 configured as described above, the crankshaft 4 fitted in the rotor 2b rotates as the rotor 2b rotates. As a result, the piston 20 slidably attached to the eccentric portion 4 c of the crankshaft 4 performs an eccentric rotational movement in the cylinder chamber of the cylinder 7. As the piston 20 rotates eccentrically, the volume of the high-pressure side space of the cylinder 7 gradually decreases, and the refrigerant gas in the high-pressure side space is compressed. The compressed refrigerant gas is discharged into the sealed container 1 and then sent out from the discharge pipe 11 to the outside. An accumulator 12 is provided adjacent to the hermetic container 1, and the accumulator 12 communicates with the cylinder chamber of the cylinder 7 via the suction connecting pipe 10. That is, the refrigerant gas is sent to the cylinder chamber of the cylinder 7 through the accumulator 12 and the suction connecting pipe 10.

続いて、図4〜図6を用いて、クランク軸4の偏芯部4cへピストン20を取り付ける方法について説明する。   Next, a method for attaching the piston 20 to the eccentric portion 4c of the crankshaft 4 will be described with reference to FIGS.

図4は、本発明の実施の形態に係る回転圧縮機における偏芯部へのピストン取り付け方法を説明するための図であり、クランク軸の偏芯部へ内周側ピストンを組み付ける前の状態を示す斜視図である。図5は、この回転圧縮機における偏芯部へのピストン取り付け方法を説明するための図であり、クランク軸の偏芯部に内周側ピストンが取り付けられた後、該内周側ピストンに外周側ピストンを取り付ける前の状態を示す斜視図である。また、図6は、この回転圧縮機における偏芯部へのピストン取り付け方法を説明するための図であり、クランク軸の偏芯部に内周側ピストンが取り付けられた後、さらに該内周側ピストンに外周側ピストンを取り付けた状態を示す図である。より詳しくは、図6(a)は、内周側ピストンに外周側ピストンを組み付けた状態を示す縦断面図である。図6(b)は、内周側ピストンに外周側ピストンを組み付けた状態を示す斜視図である。図6(c)は、内周側ピストンに外周側ピストンを組み付けた状態を示す平面図である。なお、図6(c)では、クランク軸の図示を省略している。   FIG. 4 is a view for explaining a method of attaching a piston to an eccentric portion in the rotary compressor according to the embodiment of the present invention, and shows a state before the inner peripheral side piston is assembled to the eccentric portion of the crankshaft. It is a perspective view shown. FIG. 5 is a view for explaining a method of attaching the piston to the eccentric portion in this rotary compressor. After the inner peripheral piston is attached to the eccentric portion of the crankshaft, the outer peripheral piston It is a perspective view which shows the state before attaching a side piston. FIG. 6 is a view for explaining a method of attaching the piston to the eccentric part in the rotary compressor. After the inner peripheral side piston is attached to the eccentric part of the crankshaft, the inner peripheral side is further shown. It is a figure which shows the state which attached the outer peripheral side piston to the piston. More specifically, FIG. 6A is a longitudinal sectional view showing a state in which the outer peripheral side piston is assembled to the inner peripheral side piston. FIG.6 (b) is a perspective view which shows the state which assembled | attached the outer peripheral side piston to the inner peripheral side piston. FIG.6 (c) is a top view which shows the state which assembled | attached the outer peripheral side piston to the inner peripheral side piston. In addition, illustration of a crankshaft is abbreviate | omitted in FIG.6 (c).

クランク軸4の偏芯部4cにピストン20を取り付ける場合、まず、図4に示すように、偏芯部4cに内周側ピストン21を取り付ける。詳しくは、内周側ピストン21を構成する2つの円弧状部材21aで偏芯部4cを挟み込むように、偏芯部4cに2つの円弧状部材21a(つまり、内周側ピストン21)を取り付ける。換言すると、内周側ピストン21を構成する2つの円弧状部材21aを、偏芯部4cの中心軸と垂直な方向から偏芯部4cに取り付ける。   When attaching the piston 20 to the eccentric part 4c of the crankshaft 4, first, as shown in FIG. 4, the inner peripheral side piston 21 is attached to the eccentric part 4c. Specifically, the two arcuate members 21a (that is, the inner circumferential piston 21) are attached to the eccentric part 4c so that the eccentric part 4c is sandwiched between the two arcuate members 21a constituting the inner peripheral piston 21. In other words, the two arcuate members 21a constituting the inner peripheral side piston 21 are attached to the eccentric portion 4c from the direction perpendicular to the central axis of the eccentric portion 4c.

