JP5758818B2 - Compressor system and operation control method thereof - Google Patents

Compressor system and operation control method thereof Download PDF

Info

Publication number
JP5758818B2
JP5758818B2 JP2012030661A JP2012030661A JP5758818B2 JP 5758818 B2 JP5758818 B2 JP 5758818B2 JP 2012030661 A JP2012030661 A JP 2012030661A JP 2012030661 A JP2012030661 A JP 2012030661A JP 5758818 B2 JP5758818 B2 JP 5758818B2
Authority
JP
Japan
Prior art keywords
compressor
control
positive displacement
turbo
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012030661A
Other languages
Japanese (ja)
Other versions
JP2013167196A (en
Inventor
齋藤 隆史
隆史 齋藤
徹 植木
徹 植木
良太 山村
良太 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012030661A priority Critical patent/JP5758818B2/en
Priority to CN201310044848.XA priority patent/CN103256213B/en
Publication of JP2013167196A publication Critical patent/JP2013167196A/en
Application granted granted Critical
Publication of JP5758818B2 publication Critical patent/JP5758818B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)

Description

本発明は圧縮機システムおよびその運転制御方法に係り、特に複数台の圧縮機を組み合わせて使用するときに好適な圧縮機システムおよびその運転制御方法に関する。   The present invention relates to a compressor system and an operation control method thereof, and more particularly to a compressor system and an operation control method thereof suitable when a plurality of compressors are used in combination.

工場空気源等に使用される圧縮機設備では、複数台の圧縮機を組み合わせて、空気の使用量に応じた最適な運転が試みられている。その際、容量や形式の異なる圧縮機を組み合わせることもある。ところで、圧縮機の形式には大別して容積形圧縮機とターボ形圧縮機があり、それぞれ異なる特性を示す。   In a compressor facility used for a factory air source or the like, an optimum operation according to the amount of air used is attempted by combining a plurality of compressors. At that time, compressors with different capacities and formats may be combined. By the way, the types of compressors are roughly classified into a displacement type compressor and a turbo type compressor, and exhibit different characteristics.

スクリュー圧縮機やレシプロ圧縮機、スクロール圧縮機等の容積形圧縮機は、圧縮対象ガスの容積を強制的に収縮させて圧力を高める。そして、目標吐出ガス圧力に対して所定の圧力変動幅を許容して全負荷運転と無負荷運転を繰り返し、容量調整する。さらに、インバータを備えた容積形圧縮機では、吐出ガス圧力と目標圧力の偏差を用いてモータ回転数をPI(またはPID)制御し、容量調整している。この種の回転数制御式容積形圧縮機では、従来の全負荷運転と無負荷運転を繰り返して容量調整する圧縮機に対し、より少ない消費電力で運転することが可能である。また、インバータを有するので、起動時にモータへ大電流が流れるのを回避でき、起動回数や起動頻度の制限がほとんどない。   A positive displacement compressor such as a screw compressor, a reciprocating compressor, or a scroll compressor forcibly contracts the volume of the compression target gas to increase the pressure. Then, a predetermined pressure fluctuation range is allowed with respect to the target discharge gas pressure, and the full load operation and the no load operation are repeated to adjust the capacity. Further, in a positive displacement compressor including an inverter, the motor speed is PI (or PID) controlled using the deviation between the discharge gas pressure and the target pressure to adjust the capacity. In this type of rotational speed control type positive displacement compressor, it is possible to operate with less power consumption than a conventional compressor that adjusts the capacity by repeatedly performing full-load operation and no-load operation. In addition, since the inverter is included, it is possible to avoid a large current from flowing to the motor at the time of start-up, and there are almost no restrictions on the number of start-ups or the start-up frequency.

ターボ形圧縮機は、圧縮対象ガスに遠心力により運動エネルギを与えた後、速度を減じて圧力を高めるもので、吸入口に吸込絞り弁を設け、吐出ガス圧力と目標圧力の偏差に基づいて吸込絞り弁の開度をPI(またはPID)制御して容量調整する。つまり、吸込絞り弁の角度を調整して吸入ガスに旋回を与え、吸入ガス流量を変化させて容量調整する。   A turbo compressor is designed to increase the pressure by reducing the speed after giving kinetic energy to the compression target gas by centrifugal force. A suction throttle valve is provided at the suction port, and based on the deviation between the discharge gas pressure and the target pressure. The capacity of the suction throttle valve is adjusted by PI (or PID) control. That is, the suction throttle valve angle is adjusted to turn the intake gas, and the capacity is adjusted by changing the flow rate of the intake gas.

吸込絞り制御は、消費ガス流量の減少に比例して消費動力が減少するため、省エネ性が高い。しかし、吸込絞り弁によりガス流量を減じていくと、サージングと呼ばれる不安定現象が生じ、たとえば3段ターボ形圧縮機の場合の吸込絞り弁制御は約70〜100%の容量に限定される。   The suction throttling control has high energy saving because the power consumption decreases in proportion to the decrease in the gas consumption flow rate. However, when the gas flow rate is reduced by the suction throttle valve, an unstable phenomenon called surging occurs, and for example, the suction throttle valve control in the case of a three-stage turbo compressor is limited to a capacity of about 70 to 100%.

そこでターボ形圧縮機ではより広い範囲の容量制御を実現するために、吸込絞り弁による容量制御では下限値を設定し(たとえば上記例では70%負荷)、この下限値以下の容量範囲で運転するために、容積形圧縮機と同様に全負荷運転と無負荷運転を繰り返すオンオフ制御を併用する。これをデュアル制御と呼ぶ。または、吐出ガス圧力変動に応じて放風弁から吐出ガスを大気に開放する定風圧制御を併用する。   Therefore, in order to realize a wider range of capacity control in the turbo compressor, a lower limit value is set in the capacity control by the suction throttle valve (for example, 70% load in the above example), and operation is performed in a capacity range below this lower limit value. Therefore, on / off control that repeats full-load operation and no-load operation is used in combination as in the displacement compressor. This is called dual control. Alternatively, the constant air pressure control for releasing the discharge gas from the discharge valve to the atmosphere according to the discharge gas pressure fluctuation is also used.

複数台の圧縮機を用いた際の容量制御方法の例が、特許文献1および特許文献2に記載されている。これらの公報に記載の圧縮機設備では、容積形圧縮機が全負荷運転と無負荷運転を繰り返すオンオフ制御により容量調整し、ターボ形圧縮機が全負荷運転のベースロード機として使用されている。   Examples of capacity control methods when using a plurality of compressors are described in Patent Document 1 and Patent Document 2. In the compressor equipment described in these publications, the capacity of the positive displacement compressor is adjusted by on / off control in which full load operation and no load operation are repeated, and the turbo compressor is used as a base load machine for full load operation.

複数台の圧縮機を用いた際の台数制御の例が、特許文献3に記載されている。この公報に記載の圧縮機設備では、さらに省エネ性を高めるため、数台のターボ形圧縮機を用いており、ターボ形圧縮機の吸込絞り制御により吐出ガス圧力をほぼ一定に保ち、吐出ガス圧力の変動を抑制している。   An example of the number control when using a plurality of compressors is described in Patent Document 3. In the compressor facility described in this publication, several turbo compressors are used to further improve energy saving, and the discharge gas pressure is kept almost constant by the suction throttle control of the turbo compressor. The fluctuation of the is suppressed.

また、特許文献4に記載の圧縮機設備では、複数台のターボ圧縮機を並列接続し、全ての圧縮機を容量調整機として吸込絞り制御している。そして、運転中の全てのターボ形圧縮機が吸込絞り制御できる範囲を超える場合には、放風制御またはオンオフ制御に切り替えて容量制御をしている。   Moreover, in the compressor installation described in Patent Document 4, a plurality of turbo compressors are connected in parallel, and suction compression control is performed using all the compressors as capacity adjusters. When all the turbo compressors in operation exceed the range in which the suction throttle control can be performed, the capacity control is performed by switching to the air discharge control or the on / off control.

この特許文献4に記載の方法では、必要なガス量が少ない場合には、サージングを回避するためターボ形圧縮機によるオンオフ制御または放風制御を用いざるを得ず、全領域で省エネ性を高めることが困難になる。そこで、特許文献5では、運転圧縮機の台数が最少となるように、負荷容量を複数の範囲に区分し、区分された範囲毎に予め設定した運転圧縮機の組合せに切り替えて運転する。そしてデュアル制御可能なターボ形圧縮機を優先的に容量調整し、このターボ形圧縮機の容量調整可能範囲を超える場合には、オンオフ制御する容積形圧縮機を優先して容量調整機としている。   In the method described in Patent Document 4, when a required amount of gas is small, on-off control or ventilating control by a turbo compressor must be used to avoid surging, and energy saving is improved in the entire region. It becomes difficult. Therefore, in Patent Document 5, the load capacity is divided into a plurality of ranges so that the number of operating compressors is minimized, and the operation is switched to a combination of operating compressors set in advance for each divided range. Then, the capacity of the dual-controllable turbo compressor is preferentially adjusted, and when the capacity of the turbo-type compressor exceeds the adjustable range, the positive displacement compressor which is controlled on and off is preferentially used as the capacity adjuster.

特開平7−332248号公報JP-A-7-332248 特開平7−119644号公報JP-A-7-119644 特開平6−249190号公報Japanese Patent Laid-Open No. 6-249190 特開2006−63813号公報JP 2006-63813 A 特開2000−120583号公報JP 2000-12058A

上記従来の圧縮機の台数制御運転の各例では、特定の消費風量においては最適な圧縮機の組み合わせ運転が得られる。しかし、負荷変動が大きくなり運転する圧縮機の組み合わせや台数を変更せざるを得ない場合等では、稼働中の圧縮機の中のいくつかを停止させる必要が生じる。圧縮機を駆動する電動機には、起動時に大電流が流れコイル温度が上昇する。そこで、電動機コイルの寿命の短縮や焼損を防止するため、電動機の起動回数や起動頻度に制限が設けられている。特に必要圧縮機台数が変化するような大きな負荷変動が頻繁に生じる場合には、暫時使用しない圧縮機を予め定めた時間だけ無負荷運転で待機させ、需要が回復したら再使用している。無負荷運転で待機中の圧縮機の動力は無駄な消費動力であり、省エネに反する制御となる。   In each example of the conventional compressor unit number control operation, an optimum compressor combination operation can be obtained at a specific air consumption. However, when the load fluctuation becomes large and the combination and number of compressors to be operated have to be changed, some of the compressors in operation need to be stopped. A large current flows through the electric motor that drives the compressor, and the coil temperature rises. Therefore, in order to shorten the life of the motor coil and prevent burnout, there are restrictions on the number of startups and the startup frequency of the motor. In particular, when large load fluctuations such as the required number of compressors change frequently occur, compressors that are not used for a while are placed on standby in a no-load operation for a predetermined time and reused when demand recovers. The power of the compressor that is on standby in no-load operation is useless power consumption, and is a control contrary to energy saving.

