JP5752511B2 - Solar thermal collector and solar thermal power generation system - Google Patents

Solar thermal collector and solar thermal power generation system Download PDF

Info

Publication number
JP5752511B2
JP5752511B2 JP2011165940A JP2011165940A JP5752511B2 JP 5752511 B2 JP5752511 B2 JP 5752511B2 JP 2011165940 A JP2011165940 A JP 2011165940A JP 2011165940 A JP2011165940 A JP 2011165940A JP 5752511 B2 JP5752511 B2 JP 5752511B2
Authority
JP
Japan
Prior art keywords
heat
solar
collector
pipe
radiation shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011165940A
Other languages
Japanese (ja)
Other versions
JP2013029252A (en
Inventor
高橋 政彦
政彦 高橋
山下 勝也
勝也 山下
賀浩 谷山
賀浩 谷山
須山 章子
章子 須山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2011165940A priority Critical patent/JP5752511B2/en
Publication of JP2013029252A publication Critical patent/JP2013029252A/en
Application granted granted Critical
Publication of JP5752511B2 publication Critical patent/JP5752511B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/12Light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S40/00Safety or protection arrangements of solar heat collectors; Preventing malfunction of solar heat collectors
    • F24S40/50Preventing overheating or overpressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、太陽光を集光し集熱して熱冷媒を加熱する太陽熱集熱器、及びこの太陽熱集熱器を備えた太陽熱発電システムに関する。   The present invention relates to a solar heat collector that collects sunlight and collects heat to heat a thermal refrigerant, and a solar thermal power generation system including the solar heat collector.

地球温暖化の対策として再生可能エネルギー利用の開発が進められており、一部で実用化もなされている。その一つに集光型太陽熱発電システム(CSP)がある。この太陽熱発電システム(CSP)としては特許文献1等が知られており、図9にその一例を示す。   Development of the use of renewable energy is being promoted as a countermeasure against global warming, and some have been put into practical use. One of them is a concentrating solar power generation system (CSP). Patent Document 1 is known as this solar thermal power generation system (CSP), and an example thereof is shown in FIG.

この集光型太陽熱発電システム100は、太陽熱集熱器104を並べた集光・集熱系101と、発電系102と、蓄熱系103とを有して構成される。集光・集熱系101では、太陽熱集熱器104が太陽光を集光し吸収して熱エネルギーに変換(即ち集熱)して、熱媒体を400℃まで加熱する。この熱媒体を発電系102の蒸気発生器105、過熱器106に供給して高温高圧の蒸気を発生させ、蒸気タービン107を回転させることで、発電機108を駆動し発電する。   This concentrating solar thermal power generation system 100 includes a condensing / heat collecting system 101 in which solar heat collectors 104 are arranged, a power generating system 102, and a heat storage system 103. In the condensing / heat collecting system 101, the solar heat collector 104 collects and absorbs sunlight and converts it into heat energy (that is, heat collection) to heat the heat medium to 400 ° C. This heat medium is supplied to the steam generator 105 and superheater 106 of the power generation system 102 to generate high-temperature and high-pressure steam, and by rotating the steam turbine 107, the generator 108 is driven to generate power.

このような太陽熱発電システム100の集光・集熱系101に用いられている太陽熱集熱器104としては特許文献2などが知られており、その構成の一例を図10に示す。   Patent document 2 etc. are known as the solar heat collector 104 used for the condensing and heat collecting system 101 of such a solar thermal power generation system 100, and an example of the structure is shown in FIG.

ミラー110の断面は放物線形状であり、このミラー110の焦点位置に集熱配管111が配置されている。この集熱配管111の表面に光吸収層が形成される。また、集熱配管111は、ガラス管112に内包されて真空断熱されている。そして、ミラー110が太陽光を集光し、この集光された太陽光を集熱配管111が吸収して熱エネルギーに変換(集熱)し、集熱配管111の内側を流れる熱冷媒を400℃まで加熱する。 The cross section of the mirror 110 has a parabolic shape, and a heat collecting pipe 111 is disposed at the focal position of the mirror 110. A light absorption layer is formed on the surface of the heat collecting pipe 111. Further, the heat collecting pipe 111 is enclosed in a glass tube 112 and insulated by vacuum. Then, the mirror 110 collects sunlight, the collected sunlight is absorbed by the heat collecting pipe 111 and converted into heat energy (heat collection), and the thermal refrigerant flowing inside the heat collecting pipe 111 is converted into 400. Heat to ° C.

このような太陽熱集熱器104では、集熱配管111の表面積が大きく、この集熱配管111からの熱漏洩量が多くなるため、この熱漏洩量を低減する対策が必要になる。特許文献2の太陽熱集熱器104では、真空断熱によって集熱配管111からの熱漏洩量を低減している。   In such a solar heat collector 104, the surface area of the heat collecting pipe 111 is large, and the amount of heat leakage from the heat collecting pipe 111 increases, so a measure for reducing the amount of heat leakage is necessary. In the solar heat collector 104 of Patent Document 2, the amount of heat leakage from the heat collecting pipe 111 is reduced by vacuum insulation.

特開2008−39367号公報JP 2008-39367 A 米国特許第6705311号明細書US Pat. No. 6,705,311

一般に、高温物体からの輻射伝熱量は、高温物体と低温物体のそれぞれの温度の4乗に依存して増加する(後述の式(1)参照)。このため、高温物体の温度が高くなると、この高温物体からの輻射による熱漏洩量が急激に増加してしまう。   In general, the amount of radiant heat transfer from a high-temperature object increases depending on the fourth power of the temperature of each of the high-temperature object and the low-temperature object (see the following formula (1)). For this reason, when the temperature of a high-temperature object becomes high, the amount of heat leakage due to radiation from the high-temperature object increases rapidly.

図10に示す太陽熱集熱器104では、高温物体である集熱配管111の温度が上昇するに従って、この集熱配管111からの輻射による熱漏洩量は、例えば図11の曲線X3に示すように急激に増加する。このため、太陽熱集熱器104を備える従来の太陽熱発電システム100では、集熱配管111を400℃と低い温度に設定して、集熱効率の低い運用を実施しなければならず、太陽熱発電システム100のシステム効率が低下していた。尚、図11の曲線Y3は、集熱配管111の受熱量を示す。   In the solar heat collector 104 shown in FIG. 10, as the temperature of the heat collection pipe 111 that is a high-temperature object rises, the amount of heat leakage due to radiation from the heat collection pipe 111 is, for example, as shown by a curve X3 in FIG. Increases rapidly. For this reason, in the conventional solar thermal power generation system 100 provided with the solar thermal collector 104, the heat collection piping 111 must be set to a low temperature of 400 ° C. and operation with low thermal collection efficiency must be performed. The system efficiency was decreasing. A curve Y3 in FIG. 11 indicates the amount of heat received by the heat collecting pipe 111.

本発明の目的は、上述の事情を考慮してなされたものであり、集熱配管を高温化して集熱効率を向上できると共に、熱漏洩量を抑制できる太陽熱集熱器及び太陽熱発電システムを提供することにある。   An object of the present invention is made in consideration of the above-described circumstances, and provides a solar heat collector and a solar power generation system that can improve the heat collection efficiency by increasing the temperature of the heat collection pipe and can suppress the amount of heat leakage. There is.

本発明に係る太陽熱集熱器は、太陽光を集光する、断面が放物線形状のパラボラトラフ型のミラーと、このミラーに対向して配置されると共に、前記ミラーにて集光された太陽光を吸収して集熱し、内側を流れる熱媒体を加熱する集熱配管と、この集熱配管を真空状態で内包して断熱する透光性の透光配管と、を有する太陽熱集熱器であって、前記集熱配管と前記透光配管との間の真空空間内には、これらの集熱配管及び透光配管から離反して、前記ミラーに対向する領域と反対側の領域全てに断熱手段が配置されたことを特徴とするものである。 Solar solar heat collector according to the present invention, the sunlight collecting light, and the cross section is parabolic trough parabolic mirror, while being disposed opposite to the mirror, which is focused by the mirror The solar heat collector has a heat collecting pipe that absorbs heat and collects heat and heats a heat medium flowing inside, and a translucent translucent pipe that heats the heat collecting pipe in a vacuum state. In the vacuum space between the heat collecting pipe and the light transmitting pipe , the heat insulating means is provided in the entire area opposite to the area facing the mirror, away from the heat collecting pipe and the light transmitting pipe. Is arranged.