上述のように、従来の回転圧縮機の内周側ピストンは一体物で形成されていた。このため、従来の回転圧縮機は、内周側ピストンをクランク軸の偏芯部に取り付けるためには、偏芯部の反偏芯側の外周面が主軸又は副軸の外周面よりも突出した構成にする必要があった。又は、偏芯部の反偏芯側の外周面と主軸又は副軸の外周面を同一面状に形成する必要があった。換言すると、従来の回転式圧縮機は、本実施の形態のような形状のクランク軸4(偏芯部4cの反偏芯側の外周面が主軸4a及び副軸4bの外周部よりも凹んだ形状のクランク軸)には、内周側ピストンを取り付けることができなかった。しかしながら、本実施の形態のように2つの円弧状部材21aで内周側ピストン21を構成することにより、偏芯部4cの反偏芯側の外周面が主軸4a及び副軸4bの外周部よりも凹んだ形状のクランク軸4にも、内周側ピストン21を取り付けることができる。   As described above, the inner peripheral piston of the conventional rotary compressor is formed as a single body. For this reason, in the conventional rotary compressor, in order to attach the inner peripheral side piston to the eccentric part of the crankshaft, the outer peripheral surface of the eccentric part opposite to the eccentric side protrudes from the outer peripheral surface of the main shaft or the sub shaft. There was a need to configure. Alternatively, it is necessary to form the outer peripheral surface of the eccentric portion opposite to the eccentric side and the outer peripheral surface of the main shaft or the sub shaft in the same plane. In other words, in the conventional rotary compressor, the crankshaft 4 having the shape as in the present embodiment (the outer peripheral surface of the eccentric portion 4c on the side opposite to the eccentric side is recessed more than the outer peripheral portions of the main shaft 4a and the sub shaft 4b. The inner peripheral side piston could not be attached to the shape crankshaft). However, by configuring the inner circumferential side piston 21 with the two arc-shaped members 21a as in the present embodiment, the outer circumferential surface on the anti-eccentric side of the eccentric portion 4c is more than the outer circumferential portion of the main shaft 4a and the auxiliary shaft 4b. The inner circumferential side piston 21 can also be attached to the crankshaft 4 having a concave shape.

図4のようにクランク軸4の偏芯部4cに内周側ピストン21を取り付けた後、図5及び図6に示すように、当該内周側ピストン21の外周面に外周側ピストン22を取り付ける。詳しくは、略円筒形状の一体物に形成された外周側ピストン22に、主軸4a又は副軸4bを通す。その後、この外周側ピストン22を、内周側ピストン21の外周面に取り付ける。   After attaching the inner peripheral side piston 21 to the eccentric part 4c of the crankshaft 4 as shown in FIG. 4, the outer peripheral side piston 22 is attached to the outer peripheral surface of the inner peripheral side piston 21 as shown in FIGS. . Specifically, the main shaft 4a or the sub shaft 4b is passed through the outer peripheral side piston 22 formed as a substantially cylindrical one. Thereafter, the outer peripheral piston 22 is attached to the outer peripheral surface of the inner peripheral piston 21.

なお、本実施の形態では、図3に示すように、内周側ピストン21の半径Rpとした場合、Rp−eは主軸4aの半径Rmよりも大きい値となっている。このため、内周側ピストン21が偏芯部4cに取り付けられた状態においては、内周側ピストン21の反偏芯側の外周面が主軸4aの外周面よりも突出した構成となる。このため、外周側ピストン22を主軸4a側から偏芯部4cに取り付けることができる。また、本実施の形態では、図3に示すように、内周側ピストン21の半径Rpとした場合、Rp−eは副軸4bの半径Raよりも大きい値となっている。このため、内周側ピストン21が偏芯部4cに取り付けられた状態においては、内周側ピストン21の反偏芯側の外周面が副軸4bの外周面よりも突出した構成となる。このため、外周側ピストン22を副軸4b側から偏芯部4cに取り付けることもできる。   In the present embodiment, as shown in FIG. 3, when the radius Rp of the inner peripheral piston 21 is used, Rp-e is larger than the radius Rm of the main shaft 4a. For this reason, in the state where the inner peripheral side piston 21 is attached to the eccentric portion 4c, the outer peripheral surface of the inner peripheral side piston 21 opposite to the eccentric side protrudes from the outer peripheral surface of the main shaft 4a. For this reason, the outer peripheral side piston 22 can be attached to the eccentric part 4c from the main shaft 4a side. Moreover, in this Embodiment, as shown in FIG. 3, when it is set as the radius Rp of the inner peripheral side piston 21, Rp-e becomes a larger value than the radius Ra of the subshaft 4b. For this reason, in the state where the inner peripheral side piston 21 is attached to the eccentric portion 4c, the outer peripheral surface of the inner peripheral side piston 21 on the side opposite to the eccentric side protrudes from the outer peripheral surface of the auxiliary shaft 4b. For this reason, the outer peripheral side piston 22 can also be attached to the eccentric part 4c from the subshaft 4b side.

