JP5755482B2 - Genetically modified plant factory - Google Patents

Genetically modified plant factory Download PDF

Info

Publication number
JP5755482B2
JP5755482B2 JP2011083563A JP2011083563A JP5755482B2 JP 5755482 B2 JP5755482 B2 JP 5755482B2 JP 2011083563 A JP2011083563 A JP 2011083563A JP 2011083563 A JP2011083563 A JP 2011083563A JP 5755482 B2 JP5755482 B2 JP 5755482B2
Authority
JP
Japan
Prior art keywords
light
flux density
cultivation
sunlight
genetically modified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011083563A
Other languages
Japanese (ja)
Other versions
JP2012217352A (en
Inventor
重夫 本田
重夫 本田
宏 籠山
宏 籠山
啓之 中島
啓之 中島
光司 鹿島
光司 鹿島
一智 磯野
一智 磯野
穂 田村
穂 田村
紀夫 生田
紀夫 生田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kogyosha Co Ltd
Original Assignee
Asahi Kogyosha Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kogyosha Co Ltd filed Critical Asahi Kogyosha Co Ltd
Priority to JP2011083563A priority Critical patent/JP5755482B2/en
Publication of JP2012217352A publication Critical patent/JP2012217352A/en
Application granted granted Critical
Publication of JP5755482B2 publication Critical patent/JP5755482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor

Description

本発明は、遺伝子組換えしたイネ等を栽培するための遺伝子組換え植物工場に係り、特に、人工光と太陽光を併用できる遺伝子組換え植物工場に関するものである。   The present invention relates to a genetically modified plant factory for cultivating genetically modified rice and the like, and particularly to a genetically modified plant factory capable of using artificial light and sunlight together.

最近、遺伝子組換え技術を応用して、植物本来の含有成分ではない高付加価値物質を植物で生産することが可能になってきた。そのため、タンパク質を基本とした医薬品等の生産系として、遺伝子組換え植物が注目され始めている。これらの植物を気象条件に左右されずに、目的の有用物質の含有量が一定でかつ効率的に生産するためには、栽培条件を適切に制御できる完全制御型植物工場の機能を持ち、かつ、遺伝子拡散防止機能も兼ね備えた遺伝子組換え植物工場が必要となる。   Recently, it has become possible to produce high value-added substances in plants that are not inherent components of plants by applying genetic recombination technology. Therefore, genetically modified plants have begun to attract attention as a production system for pharmaceuticals based on proteins. In order to produce these plants in a constant and efficient manner without affecting the weather conditions, the plant has the function of a fully-controlled plant factory that can appropriately control the cultivation conditions, and In addition, a genetically modified plant factory that also has a function to prevent gene diffusion is required.

高付加価値物質を生産するための遺伝子組換え植物由来の医薬品は、PMPs(Plant mode pharmaceuticals)と呼ばれ、インフルエンザやコレラ、アルツハイマー病の経口ワクチン、家畜用ワクチンなどを、イネやダイズ、イチゴ等で生産することになる。このような植物を利用した有用物質の生産は、動物や微生物を利用するのに比べて低コストである、精製工程が不要である、常温保存ができる収穫物ではコールドチェーンが不要である、安全性が高い等のメリットがある。   Pharmaceuticals derived from genetically modified plants for producing high-value-added substances are called PMPs (Plant mode pharmaceuticals), and include influenza, cholera, oral vaccines for Alzheimer's disease, livestock vaccines, rice, soybeans, strawberries, etc. Will be produced. Production of useful substances using such plants is cheaper than using animals and microorganisms, does not require a purification process, and harvests that can be stored at room temperature do not require a cold chain. There are merits such as high nature.

健康維持や病気治療を目的とした有用物質を遺伝子組換え植物で生産するための技術としては、特許文献1に示されるように、遺伝子組換え植物の栽培エリア、収穫後の遺伝子組換え植物を不活化する不活化エリア、不活化後の遺伝子組換え植物を食品や薬品に調製する製造エリアを、それぞれエアロック機構を介して独立して形成し、遺伝子拡散を防止した完全閉鎖型の植物工場が提案されている。   As a technique for producing useful substances for the purpose of maintaining health and treating diseases with genetically modified plants, as shown in Patent Document 1, the cultivation area of genetically modified plants and the genetically modified plants after harvesting A completely closed plant factory that prevents gene diffusion by forming an inactivated area and a manufacturing area for preparing inactivated genetically modified plants into foods and medicines independently through an airlock mechanism. Has been proposed.

特開2008−161114号公報JP 2008-161114 A

ところで、栽培エリアでの植物の栽培は、養液栽培と人工光による栽培であるが、光要求量が大きい植物(イネ、ダイズ、コムギ、イチゴなどの果実)を人工光で栽培するには、電気エネルギーを大量に必要とする問題がある。   By the way, cultivation of plants in the cultivation area is cultivation by hydroponics and artificial light, but in order to cultivate plants with large light requirements (fruits such as rice, soybeans, wheat, strawberries) with artificial light, There is a problem that requires a large amount of electrical energy.

このため、特許文献1では、太陽光利用型としたり、太陽光・人工光併用型とすることも提案されているものの、太陽光利用型では、天候に左右され、また併用型にするにしても、太陽光と人工光とでは、光の質(光の波長組成)が相違するため、植物を栽培する光環境が、時間的にも空間的にも大きく異なってしまい、品質の安定した植物の栽培が行えない問題がある。   For this reason, although it is proposed in Patent Document 1 to use solar light or to use sunlight / artificial light combined type, in the solar light using type, it depends on the weather. However, the quality of light (wavelength composition of light) is different between sunlight and artificial light, so the light environment in which plants are cultivated varies greatly in terms of time and space, and the plant has stable quality. There is a problem that can not be cultivated.

すなわち、照度の単位として用いられているlx(ルックス)は、人間の目が感じる明るさを示す尺度であり、植物が受けるエネルギー密度や光量子束密度を表すものではなく、単に照度を単位として太陽光と人工光を切り換えても植物が受けるエネルギー密度や光量子束密度を適正に制御することは困難である。   In other words, lx (look) used as a unit of illuminance is a scale indicating the brightness perceived by the human eye, and does not represent the energy density or photon flux density received by plants, but is simply expressed in units of illuminance. Even when switching between light and artificial light, it is difficult to properly control the energy density and photon flux density received by plants.

そこで、本発明の目的は、上記課題を解決し、太陽光と人工光を併用し、遺伝子組換え植物の栽培に必要な光環境を的確に制御できる遺伝子組換え植物工場を提供することにある。   Accordingly, an object of the present invention is to provide a genetically modified plant factory that can solve the above-mentioned problems and can accurately control the light environment necessary for cultivation of genetically modified plants by using sunlight and artificial light in combination. .