また、本発明に係る太陽熱発電システムは、太陽光を集光し集熱して熱冷媒を加熱する太陽熱集熱器を備えた集光・集熱系と、前記太陽熱集熱器にて加熱された熱冷媒と熱交換して蒸気を発生する熱交換器、及びこの熱交換器にて発生した蒸気により回転して発電機を駆動する蒸気タービンを備えた発電系と、を有する太陽熱発電システムにおいて、前記太陽熱集熱器が、請求項1乃至9のいずれか1項に記載の太陽熱集熱器であることを特徴とするものである。   Moreover, the solar thermal power generation system according to the present invention is heated by the condensing / heat collecting system including a solar heat collector that collects and collects sunlight and collects heat to heat the thermal refrigerant, and the solar heat collector. In a solar thermal power generation system comprising: a heat exchanger that exchanges heat with a thermal refrigerant to generate steam; and a power generation system that includes a steam turbine that rotates by the steam generated in the heat exchanger and drives a generator. The solar heat collector is the solar heat collector according to any one of claims 1 to 9.

本発明に係る太陽熱集熱器及び太陽熱発電システムによれば、太陽熱集熱器における集熱配管と透光配管との間が真空空間であるため、集熱配管からの気体による熱伝導と対流伝熱を抑制できる。更に、前記真空空間に断熱手段が配置されたので、集熱配管からの輻射による伝熱を抑制できる。これらの結果、集熱配管からの熱漏洩量を抑制できると共に、集熱配管を高温化して集熱効率を向上させることができる。   According to the solar heat collector and the solar power generation system according to the present invention, since the space between the heat collecting pipe and the light transmitting pipe in the solar heat collector is a vacuum space, heat conduction and convection transfer by gas from the heat collecting pipe. Heat can be suppressed. Furthermore, since the heat insulating means is disposed in the vacuum space, heat transfer due to radiation from the heat collecting pipe can be suppressed. As a result, the amount of heat leakage from the heat collection pipe can be suppressed, and the heat collection efficiency can be improved by increasing the temperature of the heat collection pipe.

本発明に係る太陽熱発電システムの第1実施形態を示す管路図。1 is a pipeline diagram showing a first embodiment of a solar thermal power generation system according to the present invention. 図1の太陽熱集熱器を示す軸に直交する方向の断面図。Sectional drawing of the direction orthogonal to the axis | shaft which shows the solar-heat collector of FIG. 図2の集熱配管の温度と熱漏洩量等との関係を示すグラフ。The graph which shows the relationship between the temperature of the heat collecting piping of FIG. 2, and the amount of heat leaks. 本発明に係る太陽熱発電システムの第2実施形態における太陽熱集熱器を示す軸に直交する方向の断面図。Sectional drawing of the direction orthogonal to the axis | shaft which shows the solar heat collector in 2nd Embodiment of the solar thermal power generation system which concerns on this invention. 図4の集熱配管の温度と熱漏洩量比率との関係を示すグラフ。The graph which shows the relationship between the temperature of the heat collecting piping of FIG. 4, and a heat leak amount ratio. 本発明に係る太陽熱発電システムの第3実施形態における太陽熱集熱器を示す軸に直交する方向の断面図。Sectional drawing of the direction orthogonal to the axis | shaft which shows the solar heat collector in 3rd Embodiment of the solar thermal power generation system which concerns on this invention. 本発明に係る太陽熱発電システムの第4実施形態における太陽熱集熱器を示し、(A)が軸に沿う方向の断面図、(B)が軸に直交する方向の断面図。The solar-heat collector in 4th Embodiment of the solar thermal power generation system which concerns on this invention is shown, (A) is sectional drawing of the direction in alignment with an axis | shaft, (B) is sectional drawing of the direction orthogonal to an axis | shaft. 本発明に係る太陽熱発電システムの第5実施形態を示す管路図。The pipeline diagram which shows 5th Embodiment of the solar thermal power generation system which concerns on this invention. 従来の太陽熱発電システムの一例を示す管路図。The pipe line figure showing an example of the conventional solar thermal power generation system. 従来の太陽熱集熱器を示す軸に直交する方向の断面図。Sectional drawing of the direction orthogonal to the axis | shaft which shows the conventional solar heat collector. 図10の集熱配管の温度と熱漏洩量等との関係を示すグラフ。The graph which shows the relationship between the temperature of the heat collecting piping of FIG. 10, and the amount of heat leaks.

以下、本発明を実施するための実施形態を図面に基づき説明する。
[A]第1実施形態(図1〜図3)
図1は、本発明に係る太陽熱発電システムの第1実施形態を示す管路図である。図2は、図1の太陽熱集熱器を示す軸に直交する方向の断面図である。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
[A] First embodiment (FIGS. 1 to 3)
FIG. 1 is a pipeline diagram showing a first embodiment of a solar thermal power generation system according to the present invention. FIG. 2 is a cross-sectional view in a direction perpendicular to the axis showing the solar heat collector of FIG.

図1に示す太陽熱発電システム10は、集光型の太陽熱発電システム(CSP)であり、太陽熱集熱器14を複数備える集光・集熱系11と、熱交換器としての蒸気発生器15及び過熱器16を備え、且つ蒸気タービン17(高圧蒸気タービン17A、低圧蒸気タービン17B)を備える発電系12と、蓄熱用熱交換器18を備える蓄熱系13と、を有して構成される。   A solar thermal power generation system 10 shown in FIG. 1 is a concentrating solar thermal power generation system (CSP), a condensing / heat collecting system 11 including a plurality of solar heat collectors 14, a steam generator 15 as a heat exchanger, and The power generation system 12 includes a superheater 16 and includes a steam turbine 17 (a high pressure steam turbine 17A and a low pressure steam turbine 17B), and a heat storage system 13 including a heat storage heat exchanger 18.

太陽熱集熱器14は、後に詳説するが、ミラー20が太陽光Pを集光し、集熱配管21は、集光された太陽光Pを吸収して熱エネルギーに変換(集熱)し、集熱配管21の内側を流れる熱冷媒R1を加熱するものである。   Although the solar heat collector 14 will be described in detail later, the mirror 20 collects sunlight P, and the heat collection pipe 21 absorbs the collected sunlight P and converts it into heat energy (heat collection). The heat refrigerant R1 flowing inside the heat collecting pipe 21 is heated.

集光・集熱系11では、複数の太陽熱集熱器14は、各集熱配管21が接続されて直列に配置されると共に、この直列配置された複数の太陽熱集熱器14が並列に複数列配置されている。複数の太陽熱集熱器14の集熱配管21は、循環ポンプ22が配設された熱冷媒配管23に接続され、この熱冷媒配管23に、発電系12の過熱器16及び蒸気発生器15が順次配設されている。   In the condensing / heat collecting system 11, the plurality of solar heat collectors 14 are arranged in series with the respective heat collecting pipes 21 connected thereto, and the plurality of solar heat collectors 14 arranged in series are arranged in parallel. Arranged in columns. The heat collecting pipes 21 of the plurality of solar heat collectors 14 are connected to a heat refrigerant pipe 23 provided with a circulation pump 22, and the superheater 16 and the steam generator 15 of the power generation system 12 are connected to the heat refrigerant pipe 23. They are arranged sequentially.

発電系12は蒸気・復水配管24を備え、この蒸気・復水配管24に第1循環ポンプ25、蒸気発生器15、高圧蒸気タービン17A、第2循環ポンプ26、過熱器16、低圧蒸気タービン17、復水器27が順次配設されている。高圧蒸気タービン17A及び低圧蒸気タービン17Bは同一のタービン軸を有し、このタービン軸に発電機28が接続される。尚、符号29は冷却塔である。   The power generation system 12 includes a steam / condensate pipe 24, and the steam / condensate pipe 24 includes a first circulation pump 25, a steam generator 15, a high-pressure steam turbine 17 </ b> A, a second circulation pump 26, a superheater 16, and a low-pressure steam turbine. 17, the condenser 27 is arrange | positioned one by one. The high-pressure steam turbine 17A and the low-pressure steam turbine 17B have the same turbine shaft, and a generator 28 is connected to the turbine shaft. Reference numeral 29 denotes a cooling tower.