以上、本実施の形態のように構成された回転圧縮機100は、以下のような効果を得ることができる。
つまり、上述のように、従来の回転圧縮機の内周側ピストンは一体物で形成されていた。このため、従来の回転圧縮機は、内周側ピストンをクランク軸の偏芯部に取り付けるためには、偏芯部の反偏芯側の外周面が主軸又は副軸の外周面よりも突出した構成にする必要があった。又は、偏芯部の反偏芯側の外周面と主軸又は副軸の外周面を同一面状に形成する必要があった。このため、従来の回転圧縮機は、当該構成が押しのけ容積の拡大の制約となっていた。しかしながら、本実施の形態に係る回転圧縮機は、このような制約がなく、偏芯部4cの反偏芯側の外周面が主軸4a及び副軸4bの外周部よりも凹んだ形状のクランク軸4にも、内周側ピストン21と取り付けることができる。したがって、本実施の形態に係る回転圧縮機は、上記のような制約にとらわれることなく、押しのけ容積の拡大が可能となる(つまり、高出力化が可能となる)。
As described above, the rotary compressor 100 configured as in the present embodiment can obtain the following effects.
That is, as described above, the inner peripheral side piston of the conventional rotary compressor is formed as a single body. For this reason, in the conventional rotary compressor, in order to attach the inner peripheral side piston to the eccentric part of the crankshaft, the outer peripheral surface of the eccentric part opposite to the eccentric side protrudes from the outer peripheral surface of the main shaft or the sub shaft. There was a need to configure. Alternatively, it is necessary to form the outer peripheral surface of the eccentric portion opposite to the eccentric side and the outer peripheral surface of the main shaft or the sub shaft in the same plane. For this reason, in the conventional rotary compressor, this configuration has been a restriction on expansion of the displacement volume. However, the rotary compressor according to the present embodiment does not have such a restriction, and the outer peripheral surface of the eccentric portion 4c on the opposite eccentric side is recessed from the outer peripheral portions of the main shaft 4a and the auxiliary shaft 4b. 4 can also be attached to the inner circumferential side piston 21. Therefore, the rotary compressor according to the present embodiment can expand the displacement volume without being restricted by the above-described restrictions (that is, high output can be achieved).

ここで、回転圧縮機の押しのけ容積を大きくする方法として、偏芯部及びピストンの偏芯量をそのままにし、ピストン及びシリンダの高さを高くすることも考えられる。しかしながら、ピストンの偏芯側の外周面(偏芯部の偏芯方向側の外周面)とシリンダ室内周面との間は、シリンダ室内を低圧空間と高圧空間とに仕切るシール部となっている。このため、ピストン及びシリンダの高さを高くすると、当該シール部の長さが増大してしまう。したがって、ピストン及びシリンダの高さを高くして回転圧縮機の能力拡大を図ろうとした場合、高圧空間側の冷媒ガスが低圧空間側に漏れて、圧縮室内(シリンダ室内)に吸入する冷媒ガスの重量流量が低下してしまい、回転圧縮機の著しい効率の悪化を招いてしまう。しかしながら、本実施の形態に係る回転圧縮機100は、上述のように、ピストン20及びシリンダ7の高さを高くすることなく、押しのけ容積を拡大することができる。すなわち、本実施の形態に係る回転圧縮機100は、ピストン20とシリンダ室内周面との間のシール部における冷媒漏れによって発生する著しい効率の悪化を招くことなく、押しのけ容積を大きくすることができる。   Here, as a method of increasing the displacement volume of the rotary compressor, it is also conceivable to increase the heights of the piston and the cylinder while leaving the eccentric amounts of the eccentric portion and the piston as they are. However, between the outer peripheral surface on the eccentric side of the piston (the outer peripheral surface on the eccentric direction side of the eccentric portion) and the peripheral surface of the cylinder chamber is a seal portion that partitions the cylinder chamber into a low pressure space and a high pressure space. . For this reason, if the height of a piston and a cylinder is made high, the length of the said seal part will increase. Therefore, when attempting to increase the capacity of the rotary compressor by increasing the height of the piston and cylinder, the refrigerant gas on the high pressure space side leaks to the low pressure space side and the refrigerant gas sucked into the compression chamber (cylinder chamber) A weight flow rate will fall and it will cause the remarkable deterioration of the efficiency of a rotary compressor. However, the rotary compressor 100 according to the present embodiment can expand the displacement volume without increasing the height of the piston 20 and the cylinder 7 as described above. That is, the rotary compressor 100 according to the present embodiment can increase the displacement volume without causing a significant deterioration in efficiency caused by refrigerant leakage at the seal portion between the piston 20 and the cylinder chamber peripheral surface. .