上記目的を達成するために請求項1の発明は、建屋に採光室を形成すると共に採光室内に、光要求量が大きい遺伝子組換え植物を栽培する栽培室を形成し、太陽光を採光室を通して栽培室内に取り入れると共に栽培室に人工光を照射する照明器具を設けた遺伝子組換え植物工場において、上記栽培室の上方の採光室に設けられ、太陽光を栽培室内に透過又は遮蔽すべく移動自在な反射材を有し、遮蔽時に反射材で照明器具からの人工光を反射するための巻取式反射装置と、太陽光の光合成有効光量子束密度を検出する太陽光測定光量子センサと、上記栽培室に設けられ、遺伝子組換え植物に当たる光合成有効光量子束密度を検出する栽培用光量子センサと、これら光量子センサからの光合成有効光量子束密度の検出値が入力され、その検出値に基づいて遺伝子組換え植物の光環境を調整すべく上記巻取式反射材による太陽光の透過又は遮蔽を行うと共に、上記照明器具からの人工光の光量を制御する光量制御装置とを備え、巻取式反射装置は、栽培室に太陽光を透過する透過部とその透過部に連結され栽培室内への太陽光を遮蔽すると共に上記照明器具からの人工光を反射する反射部とからなる反射材と、天井の両側に設けられ上記反射材を交互に巻き取って太陽光を透過又は遮蔽する巻取ロールからなることを特徴とする遺伝子組換え植物工場である。 In order to achieve the above object, the invention of claim 1 forms a daylighting room in a building and forms a cultivation room in the daylighting room for cultivating a genetically modified plant having a large amount of light demand, and passes sunlight through the daylighting room. In a genetically modified plant factory that is installed in the cultivation room and illuminates the cultivation room with artificial light, it is installed in the daylighting room above the cultivation room and can be moved to transmit or shield sunlight into the cultivation room. A reflective reflector for reflecting artificial light from a lighting fixture with a reflective material at the time of shielding, a solar measurement photon sensor for detecting photosynthesis effective photon flux density of sunlight, and the above cultivation The photon sensor for cultivation that detects the photosynthesis effective photon flux density that hits the genetically modified plant, and the detection value of the photosynthesis effective photon flux density from these photon sensors are input, and the detection value It performs transmission or shielding of the sunlight by the web of the reflector to adjust the transgenic plants light environment based, and a light quantity control device for controlling the amount of artificial light from the luminaire, wound The take-type reflection device is a reflector comprising a transmission part that transmits sunlight to the cultivation room and a reflection part that is connected to the transmission part and shields sunlight into the cultivation room and reflects artificial light from the lighting fixture. And a genetically modified plant factory comprising winding rolls that are provided on both sides of the ceiling and alternately wind up or shield sunlight by winding up the reflecting material .

請求項の発明は、上記照明器具は、インバータ装置で光量可変に制御され、上記光量制御装置は、上記インバータ装置を介して上記照明器具の光量を制御する請求項1に記載の遺伝子組換え植物工場である。 The invention according to claim 2 is the genetic recombination according to claim 1, wherein the lighting fixture is controlled to be variable in light quantity by an inverter device, and the light quantity control device controls the light quantity of the lighting fixture via the inverter device. It is a plant factory.

請求項の発明は、上記光量制御装置は、太陽光測定光量子センサで検出された光合成有効光量子束密度が基準光量子束密度値を超えるとき巻取式反射装置を駆動して栽培室内に太陽光を透過し、上記照明器具を消灯する請求項1記載の遺伝子組換え植物工場である。 According to a third aspect of the present invention, when the light synthesis effective photon flux density detected by the sunlight measuring photon sensor exceeds the reference photon flux density value, the light quantity control device drives the take-up type reflection device to cause sunlight in the cultivation room. The genetically modified plant factory according to claim 1, wherein the plant is permeated through and the light fixture is turned off.

請求項の発明は、上記光量制御装置は、太陽光測定光量子センサで検出された光合成有効光量子束密度が基準光量子束密度値以下で、かつ下限光量子束密度値以上のとき、栽培室に太陽光を透過したまま、栽培用光量子センサで検出される光合成有効光量子束密度が基準光量子束密度値を超えるように上記照明器具での補光量を制御する請求項記載の遺伝子組換え植物工場である。 According to a fourth aspect of the present invention, the light amount control device is configured such that when the photosynthetic effective photon flux density detected by the sunlight measuring photon sensor is equal to or lower than the reference photon flux density value and equal to or higher than the lower limit photon flux density value, The genetically modified plant factory according to claim 3, wherein the light intensity in the lighting fixture is controlled so that the photosynthesis effective photon flux density detected by the cultivation photon sensor exceeds the reference photon flux density value while transmitting light. is there.

請求項の発明は、上記光量制御装置は、太陽光測定光量子センサで検出された光合成有効光量子束密度が下限光量子束密度値を下回るとき巻取式反射装置を駆動して栽培室内への太陽光を遮蔽し、栽培用光量子センサで検出される光合成有効光量子束密度が、基準光量子束密度値を超えるように上記照明器具での照明量を制御する請求項1記載の遺伝子組換え植物工場である。 In the invention of claim 5, the light amount control device drives the rewind type reflection device when the photosynthesis effective photon flux density detected by the sunlight measuring photon sensor is lower than the lower limit photon flux density value. The genetically modified plant factory according to claim 1, wherein the amount of illumination in the lighting fixture is controlled such that the photosynthesis effective photon flux density detected by the photon sensor for cultivation is shielded from light and exceeds a reference photon flux density value. is there.

請求項の発明は、上記光量制御装置に入力された太陽光測定光量子センサと栽培用光量子センサの検出値は、栽培管理装置に入力され、その栽培管理装置に、遺伝子組換え植物の生育に応じた光環境の光量子束密度値が記憶され、上記栽培管理装置は、遺伝子組換え植物の生育時期に応じて基準光量子束密度値と下限光量子束密度値を設定し、その設定値を上記光量制御装置に出力すると共にこれに基づいて光量制御装置が光環境を制御する請求項1〜のいずれかに記載の遺伝子組換え植物工場である。 In the invention of claim 6 , the detection values of the sunlight measuring photon sensor and the photon sensor for cultivation inputted to the light quantity control device are inputted to the cultivation management device, and the cultivation management device is used to grow the genetically modified plant. The photon flux density value of the corresponding light environment is stored, and the cultivation management device sets a reference photon flux density value and a lower limit photon flux density value according to the growth period of the genetically modified plant, and the set value is used as the light amount. It is a genetically modified plant factory in any one of Claims 1-5 which a light quantity control apparatus controls a light environment based on this while outputting to a control apparatus.

本発明は、太陽光と照明器具による人工光を併用して遺伝子組換え植物を栽培するにおいて、太陽光測定光量子センサで太陽光の光合成光量子束密度を検出し、太陽光が不足する際に、栽培用光量子センサの検出値を基に不足分を人工光で補光することで、電気エネルギーの消費を抑えて栽培することができるという優れた効果を発揮する。   In the present invention, when cultivating a genetically modified plant using sunlight and artificial light from a lighting fixture in combination, the photosynthesis photon flux density of sunlight is detected with a sunlight measurement photon sensor, and when sunlight is insufficient, By supplementing the deficiency with artificial light based on the detection value of the photon quantum sensor for cultivation, an excellent effect of cultivating while suppressing the consumption of electric energy is exhibited.