また、容積形圧縮機とターボ形圧縮機は容量や制御性の観点からそれぞれ有利な利用範囲があり、組み合わせて使用する際には、一方を容量調整機、他方をベースロード機とする等の運用に限られていた。例えば、容量に着目すると、消費動力の観点から小容量では容積形圧縮機が有利であり、大容量ではターボ形圧縮機が有利であるので。ターボ形圧縮機をベースロード機、容積形圧縮機を容量調整機に使用する。なお、一般的には消費動力が500kW以下であれば容積形圧縮機、500kW以上であればターボ形圧縮機の方が運転効率が良くなる。このように容積形圧縮機とターボ形圧縮機を組み合わせることについてはいくつか報告されているものの、吸込絞り制御で運転されるターボ形圧縮機と、省エネ性の高い回転数制御式容積形圧縮機を組み合わせて、省エネ化を図ることについては、従来十分には考慮されていない。   In addition, positive displacement compressors and turbo compressors have advantageous ranges of use from the viewpoint of capacity and controllability. When used in combination, one is a capacity adjuster and the other is a base load machine. It was limited to operation. For example, focusing on capacity, a positive displacement compressor is advantageous for small capacity from a viewpoint of power consumption, and a turbo compressor is advantageous for large capacity. A turbo compressor is used as a base load machine, and a positive displacement compressor is used as a capacity adjuster. In general, the capacity efficiency of the positive displacement compressor is improved when the power consumption is 500 kW or less, and the operation efficiency of the turbo compressor is improved when the power consumption is 500 kW or more. Although some reports have been made on the combination of a positive displacement compressor and a turbo compressor, a turbo compressor operated by suction throttle control and an energy-saving rotational speed control displacement compressor In the past, sufficient consideration has not been given to energy saving by combining the above.

本発明は上記従来技術の不具合に鑑みなされたものであり、その目的は、より省エネ性が高く、また圧縮機を駆動する電動機の寿命短縮を防止した複数台の圧縮機の台数制御を実現することにある。本発明の他の目的は、容積形圧縮機とターボ形圧縮機とを組み合わせた圧縮機設備において、複雑な入力信号系を不要とするサージングを回避した圧縮機の台数制御を実現することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and its object is to realize unit control of a plurality of compressors that have higher energy savings and prevent the shortening of the service life of the motors that drive the compressors. There is. Another object of the present invention is to realize compressor unit control that avoids surging that does not require a complicated input signal system in a compressor facility that combines a positive displacement compressor and a turbo compressor. .

上記目的を達成する本発明の特徴は、吸込絞り弁を有し、この吸込み絞り弁で吸入ガス量を調整し容量調整する少なくとも1台のターボ形圧縮機と、電動機を有し、この電動機の回転数を制御して容量調整する少なくとも1台の回転数制御式容積形圧縮機と、負荷運転と無負荷運転を繰り返して容量調整するオンオフ式容積形圧縮機とを備え、これらターボ形圧縮機と回転数制御式容積形圧縮機とオンオフ式容積形圧縮機の吐出側を並列に配管接続した圧縮機システムにおいて、前記ターボ形圧縮機と前記回転数制御式容積形圧縮機と前記オンオフ式容積形圧縮機はそれぞれ圧縮機制御手段を有し、前記並列配管接続部分よりも下流側の圧力である吐出圧力を検出する吐出圧力検出手段と、この吐出圧力検出手段が検出した吐出圧力が入力され、前記各圧縮機制御盤に制御指令を出力する台数制御盤とを設け、この台数制御盤は、ターボ形圧縮機が運転中には優先的に前記ターボ形圧縮機が容量制御するよう前記ターボ圧縮機の制御盤に制御指令を出力し、前記ターボ形圧縮機が停止中または無負荷運転中または吸込絞り制御範囲の下限時には、前記回転数制御式容積形圧縮機が容量制御するよう前記回転数制御式容積形圧縮機の圧縮機制御盤に制御指令を出力することにある。   A feature of the present invention that achieves the above object is that the present invention has a suction throttle valve, and has at least one turbo compressor that adjusts the volume of intake gas by the suction throttle valve and a motor, and an electric motor. These turbo compressors include at least one rotational speed control type positive displacement compressor that adjusts the capacity by controlling the rotational speed, and an on-off positive displacement compressor that adjusts the capacity by repeating load operation and no-load operation. A compressor system in which the discharge sides of the displacement-controllable displacement compressor and the on-off displacement compressor are connected in parallel with each other, the turbo compressor, the rotation-control displacement compressor, and the on-off volume Each type compressor has compressor control means, and discharge pressure detection means for detecting discharge pressure, which is pressure downstream of the parallel pipe connection portion, and discharge pressure detected by the discharge pressure detection means are input. And a unit control panel for outputting a control command to each compressor control panel, and the unit control panel is configured to control the capacity of the turbo compressor so that the turbo compressor preferentially controls the capacity during operation of the turbo compressor. The control command is output to the control panel of the compressor, and when the turbo compressor is stopped or during no-load operation or when the suction throttle control range is at the lower limit, the rotational speed control type positive displacement compressor performs the capacity control. The purpose is to output a control command to the compressor control panel of the number control type positive displacement compressor.

そしてこの特徴において、前記ターボ形圧縮機が容量制御の状態では、前記台数制御盤を用いずに前記ターボ形圧縮機の制御盤が前記吸込絞り弁を用いて容量制御するのが好ましく、前記ターボ形圧縮機の吸込絞り制御範囲の下限は、前記オンオフ式容積形圧縮機および前記回転数制御式容積形圧縮機の定格容量の和以下であり、前記ターボ形圧縮機の定格容量が前記オンオフ式容積形圧縮機および前記回転数制御式容積形圧縮機の定格容量の和以上であってもよい。   In this feature, when the turbo compressor is in a capacity control state, it is preferable that the control panel of the turbo compressor controls the capacity using the suction throttle valve without using the number control panel, and the turbo compressor The lower limit of the suction throttle control range of the type compressor is not more than the sum of the rated capacities of the on-off positive displacement compressor and the rotational speed control positive displacement compressor, and the rated capacity of the turbo compressor is the on-off type It may be greater than or equal to the sum of the rated capacities of the positive displacement compressor and the rotational speed control positive displacement compressor.

また、上記目的を達成する本発明の他の特徴は、吸込絞り弁を有し、この吸込み絞り弁で吸入ガス量を調整し容量調整する少なくとも1台のターボ形圧縮機と、電動機を有し、この電動機の回転数を制御して容量調整する少なくとも1台の回転数制御式容積形圧縮機と、負荷運転と無負荷運転を繰り返して容量調整するオンオフ式容積形圧縮機とを備え、これらターボ形圧縮機と回転数制御式容積形圧縮機とオンオフ式容積形圧縮機の吐出側を並列に配管接続した圧縮機システムの運転制御方法において、前記ターボ形圧縮機が運転中には優先的に前記ターボ形圧縮機により容量制御し、前記ターボ形圧縮機が停止中または無負荷運転中または吸込絞り制御範囲の下限時には、前記回転数制御式容積形圧縮機が容量制御することにある。   Another feature of the present invention that achieves the above object is that it has a suction throttle valve, and has at least one turbo compressor that adjusts the capacity by adjusting the amount of intake gas by the suction throttle valve, and an electric motor. And at least one rotational speed control type positive displacement compressor that adjusts the capacity by controlling the rotational speed of the electric motor, and an on-off positive displacement compressor that adjusts the capacity by repeating load operation and no-load operation. In the operation control method of the compressor system in which the discharge side of the turbo compressor, the rotational speed control type positive displacement compressor, and the on-off positive displacement compressor is connected in parallel, the turbo compressor has priority during operation. The turbo-type compressor performs capacity control, and the turbo-type compressor performs capacity control when the turbo-compressor is stopped or during no-load operation or at the lower limit of the suction throttle control range.

本発明によれば、複数台の圧縮機を並列接続した圧縮機システムが回転数制御式容積形圧縮機を有するので、起動/停止回数に制限のあるオンオフ式容積形圧縮機やターボ形圧縮機の無負荷運転時間を低減できるとともに、オンオフ式容積形圧縮機やターボ圧縮機の起動/停止回数も低減でき、省エネ性が高く、また圧縮機を駆動する電動機の寿命短縮を防止した複数台の圧縮機の台数制御を実現できる。また、複雑な入力信号系を不要とするサージングを回避した圧縮機の台数制御を実現できる。   According to the present invention, since the compressor system in which a plurality of compressors are connected in parallel has the rotational speed control type positive displacement compressor, the on / off positive displacement compressor or the turbo compressor with a limited number of start / stop operations. It is possible to reduce the no-load operation time, reduce the number of start / stop times of the on-off positive displacement compressor and turbo compressor, increase energy savings, and prevent the shortening of the life of the motor that drives the compressor. Can control the number of compressors. In addition, it is possible to realize control of the number of compressors that avoids surging that does not require a complicated input signal system.

本発明に係る圧縮機の一実施例のシステム図である。1 is a system diagram of an embodiment of a compressor according to the present invention. 複数台の圧縮機を組み合わせて運転するときの組み合わせ状態の一例を説明するグラフである。It is a graph explaining an example of the combination state when operating combining a plurality of compressors. 複数台の圧縮機を組み合わせて運転したときの一例であり、運転状態の推移を示す図である。It is an example when it drive | operates combining several compressors, and is a figure which shows transition of an operating state. 複数台の圧縮機を台数制御運転するときのフローチャートである。It is a flowchart when carrying out unit number control operation of a plurality of compressors. 複数台の圧縮機を台数制御運転するときのフローチャートである。It is a flowchart when carrying out unit number control operation of a plurality of compressors. 複数台の圧縮機を台数制御運転するときのフローチャートである。It is a flowchart when carrying out unit number control operation of a plurality of compressors.