蒸気発生器15は、集光・集熱系11の複数の太陽熱集熱器14にて加熱された熱冷媒R1と熱交換して蒸気を発生し、この蒸気を高圧蒸気タービン17Aへ導く。第2循環ポンプ26は、高圧蒸気タービン17Aで仕事を終えた蒸気を過熱器16へ導き、この蒸気を過熱器16が、太陽熱集熱器14にて加熱された熱冷媒R1と熱交換して過熱し、過熱蒸気として低圧蒸気タービン17Bへ導く。高圧蒸気タービン17A、低圧蒸気タービン17Bは、それぞれ蒸気、過熱蒸気により回転して発電機28を駆動し発電させる。低圧蒸気タービン17Bで仕事を終えた蒸気は、復水器27で冷却されて復水となり、第1循環ポンプ25がこの復水を蒸気発生器15へ供給する。   The steam generator 15 generates steam by exchanging heat with the thermal refrigerant R1 heated by the plurality of solar heat collectors 14 of the light collecting / heat collecting system 11, and guides this steam to the high-pressure steam turbine 17A. The second circulation pump 26 guides the steam that has finished its work in the high-pressure steam turbine 17 </ b> A to the superheater 16, and the superheater 16 exchanges heat with the thermal refrigerant R <b> 1 heated by the solar heat collector 14. Superheated and led to the low pressure steam turbine 17B as superheated steam. The high-pressure steam turbine 17A and the low-pressure steam turbine 17B are rotated by steam and superheated steam, respectively, to drive the generator 28 to generate power. The steam that has finished its work in the low-pressure steam turbine 17 </ b> B is cooled by the condenser 27 to become condensed water, and the first circulation pump 25 supplies this condensed water to the steam generator 15.

前記蓄熱系13は、集光・集熱系11の太陽熱集熱器14にて過剰な熱エネルギーが発生した場合に、この熱エネルギーを蓄熱する系統である。つまり、蒸気系13では、蓄熱用熱交換器18は、両端が熱冷媒配管23に接続された蓄熱用第1配管31に接続される。更に蓄熱用熱交換器18は、両端に低温蓄熱槽33、高温蓄熱槽34がそれぞれ接続されて蓄熱用冷媒R2が流れる蓄熱用第2配管32にも配設される。   The heat storage system 13 is a system for storing heat energy when excessive heat energy is generated in the solar heat collector 14 of the light collecting / heat collecting system 11. That is, in the steam system 13, the heat storage heat exchanger 18 is connected to the first heat storage pipe 31 having both ends connected to the thermal refrigerant pipe 23. Furthermore, the heat storage heat exchanger 18 is also disposed in the second heat storage pipe 32 to which the low temperature heat storage tank 33 and the high temperature heat storage tank 34 are connected at both ends and the heat storage refrigerant R2 flows.

集光・集熱系11の太陽熱集熱器14にて過剰な熱エネルギーが発生した場合には、熱冷媒配管23内の熱冷媒R1が蓄熱用第1配管31を経て蓄熱用熱交換器18内を流れ、且つ低温蓄熱槽33内の蓄熱用冷媒R2が蓄熱用熱交換器18に流れることで、この蓄熱用熱交換器18での熱交換により蓄熱用冷媒R2が加熱されて高温蓄熱槽34に貯溜され、過剰なエネルギーが蓄熱される。   When excessive heat energy is generated in the solar heat collector 14 of the light collecting / heat collecting system 11, the heat refrigerant R1 in the heat refrigerant pipe 23 passes through the first heat storage pipe 31 and is used as the heat storage heat exchanger 18. The heat storage refrigerant R2 in the low-temperature heat storage tank 33 flows into the heat storage heat exchanger 18 so that the heat storage refrigerant R2 is heated by heat exchange in the heat storage heat exchanger 18, and the high-temperature heat storage tank. The excess energy is stored in 34.

また、太陽熱集熱器14にて発生する熱エネルギーが不足したときには、高温蓄熱槽34内の蓄熱用冷媒R2が蓄熱用熱交換器18に流れ、且つ熱冷媒配管23内の熱冷媒R1が蓄熱用第1配管31を経て蓄熱用熱交換器18に流れることで、この蓄熱用熱交換器18での熱交換により熱冷媒R1が加熱される。この加熱された熱冷媒R1が、発電系12の過熱器16、蒸気発生器15へ順次流れて蒸気を発生させ、蒸気タービン17を回転させる。このとき、蓄熱用熱交換器18での放熱により冷却された蓄熱用冷媒R2は、低温蓄熱槽33に貯溜される。   When the thermal energy generated in the solar heat collector 14 is insufficient, the heat storage refrigerant R2 in the high-temperature heat storage tank 34 flows to the heat storage heat exchanger 18, and the heat refrigerant R1 in the heat refrigerant pipe 23 stores heat. By flowing into the heat storage heat exchanger 18 via the first heat pipe 31, the heat refrigerant R <b> 1 is heated by heat exchange in the heat storage heat exchanger 18. The heated thermal refrigerant R1 sequentially flows to the superheater 16 and the steam generator 15 of the power generation system 12 to generate steam and rotate the steam turbine 17. At this time, the heat storage refrigerant R <b> 2 cooled by the heat dissipation in the heat storage heat exchanger 18 is stored in the low-temperature heat storage tank 33.

ところで、集光・集熱系11の複数の太陽熱集熱器14は、図2に示すように、ミラー20、集熱配管21、透光配管としてのガラス管35、及び断熱手段としての輻射シールド36を有して構成され、集熱配管21の内側を流れる熱冷媒R1を太陽熱により加熱するものである。   Incidentally, as shown in FIG. 2, a plurality of solar heat collectors 14 of the light collecting / heat collecting system 11 includes a mirror 20, a heat collecting pipe 21, a glass tube 35 as a light transmitting pipe, and a radiation shield as a heat insulating means. 36, and heats the thermal refrigerant R1 flowing inside the heat collecting pipe 21 by solar heat.

ミラー20は、断面が放物線形状のパラボラトラフ型のミラーであり、太陽光Pを焦点位置に集光する。また、集熱配管21は、ミラー20の焦点位置に、このミラー20に対向して配置される。この集熱配管21の表面に光吸収材(不図示)が塗布されている。従って、集熱配管21は、ミラー20にて集光された太陽光Pを吸収して熱エネルギーに変換(即ち集熱)し、内側を流れる熱冷媒R1を加熱する。   The mirror 20 is a parabolic trough type mirror having a parabolic cross section, and condenses sunlight P at a focal position. Further, the heat collecting pipe 21 is disposed at the focal position of the mirror 20 so as to face the mirror 20. A light absorbing material (not shown) is applied to the surface of the heat collecting pipe 21. Accordingly, the heat collecting pipe 21 absorbs the sunlight P collected by the mirror 20 and converts it into heat energy (that is, heat collecting), and heats the thermal refrigerant R1 flowing inside.

ガラス管35は、透光性のガラス材にて構成され、集熱配管21を真空状態で内包する。このように、集熱配管21とガラス管35との間の空間が真空状態の真空空間37に形成されたことで、集熱配管21からガラス管35への気体による熱伝導及び対流伝熱が抑制される。   The glass tube 35 is comprised with the translucent glass material, and encloses the heat collection piping 21 in a vacuum state. As described above, since the space between the heat collecting pipe 21 and the glass tube 35 is formed in the vacuum space 37 in a vacuum state, heat conduction and convective heat transfer by the gas from the heat collecting pipe 21 to the glass tube 35 is performed. It is suppressed.

輻射シールド36は、太陽光Pを透過させないアルミニウムや、アルミニウム合金、銅、銅合金などの金属にて構成され、集熱配管21の周囲を覆うことで、例えば500℃の高温になる集熱配管21からの輻射伝熱を反射し、この輻射伝熱による熱漏洩を抑制する。   The radiation shield 36 is made of a metal such as aluminum that does not transmit sunlight P, aluminum alloy, copper, copper alloy, and the like, and covers the periphery of the heat collection pipe 21 so that the heat collection pipe reaches a high temperature of 500 ° C., for example. The radiation heat transfer from 21 is reflected, and the heat leakage by this radiation heat transfer is suppressed.