本発明の遺伝子組換え植物工場の一実施の形態を示す平面図である。It is a top view which shows one Embodiment of the genetically modified plant factory of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 図2の変形例を示す図である。It is a figure which shows the modification of FIG. 月別全天日射量とイネ栽培に必要な日射量の関係を示す図である。It is a figure which shows the relationship between the monthly solar radiation amount and the solar radiation amount required for rice cultivation. 図4における全天日射量の経時変化を示す図である。It is a figure which shows the time-dependent change of the total solar radiation amount in FIG. 図4において天空率50%としたときの月別全天日射量とイネ栽培に必要な日射量の関係を示す図である。It is a figure which shows the relationship between the monthly solar radiation amount when the sky rate is 50% in FIG. 4, and the solar radiation amount required for rice cultivation. 図6における全天日射量の経時変化を示す図である。It is a figure which shows the time-dependent change of the total solar radiation amount in FIG.

以下、本発明の好適な一実施の形態を添付図面に基づいて詳述する。   A preferred embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

図1は、本発明の遺伝子組換え植物工場の平面図を示し、東西に細長に形成した建屋10の南側に、内部に栽培室11が形成された採光室12が設けられ、北側に栽培以外の各種作業を行う作業室13が設けられる。   FIG. 1 shows a plan view of the genetically modified plant factory of the present invention, and a lighting room 12 having a cultivation room 11 formed therein is provided on the south side of a building 10 formed in an elongated shape in the east and west. A work chamber 13 for performing the various operations is provided.

作業室13は、育苗室14、制御室15、事務室16、製剤室17、不活化室18、籾すり・精米室19、脱穀・乾燥室20、イネ保管室21に区画形成される。   The work room 13 is partitioned into a seedling room 14, a control room 15, an office room 16, a preparation room 17, an inactivation room 18, a rice bran / rice milling room 19, a threshing / drying room 20, and a rice storage room 21.

採光室12の東西側にはエアロック室22E、22W、空調機械室23E、23Wが設けられ、その間に栽培準備室24を介して栽培室11が設けられる。   Airlock rooms 22E and 22W and air conditioning machine rooms 23E and 23W are provided on the east and west sides of the daylighting room 12, and the cultivation room 11 is provided through the cultivation preparation room 24 therebetween.

図2は、図1のA−A線断面図を示したものである。   FIG. 2 is a sectional view taken along line AA in FIG.

先ず採光室12は、作業室13の南側にガラス張りで形成される。この場合、採光室12のガラス屋根25は、作業室13から南側に傾斜するよう形成され、側壁26は、採光が必要でない下部はコンクリート壁などで形成し、上部はガラスで形成されるとよい。   First, the daylighting chamber 12 is formed with glass on the south side of the working chamber 13. In this case, the glass roof 25 of the daylighting chamber 12 is formed so as to incline to the south side from the working chamber 13, and the side wall 26 is preferably formed of a concrete wall or the like at the lower part where no daylighting is necessary, and is formed of glass at the upper part. .

採光室12内には、光要求量が大きい植物(イネ、ダイズ、コムギ、イチゴなどの果実)を栽培する栽培室11が設けられる。本実施の形態では、光要求量が大きい植物として、遺伝子組換えイネPを栽培する例を示し、栽培室11内には、遺伝子組換えイネPを養液栽培する栽培棚27が設けられる。   In the daylighting room 12, a cultivation room 11 for cultivating plants (fruits such as rice, soybeans, wheat, strawberries) having a large light requirement is provided. In the present embodiment, an example in which genetically modified rice P is cultivated as a plant having a large light requirement is shown, and a cultivation shelf 27 for hydroponically cultivating genetically modified rice P is provided in the cultivation room 11.

栽培室11のガラス天井29上には、照明室28が形成され、照明室28のガラス天井30は、採光室12のガラス屋根25と同じく南面に傾斜するように形成される。照明室28の制御室15側の壁28wに照明器具31が設けられる。   An illumination room 28 is formed on the glass ceiling 29 of the cultivation room 11, and the glass ceiling 30 of the illumination room 28 is formed so as to incline to the south surface in the same manner as the glass roof 25 of the daylighting room 12. A lighting fixture 31 is provided on the wall 28w of the lighting room 28 on the control room 15 side.

照明器具31は、メタルハライドランプ、ナトリウムランプ、ハロゲンランプ、LEDなどの光源と、光源からの光を反射する反射板とからなり、反射板としては、無影灯のように光源からの光がより広範囲に広がるように構成されるのが好ましい。照明器具31は、上下多段にかつ栽培室11に沿って多列に設けられ、各照明器具31毎、或いは上下多段毎や列毎に出力電圧可変のインバータ装置32により、光量可変に制御されるようになっている。   The luminaire 31 includes a light source such as a metal halide lamp, a sodium lamp, a halogen lamp, and an LED, and a reflection plate that reflects light from the light source. It is preferable to be configured to spread over a wide range. The lighting fixtures 31 are provided in multiple rows along the upper and lower stages and along the cultivation room 11, and are controlled so that the amount of light can be varied by the respective lighting fixtures 31, or the inverter devices 32 that can change the output voltage for each of the upper and lower rows or rows. It is like that.

照明室28のガラス天井30には、太陽光Sを栽培室11内に透過又は遮蔽する巻取式反射装置34が設けられる。巻取式反射装置34は、太陽光Sがガラス天井30を透過させるための紐やテープからなる透過部35sと、その透過部35sに連結され、ガラス天井30を覆って栽培室11内への太陽光Sを遮蔽すると共に照明器具31からの人工光を反射するアルミシートなどの反射部35rとからなる反射材35と、ガラス天井30の両側に設けられ、反射材35を両端から交互に巻き取って太陽光Sを透過又は遮蔽する巻取ロール36s、36rとで構成される。巻取式反射装置34は、栽培室11に太陽光Sを取り入れる際には、巻取ロール36rで反射材35を巻き取って、透過部35sがガラス天井30に位置するように、遮蔽する際には、巻取ロール36sで反射材35を逆に巻き取って、反射部35rがガラス天井30に位置するように反射材35をガラス天井30上で移動する。   The glass ceiling 30 of the illumination room 28 is provided with a winding type reflection device 34 that transmits or shields sunlight S into the cultivation room 11. The winding type reflection device 34 is connected to the transmission part 35 s made of a string or a tape for allowing sunlight S to pass through the glass ceiling 30, and is connected to the transmission part 35 s so as to cover the glass ceiling 30 and enter the cultivation room 11. A reflector 35 made of a reflecting portion 35r such as an aluminum sheet that shields sunlight S and reflects artificial light from the lighting fixture 31 and the glass ceiling 30 are provided on both sides, and the reflector 35 is alternately wound from both ends. And take-up rolls 36s and 36r that transmit or shield sunlight S. When taking up the sunlight S into the cultivation room 11, the take-up type reflection device 34 takes up the reflecting material 35 with the take-up roll 36 r and shields it so that the transmission part 35 s is located on the glass ceiling 30. In other words, the reflecting material 35 is wound up by the winding roll 36 s in reverse, and the reflecting material 35 is moved on the glass ceiling 30 so that the reflecting portion 35 r is positioned on the glass ceiling 30.