以下、本発明に係る圧縮機の一実施例を、図面を用いて説明する。図1に、本発明に係る圧縮機システム100の一実施例をブロック図で示す。本実施例では、複数台、図1では3台の圧縮機2〜4を組み合わせて運転する。3台の圧縮機2〜4は、ガス配管6により並列接続され、ガス配管6に集められた圧縮ガスはレシーバタンク5に貯蔵される。そしてレシーバタンク5から需要元に送られる。表1に、この圧縮機システム100に用いる3台の圧縮機2〜4の詳細を示す。   Hereinafter, an embodiment of a compressor according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an embodiment of a compressor system 100 according to the present invention. In this embodiment, a plurality of compressors, that is, three compressors 2 to 4 in FIG. The three compressors 2 to 4 are connected in parallel by the gas pipe 6, and the compressed gas collected in the gas pipe 6 is stored in the receiver tank 5. Then, it is sent from the receiver tank 5 to the demand source. Table 1 shows details of the three compressors 2 to 4 used in the compressor system 100.

Figure 0005758818
Figure 0005758818

本圧縮機システム100は、3種類の圧縮機V、S、Tを有するシステムである。すなわち、回転数制御式容積形圧縮機Vが1台、回転数制御式容積形圧縮機Vと同じ定格風量のオンオフ制御式容積形圧縮機Sが1台、回転数制御式容積形圧縮機Vとオンオフ制御式容積形圧縮機Sの定格風量の和より吸込絞り制御範囲の下限値が小さいターボ形圧縮機Tが1台である。回転数制御式容積形圧縮機Vとオンオフ制御式容積形圧縮機Sの定格風量を100とすると、ターボ形圧縮機Tの全負荷容量は280であり、吸込絞り制御における下限容量は、全負荷の70%となる196である。ここで図1に戻ると、圧縮機2は回転数制御式容積形圧縮機Vであり、圧縮機3はオンオフ式容積形圧縮機Sであり、圧縮機4はターボ形圧縮機Tである。   The compressor system 100 is a system having three types of compressors V, S, and T. That is, one rotational speed control type positive displacement compressor V, one on / off control type positive displacement compressor S having the same rated air flow as the rotational speed control type positive displacement compressor V, and one rotational speed control type positive displacement compressor V There is one turbo compressor T having a lower limit value of the suction throttle control range than the sum of the rated air volumes of the on-off control type positive displacement compressor S. If the rated air volume of the rotational speed control type positive displacement compressor V and the on / off control type positive displacement compressor S is 100, the full load capacity of the turbo compressor T is 280, and the lower limit capacity in the suction throttle control is the full load. It is 196 which becomes 70% of the above. Returning to FIG. 1, the compressor 2 is a rotational speed control type positive displacement compressor V, the compressor 3 is an on-off positive displacement compressor S, and the compressor 4 is a turbo compressor T.

レシーバタンク5には圧力検出器52が設置されており、この圧力検出器52が検出した吐出ガス圧力の測定データが、台数制御盤1に取り込まれる。各圧縮機2〜4は、それぞれ吐出側に圧力検出器22、32、42を備えている。また、この圧力検出器22、32、42の出力が入力される圧縮機制御盤21、31、41も備えており、各圧縮機制御盤21、31、41と台数制御盤1間には、図示しない接点信号入出力機器とアナログ入出力信号機器または通信機器が設けられている。   The receiver tank 5 is provided with a pressure detector 52, and discharge gas pressure measurement data detected by the pressure detector 52 is taken into the unit control panel 1. Each of the compressors 2 to 4 includes pressure detectors 22, 32, and 42 on the discharge side. The compressor control panels 21, 31, 41 to which the outputs of the pressure detectors 22, 32, 42 are input are also provided. Between the compressor control panels 21, 31, 41 and the unit control panel 1, A contact signal input / output device and an analog input / output signal device or communication device (not shown) are provided.

接点信号入出力機器は、少なくとも各圧縮機2〜4の起動/停止指令信号と、圧縮機運転アンサーバック信号と、故障信号とが入出力される機器である。また、アナログ入出力信号機器または通信機器は、台数制御盤1内で圧力検出器52から取り込まれた吐出ガス測定圧力と目標圧力の偏差に基づいて回転数制御式容積形圧縮機2をPI(またはPID)制御するため、回転数指令信号及び回転数指令アンサーバック信号を入出力するための機器である。ターボ形圧縮機4を吸込絞り制御するときは、レシーバタンク5の圧力検出器52が検出した吐出ガスの測定圧力と目標圧力の偏差に基づいて、ターボ形圧縮機4の制御盤41がPI(またはPID)制御する。   The contact signal input / output device is a device that inputs / outputs at least a start / stop command signal of each of the compressors 2 to 4, a compressor operation answerback signal, and a failure signal. Further, the analog input / output signal device or the communication device sets the rotational speed control type positive displacement compressor 2 based on the deviation between the discharge gas measurement pressure taken from the pressure detector 52 and the target pressure in the unit control panel 1 to PI ( Or a device for inputting / outputting a rotational speed command signal and a rotational speed command answerback signal for control. When the suction control of the turbo-type compressor 4 is performed, the control panel 41 of the turbo-type compressor 4 is set to PI (based on the deviation between the measured pressure of the discharge gas detected by the pressure detector 52 of the receiver tank 5 and the target pressure. Or PID) control.

このような3種の圧縮機V、S、Tを用いて台数制御した場合に、最適な圧縮機の組み合わせ結果を図2に示す。図2では、消費風量と消費動力の関係を示している。ここで、台数制御において最適な運転状態とは、各消費風量ごとに、消費動力が最も少なくなる組み合わせである。   FIG. 2 shows an optimum combination result of compressors when the number of compressors V, S, and T is used to control the number of such compressors. FIG. 2 shows the relationship between the air consumption and the power consumption. Here, the optimum operating state in the unit control is a combination in which the power consumption is the smallest for each air volume consumed.

図2において、消費風量が0〜100の範囲では、回転数制御式容積形圧縮機Vを用いて容量調整するのが最も消費動力が少ない。これは消費風量が20〜100の範囲では回転数制御による調整で、無駄に空気を圧縮せず必要量しか圧縮しないためである。風量0〜20の範囲では、オンオフ制御となるが、低回転数の状態でのオンオフ制御であるから、オンオフ式容積形圧縮機Sによる定格(最大回転数)でのオンオフ制御よりも消費動力は少ない。   In FIG. 2, when the air consumption is in the range of 0 to 100, the power consumption is the smallest when the capacity is adjusted using the rotational speed control type positive displacement compressor V. This is because when the air consumption is in the range of 20 to 100, the adjustment is performed by the rotational speed control, and the air is not compressed unnecessarily and only the necessary amount is compressed. On / off control is performed in the range of air volume 0 to 20, but since the on / off control is performed at a low rotation speed, the power consumption is higher than the on / off control at the rating (maximum rotation speed) by the on / off displacement compressor S. Few.

消費風量100〜200の範囲では、オンオフ式容積形圧縮機Sを全負荷運転させ、回転数制御式容積形圧縮機Vで容量調整する。この流量範囲は、ターボ形圧縮機Tの吸込絞り制御の下限(196)とほぼ同じ風量を上限とするものであり、ターボ形圧縮機Tを使用する場合には吸込み絞り制御を適用できず、一般に定風圧制御と呼ばれる放風を伴う制御となる。定風圧制御は放風を伴うことにより、圧縮機で圧縮した空気を捨てることになり、当然無駄な消費動力が大きくなる。そこで、風量0〜100までに実績のある回転数制御式容積形圧縮機Vと、最大風量で駆動されるオンオフ式容積形圧縮機Sを組み合わせるのが、最適な組み合わせとなる。   In the range of air consumption 100 to 200, the on-off positive displacement compressor S is operated at full load, and the capacity is adjusted by the rotational speed control positive displacement compressor V. This flow range has an upper air volume that is almost the same as the lower limit (196) of the suction throttle control of the turbo compressor T, and when the turbo compressor T is used, the suction throttle control cannot be applied. In general, this control is called constant wind pressure control with air discharge. Since the constant wind pressure control is accompanied by the release of air, the air compressed by the compressor is discarded, and the wasteful power consumption is naturally increased. Therefore, an optimal combination is the combination of the rotational speed control type positive displacement compressor V that has a proven record in the air volume of 0 to 100 and the on / off positive displacement compressor S that is driven by the maximum air volume.

消費風量200〜280の範囲で、圧縮機V、S、Tを組み合わせて使用するとすれば、容積形圧縮機V、Sの2台では所定風量を発生できないから、ターボ形圧縮機Tとの組み合わせとならざるを得ない。しかしながら上述したように、容積形圧縮機S、Vの何れかまたは双方とターボ形圧縮機Tを組み合わせると、ターボ形圧縮機Tは定風圧制御範囲となり、放風による無駄な動力を使用することになる。そこで、吸込絞り制御が可能な範囲なので、ターボ形圧縮機Tを単独使用して容量調整する。   If the compressors V, S, and T are used in combination within the range of air consumption 200 to 280, the two compressors V and S cannot generate a predetermined air volume. It must be. However, as described above, when one or both of the positive displacement compressors S and V and the turbo compressor T are combined, the turbo compressor T is in the constant wind pressure control range, and wasteful power generated by ventilating is used. become. Therefore, since the suction throttle control is possible, the capacity is adjusted by using the turbo compressor T alone.

消費風量280〜300の範囲では、もはやターボ形圧縮機Tの単独運転では要求風量を達成することが不可能なので、圧縮機V、S、Tの2または3種の組み合わせとなる。ここで、オンオフ式容積形圧縮機Sを組み合わせる場合、オンオフ式容積形圧縮機Sのオンオフ回数の制限からオンオフ式容積形圧縮機Sを最大風量で連続運転させることが望ましい。   In the range of air consumption 280 to 300, the required air volume can no longer be achieved by the single operation of the turbo compressor T, so the compressors V, S, and T are two or three combinations. Here, when the on-off positive displacement compressor S is combined, it is desirable that the on-off positive displacement compressor S is continuously operated at the maximum air flow because of the limitation of the number of on / off operations of the on-off positive displacement compressor S.