この輻射シールド36は、具体的には、集熱配管21とガラス管35との間の真空空間37内で、ミラー20に対向する領域と反対側の領域に配置され、集熱配管21またはガラス管35(好ましくは集熱配管21)に支持される。集熱配管21の全周囲において、ミラー20に対向する領域は集熱配管21の全周囲の1/3程度であるが、ミラー20に対向する領域と反対側の領域は、集熱配管21の全周囲の2/3程度になる。従って、集熱配管21の全周囲の2/3程度からの輻射伝熱が輻射シールド36により反射されることになり、集熱配管21からの輻射伝熱による熱漏洩量が抑制される。   Specifically, the radiation shield 36 is disposed in a region opposite to the region facing the mirror 20 in the vacuum space 37 between the heat collecting pipe 21 and the glass tube 35, and the heat collecting pipe 21 or glass. It is supported by the pipe 35 (preferably the heat collecting pipe 21). In the entire circumference of the heat collection pipe 21, the area facing the mirror 20 is about 1/3 of the whole circumference of the heat collection pipe 21, but the area opposite to the area facing the mirror 20 is the area of the heat collection pipe 21. It becomes about 2/3 of the entire circumference. Therefore, radiant heat transfer from about 2/3 of the entire circumference of the heat collection pipe 21 is reflected by the radiation shield 36, and the amount of heat leakage due to the radiant heat transfer from the heat collection pipe 21 is suppressed.

また、一般に、高温物体からの輻射伝熱量Qは、εを輻射率、σをステファン・ボルツマン定数、Tを高温物体(例えば集熱配管21)の温度、Tを低温物体(例えばガラス管35)の温度、Aを伝熱面積として、次式(1)で表せる。 In general, the amount of radiant heat transfer Q from a high-temperature object is as follows: ε is the emissivity, σ is the Stefan-Boltzmann constant, TH is the temperature of the high-temperature object (for example, the heat collecting pipe 21), and TL is the low-temperature object (for example, a glass tube). The temperature of 35), A can be expressed by the following formula (1), where A is the heat transfer area.

Figure 0005752511
Figure 0005752511

ここで、集熱配管21とガラス管35との間が真空空間37であることから、集熱配管21からの気体による熱伝導及び対流伝熱は極めて小さい。従って、輻射シールド36の温度は、集熱配管21から輻射シールド36への輻射と、輻射シールド36からガラス管35への輻射とがバランスした温度になる。例えば、集熱配管21が500℃で、ガラス管35が30℃の場合には、輻射シールド36は350℃になる(図3の曲線図Z1参照)。このように、集熱配管21と輻射シールド36との温度差が小さくなり、輻射シールド36とガラス管35との温度差も小さくなるので、前記式(1)によって、集熱配管21から輻射シールド36への輻射伝熱量と、輻射シールド36からガラス管35への輻射伝熱量とが共に抑制される。この結果、集熱配管21からガラス管35への全体としての輻射伝熱量が抑制されることになる。   Here, since the space between the heat collecting pipe 21 and the glass tube 35 is the vacuum space 37, heat conduction and convective heat transfer by the gas from the heat collecting pipe 21 are extremely small. Accordingly, the temperature of the radiation shield 36 is a temperature in which the radiation from the heat collecting pipe 21 to the radiation shield 36 and the radiation from the radiation shield 36 to the glass tube 35 are balanced. For example, when the heat collecting pipe 21 is 500 ° C. and the glass tube 35 is 30 ° C., the radiation shield 36 is 350 ° C. (see the curve diagram Z1 in FIG. 3). As described above, the temperature difference between the heat collecting pipe 21 and the radiation shield 36 is reduced, and the temperature difference between the radiation shield 36 and the glass tube 35 is also reduced. Both the amount of radiant heat transfer to 36 and the amount of radiant heat transfer from the radiation shield 36 to the glass tube 35 are suppressed. As a result, the amount of radiant heat transfer from the heat collecting pipe 21 to the glass tube 35 as a whole is suppressed.

また、前記式(1)における高温物体と低温物体間の輻射率εは、高温物体の伝熱面での輻射率εと、低温物体の伝熱面での輻射率εとを用いて、次式(2)で表される。 In addition, the emissivity ε between the high temperature object and the low temperature object in the equation (1) is calculated using the emissivity ε H on the heat transfer surface of the high temperature object and the emissivity ε L on the heat transfer surface of the low temperature object. Is represented by the following equation (2).

Figure 0005752511
Figure 0005752511

ここで、高温物体が集熱配管21で、低温物体が輻射シールド36の場合には、輻射率εは集熱配管21と輻射シールド36間の輻射率であり、輻射率εは集熱配管21の伝熱面での輻射率であり、輻射率εは輻射シールド36の伝熱面での輻射率である。また、高温物体が輻射シールド36で、低温物体がガラス管35の場合には、輻射率εは、輻射シールド36とガラス管35間の輻射率であり、輻射率εは輻射シールド36の伝熱面での輻射率であり、εはガラス管35の伝熱面での輻射率である。 Here, when the high temperature object is the heat collection pipe 21 and the low temperature object is the radiation shield 36, the emissivity ε is the emissivity between the heat collection pipe 21 and the radiation shield 36, and the emissivity ε H is the heat collection pipe. 21 is the radiation rate at the heat transfer surface, and the radiation rate ε L is the radiation rate at the heat transfer surface of the radiation shield 36. When the high temperature object is the radiation shield 36 and the low temperature object is the glass tube 35, the emissivity ε is the emissivity between the radiation shield 36 and the glass tube 35, and the emissivity ε H is transmitted through the radiation shield 36. The emissivity at the hot surface, and ε L is the emissivity at the heat transfer surface of the glass tube 35.

上記式(2)から、輻射率εとεのどちらか一方が小さければ、輻射率εが小さくなる。従って、制約が多い集熱配管21及びガラス管35の表面を加工しなくても、輻射シールド36の伝熱面での輻射率ε、εを低減することで、集熱配管21と輻射シールド36間の輻射率ε、輻射シールド36とガラス管36間での輻射率εを共に低減できる。これにより、集熱配管21と輻射シールド36間での輻射伝熱量、輻射シールド36とガラス管35間での輻射伝熱量を共に抑制できる。 From the above equation (2), if one of the emissivities ε H and ε L is small, the emissivity ε is small. Therefore, the heat collecting pipe 21 and the radiation can be reduced by reducing the emissivities ε L and ε H on the heat transfer surface of the radiation shield 36 without processing the surfaces of the heat collecting pipe 21 and the glass tube 35, which have many restrictions. Both the emissivity ε between the shields 36 and the emissivity ε between the radiation shields 36 and the glass tube 36 can be reduced. Thereby, both the amount of radiant heat transfer between the heat collecting pipe 21 and the radiation shield 36 and the amount of radiant heat transfer between the radiation shield 36 and the glass tube 35 can be suppressed.

このため、本実施形態の輻射シールド36は、その表面が金属研磨面に構成されて、その伝熱面での輻射率ε、εが0.1以下の小さな値に設定される。また、本実施形態の輻射シールド36は、その表面が酸化されて伝熱面での輻射率ε、εが大きくなることがないように、その表面に酸化防止膜が施されている。本実施形態の輻射シールド36の表面には、上述の金属研磨面と酸化防止膜の少なくとも一方が施されている。 For this reason, the surface of the radiation shield 36 of the present embodiment is configured as a metal polished surface, and the emissivities ε L and ε H on the heat transfer surface are set to small values of 0.1 or less. Further, the radiation shield 36 of the present embodiment is provided with an anti-oxidation film on the surface thereof so that the surface is not oxidized and the emissivities ε L and ε H on the heat transfer surface do not increase. The surface of the radiation shield 36 of the present embodiment is provided with at least one of the above-described metal polished surface and antioxidant film.

以上のように構成されたことから、本実施形態によれば、次の効果(1)及び(2)を奏する。   With the configuration as described above, according to the present embodiment, the following effects (1) and (2) are obtained.