図3は、採光室12内の栽培室11を変形した変形例を示すものである。   FIG. 3 shows a modification in which the cultivation room 11 in the daylighting room 12 is modified.

この図3の変形例は、図2のように栽培室11の上部に照明室28を形成する代わりに、栽培室11の南北側に照明室38を形成し、照明室38内に上下多段で多列に照明器具31を設け、栽培室11の天井のガラス天井29上に、太陽光Sを栽培室11内に透過又は遮蔽する巻取式反射装置34を設けたものであり、他の構成は図2と同じである。   3, instead of forming the illumination room 28 in the upper part of the cultivation room 11 as shown in FIG. 2, the illumination room 38 is formed on the north-south side of the cultivation room 11, and the illumination room 38 is divided into upper and lower stages. The lighting fixtures 31 are provided in multiple rows, and a wind-up type reflection device 34 that transmits or shields the sunlight S into the cultivation room 11 is provided on the glass ceiling 29 of the ceiling of the cultivation room 11. Is the same as FIG.

以下、図2と図3をまとめて説明すると、採光室12のガラス屋根25の下部には、太陽光Sの光合成有効光量子束密度を検出する太陽光測定光量子センサ37が設けられ、栽培室11内には太陽光Sと人工光の光合成有効光量子束密度を検出する栽培用光量子センサ39が設けられる。   Hereinafter, when FIG. 2 and FIG. 3 are demonstrated collectively, the sunlight measurement photon sensor 37 which detects the photosynthesis effective photon flux density of sunlight S is provided in the lower part of the glass roof 25 of the lighting room 12, and the cultivation room 11 Inside, the photon sensor 39 for cultivation which detects the photosynthesis effective photon flux density of sunlight S and artificial light is provided.

太陽光測定光量子センサ37と栽培用光量子センサ39の検出した光合成有効光量子束密度は、制御室15内等に設けた光量制御装置40に入力される。   The photosynthesis effective photon flux density detected by the sunlight measuring photon sensor 37 and the cultivation photon sensor 39 is input to the light quantity control device 40 provided in the control room 15 or the like.

光量制御装置40は、太陽光測定光量子センサ37と栽培用光量子センサ39の検出値に基づいて遺伝子組換えイネPの光環境を調整すべく巻取式反射装置34を駆動して反射材35による太陽光Sの透過又は遮蔽を行うと共に、インバータ装置32で照明器具31からの人工光の光量を制御するようになっている。   The light quantity control device 40 drives the take-up type reflection device 34 to adjust the light environment of the genetically modified rice P based on the detection values of the solar light measurement photon sensor 37 and the photon photon sensor 39 for cultivation. While transmitting or blocking sunlight S, the inverter device 32 controls the amount of artificial light from the luminaire 31.

この光量制御装置40に入力された太陽光測定光量子センサ37と栽培用光量子センサ39の検出値は、栽培管理装置42に入力され、栽培管理装置42が、遺伝子組換えイネPの光環境を判断し、遺伝子組換えイネPの生育に合わせた最適な光環境となるように光量制御装置40を介して巻取式反射装置34を制御すると共にインバータ装置32を制御するようになっている。   The detection values of the solar light measurement photon sensor 37 and the photon photon sensor 39 input to the light quantity control device 40 are input to the cultivation management device 42, and the cultivation management device 42 determines the light environment of the genetically modified rice P. In addition, the winding reflection device 34 and the inverter device 32 are controlled via the light amount control device 40 so as to obtain an optimal light environment in accordance with the growth of the genetically modified rice P.

栽培管理装置42には、日時データ、天候データ(月別、日別の気温と全天日射量)が記憶されると共に、生育に応じた気温や日射データ、栽培中の遺伝子組換えイネPの生育状況などが入力されるようになっており、遺伝子組換えイネPの生育時期に応じて最適な基準光量子束密度値、下限光量子束密度値が設定できるようになっている。また栽培管理装置42は、光量制御装置40から入力された太陽光測定光量子センサ37と栽培用光量子センサ39の検出値を経時的に積算して、生育中の遺伝子組換えイネPが受ける太陽光と人工光の光量を積算できるようになっている。   The cultivation management device 42 stores date / time data and weather data (monthly and daily temperature and total solar radiation amount), temperature and solar radiation data according to growth, and growth of genetically modified rice P during cultivation. The situation and the like are input, and an optimum reference photon flux density value and a lower limit photon flux density value can be set according to the growth time of the transgenic rice P. Moreover, the cultivation management apparatus 42 integrates the detection values of the sunlight measurement photon sensor 37 and the cultivation photon sensor 39 input from the light quantity control unit 40 over time, and sunlight received by the growing genetically modified rice P. The amount of artificial light can be integrated.

栽培管理装置42は、遺伝子組換えイネPの生育時期に応じて最適な基準光量子束密度値と下限光量子束密度値を設定し、光量制御装置40に入力された太陽光測定光量子センサ37と栽培用光量子センサ39の検出値に基づいて、巻取式反射装置34による反射材35の透過・遮蔽と照明器具31による光量(補光量)を制御するようになっている。   The cultivation management device 42 sets the optimum reference photon flux density value and the lower limit photon flux density value according to the growth period of the genetically modified rice P, and the solar light measurement photon sensor 37 input to the light amount control device 40 and the cultivation. Based on the detection value of the photon quantum sensor 39, the transmission and shielding of the reflecting material 35 by the winding type reflection device 34 and the light quantity (complementary light quantity) by the lighting fixture 31 are controlled.

以下に、栽培管理装置42と光量制御装置40による光環境の調整について説明する。   Below, adjustment of the light environment by the cultivation management apparatus 42 and the light quantity control apparatus 40 is demonstrated.

先ず植物にとって光環境は最も重要な要素の一つであり、緑色植物は光環境下で光合成を行い、光エネルギーを使って炭素同化を行うことで成長している。光環境が植物に及ぼす影響は大きく分けて2つに分類され、1つは、光合成速度(成長)に影響する光量、もう一つは発芽や開花、発根などの形態形成に影響する波長範囲の光質である。   First, the light environment is one of the most important elements for plants, and green plants grow by photosynthesis in the light environment and carbon assimilation using light energy. The effects of the light environment on plants can be broadly divided into two categories, one is the amount of light that affects the rate of photosynthesis (growth), and the other is the wavelength range that affects morphogenesis such as germination, flowering, and rooting. The light quality.

一般に稲作(一期作)は、3〜4月に苗作りと育苗、5月前後に田植え、6〜7月に出穂と開花及び結実、9月に収穫というサイクルとなり、これには温度と日射量とが密接に関連する。   In general, rice farming (one-phase cropping) is a cycle of seedling and raising seedlings from March to April, planting rice around May, heading, flowering and fruiting from June to July, and harvesting in September. The quantity is closely related.