この消費風量280〜300の範囲では、オンオフ式容積形圧縮機Sを連続運転し、ターボ形圧縮機Tをこのオンオフ式容積形圧縮機Sに組み合わせて運転すると、ターボ形圧縮機Tを吸込み絞り制御の下限以下で運転する場合が生じる。すなわち、ターボ形圧縮機では、定風圧制御による放風が発生し消費動力が増大する。そこで、オンオフ式容積形圧縮機Sを使用せず、容量調整可能なターボ形圧縮機Tと回転数制御式容積形圧縮機Vの組み合わせとする。この場合、運転形態はいくつか考えられるが、ターボ形圧縮機Tの方が回転数制御式容積形圧縮機Vよりも消費動力の観点から高性能であるので、ターボ形圧縮機Tを高効率が得られる吸込絞り制御の下限容量に近い風量200で負荷運転する。これに伴い、回転数制御式容積形圧縮機Vで残りの必要な風量を得るよう容量調整する。   In the range of the air consumption 280 to 300, when the on-off displacement compressor S is continuously operated and the turbo compressor T is operated in combination with the on-off displacement compressor S, the turbo compressor T is sucked and throttled. There is a case where operation is performed below the lower limit of control. In other words, in the turbo compressor, air discharge by constant wind pressure control is generated and power consumption increases. Therefore, the on-off type positive displacement compressor S is not used, and a combination of a turbo compressor T and a rotational speed control positive displacement compressor V that can adjust the capacity is adopted. In this case, there are several possible modes of operation, but the turbo compressor T is more efficient in terms of power consumption than the rotational speed control type positive displacement compressor V. The load operation is performed with the air volume 200 close to the lower limit capacity of the suction throttle control that provides the above. Along with this, the capacity is adjusted so that the remaining necessary air volume is obtained by the rotational speed control type positive displacement compressor V.

さらに消費風量が増大する消費風量300〜380の範囲では、やはり圧縮機V、S、Tの2種または3種の組み合わせとなる。ここで、容積形圧縮機S、Vのいずれかを最大風量で駆動してもターボ形圧縮機Tに求められる容量は吸込み絞り制御の範囲となり、放風等の無駄な動力の使用が無くなる。そこで、容積形圧縮機V、Sのいずれかとターボ形圧縮機Tとを組み合わせる。消費風量が変動する場合、大きな変動よりも小さな変動が頻発することが経験的に知られているので、この風量範囲に隣り合う風量範囲で使用している圧縮機を継続的に使用するほうが、圧縮機のオンオフの頻度を低減できる。そこで、この風量範囲よりも小風量範囲で使用していた回転数制御式容積形圧縮機Vを全負荷運転させ、ターボ形圧縮機Tを吸込絞り制御して容量調整する。   Furthermore, in the range of the consumed air volume 300 to 380 where the consumed air volume increases, the compressors V, S, and T are also used in combination of two or three kinds. Here, even if one of the displacement compressors S and V is driven with the maximum air volume, the capacity required for the turbo compressor T is within the range of the suction throttle control, and useless power such as air discharge is eliminated. Therefore, any of the positive displacement compressors V and S and the turbo compressor T are combined. It is empirically known that small fluctuations occur more frequently than large fluctuations when the consumed air volume fluctuates, so it is better to continuously use the compressor used in the air volume range adjacent to this air volume range. The frequency of turning on and off the compressor can be reduced. Therefore, the rotational speed control type positive displacement compressor V used in a smaller air flow range than the air flow range is operated at full load, and the capacity of the turbo compressor T is controlled by suction throttle control.

消費風量が380を超えると、3種の圧縮機V、S、T全てを使用しないと必要風量を発生できない。その場合、放風を伴うターボ形圧縮機Tの定風圧制御を回避するため、ターボ形圧縮機Tは吸込絞り制御可能な範囲とする。つまり、ターボ形圧縮機Tの発生風量は200以上とする。また、オンオフ式容積形圧縮機Sは、全負荷運転(100%ロード)状態で運転するのが一番効率の良い状態なので、オンオフ式容積形圧縮機Sの発生風量を100とする。したがって、風量380〜400の範囲では、オンオフ式容積形圧縮機Sを全負荷運転させ、ターボ形圧縮機Tでは吸込絞り制御のほぼ下限容量で負荷運転し、必要な残りの量を回転数制御式容積形圧縮機Vが容量調整する。   If the consumed air volume exceeds 380, the necessary air volume cannot be generated unless all three types of compressors V, S, and T are used. In that case, in order to avoid the constant wind pressure control of the turbo compressor T accompanied by the air discharge, the turbo compressor T is set to a range in which the suction throttle control is possible. That is, the generated air volume of the turbo compressor T is 200 or more. Further, since the on-off positive displacement compressor S is most efficiently operated in the full load operation (100% load) state, the generated air volume of the on-off positive displacement compressor S is set to 100. Accordingly, in the range of 380 to 400, the on-off displacement compressor S is operated at full load, and the turbo compressor T is operated at load at almost the lower limit capacity of the suction throttle control, and the necessary remaining amount is controlled by the rotational speed. The capacity of the positive displacement compressor V is adjusted.

消費風量400〜480の範囲では、オンオフ式容積形圧縮機Sを全負荷運転させるのは上記消費風量380〜400の場合と同様であるが、回転数制御式容積形圧縮機Vも全負荷運転させる。そして残りの必要風量は200〜280であるからターボ形圧縮機Tの吸込絞り制御範囲(196〜280)内であるので、ターボ形圧縮機Tを容量調整運転させる。なお、ターボ形圧縮機Tを吸込み絞り制御の下限で運転し、回転数制御式容積形圧縮機Vを回転数制御しても同風量を得られるが、上述したようにターボ形圧縮機Tの吸込み絞り制御運転の方が、回転数制御式容積形圧縮機Vの回転数制御運転よりも消費動力の観点から高性能であるので、回転数制御式容積形圧縮機Vを最大風量で運転するのがよい。   In the range of air consumption 400 to 480, the full load operation of the on / off displacement compressor S is the same as in the case of the air consumption 380 to 400, but the rotational speed control displacement compressor V is also operated at full load. Let Since the remaining necessary air volume is 200 to 280, and is within the suction throttle control range (196 to 280) of the turbo compressor T, the capacity of the turbo compressor T is adjusted. The same amount of air can be obtained by operating the turbo compressor T at the lower limit of the suction throttle control and controlling the rotational speed control type positive displacement compressor V. However, as described above, the turbo compressor T The suction throttle control operation is more efficient in terms of power consumption than the rotational speed control operation of the rotational speed control type positive displacement compressor V. Therefore, the rotational speed control type positive displacement compressor V is operated at the maximum air volume. It is good.

図2に示した3種の圧縮機のV、S、Tの各風量における最適組み合わせに基づいて台数制御するときに、消費風量0の状態から消費風量最大の480まで緩やかに増大させた場合の各圧縮機2〜4の状態を、図3に示す。細分した状態1〜26に従って、3種の圧縮機V、S、Tの運転状態が図3に示すように推移する。   When the number of the three compressors shown in FIG. 2 is controlled based on the optimum combination of the V, S, and T airflows, when the airflow is gradually increased from the state of zero airflow consumption to 480, the maximum airflow consumption. The state of each compressor 2-4 is shown in FIG. According to the subdivided states 1 to 26, the operation states of the three types of compressors V, S, and T change as shown in FIG.

消費風量0〜100の範囲Rでは、全ての圧縮機V、S、Tが停止しているときに、回転数制御式容積形圧縮機Vを起動する(状態1)。その後必要容量に応じて、回転数制御式容積形圧縮機が容量調整する(表3において容調と略す)(状態2)。 In the range RA of the consumed air volume 0 to 100, when all the compressors V, S, T are stopped, the rotational speed control type displacement compressor V is started (state 1). Thereafter, the capacity is adjusted by the rotational speed control type positive displacement compressor according to the required capacity (abbreviated as "condition" in Table 3) (state 2).

消費風量0〜100の範囲Rから消費風量100〜200の範囲Rに移行するときは、まず回転数制御式容積形圧縮機Vが全負荷運転(表3において100%と略す)(状態3)となる。そして、吐出ガス圧力が予め設定した設定下限圧力LLまで低下したら、オンオフ式容積形圧縮機Sを起動する(状態4)。オンオフ式容積形圧縮機Sは全負荷運転もしくは無負荷運転しかできないので、オンオフ回数を低減させるために全負荷運転させ、回転数制御式容積形圧縮機Vで容量調整(状態5)する。 When moving from the range R A consumer air volume 0-100 in the range R B consumption airflow 100-200, first speed control type displacement type compressor V is full-load operation (abbreviated as 100% in Table 3) (state 3). When the discharge gas pressure decreases to the preset lower limit set pressure LL, the on-off positive displacement compressor S is started (state 4). Since the on-off positive displacement compressor S can only perform full load operation or no load operation, the full load operation is performed to reduce the number of on / off operations, and the capacity is adjusted (state 5) by the rotational speed control displacement compressor V.

消費風量100〜200の範囲Rから消費風量200〜280の範囲Rに移行するのは、回転数制御式容積形圧縮機Vも全負荷運転(状態6)となったときであり、吐出ガス圧力が予め設定した設定下限圧力LLまで低下したときである。この場合、さらに圧縮機の発生容量を増すために、ターボ形圧縮機Tを起動する(状態7)。 To shift to the range R C of consumption airflow 200 to 280 from a range R B consumption airflow 100 to 200, the rotational speed controlled positive displacement compressor V also when the became full load operation (state 6), the discharge This is when the gas pressure drops to a preset lower limit pressure LL. In this case, the turbo compressor T is started to further increase the generated capacity of the compressor (state 7).

ターボ形圧縮機Tの運転時には、優先的に吸込絞り制御で容量調整(状態8)する。ターボ形圧縮機Tの容量は、他の圧縮機V、Sに比べて吸込絞り制御の下限容量(70%)でも多いので、ターボ型圧縮機Tが起動できたら、ターボ形圧縮機Tの容量をまず下限容量に固定する(状態9)。   During operation of the turbo compressor T, capacity adjustment (state 8) is preferentially performed by suction throttle control. Since the capacity of the turbo compressor T is larger than the lower limit capacity (70%) of the suction throttle control compared to the other compressors V and S, the capacity of the turbo compressor T can be started once the turbo compressor T is started. Is fixed to the lower limit capacity (state 9).

ターボ形圧縮機Tを起動したので速やかに吐出圧力が増加し、所要吐出圧力を超えてしまう。そこで、所要吐出圧力と比較しながら回転数制御式容積形圧縮機Vの容量を調整し(状態10)、所要吐出圧を越えるようであれば回転数制御式容積型圧縮機Vを停止する(状態11)。回転数制御式容積形圧縮機Vを停止する際には、回転数を最小回転数まで低下させてから停止させることができるので、無駄な動力消費となる無負荷運転等を必要としない。また、始動電流を低く抑えられるので、頻繁な起動/停止に対応できる。   Since the turbo compressor T is started, the discharge pressure increases rapidly and exceeds the required discharge pressure. Therefore, the capacity of the rotational speed control type positive displacement compressor V is adjusted while comparing with the required discharge pressure (state 10), and if the required discharge pressure is exceeded, the rotational speed control type positive displacement compressor V is stopped ( State 11). When stopping the rotational speed control type positive displacement compressor V, it can be stopped after the rotational speed is reduced to the minimum rotational speed, so that no loadless operation or the like which causes unnecessary power consumption is not required. Further, since the starting current can be kept low, it can cope with frequent start / stop.

