JP2010181045A - Light receiving pipe for solar light collecting device - Google Patents

Light receiving pipe for solar light collecting device Download PDF

Info

Publication number
JP2010181045A
JP2010181045A JP2009022430A JP2009022430A JP2010181045A JP 2010181045 A JP2010181045 A JP 2010181045A JP 2009022430 A JP2009022430 A JP 2009022430A JP 2009022430 A JP2009022430 A JP 2009022430A JP 2010181045 A JP2010181045 A JP 2010181045A
Authority
JP
Japan
Prior art keywords
light
tube
optical layer
heat
light absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009022430A
Other languages
Japanese (ja)
Inventor
Katsushige Nakamura
勝重 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitaka Kohki Co Ltd
Original Assignee
Mitaka Kohki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitaka Kohki Co Ltd filed Critical Mitaka Kohki Co Ltd
Priority to JP2009022430A priority Critical patent/JP2010181045A/en
Publication of JP2010181045A publication Critical patent/JP2010181045A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • F24S10/45Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors the enclosure being cylindrical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/50Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings
    • F24S80/52Elements for transmitting incoming solar rays and preventing outgoing heat radiation; Transparent coverings characterised by the material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light receiving pipe for a solar light collecting device capable of improving heat efficiency by cutting heat loss due to radiation from a light absorbing pipe. <P>SOLUTION: As an optical layer 6 is formed on an outer face of a transparent pipe 3, the visible light and the like A (light near visible light and light at ultraviolet ray-side with respect to visible light) occupying the most part of the solar light L, penetrates through the optical layer 6, and is brought into contact with the light absorbing pipe 4. The infrared ray B is reflected. The light absorbing pipe 4 is heated by the penetrating visible light and the like A, and emits radiation heat from a surface. As the most of the radiation heat is the infrared ray B having a wavelength longer than that of the visible light and the like A, it can not penetrate through the optical layer 6, and is reflected to a light absorbing pipe 4 side again by the optical layer 6. As the heat absorbing pipe 4 is heated by the reflected radiation heat repeatedly, the light absorbing pipe 4 is heated, and heat efficiency can be improved. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は太陽集光装置用の受光管に関するものである。   The present invention relates to a light receiving tube for a solar concentrator.

放物面を有するトラフの焦点位置に受光管を設置し、トラフに入光した太陽光を受光管に集光させ、受光管を加熱して内部を流れる熱媒体(オイル等)に熱を伝達する太陽集光装置が知られている。受光管は太陽光を効率良く熱に変換するため、熱のロスを少なくする構造が採用されている。   A light receiving tube is installed at the focal point of the trough with a paraboloid, the sunlight incident on the trough is condensed on the light receiving tube, and the heat is transferred to the heat medium (oil, etc.) flowing inside the light receiving tube. A solar concentrator is known. The light receiving tube employs a structure that reduces heat loss in order to efficiently convert sunlight into heat.

例えば、受光管は、外側の透明管と、内側の光吸収管から成る二重管構造になっている。光吸収管は太陽光を吸収しやすいように黒色塗装が施されている。透明管と光吸収管の間の空間は略真空状態とされ、光吸収管からの熱が伝熱により外部へ逃げないようにされている(例えば、特許文献1参照)。   For example, the light receiving tube has a double tube structure including an outer transparent tube and an inner light absorbing tube. The light absorption tube is painted black so that it can easily absorb sunlight. The space between the transparent tube and the light absorption tube is in a substantially vacuum state so that heat from the light absorption tube does not escape to the outside due to heat transfer (see, for example, Patent Document 1).

特開2004−239603号公報JP 2004-239603 A

しかしながら、このような従来の技術にあっては、透明管を取り囲む空間を真空化することにより、伝熱による熱の逃げは防止できるものの、光吸収管からの輻射による熱の逃げは防止することができなかった。そのため、受光管の熱効率の向上を図るうえである程度の限界があった。   However, in such a conventional technique, by evacuating the space surrounding the transparent tube, heat escape due to heat transfer can be prevented, but heat escape due to radiation from the light absorption tube can be prevented. I could not. Therefore, there has been a certain limit in improving the thermal efficiency of the light receiving tube.

本発明は、このような従来の技術に着目してなされたものであり、光吸収管からの輻射による熱の散逸も防止して、熱効率の向上を図ることができる太陽集光装置用の受光管を提供するものある。   The present invention has been made by paying attention to such a conventional technique, and it is possible to prevent heat dissipation due to radiation from the light absorption tube and to improve thermal efficiency. Some offer tubes.