換言すると、押しのけ容積を変更せずに回転圧縮機の効率を改善するためには、ピストン20及びシリンダ7の高さを低くし、両者の間に形成されるシール部において高圧空間側から低圧空間側へ漏れる冷媒ガスの量を削減することが重要である。この際、押しのけ容積を変更せずにピストン及びシリンダの高さを低くするためには、クランク軸の偏芯部の偏芯量を大きくする必要がある。しかしながら、従来の回転圧縮機は、上記のような制約により、偏芯部の偏芯量をあまり大きくすることができなかった。このため、従来の回転圧縮機は、効率改善幅がわずかであった。これに対して、本実施の形態に係る回転圧縮機100は、上記のような制約にとらわれないので、偏芯部4cの偏芯量を従来よりも大きくすることができる。このため、本実施の形態に係る回転圧縮機100は、従来よりも十分に効率を改善することが可能となる。   In other words, in order to improve the efficiency of the rotary compressor without changing the displacement volume, the height of the piston 20 and the cylinder 7 is lowered, and the low pressure space is formed from the high pressure space side in the seal portion formed between them. It is important to reduce the amount of refrigerant gas that leaks to the side. At this time, in order to reduce the height of the piston and the cylinder without changing the displacement volume, it is necessary to increase the eccentric amount of the eccentric portion of the crankshaft. However, the conventional rotary compressor has not been able to increase the eccentric amount of the eccentric portion so much due to the above-described restrictions. For this reason, the conventional rotary compressor has a slight efficiency improvement range. On the other hand, since the rotary compressor 100 according to the present embodiment is not restricted by the above-described restrictions, the eccentric amount of the eccentric portion 4c can be made larger than the conventional one. For this reason, the rotary compressor 100 according to the present embodiment can sufficiently improve the efficiency as compared with the related art.

また、押しのけ容積を変更せずに回転圧縮機の効率を改善するためには、偏芯部の外周面とピストンの内周面の摺動速度を低減させるために、偏芯部の半径(換言すると直径)を小さくすることも重要である。しかしながら、従来の回転圧縮機は、上記のような制約により、偏芯部の偏芯量を拡大しようとした際、偏芯部の半径をあまり小さくすることができない。偏芯部の半径を小さくすると、偏芯部の反偏芯側の外周面が主軸又は副軸の外周面よりも凹んでしまうからである。このため、従来の回転圧縮機は、偏芯部の半径を小さくすることによる効率改善幅がわずかであった。これに対して、本実施の形態に係る回転圧縮機100は、上記のような制約にとらわれないので、偏芯部4cの偏芯量を従来と同等にした際、偏芯部4cの半径を従来よりも小さくすることができる。このため、本実施の形態に係る回転圧縮機100は、さらに効率を改善することが可能となる。   In order to improve the efficiency of the rotary compressor without changing the displacement volume, in order to reduce the sliding speed between the outer peripheral surface of the eccentric portion and the inner peripheral surface of the piston, the radius of the eccentric portion (in other words, Therefore, it is also important to reduce the diameter. However, the conventional rotary compressor cannot make the radius of the eccentric portion so small when attempting to increase the eccentric amount of the eccentric portion due to the above-described restrictions. This is because if the radius of the eccentric portion is reduced, the outer peripheral surface of the eccentric portion on the side opposite to the eccentric side is recessed from the outer peripheral surface of the main shaft or the sub shaft. For this reason, the conventional rotary compressor has a slight efficiency improvement width by reducing the radius of the eccentric portion. On the other hand, since the rotary compressor 100 according to the present embodiment is not restricted by the above-described restrictions, when the eccentric amount of the eccentric portion 4c is made equal to the conventional one, the radius of the eccentric portion 4c is set to be the same. It can be made smaller than before. For this reason, the rotary compressor 100 according to the present embodiment can further improve the efficiency.

なお、本実施の形態では、内周側ピストン21を2つの円弧状部材21aに分割した例を説明したが、内周側ピストン21を3つ以上の円弧状部材21aに分割しても勿論よい。内周側ピストン21を構成する円弧状部材21aの数を多くすることにより、内周側ピストン21を製造する際に使用する素材の寸法を小さくすることができるので、材料の歩留まりが向上し、更に素材の輸送における積載効率も向上する。つまり、内周側ピストン21を構成する円弧状部材21aの数を多くすることにより、製造コストが安価でありながら効率の高い回転圧縮機100を提供できるという効果を奏することができる。   In the present embodiment, the example in which the inner peripheral piston 21 is divided into two arc-shaped members 21a has been described. However, the inner peripheral piston 21 may of course be divided into three or more arc-shaped members 21a. . By increasing the number of arc-shaped members 21a constituting the inner peripheral side piston 21, it is possible to reduce the size of the material used when manufacturing the inner peripheral side piston 21, so that the yield of the material is improved. Furthermore, the loading efficiency in the transportation of materials is improved. That is, by increasing the number of the arc-shaped members 21a constituting the inner peripheral side piston 21, it is possible to provide an effect that the highly efficient rotary compressor 100 can be provided while the manufacturing cost is low.