ターボ形圧縮機Tが起動しているので、回転数制御式容積形圧縮機Vを停止させただけでは、吐出ガス圧力が予め設定した設定上限圧力LLを超えてしまう。そこで、オンオフ式容積形圧縮機Sを無負荷運転させる(状態12)。ところで、オンオフ式容積形圧縮機Sでは、モータの起動回数が制限されているので、むやみに停止させないほうがよい。そこで、無負荷運転状態でオンオフ式圧縮機Sを待機させ所定時間経過しても負荷運転に戻らない(つまり圧縮空気を必要としない)ことを確認し、停止させる。   Since the turbo compressor T is activated, the discharge gas pressure exceeds the preset upper limit pressure LL only by stopping the rotational speed control type displacement compressor V. Therefore, the on-off positive displacement compressor S is operated without load (state 12). By the way, in the on-off positive displacement compressor S, since the number of times the motor is started is limited, it is better not to stop it unnecessarily. Therefore, the on-off compressor S is made to stand by in the no-load operation state, and it is confirmed that it does not return to the load operation even after a predetermined time has passed (that is, it does not require compressed air), and is stopped.

なお、回転数制御式容積形圧縮機Vは、起動時にモータに負荷がかからないので、起動回数の制限がない。そのため、頻繁な起動停止にも対応できる。これにより、回転数制御式容積形Vを常に優先的に起動停止させ、オンオフ式容積形圧縮機Sの頻繁な起動/停止による損傷の発生を防止している。また、無負荷運転時に吐出圧力が上昇すれば、オンオフ式容積形圧縮機Sを100%負荷運転に戻す。無負荷運転でも多少の動力を消費するので、無負荷運転が長時間継続する場合には、オンオフ式容積形圧縮機Sも停止する。   Note that the rotation speed control type positive displacement compressor V does not impose a load on the motor at the time of start-up, so there is no limit on the number of times of start-up. Therefore, it can cope with frequent start and stop. Thus, the rotational speed control type positive displacement type V is always activated and stopped with priority, and the occurrence of damage due to frequent activation / deactivation of the on / off type displacement type compressor S is prevented. Further, if the discharge pressure rises during no-load operation, the on-off positive displacement compressor S is returned to 100% load operation. Since some power is consumed even in no-load operation, the on-off positive displacement compressor S is also stopped when the no-load operation continues for a long time.

その後、ターボ形圧縮機Tの吸込絞り制御で、容量調整する(状態13)。オンオフ式容積形圧縮機Sは、予め設定した設定時間が経過するまで連続で無負荷運転を続ける。この設定時間が経過したら、オンオフ式容積形圧縮機Sの運転が不要であると判断し、停止させる(状態14)。   Thereafter, the capacity is adjusted by the suction throttle control of the turbo compressor T (state 13). The on-off positive displacement compressor S continues the no-load operation until a preset set time elapses. When this set time has elapsed, it is determined that the operation of the on-off positive displacement compressor S is unnecessary and is stopped (state 14).

消費風量200〜280の範囲Rから消費風量280〜300の範囲Rに移行する状態では、ターボ形圧縮機Tを全負荷運転としても、吐出ガス圧力が予め設定した設定下限圧力LLまで低下して、他の圧縮機を必要とする状態である。この場合、起動/停止の制限が無く起動が容易な回転数制御式容積形圧縮機Vを起動(状態15)し、回転数制御式容積形圧縮機Vを全負荷運転させる(状態16)。回転数制御式容積形圧縮機Vを全負荷運転するとターボ型圧縮機Tを全負荷運転させたままでは必要容量を超えていると考えられるので、ターボ形圧縮機Tを吸込絞り制御して容量調整し、吸込絞り制御の下限容量(70%)まで絞る(状態17)。この状態でもなお吐出圧力が予め設定した設定上限圧力LLを超えるおそれが高いので、回転数制御式容積形圧縮機Vを全負荷運転から容量調整する(状態18)。 In the state of transition from the range RC of the air consumption 200 to 280 to the range RD of the air consumption 280 to 300, the discharge gas pressure is reduced to the preset lower limit pressure LL even when the turbo compressor T is operated at full load. Thus, another compressor is required. In this case, the rotational speed control type positive displacement compressor V, which has no start / stop restrictions and can be easily started, is started (state 15), and the rotational speed control type positive displacement compressor V is operated at full load (state 16). The full capacity operation of the rotational speed control displacement compressor V is considered to exceed the required capacity with the turbo compressor T operating at full load, so the capacity of the turbo compressor T is controlled by suction restriction. Adjust and throttle down to the lower limit capacity (70%) of the suction throttle control (state 17). Even in this state, there is a high possibility that the discharge pressure will exceed the preset upper limit pressure LL, so that the capacity of the rotational speed control type positive displacement compressor V is adjusted from full load operation (state 18).

消費風量280〜300の範囲Rから消費風量300〜380の範囲Rに移行するときは、もはや容量調整範囲の広いターボ形圧縮機Tを容量調整しなければ、回転数制御式容積形圧縮機Vが全負荷運転となっている(状態19)ので、要求容量を発生できない。そこで、ターボ形圧縮機(T)を吸込絞り制御して容量調整する(状態20)。 When migrating to a range R E consumption airflow 300 to 380 from a range R D consumption airflow 280-300 and if no capacity adjustment wide turbo-type compressor T of longer capacitance adjustment range, speed control type displacement type compressor Since the machine V is in full load operation (state 19), the required capacity cannot be generated. Therefore, the capacity of the turbo compressor (T) is adjusted by suction throttle control (state 20).

消費風量300〜380の範囲Rから消費風量380〜400の範囲Rに移行するときは、ターボ形圧縮機Tも回転数制御式容積形圧縮機Vも全負荷運転(状態21)であり、それでも、吐出ガス圧力が予め設定した設定下限圧力LLに低下する状態である。そのため、3個目の圧縮機としてオンオフ式容積形圧縮機Sを起動する(状態22)。 When shifting from the range R E of the consumed air volume 300 to 380 to the range R F of the consumed air volume 380 to 400, both the turbo compressor T and the rotational speed control displacement compressor V are in full load operation (state 21). Even so, the discharge gas pressure is in a state of decreasing to a preset lower limit pressure LL. Therefore, the on-off positive displacement compressor S is started as the third compressor (state 22).

オンオフ式容積形圧縮機Sは無負荷/負荷の繰り返しを避けるために全負荷運転させる。そこで、100%負荷運転していたターボ形圧縮機Tを吸込絞り制御して容量調整(状態23)し、吸込絞り制御の下限容量(70%)まで絞る(状態24)。この状態では、容積形の2種の圧縮機V、Sが全負荷運転であるから、吐出ガス圧力が予め設定した設定上限圧力LLまで上昇する可能性が高い。そこで、回転数制御式容積形圧縮機Vで容量調整する(状態25)。   The on-off positive displacement compressor S is operated at full load in order to avoid repeated no load / load. Therefore, the turbo compressor T that has been operating at 100% load is suction throttle controlled to adjust the capacity (state 23), and is throttled to the lower limit capacity (70%) of the suction throttle control (state 24). In this state, since the two displacement type compressors V and S are in full load operation, there is a high possibility that the discharge gas pressure will rise to a preset upper limit pressure LL. Therefore, the capacity is adjusted by the rotational speed control type positive displacement compressor V (state 25).

消費風量380〜400の範囲Rから消費風量400〜480の範囲Rに移行するときは、2種の容積形圧縮機V、Sは双方とも全負荷運転であり(状態26)、ターボ形圧縮機Tを容量調整しない限り必要容量を達成できない状態である。そこで、ターボ形圧縮機Tを吸込絞り制御して容量調整(状態27)する。 When migrating to a range R G Consumption air volume 400 to 480 from a range R F consumption airflow 380-400 are two displacement type compressor V, S is both a full-load operation (state 26), turbo-type The required capacity cannot be achieved unless the capacity of the compressor T is adjusted. Therefore, the capacity of the turbo compressor T is adjusted by controlling the suction throttle (state 27).

以上は図2に示した関係を用いた、本発明に係る圧縮機システムの運転例の一例を示したものである。本発明はこの運転例に限るものではなく、種々の運転方法に対応できる。そこで、本発明に係る圧縮機システムの運転フローチャートを、上記実施例と同様の圧縮機構成の場合について、図4A〜図4Cに示す。   The above shows one example of operation of the compressor system according to the present invention using the relationship shown in FIG. The present invention is not limited to this operation example, and can correspond to various operation methods. Therefore, the operation flowchart of the compressor system according to the present invention is shown in FIGS. 4A to 4C in the case of the compressor configuration similar to the above embodiment.

図4A〜図4Cに、図1に示した複数台の圧縮機2〜4を備えた圧縮機システム100の台数制御運転時の運転フローチャートを示す。ここで、圧縮機Vは回転数制御式容積形圧縮機であり、圧縮機Sはオンオフ式容積形圧縮機であり、圧縮機Tはターボ形圧縮機である。図4Aは、主として図2のR、Rにおける運転制御のフローチャートであり、図4Bは、主として図2のRおよびRから容量を増減させる移行状態における運転制御のフローチャートであり、図4Cは、主として図2のR〜Rにおける運転制御のフローチャートである。 4A to 4C show operation flowcharts during the unit number control operation of the compressor system 100 including the plurality of compressors 2 to 4 shown in FIG. Here, the compressor V is a rotational speed control type positive displacement compressor, the compressor S is an on-off positive displacement compressor, and the compressor T is a turbo compressor. 4A is a flowchart of operation control mainly in R A and R B of FIG. 2, and FIG. 4B is a flowchart of operation control in a transition state in which the capacity is increased or decreased mainly from R C and R C of FIG. 4C is a flowchart of operation control mainly in R D to R G of FIG.