太陽からの日射の波長範囲は、約300〜2500nmで、波長380nm以下が紫外線、380〜780nmが可視光、780nm以上が赤外線である。植物の生育との関連では、波長域400〜700nmは光合成有効放射で光合成に関与し、700〜780nmは遠赤外放射で植物の発芽、開花、発根など、形態形成に関与する。   The wavelength range of solar radiation from the sun is about 300 to 2500 nm, the wavelength of 380 nm or less is ultraviolet, 380 to 780 nm is visible, and 780 nm or more is infrared. In relation to plant growth, a wavelength range of 400 to 700 nm is involved in photosynthesis with photosynthesis effective radiation, and 700 to 780 nm is involved in morphogenesis such as germination, flowering and rooting of plants with far infrared radiation.

そこで、太陽光を利用した遺伝子組換えイネPを栽培する上で、栽培室11内で利用できる全天日射量の予測と、必要な補光量(全天日射量)の関係を検討した。   Then, when cultivating genetically modified rice P using sunlight, the relationship between the prediction of the total solar radiation amount that can be used in the cultivation room 11 and the necessary supplementary light amount (total solar radiation amount) was examined.

月別全天日射量:
国内の月別全天日射量は、図4に示したように気象庁の統計資料の1972〜2000年の29年間の平均値を利用した。ここで全天日射量とは、単位面積の水平面に入射する波長約300〜2500nmの太陽放射量であり、単位は、[MJ/m2]で表される。
Total solar radiation by month:
As shown in FIG. 4, the monthly total solar radiation amount in Japan used the average value for 29 years from 1972 to 2000 in the statistical data of the Japan Meteorological Agency. Here, the total solar radiation amount is a solar radiation amount having a wavelength of about 300 to 2500 nm incident on a horizontal surface of a unit area, and the unit is represented by [MJ / m 2 ].

イネ栽培に必要な日射量は、PF−PJ試験で実績のあるPPFD(Photosynthetic Photon Flux Density;光合成有効光量子束密度)で、1000[μmolm-2-1]で、明期12時間がよいとされており、全天日射量からPPFDを換算した。 The amount of solar radiation necessary for rice cultivation is 1000 [μmolm −2 s −1 ] with a PPFD (Photosynthesis Photoflux Density) proven in the PF-PJ test, and a light period of 12 hours is good. The PPFD was converted from the total solar radiation.

栽培条件:栽培ベット面における光合成有効光量子束密度PPFD=1,000μmolm-2-1の条件で明期12時間
PPFDから全天日射量(瞬間値)Igrobalへの換算式:
PPFD[μmolm-2-1]=1.8988×Igrobal[Wm-2
全天日射量の瞬間値と積算値の関係
1W=1J/s
計算:
全天日射量(日積算値)=1,000μmolm-2-1/1.8988×3,600s/h×12h
=22.8MJ/m2
全天日射量(時間積算値)=1.9MJ/m2
Cultivation conditions: Photosynthesis effective photon flux density on the cultivation bed surface PPFD = 1,000 μmolm −2 s −1 12 hours light period PPFD to global solar radiation (instantaneous value) Conversion formula from I global :
PPFD [μmolm −2 s −1 ] = 1.89888 × I global [Wm −2 ]
Relationship between instantaneous value of total solar radiation and integrated value 1W = 1J / s
Calculation:
Total solar radiation (daily integrated value) = 1,000 μmolm −2 s −1 /1.8988×3,600 s / h × 12 h
= 22.8 MJ / m 2
Total solar radiation (time integrated value) = 1.9 MJ / m 2

月別全天日射量とイネ栽培時の日射量の関係を図4に示した。   The relationship between the monthly total solar radiation amount and the solar radiation amount during rice cultivation is shown in FIG.

図4は、1972〜2000年の那覇、札幌、東京の全天日射量を月別に月平均値とし、その月別の変化を1日当たりの全天日射量で示したものである。   FIG. 4 shows the monthly average of the daily solar radiation in Naha, Sapporo and Tokyo from 1972 to 2000, and shows the monthly change in the daily solar radiation.

この図4では、PPFD=1000で、12時間明期の場合のイネ栽培は、22.8MJ/m2であり、12時間暗期を考慮すれば、3〜10月は、那覇〜札幌まで、全天日射量は、基本的には足りている。図4では、札幌の全天日射量より、東京の全天日射量が低い結果となっている。 In this FIG. 4, PPFD = 1000, rice cultivation in the case of 12 hours light season is 22.8 MJ / m 2 , and considering 12 hours dark period, from March to October, Naha to Sapporo, The total amount of solar radiation is basically sufficient. In FIG. 4, the total solar radiation amount in Tokyo is lower than the total solar radiation amount in Sapporo.

そこで、2009年の東京での季節が異なる4日間の全天日射量の時間変化を図5に示した。   Thus, FIG. 5 shows the time variation of global solar radiation for four days with different seasons in Tokyo in 2009.

図5は、2009年の東京での季節が異なる3月、8月、9月、12月の平均値を示した4日間の全天日射量の時間変化を示したものである。   FIG. 5 shows the time variation of the total solar radiation for four days showing the average values in March, August, September, and December in different seasons in Tokyo in 2009.

この図5より、PPFD=1000で、12時間明期の時間積算の日射量は、1.9MJ/m2であり、8時〜16時までは、PPFD=1000を超える全天日射量となっている。 From FIG. 5, when PPFD = 1000, the amount of solar radiation for the 12-hour light period is 1.9 MJ / m 2. From 8 o'clock to 16 o'clock, the total solar radiation amount exceeds PPFD = 1000. ing.

しかし、遺伝子組換え植物工場では、図2、図3で説明したように、遺伝子拡散防止のために栽培室11と採光室12という二重構造が必要である。ここでは、外側にガラス採光室12、内側に太陽光を透過するガラス天井を有する栽培室11の二室から構成され、栽培室11内で利用できる太陽からの日射量は天空率により減少するため、図4、図5の全天日射量に補正を加える必要がある。   However, in the genetically modified plant factory, as described with reference to FIGS. 2 and 3, a double structure of the cultivation room 11 and the daylighting room 12 is necessary to prevent gene diffusion. Here, it is composed of two rooms: a glass daylighting room 12 on the outside and a cultivation room 11 having a glass ceiling that transmits sunlight on the inside, and the amount of solar radiation that can be used in the cultivation room 11 is reduced by the sky factor. It is necessary to add correction to the total solar radiation in FIGS.

そこで、栽培室11内で天空率50%と仮定した場合の天空率50%時の月別全天日射量を図6に示した。   Therefore, FIG. 6 shows the monthly total solar radiation amount when the sky rate is 50% in the cultivation room 11 when the sky rate is 50%.

図6では、天空率50%として、図4の全天日射量に0.5を乗じたものである。   In FIG. 6, the total solar radiation amount in FIG. 4 is multiplied by 0.5 with a sky rate of 50%.

また図7に、図5の全天日射量に0.5を乗じた全天日射量(日積算)の経時変化を示した。   Further, FIG. 7 shows a change with time of the total solar radiation amount (daily integration) obtained by multiplying the total solar radiation amount of FIG. 5 by 0.5.