また、本実施の形態では1つの圧縮機構部3を有する回転圧縮機100について説明したが、複数の圧縮機構部3を有する多気筒回転圧縮機として回転圧縮機100を構成してもよい。この場合、主軸4aと副軸4bとの間には複数の偏芯部4cが形成され、これら偏芯部4cは中間軸で接続される。また、各偏芯部4cに対応して複数のシリンダ7が設けられ、各シリンダ7間に開口するシリンダ室の端面は、シリンダ7間に設けられた仕切板で閉塞される。なお、多気筒回転圧縮機として回転圧縮機100を構成する場合、各偏芯部4cを、主軸4a及び副軸4bの中心軸に対して軸対象に配置することが好ましい。例えば2気筒回転圧縮機として回転圧縮機100を構成する場合、2つの偏芯部4cを、主軸4a及び副軸4bの中心軸に対して180°の位相差で形成することが好ましい。このように各偏芯部4cを形成することにより、クランク軸4の回転に起因して発生する振動等を抑制することができる。   In the present embodiment, the rotary compressor 100 having one compression mechanism unit 3 has been described. However, the rotary compressor 100 may be configured as a multi-cylinder rotary compressor having a plurality of compression mechanism units 3. In this case, a plurality of eccentric portions 4c are formed between the main shaft 4a and the sub shaft 4b, and these eccentric portions 4c are connected by an intermediate shaft. A plurality of cylinders 7 are provided corresponding to the eccentric portions 4 c, and the end surfaces of the cylinder chambers opened between the cylinders 7 are closed by partition plates provided between the cylinders 7. In the case where the rotary compressor 100 is configured as a multi-cylinder rotary compressor, it is preferable that each eccentric portion 4c is disposed on the axis with respect to the central axes of the main shaft 4a and the sub shaft 4b. For example, when the rotary compressor 100 is configured as a two-cylinder rotary compressor, the two eccentric portions 4c are preferably formed with a phase difference of 180 ° with respect to the central axes of the main shaft 4a and the sub shaft 4b. By forming each eccentric portion 4c in this way, vibrations and the like generated due to the rotation of the crankshaft 4 can be suppressed.

また、本実施の形態では、「偏芯部4cの外周面と内周側ピストン21の内周面との間のクリアランス」と「内周側ピストン21の外周面と外周側ピストン22の内周面との間のクリアランス」との関係については特に言及しなかったが、例えば両クリアランスを略同一寸法としてもよい(なお、以下では、「略同一」、つまり実質的に同一なことを「同一」と表現する。つまり、本実施の形態に示された「同一」は、厳密に同一であることを示すものではない)。例えば、「偏芯部4cの外周面と内周側ピストン21の内周面との間のクリアランス」と「内周側ピストン21の外周面と外周側ピストン22の内周面との間のクリアランス」との寸法が異なりすぎると、「偏芯部4cの外周面と内周側ピストン21の内周面との間の摩擦力」と「内周側ピストン21の外周面と外周側ピストン22の内周面との間の摩擦力」との差が大きくなる。このため、内周側ピストン21と外周側ピストン22の回転速度が著しく異なり、内周側ピストン21の内周面と外周側ピストン22の内周面の摺動速度が早くなり、この部分での異常摩耗を引き起こすことが懸念される。しかしながら、「偏芯部4cの外周面と内周側ピストン21の内周面との間のクリアランス」と「内周側ピストン21の外周面と外周側ピストン22の内周面との間のクリアランス」とを同一寸法とすることにより、内周側ピストン21の内周面と外周側ピストン22の内周面の摺動速度を適切に保つことができ、この部分での異常摩耗を防止することができる。   In the present embodiment, “the clearance between the outer peripheral surface of the eccentric portion 4 c and the inner peripheral surface of the inner peripheral piston 21” and “the outer peripheral surface of the inner peripheral piston 21 and the inner periphery of the outer piston 22. Although no particular mention was made of the relationship with the “clearance between surfaces”, for example, both clearances may have substantially the same dimensions (hereinafter, “substantially the same”, that is, substantially the same, In other words, “same” shown in this embodiment does not mean that it is exactly the same). For example, “clearance between the outer peripheral surface of the eccentric portion 4 c and the inner peripheral surface of the inner peripheral piston 21” and “clearance between the outer peripheral surface of the inner peripheral piston 21 and the inner peripheral surface of the outer piston 22. "Is too different," the frictional force between the outer peripheral surface of the eccentric portion 4c and the inner peripheral surface of the inner piston 21 and "the outer peripheral surface of the inner piston 21 and the outer piston 22 The difference from the “frictional force with the inner peripheral surface” becomes large. For this reason, the rotational speeds of the inner circumferential piston 21 and the outer circumferential piston 22 are significantly different, and the sliding speed between the inner circumferential surface of the inner circumferential piston 21 and the inner circumferential surface of the outer circumferential piston 22 is increased. There is concern about causing abnormal wear. However, “the clearance between the outer peripheral surface of the eccentric portion 4 c and the inner peripheral surface of the inner peripheral side piston 21” and “the clearance between the outer peripheral surface of the inner peripheral side piston 21 and the inner peripheral surface of the outer peripheral side piston 22. ”In the same dimension, the sliding speed of the inner peripheral surface of the inner peripheral side piston 21 and the inner peripheral surface of the outer peripheral side piston 22 can be appropriately maintained, and abnormal wear in this portion can be prevented. Can do.