本発明は、外側の透明管と、内側の光吸収管から成る二重管構造で、透明管と光吸収管の間の空間が略真空状態とされ、光吸収管の内部に流体の熱媒体が流される太陽集光装置用の受光管において、前記透明管の内面又は外面に、可視光範囲よりも大きい波長範囲に設定された閾値以下の小さい波長の光を透過し且つ閾値より大きい波長の光を反射する光学層を形成したことを特徴とする。   The present invention has a double tube structure comprising an outer transparent tube and an inner light absorption tube, the space between the transparent tube and the light absorption tube is in a substantially vacuum state, and a heat medium for fluid inside the light absorption tube In a light receiving tube for a solar concentrator, in which light is transmitted, light having a wavelength smaller than a threshold value set to a wavelength range larger than the visible light range is transmitted to the inner surface or the outer surface of the transparent tube, and the wavelength is larger than the threshold value. An optical layer that reflects light is formed.

閾値としては、800〜1200nmの範囲内(より好ましくは1000nm)が好適である。   The threshold is preferably in the range of 800 to 1200 nm (more preferably 1000 nm).

本発明によれば、透明管の内面又は外面に、可視光範囲よりも大きい波長範囲に設定された閾値以下の小さい波長の光を透過し且つ閾値より大きい波長の光を反射する光学層を形成したため、太陽光の大部分を占める可視光付近及びそれより紫外側の光は、光学層を透過し、光吸収管に当たる。光吸収管はその可視光等により加熱される。加熱された光吸収管は、その表面から輻射熱を放射する。加熱された光吸収管から放射される輻射熱は殆どが可視光よりも大きい波長の赤外線である。その赤外線である輻射光は、光学層を透過することができず、光学層により再度光吸収管側へ反射される。そのため、反射された輻射熱により光吸収管が加熱され、それを繰り返すことにより、光吸収管はより加熱された状態となり、熱効率が向上する。   According to the present invention, an optical layer is formed on the inner or outer surface of the transparent tube, which transmits light having a wavelength smaller than a threshold value set in a wavelength range larger than the visible light range and reflects light having a wavelength larger than the threshold value. Therefore, the light in the vicinity of the visible light that occupies most of the sunlight and the ultraviolet light from the light passes through the optical layer and hits the light absorption tube. The light absorption tube is heated by the visible light or the like. The heated light absorption tube radiates radiant heat from its surface. Most of the radiant heat radiated from the heated light absorption tube is infrared light having a wavelength larger than that of visible light. The infrared radiation light cannot pass through the optical layer and is reflected again by the optical layer toward the light absorption tube. Therefore, the light absorption tube is heated by the reflected radiant heat, and by repeating this, the light absorption tube becomes more heated and the thermal efficiency is improved.

本発明の実施形態に係るトラフ式太陽集光装置の断面図。Sectional drawing of the trough type solar condensing device which concerns on embodiment of this invention. トラフ式太陽集光装置の側面図。The side view of a trough type solar concentrator. 受光管の構造を示す斜視図。The perspective view which shows the structure of a light receiving tube. 受光管の断面図。Sectional drawing of a light receiving tube. 太陽光の波長分布を示すグラフ。The graph which shows wavelength distribution of sunlight. 光学層の閾値の性能を示すグラフ。The graph which shows the performance of the threshold value of an optical layer. 可視光等だけが透過する状態を示す受光管の断面図。Sectional drawing of the light receiving tube which shows the state which only visible light etc. permeate | transmit. 光吸収管から放射された赤外線が光学層で反射される状態を示す受光管の断面図。Sectional drawing of the light receiving tube which shows the state in which the infrared rays radiated | emitted from the light absorption tube are reflected by an optical layer. 光吸収管から放射された赤外線が光学層内に滞留した状態を示す部分拡大断面図。The partial expanded sectional view which shows the state which the infrared rays radiated | emitted from the light absorption tube stayed in the optical layer.

図1〜図9は、本発明の好適な実施形態を示す図である。トラフ1は長手方向に沿って放物面の断面を有する形状をしている。トラフ1の内面は鏡面になっており、その焦点位置には受光管2が長手方向に沿って支持されている。トラフ1の幅は約5mで、長さは約100mである。トラフ1は長手方向に多数連結され、更に連結されたものが幅方向に多数並べられて設置されて使用される。トラフ1及び受光管2は、太陽を追尾した状態で回転し、トラフ1の光軸が常に太陽光Lと平行になるようになっている。   1 to 9 are diagrams showing a preferred embodiment of the present invention. The trough 1 has a shape having a parabolic cross section along the longitudinal direction. The inner surface of the trough 1 is a mirror surface, and the light receiving tube 2 is supported along the longitudinal direction at the focal position. The width of the trough 1 is about 5 m and the length is about 100 m. A large number of troughs 1 are connected in the longitudinal direction, and a number of the connected troughs 1 are arranged and used in the width direction. The trough 1 and the light receiving tube 2 rotate while tracking the sun, and the optical axis of the trough 1 is always parallel to the sunlight L.