この東京の天空率50%の全天日射量では、PPFD=1000を超える全天日射量となる時間はなく、太陽光以外に人工光による補光が必要となることがわかる。   It can be seen that with this total solar radiation amount of 50% in Tokyo, there is no time for the total solar radiation amount to exceed PPFD = 1000, and supplementary light by artificial light is required in addition to sunlight.

ここで、天空率は、栽培用光量子センサ39の検出値を、太陽光測定光量子センサ37の検出値で除することで求めることができ、また栽培室11と採光室12のガラスが汚れた際に、これらセンサ37,39で求めた天空率で、その汚れ具合もわかる。   Here, the sky rate can be obtained by dividing the detection value of the cultivation photon sensor 39 by the detection value of the sunlight measurement photon sensor 37, and when the glass of the cultivation room 11 and the daylighting room 12 is soiled. In addition, the degree of dirt is also known from the sky rate obtained by these sensors 37 and 39.

PPFD=1000は、イネを人工光で栽培するときの基準光量子束密度値であるが、この基準光量子束密度値は、イネが、苗から出穂と開花及び結実まで一定ではなく、苗のうちは少なく、生育に従って、PPFD=1000が必要で、開花、結実では、PPFD=600程度でよいとされる。   PPFD = 1000 is a reference photon flux density value when rice is cultivated with artificial light, but this reference photon flux density value is not constant from rice seedling to heading, flowering and fruiting. According to growth, PPFD = 1000 is required, and PPFD = 600 is sufficient for flowering and fruiting.

そこで栽培管理装置42は、遺伝子組換えイネPの生育に応じて適正な基準光量子束密度値と下限光量子束密度値を設定し、太陽光測定光量子センサ37で検出された光量子束密度が下限光量子束密度値より下回るときには、光量制御装置40に遮蔽指示を出力し、巻取式反射装置34を駆動して反射材35の反射部35rでガラス天井30、29を遮蔽するように制御すると共に照明器具31を点灯し、栽培用光量子センサ39の検出値から、栽培室11内の光量子束密度値が基準光量子束密度値以上となるように光量制御装置40を介してインバータ装置32の出力電圧を調整する。   Therefore, the cultivation management device 42 sets an appropriate reference photon flux density value and a lower limit photon flux density value according to the growth of the transgenic rice P, and the photon flux density detected by the sunlight measuring photon sensor 37 is lower limit photon. When the value is lower than the bundle density value, a shielding instruction is output to the light amount control device 40, and the winding type reflector 34 is driven to control the glass ceilings 30 and 29 to be shielded by the reflecting portion 35r of the reflector 35 and illumination. The instrument 31 is turned on, and the output voltage of the inverter device 32 is set via the light amount control device 40 so that the photon flux density value in the cultivation room 11 is equal to or higher than the reference photon flux density value from the detected value of the photon sensor 39 for cultivation. adjust.

また栽培管理装置42は、太陽光測定光量子センサ37で検出された光量子束密度が下限光量子束密度値以上のときには、反射材35の透過部35sを栽培室11のガラス天井30、29に位置させ、太陽光Sを栽培室11内に取り込むようにし、栽培用光量子センサ39の検出値から、栽培室11内の光量子束密度値が、基準光量子束密度値以上のときは照明器具31を消灯し、基準光量子束密度値以下、下限光量子束密度値以上のときは、太陽光Sの不足分を照明器具31で補光量を制御する。この際、インバータ装置32の出力電圧を調整したり、点灯する照明器具31の点灯本数制御を同時に行うようにする。   Moreover, the cultivation management apparatus 42 positions the transmission part 35s of the reflector 35 on the glass ceilings 30 and 29 of the cultivation room 11 when the photon flux density detected by the sunlight measurement photon sensor 37 is equal to or higher than the lower limit photon flux density value. The solar light S is taken into the cultivation room 11, and when the photon flux density value in the cultivation room 11 is equal to or higher than the reference photon flux density value from the detection value of the cultivation photon sensor 39, the lighting fixture 31 is turned off. When the reference photon flux density value is less than or equal to the lower limit photon flux density value, the supplementary light amount is controlled by the lighting fixture 31 for the shortage of sunlight S. At this time, the output voltage of the inverter device 32 is adjusted, and the lighting number control of the lighting fixture 31 to be lit is performed simultaneously.

なお、詳細は省略するが、栽培管理装置42は、図1に示した空調機械室23E、23Wの空調機を制御し、栽培室11の温度環境を制御し、また栽培棚27に供給する養液の循環量も制御するように構成される。   Although omitted in detail, the cultivation management device 42 controls the air conditioners 23E and 23W shown in FIG. 1, controls the temperature environment of the cultivation room 11, and supplies the cultivation shelf 27 with the cultivation. The liquid circulation amount is also controlled.

このように、太陽光測定光量子センサ37と栽培用光量子センサ39で光量子束密度を検出し、遺伝子組換えイネPの生育中に太陽光Sを栽培室11内に極力取り入れるようにすると共に不足分を照明器具31で補光することで、その消費電力を略半分に低減できる。   In this way, the photon flux density is detected by the sunlight measuring photon sensor 37 and the cultivation photon sensor 39 so that the sunlight S is taken into the cultivation room 11 as much as possible during the growth of the genetically modified rice P, and the deficiency. By supplementing the light with the lighting fixture 31, the power consumption can be reduced to substantially half.

よって、通常人工光で栽培して収穫される玄米は、1kg当たり約8万円のコストがかかるが、太陽光を併用することで1kg当たり約4万円のコストとすることが可能となる。   Therefore, brown rice cultivated and harvested with normal artificial light costs about 80,000 yen per kg, but it can be made about 40,000 yen per kg by using sunlight together.

また、栽培管理装置42は、日時データ、天候データ(月別、日別の気温と全天日射量)を記憶していると共に、生育に応じた気温や日射データ、栽培中の遺伝子組換えイネPの生育状況が入力されており、これらから、基準光量子束密度値と下限光量子束密度値を設定すると共にこれを基に生育中の遺伝子組換えイネPの光環境を制御するが、太陽光測定光量子センサ37と栽培用光量子センサ39の検出値を経時的に積算することで、生育中の遺伝子組換えイネPが受ける太陽光と人工光の光量を積算することが可能であり、これら積算した光量と遺伝子組換えイネPから収穫された玄米の収穫量の関係を求めて設定した基準光量子束密度値の設定値を評価することで、更に消費電力を低減できる基準光量子束密度値と下限光量子束密度値を求めることも可能となる。   The cultivation management device 42 stores date and time data, weather data (monthly and daily temperature and total solar radiation amount), temperature and solar radiation data according to growth, and genetically modified rice P during cultivation. From these, the reference photon flux density value and the lower limit photon flux density value are set, and the light environment of the transgenic rice P being grown is controlled based on the reference photon flux density value. By integrating the detected values of the photon sensor 37 and the photon sensor 39 for cultivation over time, it is possible to integrate the amount of sunlight and artificial light received by the transgenic rice P during growth. The reference photon flux density value and lower limit photon that can further reduce power consumption by evaluating the set value of the reference photon flux density value set by determining the relationship between the amount of light and the yield of brown rice harvested from genetically modified rice P Bundle density It is also possible to seek.