圧縮機システム100の台数制御を開始すると、まず回転数制御式容積形圧縮機Vを起動する(ステップS110)。そして、圧力検出器52が検出した吐出ガス圧力の測定データと目標圧力の偏差に基づいて、台数制御盤1から制御盤22へ回転数制御式容積形圧縮機Vを駆動する電動機のPI(またはPID)制御指令を送信して、回転数制御式容積形圧縮機Vを容量調整する(ステップS140)。つまり、台数制御盤1は、回転数制御式容積形圧縮機Vの制御盤22へ、回転数指令信号を出力する。そして、回転数制御式容積形圧縮機Vの制御盤22が、回転数指令アンサーバック信号を台数制御盤1に戻すことで、運転状況が監視される。ステップS150で目標圧力に達していて目標容量が達成されていたら、次の制御時間を待つ(ステップS155)。   When the number control of the compressor system 100 is started, first, the rotational speed control type displacement compressor V is started (step S110). Then, based on the measurement data of the discharge gas pressure detected by the pressure detector 52 and the deviation of the target pressure, the PI (or the motor) driving the rotational speed control type displacement compressor V from the number control panel 1 to the control panel 22 (or A PID control command is transmitted to adjust the capacity of the rotational speed control type positive displacement compressor V (step S140). That is, the number control panel 1 outputs a rotation speed command signal to the control panel 22 of the rotation speed control type positive displacement compressor V. Then, the control panel 22 of the rotational speed control type positive displacement compressor V returns the rotational speed command answerback signal to the number control panel 1 so that the operation state is monitored. If the target pressure has been reached and the target capacity has been achieved in step S150, the next control time is awaited (step S155).

目標圧力に達しておらず、ステップS160でターボ形圧縮機Tが運転中でない場合には、回転数制御式容積形圧縮機Vが全負荷運転か否か(ステップS170)を台数制御盤1が調べる。圧縮機Vが全負荷運転であれば、ステップS180で圧力検出器52が検出する運転圧力が設定最低圧力LLよりも高いか否かを判断する。設定最低圧力よりも低い場合には圧縮機の能力不足であるので、ステップS190で待機中のオンオフ式容積形圧縮機Sがあるか否かを調べる。待機中のオンオフ式容積形圧縮機Sがある場合には、オンオフ式容積形圧縮機Sの無負荷運転時間を計測中のタイマTm1をリセットするとともにカウントを停止する(ステップS192)。そして、待機中のオンオフ式容積形圧縮機Sを起動し全負荷運転させ(ステップS194)、結節点Aに戻る。   If the target pressure has not been reached and the turbo compressor T is not in operation in step S160, the unit control panel 1 determines whether or not the rotational speed control type displacement compressor V is in full load operation (step S170). Investigate. If the compressor V is in full load operation, it is determined in step S180 whether or not the operating pressure detected by the pressure detector 52 is higher than the set minimum pressure LL. When the pressure is lower than the set minimum pressure, the capacity of the compressor is insufficient. Therefore, it is checked in step S190 whether there is an on-off positive displacement compressor S that is on standby. If there is an on-off positive displacement compressor S that is on standby, the timer Tm1 during measurement of the no-load operation time of the on-off positive displacement compressor S is reset and the count is stopped (step S192). Then, the on-off positive displacement compressor S that is on standby is started to operate at full load (step S194), and the node A is returned to.

ステップS180で運転圧力が設定最低圧力よりも高ければ、結節点Aに戻り回転数制御式容積形圧縮機Vを容量調整する。また、ステップS170で回転数制御式容積形圧縮機Vが全負荷運転でなければ、ステップS200で回転数制御式容積形圧縮機Vが最小負荷運転中か否かを判断する。最小負荷運転で無ければ結節点Aに戻る。回転数制御式容積形圧縮機Vが最小負荷運転で、運転圧力が設定最高圧力HH未満であれば、結節点Aに戻る。   If the operating pressure is higher than the set minimum pressure in step S180, the capacity is adjusted to return to the node A and the rotational speed control type displacement compressor V is adjusted. If the rotational speed control type positive displacement compressor V is not at full load operation in step S170, it is determined in step S200 whether the rotational speed control type positive displacement compressor V is in minimum load operation. If it is not the minimum load operation, it returns to the node A. If the rotational speed control type positive displacement compressor V is operated at the minimum load and the operating pressure is less than the set maximum pressure HH, the operation returns to the node A.

運転圧力が設定最高圧力HH以上であれば、全負荷運転中のオンオフ式容積形圧縮機Sがあるか否かをステップS220で調べる。全負荷運転中のオンオフ式容積形圧縮機Sがあれば、オンオフ式容積形圧縮機の無負荷運転時間をカウントするタイマTm1のカウントを開始(ステップS222)し、オンオフ式容積形圧縮機を無負荷運転(ステップS224)する。全負荷運転中のオンオフ式容積形圧縮機Sが無い場合には、圧縮機システムが発生する圧縮ガス量の要求が無いので、回転数制御式容積形圧縮機Vを停止(ステップS230)する。この場合、圧力検出器52が検出する圧縮空気供給ラインの圧力が低下していないかを確認し、台数制御フローの初期状態に戻る。そしてライン圧が低下していれば回転数制御式容積形圧縮機Vを再起動し、低下していなければ所定時間が経過後に再起動するか否かを判定する。   If the operating pressure is equal to or higher than the set maximum pressure HH, it is checked in step S220 whether there is an on-off positive displacement compressor S during full load operation. If there is an on-off positive displacement compressor S during full-load operation, the timer Tm1 for counting the no-load operation time of the on-off positive displacement compressor is started (step S222), and the on-off positive displacement compressor is disabled. Load operation is performed (step S224). If there is no on-off positive displacement compressor S during full-load operation, there is no request for the amount of compressed gas generated by the compressor system, so the rotational speed control displacement compressor V is stopped (step S230). In this case, it is confirmed whether the pressure of the compressed air supply line detected by the pressure detector 52 has decreased, and the initial state of the number control flow is restored. If the line pressure has decreased, the rotational speed control type positive displacement compressor V is restarted. If not, it is determined whether or not to restart after a predetermined time has elapsed.

なお、この図4Aでは、結節点Aの後に、オンオフ式容積形圧縮機Sの無負荷運転経過時間を計測するタイマTm1およびターボ形圧縮機Tの定風圧制御運転経過時間を計測するタイマTm2の計測時間が所定時間経過したか否かを判断するステップ(ステップS120、130)と、経過した場合に各圧縮機S、Tを停止するステップ(S125、135)を含んでいる。これらは図4B、図4Cの運転状態からの移行時に必要となるステップである。   In FIG. 4A, after the node A, there are a timer Tm1 that measures the no-load operation elapsed time of the on-off positive displacement compressor S and a timer Tm2 that measures the constant wind pressure control operation elapsed time of the turbo compressor T. It includes a step of determining whether or not a predetermined time has elapsed (steps S120 and 130) and a step of stopping the compressors S and T when the measurement time has elapsed (S125 and 135). These are the steps required at the time of transition from the operating state of FIGS. 4B and 4C.

図4Bは、目標容量が大であり、ターボ形圧縮機Tを起動させる場合の運転フローチャートである。ターボ形圧縮機Tを起動させるので、ターボ形圧縮機Tの定風圧制御運転時間を計測し、所定時間継続したらターボ型圧縮機を停止させるタイマTm2をリセットするとともに、停止する(ステップS310)。そして、ターボ形圧縮機Tを起動する(ステップS320)。   FIG. 4B is an operation flowchart when the target capacity is large and the turbo compressor T is started. Since the turbo compressor T is started, the constant wind pressure control operation time of the turbo compressor T is measured, and when it continues for a predetermined time, the timer Tm2 for stopping the turbo compressor is reset and stopped (step S310). Then, the turbo compressor T is activated (step S320).

ターボ形圧縮機Tが起動したので、このターボ形圧縮機Tを容量調整する(ステップS330)。つまり、ターボ形圧縮機Tの制御盤41が、吐出ガス圧力の測定データと目標圧力の偏差を用いてPI制御またはPID制御し、ターボ形圧縮機Tを吸込絞り制御する。ここで、台数制御盤1が、吐出ガス圧力の測定データと目標圧力の偏差を用いてPIまたはPID制御により、ターボ形圧縮機Tを吸込絞り制御してもよいが、ターボ形圧縮機Tの吸込絞り制御範囲が吸込ガス温度によって変化するので、吸込ガス温度信号や吐出ガス圧力、電動機電流値も取り込む必要があり、好ましくない。そこで、本実施例では、ターボ形圧縮機Tの制御盤41が吸込絞り制御している。   Since the turbo compressor T is activated, the capacity of the turbo compressor T is adjusted (step S330). That is, the control panel 41 of the turbo compressor T performs PI control or PID control using the deviation between the measurement data of the discharge gas pressure and the target pressure, and controls the suction and throttle of the turbo compressor T. Here, the unit control panel 1 may perform suction throttle control of the turbo compressor T by PI or PID control using the deviation between the measurement data of the discharge gas pressure and the target pressure. Since the suction throttle control range changes depending on the suction gas temperature, it is necessary to take in the suction gas temperature signal, the discharge gas pressure, and the motor current value, which is not preferable. Therefore, in this embodiment, the control panel 41 of the turbo compressor T performs suction throttle control.

次いで、ステップS340で目標圧力に到達したか否かを判定し、到達していれば次回の制御時間まで待つ(ステップS345)。目標圧力になっていない場合には、ターボ形圧縮機Tが最小負荷運転(70%負荷運転)か否かをステップS350で調べる。ターボ形圧縮機Tが最小負荷運転であれば、ステップS360で運転圧力が設定最高圧力以下か否かを判定し、設定最高圧力以下であれば、結節点Cへ戻る。   Next, it is determined whether or not the target pressure has been reached in step S340, and if it has reached, the next control time is awaited (step S345). If the target pressure is not reached, it is checked in step S350 whether the turbo compressor T is in the minimum load operation (70% load operation). If the turbo compressor T is operating at the minimum load, it is determined in step S360 whether or not the operating pressure is equal to or lower than the set maximum pressure.

一方、ターボ形圧縮機Tを最小負荷運転しても目標圧力を超えていれば圧縮機システム100からの供給過多であるので、回転数制御式容積形圧縮機Vを容量調整する(ステップS370)。これで目標圧力を達成しておれば(ステップS380)、次回の制御時間まで待つ(ステップS385)。目標圧力を達成できない場合には、回転数制御式容積形圧縮機Vが最小負荷運転中か否かをステップS390で判断する。   On the other hand, if the turbo compressor T is operated at the minimum load and the target pressure is exceeded, the supply from the compressor system 100 is excessive, so the capacity of the rotational speed control type displacement compressor V is adjusted (step S370). . If the target pressure is achieved (step S380), the process waits for the next control time (step S385). If the target pressure cannot be achieved, it is determined in step S390 whether or not the rotational speed control type positive displacement compressor V is operating at a minimum load.