(1)太陽熱集熱器14では、集熱配管21とガラス管35との間が真空空間37であるため、集熱配管21からガラス管35への気体による熱伝導と対流伝熱を抑制できる。更に、太陽熱集熱器14では、集熱配管21とガラス管35との間の真空空間37に輻射シールド36が配置されたので、この輻射シールドにより集熱配管21からの輻射伝熱を反射でき、その輻射伝熱量を抑制できる。また、集熱配管21とガラス管35との間の真空空間37に輻射シールド36が配置されたので、集熱配管21と輻射シールド36との間、輻射シールド36とガラス管35との間でそれぞれの温度差が小さくなり、前記式(1)に基づき集熱配管21、輻射シールド36のそれぞれからの輻射伝熱量を抑制できる。   (1) In the solar heat collector 14, since the space between the heat collecting pipe 21 and the glass tube 35 is a vacuum space 37, heat conduction and convective heat transfer by gas from the heat collecting pipe 21 to the glass tube 35 can be suppressed. . Further, in the solar heat collector 14, the radiation shield 36 is disposed in the vacuum space 37 between the heat collection pipe 21 and the glass tube 35, so that radiation heat transfer from the heat collection pipe 21 can be reflected by this radiation shield. The amount of radiant heat transfer can be suppressed. In addition, since the radiation shield 36 is disposed in the vacuum space 37 between the heat collection pipe 21 and the glass tube 35, between the heat collection pipe 21 and the radiation shield 36 and between the radiation shield 36 and the glass tube 35. Each temperature difference becomes small, and the amount of radiant heat transferred from each of the heat collecting pipe 21 and the radiation shield 36 can be suppressed based on the above formula (1).

これら(気体による熱伝導等の抑制と輻射伝熱量の抑制)の結果、太陽熱集熱器14では、集熱配管21からの熱漏洩量を、図3の曲線X1に示すように、集熱配管21を例えば500℃の高温にして集熱効率を向上させた場合にも抑制することができる。このように、熱漏洩量が抑制された太陽熱集熱器14を集光・集熱系11に用いることで、太陽熱集熱器14の集熱配管21を例えば500℃と高温にして太陽熱集熱器14の集熱効率を向上させた場合にも、熱漏洩量の少ない太陽熱発電システム10を実現できる。尚、図3中の曲線Y1は、熱漏洩量を差し引いた後の集熱配管24の受熱量を示し、また、曲線Z1は輻射シールド36の温度変化を示す。   As a result of these (suppression of heat conduction by gas and suppression of radiant heat transfer amount), in the solar heat collector 14, the amount of heat leakage from the heat collection pipe 21 is indicated by a heat collection pipe as shown by a curve X1 in FIG. For example, the heat collecting efficiency can be suppressed by increasing the temperature of 21 to 500 ° C., for example. In this way, by using the solar heat collector 14 in which the amount of heat leakage is suppressed in the light collecting / heat collecting system 11, the heat collecting pipe 21 of the solar heat collector 14 is set to a high temperature of, for example, 500 ° C. to collect the solar heat. Even when the heat collection efficiency of the vessel 14 is improved, the solar thermal power generation system 10 with a small amount of heat leakage can be realized. A curve Y1 in FIG. 3 indicates the amount of heat received by the heat collecting pipe 24 after subtracting the amount of heat leakage, and a curve Z1 indicates a change in the temperature of the radiation shield 36.

(2)太陽熱集熱器14の輻射シールド36は、その表面が金属研磨面で構成され、また、その表面に酸化防止膜が施されているので、輻射シールド36の伝熱面での輻射率ε、εを低減できる。このため、太陽熱集熱器14における集熱配管21及びガラス管35の表面に輻射率低減のための加工等を施すことなく、集熱配管21と輻射シールド36間、輻射シールド36とガラス管35間のそれぞれの輻射率εを低減できる。この結果、前記式(1)に基づき、太陽熱集熱器14における集熱配管21と輻射シールド36間、輻射シールド36とガラス管35間のそれぞれの輻射伝熱量を抑制でき、従って、集熱配管21からガラス管35への輻射による熱漏洩量を抑制できる。 (2) Since the surface of the radiation shield 36 of the solar heat collector 14 is a polished metal surface and an anti-oxidation film is applied to the surface, the radiation rate on the heat transfer surface of the radiation shield 36 ε L and ε H can be reduced. Therefore, the surface of the heat collecting pipe 21 and the glass tube 35 in the solar heat collector 14 is not subjected to processing for reducing the radiation rate, and the like, between the heat collecting pipe 21 and the radiation shield 36, and between the radiation shield 36 and the glass tube 35. The respective emissivities ε in between can be reduced. As a result, the amount of radiant heat transfer between the heat collecting pipe 21 and the radiation shield 36 and between the radiation shield 36 and the glass tube 35 in the solar heat collector 14 can be suppressed based on the formula (1). The amount of heat leakage due to radiation from 21 to the glass tube 35 can be suppressed.

[B]第2実施形態(図4、図5)
図4は、本発明に係る太陽熱発電システムの第2実施形態における太陽熱集熱器を示す軸に直交する方向の断面図である。この第2実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[B] Second Embodiment (FIGS. 4 and 5)
FIG. 4: is sectional drawing of the direction orthogonal to the axis | shaft which shows the solar heat collector in 2nd Embodiment of the solar thermal power generation system which concerns on this invention. In the second embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施形態の太陽熱集熱器41が前記第1実施形態の太陽熱集熱器14と異なる点は、輻射シールド36が2層を設けられた点であり、これにより集熱配管21からの熱漏洩量、特に輻射による熱漏洩量が1層の場合よりも抑制される。   The solar heat collector 41 of the present embodiment is different from the solar heat collector 14 of the first embodiment in that the radiation shield 36 is provided with two layers, thereby causing heat leakage from the heat collecting pipe 21. The amount of heat leakage due to radiation, particularly radiation, is suppressed as compared with the case of one layer.

図5に示すように、集熱配管21の受熱量に対する熱漏洩量の比率は、輻射シールド36が2層の場合が曲線X2であり、輻射シールド36が1層の場合が曲線Y2であり、輻射シールド36が存在しない図10に示す従来構成の場合が曲線Z2である。   As shown in FIG. 5, the ratio of the amount of heat leakage to the amount of heat received by the heat collecting pipe 21 is the curve X2 when the radiation shield 36 is two layers, and the curve Y2 when the radiation shield 36 is one layer. The case of the conventional configuration shown in FIG. 10 in which the radiation shield 36 does not exist is the curve Z2.

従って、本実施形態によれば、前記第1実施形態の効果(1)及び(2)と同様な効果を奏するほか、図5に示すように、輻射シールド36を2層にすることで、集熱配管21からの熱漏洩量を、第1実施形態の場合に比べ、より一層抑制することができる。   Therefore, according to this embodiment, in addition to the effects (1) and (2) of the first embodiment, the radiation shield 36 has two layers as shown in FIG. The amount of heat leakage from the heat pipe 21 can be further suppressed as compared with the case of the first embodiment.

尚、本実施形態では、輻射シールド36が2層の場合を述べたが、輻射シールド36を3層以上を設けることで、集熱配管21からの熱漏洩量を更に抑制してもよい。   In the present embodiment, the case where the radiation shield 36 has two layers has been described. However, the amount of heat leakage from the heat collecting pipe 21 may be further suppressed by providing the radiation shield 36 with three or more layers.

[C]第3実施形態(図6)
図6は、本発明に係る太陽熱発電システムの第3実施形態における太陽熱集熱器を示す軸に直交する方向の断面図である。この第3実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[C] Third embodiment (FIG. 6)
FIG. 6: is sectional drawing of the direction orthogonal to the axis | shaft which shows the solar heat collector in 3rd Embodiment of the solar thermal power generation system which concerns on this invention. In the third embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and the description is simplified or omitted.

本実施形態の太陽熱集熱器45が前記第1実施形態の太陽熱集熱器14と異なる点は、集熱配管21とガラス管35との間の真空空間37内で、ミラー20に対向する領域と反対側の領域に配置される断熱手段が、輻射シールド36ではなく断熱材46である点である。   The solar heat collector 45 of the present embodiment is different from the solar heat collector 14 of the first embodiment in that the region facing the mirror 20 in the vacuum space 37 between the heat collection pipe 21 and the glass tube 35. The heat insulating means arranged in the region opposite to the point is not the radiation shield 36 but the heat insulating material 46.

この断熱材46は、セラミック断熱材が好ましく、更に、集熱配管21の外表面に接着などにより設置されている。集熱配管21の外表面に断熱材46が装着されたことから、この断熱材46には集熱配管21からの熱伝導が生じ、断熱材46の外表面の温度は、集熱配管21の外表面の温度よりも低くなる。   The heat insulating material 46 is preferably a ceramic heat insulating material, and is further installed on the outer surface of the heat collecting pipe 21 by bonding or the like. Since the heat insulating material 46 is attached to the outer surface of the heat collecting pipe 21, heat conduction from the heat collecting pipe 21 occurs in the heat insulating material 46, and the temperature of the outer surface of the heat insulating material 46 is the temperature of the heat collecting pipe 21. It becomes lower than the temperature of the outer surface.