また、本実施の形態に係る回転圧縮機100は、内周側ピストン21が分割部品であり、外周側ピストン22が一体成形部品であるため、それぞれ異なる材質で形成される場合が想定される。このような場合、内周側ピストン21の材質と外周側ピストン22の材質とが同一の線膨張係数となるように、両材質を選定するのが好ましい。回転圧縮機100を運転すると、内周側ピストン21及び外周側ピストン22は熱膨張する。このとき、両者の線膨張係数が異なりすぎると、「内周側ピストン21と主軸受5及び副軸受6との間のクリアランス」と「外周側ピストン22と主軸受5及び副軸受6との間のクリアランス」の差が大きくなる。このため、「内周側ピストン21と主軸受5及び副軸受6との間の摩擦力」と「外周側ピストン22と主軸受5及び副軸受6との間の摩擦力」の差が大きくなる。したがって、内周側ピストン21と外周側ピストン22の回転速度が著しく異なり、内周側ピストン21の内周面と外周側ピストン22の内周面の摺動速度が早くなり、この部分での異常摩耗を引き起こすことが懸念される。しかしながら、内周側ピストン21の材質と外周側ピストン22の材質とが同一の線膨張係数となるように両材質を選定することにより、「内周側ピストン21と主軸受5及び副軸受6との間のクリアランス」と「外周側ピストン22と主軸受5及び副軸受6との間のクリアランス」を同一にすることができる。このため、内周側ピストン21の内周面と外周側ピストン22の内周面の摺動速度を適切に保つことができ、この部分での異常摩耗を防止することができる。   Further, in the rotary compressor 100 according to the present embodiment, the inner peripheral side piston 21 is a divided part and the outer peripheral side piston 22 is an integrally molded part, and therefore, it is assumed that the rotary compressor 100 is formed of different materials. In such a case, it is preferable to select both materials so that the material of the inner circumferential piston 21 and the material of the outer circumferential piston 22 have the same linear expansion coefficient. When the rotary compressor 100 is operated, the inner peripheral side piston 21 and the outer peripheral side piston 22 are thermally expanded. At this time, if the linear expansion coefficients of the two are too different, the “clearance between the inner circumferential piston 21 and the main bearing 5 and the auxiliary bearing 6” and “between the outer circumferential piston 22 and the main bearing 5 and the auxiliary bearing 6”. The difference in “clearance” increases. For this reason, the difference between the “friction force between the inner peripheral piston 21 and the main bearing 5 and the sub bearing 6” and the “friction force between the outer piston 22 and the main bearing 5 and the sub bearing 6” is increased. . Accordingly, the rotational speeds of the inner peripheral piston 21 and the outer peripheral piston 22 are remarkably different, and the sliding speed between the inner peripheral surface of the inner peripheral piston 21 and the inner peripheral surface of the outer peripheral piston 22 is increased. There is concern about causing wear. However, by selecting both materials so that the material of the inner circumferential side piston 21 and the material of the outer circumferential side piston 22 have the same linear expansion coefficient, “the inner circumferential side piston 21, the main bearing 5, the auxiliary bearing 6, and And the “clearance between the outer peripheral piston 22 and the main bearing 5 and the sub-bearing 6” can be made the same. For this reason, the sliding speed of the inner peripheral surface of the inner peripheral side piston 21 and the inner peripheral surface of the outer peripheral side piston 22 can be appropriately maintained, and abnormal wear at this portion can be prevented.