回転数制御式容積形圧縮機Vが最小負荷運転中で、運転圧力が設定最高圧力よりも高い(ステップS400)と判断したときには、圧縮ガスの供給が過多であるので、圧縮機システム100の稼働中の圧縮機のいずれかを停止させることになる。そこで、ステップS410で全負荷運転中のオンオフ式容積形圧縮機Sがあるか否かを調べる。全負荷運転中のオンオフ式容積形圧縮機Sがあれば、この圧縮機Sを停止させる準備として、ステップS412でオンオフ式容積形圧縮機Sの無負荷時間を計測するタイマTm1がカウントを開始する。それとともに、ステップS414でオンオフ式容積形圧縮機Sを無負荷運転させる。オンオフ式容積形圧縮機Sは、起動/停止の回数に制限があるので、頻繁な起動/停止を繰り返さないために停止条件に達したらまず無負荷運転させ、無負荷運転時間が所定時間継続したときのみ、オンオフ式容積形圧縮機は使用しないものとみなして停止させる。全負荷運転中のオンオフ式容積形圧縮機Sが無い場合には、結節点Dに進む。   When it is determined that the rotational speed control displacement compressor V is operating at the minimum load and the operating pressure is higher than the set maximum pressure (step S400), the supply of compressed gas is excessive, so that the operation of the compressor system 100 is performed. One of the compressors inside will be stopped. Therefore, in step S410, it is checked whether or not there is an on-off positive displacement compressor S during full load operation. If there is an on-off positive displacement compressor S in full load operation, in preparation for stopping this compressor S, a timer Tm1 that measures the no-load time of the on-off positive displacement compressor S starts counting in step S412. . At the same time, the on-off positive displacement compressor S is operated without load in step S414. Since the ON / OFF type displacement compressor S has a limited number of start / stops, it is first operated without load when the stop condition is reached in order to avoid frequent start / stops, and the no-load operation time continues for a predetermined time. Only when is the on-off positive displacement compressor considered to be unused. When there is no on-off positive displacement compressor S during full load operation, the process proceeds to node D.

ステップS350でターボ形圧縮機Tが最小負荷運転で無いと判断された場合には、ステップS420でターボ形圧縮機Tが全負荷運転されているか否かを判断する。ターボ形圧縮機Tが全負荷運転されているときは、ステップS430に進み運転圧力が設定最小圧力を超えているか否かを判断する。ターボ形圧縮機Tが全負荷運転しても圧力が上昇しないので、圧縮機システム100は供給不足であるから、無負荷運転または停止中で待機中のオンオフ式容積形圧縮機Sがあるか無いかをステップS440で調べる。待機中のオンオフ式容積形圧縮機Sが無い場合には、圧縮機システム100の想定容量を超えているので、結節点Xに進む。この場合、この圧縮機システム100に含まれない他の圧縮機から圧縮ガスを供給するか、圧縮機の台数制御を停止する。もしくは需要元の消費量を抑制する。   If it is determined in step S350 that the turbo compressor T is not operating at the minimum load, it is determined in step S420 whether the turbo compressor T is operating at full load. When the turbo compressor T is operating at full load, the process proceeds to step S430, and it is determined whether or not the operating pressure exceeds the set minimum pressure. Since the pressure does not increase even when the turbo compressor T is operated at full load, the compressor system 100 is insufficiently supplied, so there is no on-off positive displacement compressor S that is waiting for no load operation or being stopped. Is checked in step S440. If there is no on-off positive displacement compressor S in standby, the capacity of the compressor system 100 is exceeded, so the process proceeds to node X. In this case, compressed gas is supplied from another compressor not included in the compressor system 100, or the control of the number of compressors is stopped. Or the consumption of the demand source is suppressed.

待機中のオンオフ式容積形圧縮機Sがあれば、このオンオフ式容積形圧縮機Sの無負荷運転時間を計測していたタイマTm1をリセットし、カウントを停止する(ステップS450)。それとともに、オンオフ式容積形圧縮機Sを起動し、全負荷運転する(ステップS460)。   If there is a waiting on-off type displacement compressor S, the timer Tm1 that has measured the no-load operation time of the on-off type displacement compressor S is reset, and the count is stopped (step S450). At the same time, the on-off positive displacement compressor S is started and operated at full load (step S460).

図4Cは、図2におけるRの領域での運転とその領域Rから他の領域へ移る際の運転制御フローチャートを示したものである。図2の領域Rへの移行のため、ステップS510で回転数制御式容積形圧縮機Vを停止する。ターボ形圧縮機Tが起動しているので、ターボ形圧縮機Tの制御盤41が吐出ガス圧力の測定データと目標圧力の偏差を用いてPIまたはPID制御により、ターボ形圧縮機Tを吸込絞り制御する(ステップS520)。この容量制御により目標圧力になっているか否かをステップS530で判断し、目標圧力になっておればステップS535で次回の制御タイミングを待つ。 FIG. 4C shows an operation control flowchart when the operation is performed in the region RC in FIG. 2 and the region RC is shifted to another region. In order to shift to the region RC in FIG. 2, the rotational speed control type positive displacement compressor V is stopped in step S510. Since the turbo compressor T is activated, the control panel 41 of the turbo compressor T sucks and throttles the turbo compressor T by PI or PID control using the measured data of the discharge gas pressure and the deviation of the target pressure. Control is performed (step S520). In step S530, it is determined whether or not the target pressure is reached by the capacity control. If the target pressure is reached, the next control timing is awaited in step S535.

目標圧力で無い場合には、ターボ形圧縮機Tが最小負荷運転であるか否かをステップS540で判断し、最小負荷運転であれば運転圧力が設定最高圧力HH未満であるか否かを調べる(ステップS550)。ターボ形圧縮機Tが最小負荷運転でも設定最高圧力を超えるときは供給過剰であるので、ターボ形圧縮機Tを停止するために、ターボ形圧縮機Tの無負荷運転時間を計測するタイマTm2がカウントを開始し(ステップS560)、ターボ形圧縮機Tを無負荷運転(放風運転)させる(ステップS570)。次いで、ターボ形圧縮機Tの代わりに回転数制御式容積形圧縮機Vを起動し(ステップS580)、需要に合うようにする。   If it is not the target pressure, it is determined in step S540 whether the turbo compressor T is in the minimum load operation, and if it is the minimum load operation, it is checked whether the operation pressure is less than the set maximum pressure HH. (Step S550). In order to stop the turbo compressor T, a timer Tm2 for measuring the no-load operation time of the turbo compressor T is provided in order to stop the turbo compressor T when the turbo compressor T exceeds the set maximum pressure even in the minimum load operation. Counting is started (step S560), and the turbo compressor T is caused to perform no-load operation (air discharge operation) (step S570). Next, instead of the turbo compressor T, the rotational speed control type displacement compressor V is started (step S580) to meet the demand.

一方、ステップS540でターボ形圧縮機Tが最小負荷運転でないと判断されたときには、ステップS590に進み、ターボ形圧縮機Tが全負荷運転か否かを調べる(ステップS590)。ターボ形圧縮機Tが全負荷運転であれば運転圧力が設定最低圧力LL以下か否かを判断し、設定最低圧力以下であれば供給不足なので、圧縮機の組み合わせをターボ形圧縮機Tの単独運転から回転数制御式容積形圧縮機Vとターボ形圧縮機Tの組み合わせに変える。そのため、ターボ形圧縮機Tを最小負荷運転(ステップS610)にし、回転数制御式容積形圧縮機Vを起動する(ステップS620)。   On the other hand, when it is determined in step S540 that the turbo compressor T is not in the minimum load operation, the process proceeds to step S590, and it is checked whether the turbo compressor T is in full load operation (step S590). If the turbo compressor T is operating at full load, it is determined whether or not the operating pressure is lower than the set minimum pressure LL. If the operating pressure is lower than the set minimum pressure, the supply is insufficient. The operation is changed to a combination of a rotational speed control type positive displacement compressor V and a turbo compressor T. Therefore, the turbo compressor T is set to the minimum load operation (step S610), and the rotational speed control type displacement compressor V is started (step S620).

以上説明したように、本実施例によれば、回転数制御式容積形圧縮機Vを起動/停止の回数制限無く使用できる圧縮機として圧縮機システムに組み合わせているので、回転数制御式容積形圧縮機の停止の際に無負荷運転する必要が無く、すぐに停止できるので、消費動力を低減することができる。また、起動/停止の回数制限があるオンオフ式容積形圧縮機とターボ形圧縮機を、可能な限り連続運転できるように起動する圧縮機を要求風量に応じて組み合わせているので、無負荷運転による動力損失を低減できる。また、オンオフ式容積形圧縮機およびターボ形圧縮機の起動/停止の回数を低減しているので、オンオフ式容積形圧縮機およびターボ形圧縮機を長寿命化できる。   As described above, according to the present embodiment, the rotational speed control type positive displacement compressor V is combined with the compressor system as a compressor that can be used without limitation on the number of start / stop operations. There is no need to perform no-load operation when the compressor is stopped, and the compressor can be stopped immediately, so that power consumption can be reduced. In addition, an on-off positive displacement compressor and a turbo compressor, which have a limited number of start / stop operations, are combined in accordance with the required air volume so that they can be operated continuously as much as possible. Power loss can be reduced. In addition, since the number of times of starting / stopping the on-off positive displacement compressor and the turbo compressor is reduced, the life of the on-off positive displacement compressor and the turbo compressor can be extended.

さらに、台数制御盤は運転台数の制御だけすればよく、各圧縮機が備える圧縮機制御盤が対応する圧縮機の容量制御をしている。そして、ターボ形圧縮機においては、ターボ形圧縮機制御盤がサージング回避運転をするので、台数制御盤と圧縮機制御盤との間に、複雑な入力信号系が不要となる。したがって台数制御盤は、ターボ形圧縮機のサージングを回避する制御に関与する必要がなくなり、信号系が簡素化した圧縮機の台数制御を実現できる。   Furthermore, the number control panel only needs to control the number of operating units, and the compressor control panel included in each compressor controls the capacity of the corresponding compressor. In the turbo compressor, since the turbo compressor control panel performs the surging avoidance operation, a complicated input signal system is not required between the number control panel and the compressor control panel. Therefore, the number control panel does not need to be involved in the control to avoid the surging of the turbo compressor, and can realize the number control of the compressor with a simplified signal system.