受光管2は、外側の透明管3と、内側の光吸収管4から成る二重管構造をしている。透明管3の直径や約12cmで、光吸収管4の直径は約7cmである。透明管3は透明な耐熱ガラス製で、光吸収管4は外面が黒色の金属製パイプ製である。透明管3は両端部が閉塞しており、透明管3と光吸収管4の間の空間Pは略真空状態で密閉化されている。光吸収管4の内部には熱媒体5としてのオイルが流れるようになっている。   The light receiving tube 2 has a double tube structure including an outer transparent tube 3 and an inner light absorbing tube 4. The diameter of the transparent tube 3 is about 12 cm, and the diameter of the light absorption tube 4 is about 7 cm. The transparent tube 3 is made of transparent heat-resistant glass, and the light absorption tube 4 is made of a metal pipe whose outer surface is black. Both ends of the transparent tube 3 are closed, and the space P between the transparent tube 3 and the light absorption tube 4 is sealed in a substantially vacuum state. Oil as the heat medium 5 flows inside the light absorption tube 4.

そして、透明管3の外面には光学層6が形成されている。光学層6は、透明管3の外面に、スパッタリング法を用いて酸化チタン(TiO)と酸化ケイ素(PiO)を交互に形成した積層構造をしている。この光学層6は波長1000nmの閾値をもち、閾値以下の波長の光は透過するが、閾値より大きい波長の光は反射する特性を有している。図6に光学層6の光透過性能を示す。 An optical layer 6 is formed on the outer surface of the transparent tube 3. The optical layer 6 has a laminated structure in which titanium oxide (TiO 2 ) and silicon oxide (PiO 2 ) are alternately formed on the outer surface of the transparent tube 3 by using a sputtering method. This optical layer 6 has a threshold value of a wavelength of 1000 nm, and has a characteristic of transmitting light having a wavelength shorter than the threshold value, but reflecting light having a wavelength larger than the threshold value. FIG. 6 shows the light transmission performance of the optical layer 6.

太陽光Lは、図5に示すように、可視光(波長380〜780nm)及び紫外線(〜380nm)が殆どであり、赤外線(780nm〜)は少ない。閾値Sを1000nmに設定すれば、それよりも大きい赤外線は更に少ない。   As shown in FIG. 5, the sunlight L is mostly visible light (wavelength 380 to 780 nm) and ultraviolet light (up to 380 nm), and has little infrared light (780 nm or more). If the threshold value S is set to 1000 nm, there will be fewer infrared rays larger than that.

従って、トラフ1で集光した太陽光Lを受光管2に当てると、太陽光Lのうち、波長が1000nm以下の紫外線、可視光、赤外線の一部(以下、可視光等Aという)は透過し、1000nmより長い赤外線Bは反射される。   Therefore, when the sunlight L collected by the trough 1 is applied to the light receiving tube 2, ultraviolet rays having a wavelength of 1000 nm or less, visible light, and a part of infrared rays (hereinafter referred to as visible light A or the like) are transmitted. Infrared rays B longer than 1000 nm are reflected.

太陽光L中の赤外線Bの成分は少ないため、反射されても受光管2の加熱性能に与える影響は少ない。太陽光Lの大部分を占める可視光等Aは光学層6を透過して、光吸収管4に当たり、光吸収管4を加熱する。   Since the component of the infrared ray B in the sunlight L is small, the influence on the heating performance of the light receiving tube 2 is small even if it is reflected. Visible light or the like A that occupies most of the sunlight L passes through the optical layer 6, hits the light absorption tube 4, and heats the light absorption tube 4.

光吸収管4は約400°C程度まで加熱される。加熱されて高温になった光吸収管4は、自ら輻射熱を放射する。輻射熱は殆ど全てが赤外線であり、例えば約400°Cの黒体から放射される輻射熱は殆ど全てが1000nm以上の波長の赤外線Bであることが知られている。   The light absorption tube 4 is heated to about 400 ° C. The light absorption tube 4 heated to a high temperature emits radiant heat by itself. It is known that almost all of the radiant heat is infrared, and for example, almost all of the radiant heat emitted from a black body at about 400 ° C. is infrared B having a wavelength of 1000 nm or more.