上述したようにイネの生育との関連では、波長域400〜700nmは光合成有効放射で光合成に関与し、太陽光Sの波長範囲と分光強度は、光合成に関与する400〜700nm帯に高い分光強度分布をもっている。   As described above, in relation to the growth of rice, the wavelength range of 400 to 700 nm is involved in photosynthesis with photosynthesis effective radiation, and the wavelength range and spectral intensity of sunlight S are high in spectral intensity in the 400 to 700 nm band involved in photosynthesis. Has a distribution.

照明器具31として使用するメタルハライドランプは、封入するハロゲン金属により分光強度分布が相違するが、400〜700nm帯に分光強度のピークをもつ、沃化ナトリウム、沃化スカンジウムなどを封入したものが好ましい。また、イネの開花、発根など、形態形成に関与する光は、700〜780nmの遠赤外放射であり、イネの開花時期にあわせて、照明器具31の光源として、700〜780nmの波長を放射するナトリウムランプ、ハロゲンランプ、LEDなどを用いて照射することで、より効率的な照明が行える。   The metal halide lamp used as the lighting fixture 31 has a spectral intensity distribution that varies depending on the halogen metal to be enclosed, but is preferably one in which sodium iodide, scandium iodide or the like having a spectral intensity peak in the 400 to 700 nm band is encapsulated. The light involved in morphogenesis, such as flowering and rooting of rice, is far-infrared radiation of 700 to 780 nm, and the light source of the luminaire 31 has a wavelength of 700 to 780 nm according to the flowering time of rice. More efficient illumination can be achieved by irradiating with a radiating sodium lamp, halogen lamp, LED or the like.

よって、栽培管理装置42は、照明器具31で光環境を調整する際に、遺伝子組換えイネPの生育に合わせて、種々の出力放射波長をもつ光源の照明器具31を選択して点灯することで、より効率の良い照明が行える。   Therefore, when adjusting the light environment with the lighting fixture 31, the cultivation management device 42 selects and turns on the lighting fixture 31 of the light source having various output radiation wavelengths according to the growth of the genetically modified rice P. Therefore, more efficient lighting can be performed.

このように、本発明は、遺伝子組換えイネPの栽培に応じて最適な光環境、温度環境を調整することで、短期間での遺伝子組換えイネPの栽培が可能となり、年間で、3乃至4期作が可能となる。   Thus, the present invention enables cultivation of genetically modified rice P in a short period of time by adjusting the optimal light environment and temperature environment according to the cultivation of genetically modified rice P. Thousands of seasons are possible.

10 建屋
11 栽培室
12 採光室
31 照明器具
34 巻取式反射装置
37 太陽光測定光量子センサ
39 栽培用光量子センサ
40 光量制御装置
DESCRIPTION OF SYMBOLS 10 Building 11 Cultivation room 12 Daylighting room 31 Lighting fixture 34 Winding-type reflector 37 Solar photometry photon sensor 39 Cultivating photon sensor 40 Light quantity control device

Claims (6)

建屋に採光室を形成すると共に採光室内に、光要求量が大きい遺伝子組換え植物を栽培する栽培室を形成し、太陽光を採光室を通して栽培室内に取り入れると共に栽培室に人工光を照射する照明器具を設けた遺伝子組換え植物工場において、上記栽培室の上方の採光室に設けられ、太陽光を栽培室内に透過又は遮蔽すべく移動自在な反射材を有し、遮蔽時に反射材で照明器具からの人工光を反射するための巻取式反射装置と、太陽光の光合成有効光量子束密度を検出する太陽光測定光量子センサと、上記栽培室に設けられ、遺伝子組換え植物に当たる光合成有効光量子束密度を検出する栽培用光量子センサと、これら光量子センサからの光合成有効光量子束密度の検出値が入力され、その検出値に基づいて遺伝子組換え植物の光環境を調整すべく上記巻取式反射材による太陽光の透過又は遮蔽を行うと共に、上記照明器具からの人工光の光量を制御する光量制御装置とを備え
巻取式反射装置は、栽培室に太陽光を透過する透過部とその透過部に連結され栽培室内への太陽光を遮蔽すると共に上記照明器具からの人工光を反射する反射部とからなる反射材と、天井の両側に設けられ上記反射材を交互に巻き取って太陽光を透過又は遮蔽する巻取ロールからなることを特徴とする遺伝子組換え植物工場。
A lighting room that forms a daylighting room in the building and a cultivation room for cultivating genetically modified plants with a large light requirement in the daylighting room, and illuminates the cultivation room with artificial light while taking sunlight into the cultivation room through the daylighting room In a genetically modified plant factory where equipment is provided, the lighting equipment is provided in a daylighting room above the cultivation room and has a movable reflecting material to transmit or shield sunlight into the cultivation room. A wind-up type reflection device for reflecting artificial light from the sun, a photometric sensor for detecting sunlight photosynthesis effective photon flux density, and a photosynthesis effective photon flux that hits a genetically modified plant provided in the cultivation room Photon sensors for cultivation that detect density, and detected values of photosynthesis effective photon flux density from these photon sensors are input, and the light environment of genetically modified plants is adjusted based on the detected values Ku performs transmission or shielding of the sunlight by the web of the reflector, and a light quantity control device for controlling the amount of artificial light from the luminaire,
The winding type reflection device includes a transmission part that transmits sunlight to the cultivation room and a reflection part that is connected to the transmission part and shields sunlight into the cultivation room and reflects artificial light from the lighting apparatus. A genetically modified plant factory comprising a material and a winding roll that is provided on both sides of the ceiling and alternately winds or shields the reflective material .
上記照明器具は、インバータ装置で光量可変に制御され、上記光量制御装置は、上記インバータ装置を介して上記照明器具の光量を制御する請求項1に記載の遺伝子組換え植物工場。   The genetically modified plant factory according to claim 1, wherein the lighting fixture is controlled to be variable in light quantity by an inverter device, and the light quantity control device controls the light quantity of the lighting fixture via the inverter device. 上記光量制御装置は、太陽光測定光量子センサで検出された光合成有効光量子束密度が基準光量子束密度値を超えるとき巻取式反射装置を駆動して栽培室内に太陽光を透過し、上記照明器具を消灯する請求項1記載の遺伝子組換え植物工場。   The light amount control device drives the take-up reflection device to transmit sunlight into the cultivation room when the photosynthesis effective photon flux density detected by the sunlight measuring photon sensor exceeds the reference photon flux density value. The genetically modified plant factory according to claim 1, wherein the plant is turned off. 上記光量制御装置は、太陽光測定光量子センサで検出された光合成有効光量子束密度が基準光量子束密度値以下で、かつ下限光量子束密度値以上のとき、栽培室に太陽光を透過したまま、栽培用光量子センサで検出される光合成有効光量子束密度が基準光量子束密度値を超えるように上記照明器具での補光量を制御する請求項記載の遺伝子組換え植物工場。 The light amount control device cultivates while transmitting sunlight to the cultivation room when the photosynthesis effective photon flux density detected by the sunlight measuring photon sensor is not more than the reference photon flux density value and not less than the lower limit photon flux density value. The genetically modified plant factory according to claim 3, wherein the amount of complementary light in the lighting fixture is controlled so that the photosynthetic effective photon flux density detected by the photon sensor for a sensor exceeds a reference photon flux density value. 上記光量制御装置は、太陽光測定光量子センサで検出された光合成有効光量子束密度が下限光量子束密度値を下回るとき巻取式反射装置を駆動して栽培室内への太陽光を遮蔽し、栽培用光量子センサで検出される光合成有効光量子束密度が、基準光量子束密度値を超えるように上記照明器具での照明量を制御する請求項1記載の遺伝子組換え植物工場。   The light amount control device drives the take-up type reflection device when the photosynthesis effective photon flux density detected by the sunlight measuring photon sensor is lower than the lower limit photon flux density value to shield sunlight into the cultivation room, The genetically modified plant factory according to claim 1, wherein the amount of illumination in the lighting fixture is controlled so that a photosynthetic effective photon flux density detected by the photon sensor exceeds a reference photon flux density value. 上記光量制御装置に入力された太陽光測定光量子センサと栽培用光量子センサの検出値は、栽培管理装置に入力され、その栽培管理装置に、遺伝子組換え植物の生育に応じた光環境の光量子束密度値が記憶され、上記栽培管理装置は、遺伝子組換え植物の生育時期に応じて基準光量子束密度値と下限光量子束密度値を設定し、その設定値を上記光量制御装置に出力すると共にこれに基づいて光量制御装置が光環境を制御する請求項1〜のいずれかに記載の遺伝子組換え植物工場。 The detection values of the sunlight measuring photon sensor and the photon sensor for cultivation input to the light quantity control device are input to the cultivation management device, and the photon flux of the light environment according to the growth of the genetically modified plant is input to the cultivation management device. A density value is stored, and the cultivation management device sets a reference photon flux density value and a lower limit photon flux density value according to the growth time of the genetically modified plant, and outputs the set values to the light amount control device and The genetically modified plant factory according to any one of claims 1 to 5 , wherein the light quantity control device controls the light environment based on the above.
JP2011083563A 2011-04-05 2011-04-05 Genetically modified plant factory Active JP5755482B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011083563A JP5755482B2 (en) 2011-04-05 2011-04-05 Genetically modified plant factory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011083563A JP5755482B2 (en) 2011-04-05 2011-04-05 Genetically modified plant factory