以上のように構成されたことから、本実施形態によれば、次の効果(3)を奏する。   With the configuration as described above, according to the present embodiment, the following effect (3) is obtained.

(3)太陽熱集熱器45における集熱配管21とガラス管35との間の真空空間37内で、ミラー20に対向する領域と反対側の領域に断熱材46が配置され、しかも、この断熱材は集熱配管21の外表面に設置されている。従って、断熱材46の外表面温度が集熱配管21の外表面温度よりも低くなるので、断熱材46からの輻射伝熱量は、前記式(1)に基づき、断熱材46が存在しない場合の輻射伝熱量よりも抑制される。また、ガラス管35の内側空間が真空空間37であるため、集熱配管21及び断熱材46からの気体による熱伝導と対流伝熱を抑制できる。   (3) In the vacuum space 37 between the heat collecting pipe 21 and the glass tube 35 in the solar heat collector 45, a heat insulating material 46 is disposed in a region opposite to the region facing the mirror 20, and this heat insulation. The material is installed on the outer surface of the heat collecting pipe 21. Therefore, since the outer surface temperature of the heat insulating material 46 becomes lower than the outer surface temperature of the heat collecting pipe 21, the amount of radiant heat transfer from the heat insulating material 46 is based on the above formula (1) when the heat insulating material 46 does not exist. It is suppressed more than the amount of radiant heat transfer. Further, since the inner space of the glass tube 35 is the vacuum space 37, heat conduction and convective heat transfer due to gas from the heat collecting pipe 21 and the heat insulating material 46 can be suppressed.

これらの結果、太陽熱集熱器45では、集熱配管21からの熱漏洩量を、集熱配管21を例えば500℃と高温化して集熱効率を向上させた場合にも抑制することができる。このように、熱漏洩量が抑制された太陽熱集熱器45を集光・集熱系11に用いることで、太陽熱集熱器45の集熱配管21を例えば500℃の高温にして太陽熱集熱器45の集熱効率を向上させた場合にも、熱漏洩量の少ない太陽熱発電システムを実現できる。   As a result, in the solar heat collector 45, the amount of heat leakage from the heat collecting pipe 21 can be suppressed even when the temperature of the heat collecting pipe 21 is increased to, for example, 500 ° C. to improve the heat collecting efficiency. Thus, by using the solar heat collector 45 in which the amount of heat leakage is suppressed in the light collecting / heat collecting system 11, the heat collecting pipe 21 of the solar heat collector 45 is set to a high temperature of, for example, 500 ° C. Even when the heat collection efficiency of the vessel 45 is improved, a solar thermal power generation system with a small amount of heat leakage can be realized.

尚、太陽熱集熱器45において断熱材46をガラス管35の内表面に設置することも可能であるが、集熱配管21からガラス管35への輻射伝熱量が温度の4乗に依存することから(式(1)参照)、断熱材46を高温側の集熱配管21に設置することが、輻射伝熱量抑制の観点から好ましい。   In addition, although it is possible to install the heat insulating material 46 on the inner surface of the glass tube 35 in the solar heat collector 45, the amount of radiant heat transfer from the heat collecting pipe 21 to the glass tube 35 depends on the fourth power of the temperature. From (refer to Formula (1)), it is preferable to install the heat insulating material 46 in the heat collecting pipe 21 on the high temperature side from the viewpoint of suppressing the amount of radiant heat transfer.

[D]第4実施形態(図7)
図7は、本発明に係る太陽熱発電システムの第4実施形態における太陽熱集熱器を示し、(A)が軸に沿う方向の断面図、(B)が軸に直交する方向の断面図である。この第4実施形態において、前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[D] Fourth embodiment (FIG. 7)
FIG. 7: shows the solar heat collector in 4th Embodiment of the solar thermal power generation system which concerns on this invention, (A) is sectional drawing of the direction in alignment with an axis | shaft, (B) is sectional drawing of the direction orthogonal to an axis | shaft. . In the fourth embodiment, portions similar to those in the first embodiment are denoted by the same reference numerals, and description thereof is simplified or omitted.

本実施形態の太陽熱集熱器51が前記第1実施形態の太陽熱集熱器14と異なる点は、輻射シールド52が、金属薄板52Aと、この金属薄板52Aを支えるフレーム52Bとを有して構成され、この輻射シールド52のフレーム52Bが支持材53を用いて集熱配管21に支持され、しかも、支持材53が集熱配管21に、この集熱配管の軸方向及び周方向に摺動可能に取り付けられた点である。   The solar heat collector 51 of the present embodiment is different from the solar heat collector 14 of the first embodiment in that the radiation shield 52 includes a thin metal plate 52A and a frame 52B that supports the thin metal plate 52A. The frame 52B of the radiation shield 52 is supported by the heat collecting pipe 21 using the support material 53, and the support material 53 can slide on the heat collection pipe 21 in the axial direction and the circumferential direction of the heat collection pipe. It is a point attached to.

本実施形態においても、輻射シールド52は、集熱配管21とガラス管35との間の真空空間37内で、ミラー20に対向する領域と反対側の領域に配置されている。また、輻射シールド52を構成する金属薄板52Aは、アルミニウム、アルミニウム合金、銅または銅合金から構成され、表面に金属研磨面と酸化防止膜の少なくとも1つが施されている。   Also in the present embodiment, the radiation shield 52 is disposed in a region opposite to the region facing the mirror 20 in the vacuum space 37 between the heat collecting pipe 21 and the glass tube 35. The thin metal plate 52A constituting the radiation shield 52 is made of aluminum, an aluminum alloy, copper, or a copper alloy, and at least one of a metal polished surface and an antioxidant film is applied to the surface.

以上のように構成されたことから、本実施形態においても、前記第1実施形態の効果(1)及び(2)と同様の効果を奏するほか、次の効果(4)〜(6)を奏する。   With the configuration as described above, the present embodiment has the same effects as the effects (1) and (2) of the first embodiment, and also has the following effects (4) to (6). .

(4)輻射シールド52の温度は、集熱配管21から輻射シールド52への輻射と、輻射シートルド52からガラス管35への輻射とがバランスした温度になり、輻射伝熱量が温度の4乗に依存するため(式(1)参照)、集熱配管21に近い温度になる。従って、本実施形態の輻射シールド52は、支持材53を用いて集熱配管21に支持されているため、支持材53を介しての熱伝導量を、ガラス管35に支持させる場合に比べて低減できる。この結果、集熱配管21からの全伝熱量を抑制できる。   (4) The temperature of the radiation shield 52 is a temperature in which the radiation from the heat collecting pipe 21 to the radiation shield 52 and the radiation from the radiation sheet 52 to the glass tube 35 are balanced, and the amount of radiant heat transfer becomes the fourth power of the temperature. Therefore, the temperature is close to that of the heat collecting pipe 21. Therefore, since the radiation shield 52 of this embodiment is supported by the heat collecting pipe 21 using the support material 53, the amount of heat conduction through the support material 53 is compared with the case where the glass tube 35 is supported. Can be reduced. As a result, the total heat transfer amount from the heat collecting pipe 21 can be suppressed.

(5)輻射シールド52を支持する支持材53が集熱配管21に、この集熱配管21の軸方向及び周方向に摺動可能に取り付けられている。このため、集熱配管21と輻射シールド52との間で、温度差により熱膨張に差が生じた場合にも、支持材53が集熱配管21に対し摺動することで、支持材53に熱応力が発生せず、この支持材53の破損を防止できる。   (5) A support member 53 that supports the radiation shield 52 is attached to the heat collecting pipe 21 so as to be slidable in the axial direction and the circumferential direction of the heat collecting pipe 21. For this reason, even when a difference in thermal expansion occurs between the heat collection pipe 21 and the radiation shield 52 due to a temperature difference, the support material 53 slides with respect to the heat collection pipe 21, so that the support material 53 Thermal stress is not generated, and breakage of the support material 53 can be prevented.