従って、光吸収管4から放射された輻射熱である赤外線Bは光学層6を透過することができず、光学層6で反射されて再び光吸収管4に当たり、光吸収管4を加熱する。加熱された光吸収管4からは更に赤外線Bが放射される。赤外線Bが外部に逃げず、透明管3の内部に滞留するため、光吸収管4の温度が上昇し、熱効率が高まる。そのため、光吸収管4の熱効率が向上し、光吸収管4内を流れる熱媒体5を確実に加温することができる。   Therefore, the infrared ray B, which is radiant heat radiated from the light absorption tube 4, cannot pass through the optical layer 6, is reflected by the optical layer 6, hits the light absorption tube 4 again, and heats the light absorption tube 4. Infrared rays B are further emitted from the heated light absorption tube 4. Since the infrared rays B do not escape to the outside and stay in the transparent tube 3, the temperature of the light absorption tube 4 rises and the thermal efficiency is increased. Therefore, the thermal efficiency of the light absorption tube 4 is improved, and the heat medium 5 flowing in the light absorption tube 4 can be reliably heated.

以上の実施形態では、光学層6を透明管3の外面に形成する例を示したが、内面に形成しても良い。また、光学層6を透明管3の表面に直接形成する例を示したが、光学層6をいったん樹脂フィルムに形成し、その樹脂フィルムを透明管3の表面に貼着するようにしても良い。また、受光管2はトラフ1でなく、フレネル式、その他の太陽集光装置に用いることもできる。   In the above embodiment, the example in which the optical layer 6 is formed on the outer surface of the transparent tube 3 has been shown, but it may be formed on the inner surface. Moreover, although the example which forms the optical layer 6 directly on the surface of the transparent tube 3 was shown, the optical layer 6 may be once formed in a resin film, and you may make it stick the resin film on the surface of the transparent tube 3. . Further, the light receiving tube 2 can be used not for the trough 1 but for a Fresnel type or other solar condensing device.

1 トラフ
2 受光管
3 透明管
4 光吸収管
5 熱媒体
6 光学層
A 可視光等
B 赤外線
L 太陽光
P 空間
S 閾値
1 trough 2 light receiving tube 3 transparent tube 4 light absorbing tube 5 heat medium 6 optical layer A visible light B infrared ray L sunlight P space S threshold

Claims (2)

外側の透明管と、内側の光吸収管から成る二重管構造で、透明管と光吸収管の間の空間が略真空状態とされ、光吸収管の内部に流体の熱媒体が流される太陽集光装置用の受光管において、
前記透明管の内面又は外面に、可視光領域よりも大きい波長範囲で設定された閾値以下の小さい波長の光を透過し且つ閾値より大きい波長の光を反射する光学層を形成したことを特徴とする太陽集光装置用の受光管。
A sun with a double tube structure consisting of an outer transparent tube and an inner light absorption tube, the space between the transparent tube and the light absorption tube is in a substantially vacuum state, and a fluid heat medium flows inside the light absorption tube In the light receiving tube for the condenser,
An optical layer is formed on the inner or outer surface of the transparent tube, which transmits light having a wavelength smaller than a threshold set in a wavelength range larger than the visible light region and reflects light having a wavelength larger than the threshold. Receiver tube for solar concentrator.
閾値が800〜1200nmの範囲内(好ましくは1000nm)にあることを特徴とする請求項1記載の太陽集光装置用の受光管。   The light receiving tube for a solar concentrator according to claim 1, wherein the threshold is in the range of 800 to 1200 nm (preferably 1000 nm).
JP2009022430A 2009-02-03 2009-02-03 Light receiving pipe for solar light collecting device Pending JP2010181045A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022430A JP2010181045A (en) 2009-02-03 2009-02-03 Light receiving pipe for solar light collecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022430A JP2010181045A (en) 2009-02-03 2009-02-03 Light receiving pipe for solar light collecting device

Publications (1)

Publication Number Publication Date
JP2010181045A true JP2010181045A (en) 2010-08-19

Family

ID=42762742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022430A Pending JP2010181045A (en) 2009-02-03 2009-02-03 Light receiving pipe for solar light collecting device

Country Status (1)