1…台数制御盤、2…回転数制御式容積形圧縮機、3…オンオフ式容積形圧縮機、4…ターボ形圧縮機、5…レシーバタンク、6…ガス配管、21…圧縮機制御盤、22…圧力検出器、31…圧縮機制御盤、32…圧力検出器、41…圧縮機制御盤、42…圧力検出器、52…圧力検出器、100…圧縮機システム、S…オンオフ式容積形圧縮機、T…ターボ形圧縮機、V…回転数制御式容積形圧縮機。 DESCRIPTION OF SYMBOLS 1 ... Unit control panel, 2 ... Revolution-control type positive displacement compressor, 3 ... On-off positive displacement compressor, 4 ... Turbo compressor, 5 ... Receiver tank, 6 ... Gas piping, 21 ... Compressor control panel, DESCRIPTION OF SYMBOLS 22 ... Pressure detector, 31 ... Compressor control board, 32 ... Pressure detector, 41 ... Compressor control board, 42 ... Pressure detector, 52 ... Pressure detector, 100 ... Compressor system, S ... On-off displacement type Compressor, T ... turbo compressor, V ... rotational speed control type positive displacement compressor.

Claims (4)

吸込絞り弁を有し、この吸込み絞り弁で吸入ガス量を調整し容量調整する少なくとも1台のターボ形圧縮機と、電動機を有し、この電動機の回転数を制御して容量調整する少なくとも1台の回転数制御式容積形圧縮機と、負荷運転と無負荷運転を繰り返して容量調整するオンオフ式容積形圧縮機とを備え、これらターボ形圧縮機と回転数制御式容積形圧縮機とオンオフ式容積形圧縮機の吐出側を並列に配管接続した圧縮機システムにおいて、
前記ターボ形圧縮機と前記回転数制御式容積形圧縮機と前記オンオフ式容積形圧縮機はそれぞれ圧縮機制御手段を有し、前記並列配管接続部分よりも下流側の圧力である吐出圧力を検出する吐出圧力検出手段と、この吐出圧力検出手段が検出した吐出圧力が入力され、前記各圧縮機制御盤に制御指令を出力する台数制御盤とを設け、この台数制御盤は、ターボ形圧縮機が運転中には優先的に前記ターボ形圧縮機が容量制御するよう前記ターボ圧縮機の制御盤に制御指令を出力し、前記ターボ形圧縮機が停止中または無負荷運転中または吸込絞り制御範囲の下限時には、前記回転数制御式容積形圧縮機が容量制御するよう前記回転数制御式容積形圧縮機の圧縮機制御盤に制御指令を出力することを特徴とする圧縮機システム。
At least one turbo-type compressor that has a suction throttle valve, adjusts the amount of intake gas by adjusting the amount of intake gas by the suction throttle valve, and an electric motor, and adjusts the capacity by controlling the rotational speed of the electric motor Equipped with a rotary speed control positive displacement compressor and an on / off positive displacement compressor that adjusts the capacity by repeating load operation and no load operation, and these turbo compressor and rotation control positive displacement compressor are turned on and off. In the compressor system in which the discharge side of the positive displacement compressor is piped in parallel,
Each of the turbo compressor, the rotational speed control type positive displacement compressor and the on / off type positive displacement compressor has a compressor control means, and detects a discharge pressure which is a pressure downstream of the parallel pipe connection portion. And a unit control panel for inputting a discharge pressure detected by the discharge pressure detection unit and outputting a control command to each compressor control panel. The unit control panel is a turbo compressor. When the engine is in operation, it outputs a control command to the control panel of the turbo compressor so that the capacity of the turbo compressor is preferentially controlled, and the turbo compressor is in a stopped or no-load operation or suction throttle control range At the lower limit of the compressor system, the compressor system outputs a control command to a compressor control panel of the rotational speed control type positive displacement compressor so that the capacity of the rotational speed control type positive displacement compressor is controlled.
前記ターボ形圧縮機が容量制御の状態では、前記台数制御盤を用いずに前記ターボ形圧縮機の制御盤が前記吸込絞り弁を用いて容量制御することを特徴とする請求項1に記載の圧縮機システム。   2. The capacity control of the turbo compressor according to claim 1, wherein when the turbo compressor is in capacity control, the control panel of the turbo compressor performs capacity control using the suction throttle valve without using the number control panel. Compressor system. 前記ターボ形圧縮機の吸込絞り制御範囲の下限は、前記オンオフ式容積形圧縮機および前記回転数制御式容積形圧縮機の定格容量の和以下であり、前記ターボ形圧縮機の定格容量が前記オンオフ式容積形圧縮機および前記回転数制御式容積形圧縮機の定格容量の和以上であることを特徴とする請求項1または2に記載の圧縮機システム。   The lower limit of the suction throttle control range of the turbo compressor is equal to or less than the sum of the rated capacities of the on-off positive displacement compressor and the rotational speed control positive displacement compressor, and the rated capacity of the turbo compressor is 3. The compressor system according to claim 1, wherein the compressor system is equal to or greater than a sum of rated capacities of the on-off positive displacement compressor and the rotation speed control positive displacement compressor. 吸込絞り弁を有し、この吸込み絞り弁で吸入ガス量を調整し容量調整する少なくとも1台のターボ形圧縮機と、電動機を有し、この電動機の回転数を制御して容量調整する少なくとも1台の回転数制御式容積形圧縮機と、負荷運転と無負荷運転を繰り返して容量調整するオンオフ式容積形圧縮機とを備え、これらターボ形圧縮機と回転数制御式容積形圧縮機とオンオフ式容積形圧縮機の吐出側を並列に配管接続した圧縮機システムの運転制御方法において、
前記ターボ形圧縮機が運転中には優先的に前記ターボ形圧縮機により容量制御し、前記ターボ形圧縮機が停止中または無負荷運転中または吸込絞り制御範囲の下限時には、前記回転数制御式容積形圧縮機が容量制御することを特徴とする圧縮機システムの運転制御方法。
At least one turbo-type compressor that has a suction throttle valve, adjusts the amount of intake gas by adjusting the amount of intake gas by the suction throttle valve, and an electric motor, and adjusts the capacity by controlling the rotational speed of the electric motor Equipped with a rotary speed control positive displacement compressor and an on / off positive displacement compressor that adjusts the capacity by repeating load operation and no load operation, and these turbo compressor and rotation control positive displacement compressor are turned on and off. In the operation control method of the compressor system in which the discharge side of the positive displacement compressor is pipe-connected in parallel,
When the turbo compressor is operating, the capacity is preferentially controlled by the turbo compressor, and when the turbo compressor is stopped or during no-load operation or at the lower limit of the suction throttle control range, the rotational speed control formula An operation control method for a compressor system, wherein the displacement of the positive displacement compressor is controlled.
JP2012030661A 2012-02-15 2012-02-15 Compressor system and operation control method thereof Active JP5758818B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012030661A JP5758818B2 (en) 2012-02-15 2012-02-15 Compressor system and operation control method thereof
CN201310044848.XA CN103256213B (en) 2012-02-15 2013-02-05 Compressor assembly and method for controlling of operation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012030661A JP5758818B2 (en) 2012-02-15 2012-02-15 Compressor system and operation control method thereof

Publications (2)

Publication Number Publication Date
JP2013167196A JP2013167196A (en) 2013-08-29
JP5758818B2 true JP5758818B2 (en) 2015-08-05

Family

ID=48960360

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012030661A Active JP5758818B2 (en) 2012-02-15 2012-02-15 Compressor system and operation control method thereof

Country Status (2)

Country Link
JP (1) JP5758818B2 (en)
CN (1) CN103256213B (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101521559B1 (en) * 2014-10-07 2015-05-18 주식회사 에스피앤알 Air compressor parallel operation system and control method of the same
CN107503927A (en) * 2017-08-22 2017-12-22 王浩宇 The parallel operation control system and its control method of a kind of gas compressor
CN110617233B (en) * 2018-06-19 2021-03-30 中国石油集团西部管道有限责任公司 Load distribution control system of natural gas long-distance pipeline compressor unit
CN109958609B (en) * 2019-05-06 2024-02-20 重庆建工市政交通工程有限责任公司 Construction method of intelligent power air supply system of tunnel variable frequency air compressor unit
CN116146516B (en) * 2022-12-05 2024-03-12 广钢气体(广州)有限公司 Intelligent grid-connected control method and system for multiple compressors

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340024A (en) * 2003-05-15 2004-12-02 Anest Iwata Corp Operation control method for compressor
JP4737770B2 (en) * 2006-09-12 2011-08-03 アネスト岩田株式会社 Vacuum pump operation control device and method
JP4974843B2 (en) * 2007-10-23 2012-07-11 中国電力株式会社 Compressed air control device
JP2010053733A (en) * 2008-08-27 2010-03-11 Yamatake Corp Method and device for controlling the number of operated air compressors
JP2012515880A (en) * 2009-01-23 2012-07-12 ビッツァー クールマシーネンバウ ゲーエムベーハー Multiple scroll compressors having different volume indexes and systems and methods for the same
JP5374188B2 (en) * 2009-02-20 2013-12-25 株式会社Ihi Compressor number control system

Also Published As

Publication number Publication date
JP2013167196A (en) 2013-08-29
CN103256213A (en) 2013-08-21
CN103256213B (en) 2016-02-24

Similar Documents

Publication Publication Date Title
JP5758818B2 (en) Compressor system and operation control method thereof
JP4196307B1 (en) Steam system
EP2321594B1 (en) Discrete frequency operation for unit capacity control
JP5410123B2 (en) air compressor
JP4240155B1 (en) Steam system
JP2013231396A (en) Compressed gas supply unit
JP4924855B1 (en) Compressor number control system
JP2012197788A (en) Pump system and method for operating the same
JP2007092582A (en) Fluid control device and fluid control method
JP5971964B2 (en) Turbo refrigerator
CN104153979A (en) Operation control method of power air compressor and compressor thereof
JP5915931B2 (en) Compressor number control system
JP4795977B2 (en) Compressor operation method
JP2006312900A (en) Compressed gas supply device
JP2005023818A (en) Compressor system
JP2005140499A (en) Refrigeration device
CN203962358U (en) A kind of power air compressor
JP2005140498A (en) Refrigeration device
JP2006207983A (en) Air conditioner
CN111721034A (en) Variable-frequency efficient water source heat pump system and implementation method thereof
TWI707534B (en) Dry vacuum pump device, method of controlling same, and program of controlling same
JP2007183030A (en) Connected type water cooler-heater, and its operating method
KR20140017780A (en) Control method of multiple tandem type heat pump system with a single inverter
JP4627763B2 (en) Compressed air production facility and operation method thereof
JP5424970B2 (en) Compressor and operation method of compressor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130613

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150604

R150 Certificate of patent or registration of utility model

Ref document number: 5758818

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350