Publications (2)

Publication Number Publication Date
JP2012217352A JP2012217352A (en) 2012-11-12
JP5755482B2 true JP5755482B2 (en) 2015-07-29

Family

ID=47269581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011083563A Active JP5755482B2 (en) 2011-04-05 2011-04-05 Genetically modified plant factory

Country Status (1)

Country Link
JP (1) JP5755482B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105145184A (en) * 2015-08-12 2015-12-16 东南大学 Sunlight greenhouse intelligent temperature control system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6091927B2 (en) * 2013-03-01 2017-03-08 シャープ株式会社 Auxiliary light system
KR101569420B1 (en) 2013-03-28 2015-11-16 충청남도 Solar light supplying system for multi-layered plant cultivation facility
EP2823703A1 (en) 2013-07-10 2015-01-14 Heliospectra AB Method and system for controlling growth of a plant
JP6461722B2 (en) * 2015-06-12 2019-01-30 株式会社竹中工務店 Plant factory
KR101686220B1 (en) * 2015-09-15 2016-12-16 (주)인더텍 Portable air cleaning system moss filter
JP6252959B2 (en) * 2016-04-01 2017-12-27 広島県 House cultivation control apparatus and method
JP6862682B2 (en) * 2016-05-30 2021-04-21 東洋製罐グループホールディングス株式会社 Hydroponics system, hydroponics control device, hydroponics method and program
CN107114125A (en) * 2017-06-25 2017-09-01 江苏福利达农业科技有限公司 A kind of cultivating edible device for being easy to light filling
US10881051B2 (en) 2017-09-19 2021-01-05 Agnetix, Inc. Fluid-cooled LED-based lighting methods and apparatus for controlled environment agriculture
CN112351676B (en) * 2018-05-04 2023-09-26 阿格尼泰克斯股份有限公司 Methods, devices, and systems for illumination and distributed sensing in a controlled agricultural environment
JP2020103134A (en) * 2018-12-27 2020-07-09 株式会社Nttファシリティーズ Plant cultivation system, plant cultivation method and program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5733520A (en) * 1980-08-05 1982-02-23 Seiwa Kagaku Kk Plant artificial growing method and apparatus
JPS62282526A (en) * 1986-05-30 1987-12-08 新技術事業団 Light control unit of plant growing factory
JP4815644B2 (en) * 2006-12-28 2011-11-16 鹿島建設株式会社 Genetically modified plant factory

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105145184A (en) * 2015-08-12 2015-12-16 东南大学 Sunlight greenhouse intelligent temperature control system

Also Published As

Publication number Publication date
JP2012217352A (en) 2012-11-12

Similar Documents

Publication Publication Date Title
JP5755482B2 (en) Genetically modified plant factory
EP2197261B1 (en) Greenhouse system
DK2278870T3 (en) METHOD AND APPARATUS FOR USING LIGHT-EMITTING DIODES IN A GREENHOUSE ENVIRONMENT
CN104869806A (en) Horticulture lighting interface for interfacing at least one lighting system
US5269093A (en) Method and apparatus for controlling plant growth with artificial light
KR101296842B1 (en) Intelligent artificial light control system for plant factory combination of solar power
US11212970B1 (en) Growing system and method
JP2020528757A (en) Dimming method for constant light intensity
JP2015526070A (en) Method for stimulating plant growth, apparatus and method for calculating cumulative light quantity
KR102285707B1 (en) Plant cultivation apparatus and plant cultivation method using light source for plant cultivation
JP2003339236A (en) Lighting device and apparatus for plant growth, and method for plant growth
CN105830685B (en) A method of cucumber seedling-raising is carried out with LED plant lamp
JP4995476B2 (en) Cultivation method to improve sugar content of solanaceous plants
Lu et al. Supplemental lighting for greenhouse-grown fruiting vegetables
JP2003204718A (en) Method and system for cultivating sunny lettuce
CN105766506A (en) Rice breeding technology based on LED plant lamp in absence of natural light
Dănilă et al. Efficient lighting system for greenhouses
CN207005820U (en) A kind of imitative solar irradiation LED plant lamps
CN105660216A (en) Technology for culturing hot pepper seedlings by applying LED plant lamps
US20220061227A1 (en) Devices for an optimized, high-intensity, horticultural, led luminaire having a regulated photosynthetic flux density
JP6233623B2 (en) Light control device for plant growth, light control method, light control program, and data collection device for light control
CN102835284A (en) Novel technology for regulating illumination of solar greenhouse
KR20120074075A (en) Module type plant factory constructure
CN111683440A (en) LED light environment control system for plant factory seedling exercising and production method
KR101699896B1 (en) LED array system for the growth of crops

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150527

R150 Certificate of patent or registration of utility model

Ref document number: 5755482

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250