(6)輻射シールド52は、金属薄板52Aとフレーム52Bとを備えて構成されたので、軽量化できる。このため、輻射シールド52を支持する支持材53に生ずる応力を低減できるので、この支持材53を細径化できる。従って、この支持材53からの熱伝導による熱漏洩量を抑制できる。   (6) Since the radiation shield 52 includes the thin metal plate 52A and the frame 52B, the weight can be reduced. For this reason, since the stress which arises in the support material 53 which supports the radiation shield 52 can be reduced, this support material 53 can be reduced in diameter. Therefore, the amount of heat leakage due to heat conduction from the support member 53 can be suppressed.

[E]第5実施形態(図8)
図8は、本発明に係る太陽熱発電システムの第5実施形態を示す管路図である。この第5実施形態において前記第1実施形態と同様な部分については、同一の符号を付すことにより説明を簡略化し、または省略する。
[E] Fifth embodiment (FIG. 8)
FIG. 8 is a pipeline diagram showing a fifth embodiment of the solar thermal power generation system according to the present invention. In the fifth embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof is simplified or omitted.

本実施形態の太陽熱発電システム55が前記第1実施形態の太陽熱発電システム10と異なる点は、集光・集熱系11を構成する複数の太陽熱集熱器が、高温側の太陽熱集熱器56Aと、低温側の太陽熱集熱器56Bとに区分され、このうち、高温側の太陽熱集熱器56Aのみが、輻射シールド36を備える太陽熱集熱器14もしくは41、断熱材46を備える太陽熱集熱器45、または輻射シールド52を備えると太陽熱集熱器51にて構成された点である。低温側の太陽熱集熱器56Bは、輻射シールド36、断熱材46または輻射シールド52を有しない、例えば従来の太陽熱集熱器104(図10)にて構成されている。   The solar thermal power generation system 55 of the present embodiment is different from the solar thermal power generation system 10 of the first embodiment in that a plurality of solar thermal collectors constituting the condensing / heat collecting system 11 is a high temperature side solar thermal collector 56A. And the low-temperature side solar collector 56B, and only the high-temperature side solar collector 56A is the solar collector 14 or 41 provided with the radiation shield 36 and the solar collector 46 provided with the heat insulating material 46. It is the point comprised by the solar-heat collector 51 when the container 45 or the radiation shield 52 is provided. The low-temperature side solar heat collector 56B is configured by, for example, a conventional solar heat collector 104 (FIG. 10) that does not include the radiation shield 36, the heat insulating material 46, or the radiation shield 52.

輻射シールド36、52及び断熱材46は、熱漏洩量を抑制するには効果が高いが、コストが上昇するので、効果の程度に応じて採用される必要がある。低温側の太陽熱集熱器56Bでは、集熱配管21からの熱漏洩量が元々少ないので、輻射シールド36、52及び断熱材46による熱漏洩量抑制の効果が少ない。これに対し、高温側の太陽熱集熱器56Aでは、集熱配管21からの熱漏洩量が多いため、輻射シールド36、52及び断熱材46による熱漏洩量抑制の効果が大きい。   The radiation shields 36 and 52 and the heat insulating material 46 are highly effective in suppressing the amount of heat leakage, but the cost increases, so it is necessary to be employed according to the degree of the effect. In the low-temperature solar heat collector 56B, the amount of heat leakage from the heat collecting pipe 21 is originally small, so that the effect of suppressing the amount of heat leakage by the radiation shields 36 and 52 and the heat insulating material 46 is small. On the other hand, in the solar collector 56A on the high temperature side, the amount of heat leakage from the heat collecting pipe 21 is large, so the effect of suppressing the amount of heat leakage by the radiation shields 36 and 52 and the heat insulating material 46 is great.

従って、本実施形態の太陽熱発電システム55のように、高温側の太陽熱集熱器56Aのみに、輻射シールド36を備える太陽熱集熱器14もしくは41、断熱材46を備える太陽熱集熱器45、または輻射シールド52を備える太陽熱集熱器51を用いることで、集熱配管21からの熱漏洩量抑制効果を低コストで実現できる。その他、本実施形態においても、前記第1〜第4実施形態の効果(1)〜(6)と同様な効果を奏する。   Therefore, as in the solar thermal power generation system 55 of the present embodiment, the solar heat collector 14 or 41 having the radiation shield 36 only in the high temperature side solar heat collector 56A, the solar heat collector 45 having the heat insulating material 46, or By using the solar heat collector 51 including the radiation shield 52, the effect of suppressing the amount of heat leakage from the heat collecting pipe 21 can be realized at low cost. In addition, also in this embodiment, there exists an effect similar to the effect (1)-(6) of the said 1st-4th embodiment.

以上、本発明を上記実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で構成要素を種々変形してもよく、また、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。   As mentioned above, although this invention was demonstrated based on the said embodiment, this invention is not limited to this, A component may be variously deformed in the range which does not deviate from the summary, and it covers different embodiment. You may combine a component suitably.

例えば、上述各実施形態では、太陽熱発電システム10、55における太陽熱集熱器14、41、45、51及び104が、断面が放物線形状のパラボラトラフ型のミラー20を用いたパラボラトラフ型の太陽熱集熱器の場合を述べたが、平面形状の多数のミラーを用いたフレネル型の太陽熱集熱器を集光・集熱系に採用した太陽熱発電システムであってもよい。   For example, in each of the above-described embodiments, the solar heat collectors 14, 41, 45, 51, and 104 in the solar power generation systems 10 and 55 are parabolic trough solar heat collectors that use parabolic trough mirrors 20 that have a parabolic cross section. Although the case of a heater has been described, a solar power generation system in which a Fresnel-type solar heat collector using a large number of planar mirrors is adopted as a light collecting / heat collecting system may be used.

10 太陽熱発電システム
11 集光・集熱系
12 発電系
15 蒸気発生器(熱交換器)
16 過熱器(熱交換器)
17 蒸気タービン
20 ミラー
21 集熱配管
35 ガラス管(透光配管)
36 輻射シールド(断熱手段)
37 真空空間
41、45 太陽熱集熱器
46 断熱材(断熱手段)
51 太陽熱集熱器
52 輻射シールド(断熱手段)
52A 金属薄板
52B フレーム
53 支持材
55 太陽熱発電システム
56A 高温側の太陽熱集熱器
56B 低温側の太陽熱集熱器
P 太陽光
10 Solar Thermal Power Generation System 11 Concentration / Heat Collection System 12 Power Generation System 15 Steam Generator (Heat Exchanger)
16 Superheater (heat exchanger)
17 Steam turbine 20 Mirror 21 Heat collection pipe 35 Glass pipe (translucent pipe)
36 Radiation shield (insulation means)
37 Vacuum spaces 41, 45 Solar collector 46 Heat insulation material (heat insulation means)
51 Solar collector 52 Radiation shield (heat insulation means)
52A Metal thin plate 52B Frame 53 Support material 55 Solar power generation system 56A High-temperature side solar collector 56B Low-temperature side solar collector P Sunlight

Claims (11)