1 密閉容器、2 電動機、2a 固定子、2b 回転子、3 圧縮機構部、4 クランク軸、4a 主軸、4b 副軸、4c 偏芯部、5 主軸受、6 副軸受、7 シリンダ、9 ベーン、10 吸入連結管、11 吐出管、12 アキュムレータ、20 ピストン、21 内周側ピストン、21a 円弧状部材、22 外周側ピストン、50 内周側ピストン(従来)、100 回転圧縮機。   DESCRIPTION OF SYMBOLS 1 Airtight container, 2 Electric motor, 2a Stator, 2b Rotor, 3 Compression mechanism part, 4 Crankshaft, 4a Main shaft, 4b Subshaft, 4c Eccentric part, 5 Main bearing, 6 Sub bearing, 7 Cylinder, 9 Vane, DESCRIPTION OF SYMBOLS 10 suction | inhalation connection pipe, 11 discharge pipe, 12 accumulator, 20 piston, 21 inner peripheral side piston, 21a circular member, 22 outer peripheral side piston, 50 inner peripheral side piston (conventional), 100 rotary compressor.

Claims (6)

固定子及び回転子を有する電動機と、
前記回転子に固定された主軸、前記主軸の軸方向の反対側に設けられた副軸、及び前記主軸と前記副軸との間に形成された偏芯部を有し、前記電動機により駆動されるクランク軸と、
前記偏芯部に摺動自在に取り付けられたピストン、円筒状のシリンダ室が形成され、該シリンダ室に前記偏芯部及び前記ピストンが配置されたシリンダ、及び、前記シリンダ室内を低圧空間と高圧空間とに仕切るベーンを有する圧縮機構部と、
前記電動機、前記クランク軸及び前記圧縮機構部を収納する密閉容器と、
を備えた回転圧縮機であって、
前記ピストンは、前記偏芯部の外周面に摺動自在に設けられた内周側ピストンと、該内周側ピストンの外周面に設けられた外周側ピストンとで構成され、
前記内周側ピストンは、複数の円弧状部材で構成されており、
前記副軸の半径をRa、前記偏芯部の半径をRe、前記内周側ピストンの半径をRp、及び、前記偏芯部の偏芯量をeとするとき、
Re−e<Ra<Rp−e
なる関係を有する
ことを特徴とする回転圧縮機。
An electric motor having a stator and a rotor;
A main shaft fixed to the rotor, a sub shaft provided on the opposite side of the main shaft in the axial direction, and an eccentric portion formed between the main shaft and the sub shaft, and driven by the electric motor. Crankshaft
A piston slidably attached to the eccentric part, a cylindrical cylinder chamber is formed, a cylinder in which the eccentric part and the piston are arranged in the cylinder chamber, and a low pressure space and a high pressure in the cylinder chamber A compression mechanism having a vane that partitions into a space;
A sealed container that houses the electric motor, the crankshaft, and the compression mechanism;
A rotary compressor comprising:
The piston is composed of an inner peripheral side piston slidably provided on the outer peripheral surface of the eccentric part, and an outer peripheral side piston provided on the outer peripheral surface of the inner peripheral side piston,
The inner circumferential side piston is composed of a plurality of arcuate members ,
When the radius of the auxiliary shaft is Ra, the radius of the eccentric portion is Re, the radius of the inner peripheral side piston is Rp, and the eccentric amount of the eccentric portion is e,
Re-e <Ra <Rp-e
A rotary compressor characterized by having the following relationship:
前記内周側ピストンは、3つ以上の前記円弧状部材で構成されていることを特徴とする請求項1に記載の回転圧縮機。   2. The rotary compressor according to claim 1, wherein the inner peripheral side piston is configured by three or more arc-shaped members. 前記主軸の半径をRm、前記偏芯部の半径をRe、前記内周側ピストンの半径をRp、及び、前記偏芯部の偏芯量をeとするとき、
Re−e<Rm<Rp−e
なる関係を有することを特徴とする請求項1又は請求項2に記載の回転圧縮機。
When the radius of the main shaft is Rm, the radius of the eccentric part is Re, the radius of the inner peripheral side piston is Rp, and the eccentric amount of the eccentric part is e,
Re-e <Rm <Rp-e
The rotary compressor according to claim 1 or 2, wherein the relationship is as follows.
前記クランク軸の前記偏芯部、及び、前記圧縮機構部が複数設けられていることを特徴とする請求項1〜請求項のいずれか一項に記載の回転圧縮機。 The rotary compressor according to any one of claims 1 to 3 , wherein a plurality of the eccentric part and the compression mechanism part of the crankshaft are provided. 前記偏芯部の外周面と前記内周側ピストンの内周面との間に形成されるクリアランスと、前記内周側ピストンの外周面と前記外周側ピストンとの間に形成されるクリアランスとを、同一としたことを特徴とする請求項1〜請求項のいずれか一項に記載の回転圧縮機。 A clearance formed between the outer peripheral surface of the eccentric portion and the inner peripheral surface of the inner peripheral piston, and a clearance formed between the outer peripheral surface of the inner peripheral piston and the outer peripheral piston. The rotary compressor according to any one of claims 1 to 4 , wherein the rotary compressor is the same. 前記外周側ピストンの線膨張係数と前記内周側ピストンの線膨張係数とを、同一としたことを特徴とする請求項1〜請求項のいずれか一項に記載の回転圧縮機。 The rotary compressor according to any one of claims 1 to 5 , wherein a linear expansion coefficient of the outer peripheral piston and a linear expansion coefficient of the inner peripheral piston are the same.
JP2012219197A 2012-10-01 2012-10-01 Rotary compressor Expired - Fee Related JP5766165B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012219197A JP5766165B2 (en) 2012-10-01 2012-10-01 Rotary compressor
CZ2013-722A CZ306348B6 (en) 2012-10-01 2013-09-19 Rotary compressor
CN201310459340.6A CN103711699B (en) 2012-10-01 2013-09-25 Rotary compressor
CN201320596122.2U CN203488374U (en) 2012-10-01 2013-09-25 Rotary compressor
KR1020130116050A KR101539853B1 (en) 2012-10-01 2013-09-30 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012219197A JP5766165B2 (en) 2012-10-01 2012-10-01 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2014070619A JP2014070619A (en) 2014-04-21
JP5766165B2 true JP5766165B2 (en) 2015-08-19