Country Link
JP (1) JP2010181045A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057120A1 (en) * 2010-10-25 2012-05-03 イビデン株式会社 Thermal collector tube, thermal collector and concentrated solar power system
WO2013004869A1 (en) * 2011-07-05 2013-01-10 Abengoa Solar New Technologies, S. A. Receiver for a thermosolar installation and thermosolar installation comprising said receiver
JP2013029252A (en) * 2011-07-28 2013-02-07 Toshiba Corp Solar heat collector, and solar thermal power generation system
CN103062945A (en) * 2011-10-21 2013-04-24 西门子公司 Solar receiver tube assembly and use thereof
WO2013165014A1 (en) * 2012-05-01 2013-11-07 デクセリアルズ株式会社 Heat-absorbing material and process for producing same
WO2016052076A1 (en) * 2014-10-03 2016-04-07 イビデン株式会社 Heat-concentrating pipe
JP2016523349A (en) * 2013-05-29 2016-08-08 サウジ アラビアン オイル カンパニー High-efficiency solar power generator for marine applications
JP2016532842A (en) * 2013-09-30 2016-10-20 スン イム,ド Solar energy collector and system using the same {SOLAR ENERGY COLLECTOR AND SYSTEM FOR USING SAME}

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012057120A1 (en) * 2010-10-25 2012-05-03 イビデン株式会社 Thermal collector tube, thermal collector and concentrated solar power system
WO2013004869A1 (en) * 2011-07-05 2013-01-10 Abengoa Solar New Technologies, S. A. Receiver for a thermosolar installation and thermosolar installation comprising said receiver
EP2730855A4 (en) * 2011-07-05 2015-05-27 Abengoa Solar New Tech Sa Receiver for a thermosolar installation and thermosolar installation comprising said receiver
JP2013029252A (en) * 2011-07-28 2013-02-07 Toshiba Corp Solar heat collector, and solar thermal power generation system
CN103062945A (en) * 2011-10-21 2013-04-24 西门子公司 Solar receiver tube assembly and use thereof
WO2013165014A1 (en) * 2012-05-01 2013-11-07 デクセリアルズ株式会社 Heat-absorbing material and process for producing same
JP2013250045A (en) * 2012-05-01 2013-12-12 Dexerials Corp Heat absorbing material and method of manufacturing the same
US9746206B2 (en) 2012-05-01 2017-08-29 Dexerials Corporation Heat-absorbing material and process for producing same
JP2016523349A (en) * 2013-05-29 2016-08-08 サウジ アラビアン オイル カンパニー High-efficiency solar power generator for marine applications
JP2016532842A (en) * 2013-09-30 2016-10-20 スン イム,ド Solar energy collector and system using the same {SOLAR ENERGY COLLECTOR AND SYSTEM FOR USING SAME}
WO2016052076A1 (en) * 2014-10-03 2016-04-07 イビデン株式会社 Heat-concentrating pipe

Similar Documents

Publication Publication Date Title
JP2010181045A (en) Light receiving pipe for solar light collecting device
JP2010203624A (en) Trough type light collecting unit
US4026273A (en) Solar fluid heater with electromagnetic radiation trap
JP6421997B2 (en) Solar energy collector and solar energy collection system
WO2009133883A1 (en) Solar energy absorber
CN105157257A (en) Slot type light gathering type solar vacuum heat collecting pipe
WO2012073664A1 (en) Solar thermal collector tube
JP2010144957A (en) Solar heat collection method and device
JP5687043B2 (en) Solar collector
JP2014052153A (en) Solar heat collection device
CN105042885A (en) Concentrating type flat-plate solar collector
Chaturvedi A review of solar flat plate liquid collector’s components
JP6450133B2 (en) Heat collecting tube
CN205037606U (en) Slot type spotlight type solar vacuum heat collection tube
WO2012097863A1 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector
KR100779428B1 (en) Solar collector with reflector and double-sided coating to collect solar thermal
JP5705517B2 (en) Solar collector tube
CN205048752U (en) Concentrating type flat -plate solar collector
JPH06201197A (en) Solar heat collecting device
Bhalla et al. Liquid layer envelope for reducing radiative losses in nanofluid-based volumetric receivers
JP6513957B2 (en) Solar heat collector tube, solar light-to-heat converter and solar thermal power generator
KR200277017Y1 (en) Solar concentrating collector with dual evacuated tube
EP2606289A2 (en) Heat receiver tube, method for manufacturing the heat receiver tube, parabolic trough collector with the receiver tube and use of the parabolic trough collector
JP2011089741A (en) Collected sunlight heat collecting device
CN104654635A (en) Heat collecting vacuum tube of solar heat collector