太陽光を集光する、断面が放物線形状のパラボラトラフ型のミラーと、
このミラーに対向して配置されると共に、前記ミラーにて集光された太陽光を吸収して集熱し、内側を流れる熱媒体を加熱する集熱配管と、
この集熱配管を真空状態で内包して断熱する透光性の透光配管と、を有する太陽熱集熱器であって、
前記集熱配管と前記透光配管との間の真空空間内には、これらの集熱配管及び透光配管から離反して、前記ミラーに対向する領域と反対側の領域全てに断熱手段が配置されたことを特徴とする太陽熱集熱器。
A parabolic trough mirror that collects sunlight and has a parabolic cross section ,
A heat collecting pipe that is disposed opposite to the mirror, absorbs sunlight collected by the mirror, collects heat, and heats a heat medium flowing inside,
A solar heat collector having a translucent translucent pipe that insulates and insulates the heat collection pipe in a vacuum state,
In the vacuum space between the heat collecting pipe and the light transmitting pipe , heat insulating means are arranged in all areas opposite to the area facing the mirror, away from the heat collecting pipe and the light transmitting pipe. A solar heat collector characterized by being made.
前記断熱手段が輻射シールドであることを特徴とする請求項1に記載の太陽熱集熱器。 The solar heat collector according to claim 1, wherein the heat insulating means is a radiation shield. 前記輻射シールドが2層以上設けられたことを特徴とする請求項2に記載の太陽熱集熱器。 The solar heat collector according to claim 2, wherein two or more layers of the radiation shield are provided. 前記輻射シールドの表面が金属研磨面にて構成されたことを特徴とする請求項2または3に記載の太陽熱集熱器。 The solar heat collector according to claim 2 or 3, wherein a surface of the radiation shield is configured by a metal polished surface. 前記輻射シールドの表面に酸化防止膜が施されたことを特徴とする請求項2乃至4のいずれか1項に記載の太陽熱集熱器。 The solar heat collector according to any one of claims 2 to 4, wherein an antioxidant film is provided on a surface of the radiation shield. 前記断熱手段はセラミック系断熱材であり、集熱配管の外表面に設置されたことを特徴とする請求項1に記載の太陽熱集熱器。 The solar heat collector according to claim 1, wherein the heat insulating means is a ceramic heat insulating material and is installed on an outer surface of a heat collecting pipe. 前記輻射シールドは、支持材を用いて集熱配管に支持されたことを特徴とする請求項2乃至5のいずれか1項に記載の太陽熱集熱器。 The solar radiation collector according to claim 2, wherein the radiation shield is supported by a heat collecting pipe using a support material. 前記支持材が集熱配管に摺動可能に設けられたことを特徴とする請求項7に記載の太陽熱集熱器。 The solar heat collector according to claim 7, wherein the support material is slidably provided on the heat collection pipe. 前記輻射シールドが、金属薄板とフレームを有して構成されたことを特徴とする請求項2乃至5、7及び8のいずれか1項に記載の太陽熱集熱器。 The solar heat collector according to any one of claims 2 to 5, 7, and 8, wherein the radiation shield includes a thin metal plate and a frame. 太陽光を集光し集熱して熱冷媒を加熱する太陽熱集熱器を備えた集光・集熱系と、
前記太陽熱集熱器にて加熱された熱冷媒と熱交換して蒸気を発生する熱交換器、及びこの熱交換器にて発生した蒸気により回転して発電機を駆動する蒸気タービンを備えた発電系と、を有する太陽熱発電システムにおいて、
前記太陽熱集熱器が、請求項1乃至9のいずれか1項に記載の太陽熱集熱器であることを特徴とする太陽熱発電システム。
A light collection / collection system equipped with a solar heat collector that collects sunlight and collects heat to heat the thermal refrigerant;
Power generation comprising a heat exchanger that generates steam by exchanging heat with the thermal refrigerant heated by the solar heat collector, and a steam turbine that rotates by the steam generated by the heat exchanger and drives a generator In a solar thermal power generation system having a system,
10. The solar thermal power generation system according to claim 1, wherein the solar thermal collector is the solar thermal collector according to claim 1.
太陽光を集光し集熱して熱冷媒を加熱する太陽熱集熱器を複数備えた集光・集熱系と、
前記太陽熱集熱器にて加熱された熱冷媒と熱交換して蒸気を発生する熱交換器、及びこの熱交換器にて発生した蒸気により回転して発電機を駆動する蒸気タービンを備えた発電系と、を有する太陽熱発電システムにおいて、
前記太陽熱集熱器が、高温側の太陽熱集熱器と低温側の太陽熱集熱器とに区分され、前記高温側の太陽熱集熱器が、請求項1乃至9のいずれか1項に記載の太陽熱集熱器であることを特徴とする太陽熱発電システム。
A light collecting / collecting system comprising a plurality of solar heat collectors for collecting sunlight and collecting heat to heat the thermal refrigerant;
Power generation comprising a heat exchanger that generates steam by exchanging heat with the thermal refrigerant heated by the solar heat collector, and a steam turbine that rotates by the steam generated by the heat exchanger and drives a generator In a solar thermal power generation system having a system,
The solar heat collector is divided into a high temperature side solar heat collector and a low temperature side solar heat collector, and the high temperature side solar heat collector is according to any one of claims 1 to 9. A solar thermal power generation system characterized by being a solar thermal collector.
JP2011165940A 2011-07-28 2011-07-28 Solar thermal collector and solar thermal power generation system Expired - Fee Related JP5752511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011165940A JP5752511B2 (en) 2011-07-28 2011-07-28 Solar thermal collector and solar thermal power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011165940A JP5752511B2 (en) 2011-07-28 2011-07-28 Solar thermal collector and solar thermal power generation system

Publications (2)

Publication Number Publication Date
JP2013029252A JP2013029252A (en) 2013-02-07
JP5752511B2 true JP5752511B2 (en) 2015-07-22

Family

ID=47786454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011165940A Expired - Fee Related JP5752511B2 (en) 2011-07-28 2011-07-28 Solar thermal collector and solar thermal power generation system

Country Status (1)

Country Link
JP (1) JP5752511B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015164714A (en) * 2014-02-28 2015-09-17 真 細川 Solar power generation system fresh water generator
US10358944B2 (en) 2015-02-05 2019-07-23 Basf Se Solar power plant comprising a first heat transfer circuit and a second heat transfer circuit
JP6612042B2 (en) * 2015-03-10 2019-11-27 三菱日立パワーシステムズ株式会社 Solar heat storage device

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5572760A (en) * 1978-11-24 1980-05-31 Agency Of Ind Science & Technol Solar energy collector
JPS5610258U (en) * 1979-07-02 1981-01-28
JPS58111848U (en) * 1982-01-25 1983-07-30 三洋電機株式会社 solar heat collector
JPS5938651U (en) * 1982-09-06 1984-03-12 三洋電機株式会社 solar heat collector
JPS59118962U (en) * 1983-02-01 1984-08-10 東洋物産株式会社 Solar water heater
JPH0213896Y2 (en) * 1984-11-20 1990-04-17
JPH042366Y2 (en) * 1986-09-20 1992-01-27
JP4322902B2 (en) * 2006-08-10 2009-09-02 川崎重工業株式会社 Solar power generation equipment and heat medium supply equipment
JP2008121999A (en) * 2006-11-14 2008-05-29 Matsushita Electric Ind Co Ltd Solar collector
JP2010181045A (en) * 2009-02-03 2010-08-19 Mitaka Koki Co Ltd Light receiving pipe for solar light collecting device
JP2010203624A (en) * 2009-02-27 2010-09-16 Mitaka Koki Co Ltd Trough type light collecting unit

Also Published As

Publication number Publication date
JP2013029252A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
Senthil et al. Effect of non-uniform temperature distribution on surface absorption receiver in parabolic dish solar concentrator
AU2013270295B2 (en) Solar photo-thermal receiving device
US10267296B2 (en) Combined solar thermal power generation system
CN101551169A (en) Cavity type solar energy absorber
US20150330668A1 (en) Systems and methods for direct thermal receivers using near blackbody configurations
JP5666275B2 (en) Sunlight collector
JP5752511B2 (en) Solar thermal collector and solar thermal power generation system
Gouthamraj et al. Design and analysis of rooftop linear fresnel reflector solar concentrator
Xiao et al. A solar micro gas turbine system combined with steam injection and ORC bottoming cycle
JP2016217223A (en) Solar thermal gas turbine power generation system
Gakkhar et al. Analysis of water cooling of CPV cells mounted on absorber tube of a Parabolic Trough Collector
CN102062016A (en) High-temperature sodium heat pipe heat collector for solar disc type thermal power generation system
US11085424B2 (en) Solar power collection system and methods thereof
JP5479644B1 (en) Solar heat collector
CN102062017A (en) Microscale phase change heat collector for solar disc type heat generation system
GB2540670A (en) A solar energy capture, energy conversion and energy storage system
JP2010281251A (en) Solar light concentrating steam power generator
JP2014052153A (en) Solar heat collection device
US20190048859A1 (en) Solar energy power generation system
WO2011101485A1 (en) Solar heat receiver tube for direct steam generation, parabolic trough collector with the solar heat receiver tube and use of the parabolic trough collector
WO2011113973A4 (en) Solar tower power plant economizer and plant operating method
CN104676568A (en) Steam generator and steam generation system based on line focusing solar heat collection
Sasidharan et al. Numerical and experimental studies on a pressurized hybrid tubular and cavity solar air receiver using a Scheffler reflector
JP2007205646A (en) Solar heat collector and solar heat utilization device having the same
Gaurav et al. Experimental determination for optimal position of reflector in solar water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140924

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150421

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150520

LAPS Cancellation because of no payment of annual fees