Family

ID=50259212

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012219197A Expired - Fee Related JP5766165B2 (en) 2012-10-01 2012-10-01 Rotary compressor

Country Status (4)

Country Link
JP (1) JP5766165B2 (en)
KR (1) KR101539853B1 (en)
CN (2) CN103711699B (en)
CZ (1) CZ306348B6 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5766165B2 (en) * 2012-10-01 2015-08-19 三菱電機株式会社 Rotary compressor
JP7063699B2 (en) * 2018-04-17 2022-05-09 三菱重工サーマルシステムズ株式会社 How to assemble a crankshaft, rotary compressor, and crankshaft
CN112901491A (en) * 2021-01-26 2021-06-04 南通职业大学 Multi-cylinder rolling rotor type compressor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6069381U (en) * 1983-10-19 1985-05-16 三洋電機株式会社 rotary compressor
JP2003314477A (en) * 2002-04-25 2003-11-06 Advics:Kk Rotary pump
KR100452774B1 (en) * 2002-10-09 2004-10-14 삼성전자주식회사 Rotary Compressor
JP2008157146A (en) * 2006-12-25 2008-07-10 Toshiba Kyaria Kk Multiple cylinder rotary compressor and refrigeration cycle device
JP5341031B2 (en) * 2010-06-30 2013-11-13 三菱電機株式会社 Multi-cylinder rotary compressor, its assembling method and its manufacturing apparatus
JP2012127199A (en) * 2010-12-13 2012-07-05 Daikin Industries Ltd Compressor
JP5766165B2 (en) * 2012-10-01 2015-08-19 三菱電機株式会社 Rotary compressor

Also Published As

Publication number Publication date
CN103711699A (en) 2014-04-09
KR20140043287A (en) 2014-04-09
KR101539853B1 (en) 2015-07-27
JP2014070619A (en) 2014-04-21
CZ306348B6 (en) 2016-12-14
CN203488374U (en) 2014-03-19
CN103711699B (en) 2016-05-11
CZ2013722A3 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
KR101375979B1 (en) Rotary compressor
US9004888B2 (en) Rotary compressor having discharge groove to communicate compression chamber with discharge port near vane groove
US9145890B2 (en) Rotary compressor with dual eccentric portion
JP2008240667A (en) Rotary compressor
JP5766166B2 (en) Rotary compressor
JP6787480B2 (en) Rotary compressor
JP5766165B2 (en) Rotary compressor
KR101523435B1 (en) Rotary compressor
CN105190045B (en) Scroll compressor
KR20180080885A (en) Rotary compressor
JP5606422B2 (en) Rotary compressor
KR20100081810A (en) Rotary compressor
JP6071787B2 (en) Rotary compressor
JP6444786B2 (en) Scroll compressor
JP2019035391A (en) Compressor
JP5469612B2 (en) Rotary fluid machinery
WO2016151769A1 (en) Hermetic rotary compressor
JP2017008819A (en) Rotary compressor
KR101587285B1 (en) compressor
KR101649654B1 (en) compressor
JP2018059515A (en) Rotary compressor
WO2016139825A1 (en) Rotary compressor
KR20110064281A (en) Twin type rotary compressor
JP2017008818A (en) Rotary compressor
JP2001082362A (en) Fluid machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150616

R150 Certificate of patent or registration of utility model

Ref document number: 5766165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees