JP2014052153A - Solar heat collection device - Google Patents

Solar heat collection device Download PDF

Info

Publication number
JP2014052153A
JP2014052153A JP2012198077A JP2012198077A JP2014052153A JP 2014052153 A JP2014052153 A JP 2014052153A JP 2012198077 A JP2012198077 A JP 2012198077A JP 2012198077 A JP2012198077 A JP 2012198077A JP 2014052153 A JP2014052153 A JP 2014052153A
Authority
JP
Japan
Prior art keywords
heat collecting
heat
tube
collecting tube
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012198077A
Other languages
Japanese (ja)
Inventor
Shigenao Maruyama
重直 圓山
Junnosuke Okajima
淳之介 岡島
Xinrong Zhang
信栄 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Tohoku University NUC
Original Assignee
Peking University
Tohoku University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University, Tohoku University NUC filed Critical Peking University
Priority to JP2012198077A priority Critical patent/JP2014052153A/en
Priority to CN201310409068.0A priority patent/CN103673320A/en
Publication of JP2014052153A publication Critical patent/JP2014052153A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Landscapes

  • Optical Elements Other Than Lenses (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a solar heat collection device which can suppress heat loss with a relatively simple constitution, facilitates maintenance and can reduce expenses such as a manufacturing cost.SOLUTION: A heat collecting pipe 12 for causing heat medium to flow through an internal part is arranged in a vacuum transparent pipe 11. A pair of first reflection plates 13 are disposed along the heat collecting pipe 12 in the vacuum transparent pipe 11. Respective first reflection plates 13 extend in an involute curve shape right and left symmetrically from the heat collecting pipe 12, in a cross-section vertical to the length direction of the heat collecting pipe 12. A pair of second reflection plates 14 assume a composite parabolic surface shape and are respectively connected to opening edges A,D of the respective first reflection plates 13 in the vacuum transparent pipe 11. Solar light made incident from a part between respective incident edges B, C of the respective second reflection plates 14 hits the heat collecting pipe 12 directly or after at least one time being reflected by the respective first reflection plates 13 or the respective second reflection plates 14.

Description

本発明は、太陽集熱装置に関する。   The present invention relates to a solar heat collecting apparatus.

従来の太陽集熱装置として、平面鏡に太陽追尾機構を設けたもの(例えば、特許文献1参照)や、複合放物面集光(Compound Parabolic Concetrator;CPC)型反射鏡により太陽光を集熱部に入射させるもの(例えば、特許文献2参照)がある。   As a conventional solar heat collecting device, a solar collector is provided with a solar tracking mechanism (see, for example, Patent Document 1), or a compound parabolic condenser (CPC) type reflecting mirror. (For example, see Patent Document 2).

なお、本発明者等により、円筒状の放射源から放射される光を効率良く反射し、開口部で均一かつ当方性の放射面を得ることができるインボリュート形反射板が開発されているが(例えば、特許文献3参照)、このインボリュート形反射板は、光源からの光を放射するために開発されたものであり、集光するために使用されたことはない。   The present inventors have developed an involute reflector that can efficiently reflect light emitted from a cylindrical radiation source and obtain a uniform and isotropic radiation surface at the opening ( For example, see Patent Document 3), this involute reflector has been developed to emit light from a light source, and has never been used to collect light.

特開2010−286200号公報JP 2010-286200 A 特許第3958032号公報Japanese Patent No. 3958032 特許第3205809号公報Japanese Patent No. 3205809

特許文献1に記載のような太陽追尾機構を有する太陽集熱装置では、高い集光効率は得られるが、太陽追尾機構が複雑な構成となるため、製造コストや設置コストが嵩むという課題があった。また、メンテナンスが困難となり、維持費用も嵩むという課題もあった。特許文献2に記載のような複合放物面集光型反射鏡を利用した太陽集熱装置では、複合放物面集光型反射鏡による集光範囲が平面となり、平面状の集熱面の表裏両面から周囲空気への熱伝達や対流・熱ふく射による熱損失が生じるため、集熱効率が低下してしまうという課題があった。特許文献2では、熱損失を抑制するために微細な複合放物面集光型反射鏡を使用しているが、この場合には高度な加工技術が必要となり、製造コストが嵩むという課題があった。   In the solar heat collecting apparatus having the solar tracking mechanism as described in Patent Document 1, high light collection efficiency can be obtained. However, since the solar tracking mechanism has a complicated configuration, there is a problem that manufacturing cost and installation cost increase. It was. In addition, there is a problem that maintenance becomes difficult and maintenance costs increase. In the solar heat collecting apparatus using the composite parabolic concentrating reflector as described in Patent Document 2, the condensing range by the composite parabolic concentrating reflector is flat, and the planar heat collecting surface is Since heat loss from both the front and back surfaces to the surrounding air and heat loss due to convection and heat radiation occur, there is a problem that the heat collection efficiency decreases. In Patent Document 2, a fine composite paraboloidal concentrating mirror is used to suppress heat loss. However, in this case, an advanced processing technique is required, resulting in an increase in manufacturing cost. It was.

本発明は、このような課題に着目してなされたもので、比較的簡単な構成で熱損失を抑えることができ、メンテナンスが容易で、製造コストなどの費用を低減することができる太陽集熱装置を提供することを目的としている。   The present invention has been made by paying attention to such problems, and it is possible to suppress heat loss with a relatively simple configuration, easy maintenance, and reduction of manufacturing costs and other costs. The object is to provide a device.

本発明に係る太陽集熱装置は、内部を真空にすることができる真空透明管と、前記真空透明管の内部に配置された、内部に熱媒体を流すための集熱管と、前記真空透明管の内部に前記集熱管に沿って設けられ、前記集熱管の長さ方向に対して垂直な断面内で、前記集熱管から左右対称にそれぞれインボリュート曲線状に伸びる1対の第1反射板と、前記真空透明管の内部で各第1反射板の前記集熱管とは反対側の開口端縁にそれぞれ接続された、複合放物面形状を成す1対の第2反射板とを有し、各第2反射板の各第1反射板とは反対側の入射端縁の間から入射した太陽光が、直接または、各第1反射板もしくは各第2反射板で少なくとも1回反射して前記集熱管に当たるよう構成されていることを特徴とする。   A solar heat collecting apparatus according to the present invention includes a vacuum transparent tube that can be evacuated inside, a heat collection tube that is disposed inside the vacuum transparent tube and allows a heat medium to flow inside, and the vacuum transparent tube A pair of first reflectors that extend in an involute curve shape symmetrically from the heat collection tube within a cross section perpendicular to the length direction of the heat collection tube, and provided in the inside of the heat collection tube. A pair of second reflectors each having a compound paraboloid shape connected to an opening edge of each first reflector opposite to the heat collecting tube inside the vacuum transparent tube; Sunlight incident from between the incident edges of the second reflector opposite to the first reflectors is reflected directly or at least once by each first reflector or each second reflector to collect the light. It is configured to hit the heat tube.

本発明に係る太陽集熱装置は、各第2反射板が複合放物面形状を成しているため、各第2反射板の入射端縁の間から入射した太陽光のうち、各第2反射板に当たる光を1回または複数回反射して、各第1反射板または集熱管に当てるよう構成することができる。また、各第1反射板が、集熱管の長さ方向に対して垂直な断面内で、集熱管から左右対称にそれぞれインボリュート曲線状に伸びるよう構成されているため、各第1反射板に当たる光を集熱管に集めることができる。このように、本発明に係る太陽集熱装置は、各第2反射板の入射端縁の間から入射した太陽光が、直接または、各第1反射板もしくは各第2反射板で1回以上反射して集熱管に当たるよう構成されており、集光効率が高く、優れた集熱効果を有している。   In the solar heat collecting apparatus according to the present invention, each second reflecting plate has a composite parabolic shape, so that each second of the sunlight incident from between the incident edges of each second reflecting plate. The light striking the reflecting plate can be reflected one or more times and applied to each first reflecting plate or heat collecting tube. Moreover, since each 1st reflecting plate is comprised so that it may each extend in an involute curve shape symmetrically from the heat collecting tube within the cross section perpendicular | vertical with respect to the length direction of a heat collecting tube, the light which hits each 1st reflecting plate Can be collected in a heat collecting tube. As described above, in the solar heat collecting apparatus according to the present invention, the sunlight incident from between the incident edges of each second reflector is directly or once or more in each first reflector or each second reflector. It is configured to reflect and hit the heat collecting tube, has high light collection efficiency, and has an excellent heat collecting effect.

本発明に係る太陽集熱装置は、設置地域に応じて、各第1反射板や各第2反射板の大きさ、各第2反射板の入射端縁の受光開口角や取付角度を最適に設計することができ、季節変動によらず固定したまま集光することができる。このため、太陽追尾機構のような複雑な構成が不要で、比較的簡単な構成で集光効率を高めることができる。また、メンテナンスも容易となり、製造コストなどの費用を低減することができる。   The solar heat collecting apparatus according to the present invention optimizes the size of each first reflecting plate and each second reflecting plate, the light receiving opening angle and the mounting angle of the incident edge of each second reflecting plate according to the installation area. It can be designed and can be focused without being affected by seasonal variations. For this reason, the complicated structure like a solar tracking mechanism is unnecessary, and it can raise condensing efficiency with a comparatively simple structure. In addition, maintenance is facilitated, and costs such as manufacturing costs can be reduced.

また、本発明に係る太陽集熱装置は、集熱管と各第1反射板と各第2反射板とが真空透明管の内部に設置されているため、真空透明管の内部を真空にすることにより、集熱管、各第1反射板および各第2反射板から周囲空気への熱伝達による熱損失を防ぐことができる。熱損失の中で大きな割合を占める熱伝達による熱損失が無くなるため、熱損失を、真空透明管と周囲空気との間の熱伝達、集熱管、各第1反射板および各第2反射板からの放射に限定することができる。また、集熱管の直径を小さくすることにより、集熱管からのふく射損失を低減することができる。各第1反射板がインボリュート曲線状を成しているため、各第1反射板と集熱管との接触面積を小さくすることができ、集熱管から各第1反射板への熱伝導損失も最小限にすることができる。このように、本発明に係る太陽集熱装置は、比較的簡単な構成で熱損失を抑えることができる。   In the solar heat collecting apparatus according to the present invention, since the heat collecting tube, each first reflecting plate, and each second reflecting plate are installed inside the vacuum transparent tube, the inside of the vacuum transparent tube is evacuated. Thus, it is possible to prevent heat loss due to heat transfer from the heat collecting tubes, the first reflecting plates, and the second reflecting plates to the surrounding air. Since heat loss due to heat transfer, which accounts for a large proportion of heat loss, is eliminated, heat loss is caused by heat transfer between the vacuum transparent tube and the ambient air, the heat collecting tube, each first reflector, and each second reflector. It can be limited to the radiation. Further, by reducing the diameter of the heat collecting tube, the radiation loss from the heat collecting tube can be reduced. Since each first reflector has an involute curve shape, the contact area between each first reflector and the heat collecting tube can be reduced, and the heat conduction loss from the heat collecting tube to each first reflector is also minimized. Can be limited. Thus, the solar heat collecting apparatus according to the present invention can suppress heat loss with a relatively simple configuration.

本発明に係る太陽集熱装置は、集熱管と各第1反射板と各第2反射板とが真空透明管に覆われるため、塵や埃などがそれらに付着するのを防ぐことができ、塵や埃などによる故障等を防止することができる。また、真空透明管の外側を拭くだけで、塵や埃などを取り除くことができ、クリーニングなどのメンテナンスが容易である。この集熱管、各第1反射板および各第2反射板を封入した真空透明管を一単位として製造することにより、設置場所の大きさに合わせて必要単位数や配列などを構成することができ、コストを削減することができる。   In the solar heat collecting apparatus according to the present invention, since the heat collecting tubes, the first reflecting plates, and the second reflecting plates are covered with the vacuum transparent tubes, dust and dust can be prevented from adhering to them. It is possible to prevent a failure due to dust or the like. Further, dust and dirt can be removed by simply wiping the outside of the vacuum transparent tube, and maintenance such as cleaning is easy. By manufacturing this heat collecting tube, the vacuum transparent tube enclosing each first reflecting plate and each second reflecting plate as one unit, the required number of units and arrangement can be configured according to the size of the installation place. , Can reduce the cost.

本発明に係る太陽集熱装置で、各第1反射板は、設置地域に応じて設計することができ、従来のCPC型反射鏡のような対称形状である必要はない。また、本発明に係る太陽集熱装置は、真空透明管の内部の各第1反射板および各第2反射板の裏側の熱損失を抑えるために、各第1反射板および各第2反射板の裏側に断熱材が設けられていてもよい。真空透明管は、例えばガラス製である。   In the solar heat collecting apparatus according to the present invention, each first reflecting plate can be designed according to the installation area, and does not have to be symmetrical like a conventional CPC type reflecting mirror. Further, the solar heat collecting apparatus according to the present invention includes each first reflecting plate and each second reflecting plate in order to suppress heat loss on the back side of each first reflecting plate and each second reflecting plate inside the vacuum transparent tube. A heat insulating material may be provided on the back side. The vacuum transparent tube is made of glass, for example.

本発明に係る太陽集熱装置は、集熱管の内部を流れる熱媒体として、例えば、水、油、冷媒である代替フロン、フロリナート、超臨界二酸化炭素などを用いることができる。水を使用する場合、集熱管を通過後は、直接お湯として利用したり、蒸気にして洗濯工場や食品工場などの工場で利用したりすることができる。また、油や超臨界二酸化炭素を使用する場合、集熱管を通過後は、蒸気発生装置等の熱源として利用することができる。熱の利用効率は低下するが、蒸気タービンを接続して発電に使用することもできる。また、集熱管の直径を小さくできるため、内部を流れる熱媒体に高圧の流体を用いることができる。   In the solar heat collecting apparatus according to the present invention, for example, water, oil, chlorofluorocarbon alternative, fluorinate, supercritical carbon dioxide, or the like can be used as a heat medium flowing inside the heat collecting tube. When water is used, after passing through the heat collecting tube, it can be used directly as hot water, or can be used as steam in a factory such as a laundry factory or a food factory. When oil or supercritical carbon dioxide is used, it can be used as a heat source for a steam generator or the like after passing through the heat collecting tube. Although the utilization efficiency of heat is reduced, a steam turbine can be connected and used for power generation. Moreover, since the diameter of the heat collecting tube can be reduced, a high-pressure fluid can be used as the heat medium flowing inside.

なお、本発明に係る太陽集熱装置は、これまで光の放射にしか利用されなかったインボリュート形状の反射板を、初めて集光に利用したものである。本発明に係る太陽集熱装置は、所定の幅を有する平面内に集光可能な複合放物面形状の各第2反射板と、所定の幅を有する平面内に入射した光を集熱管に集めることができるインボリュート形状の各第1反射板とを組み合わせることにより、それぞれ単独の使用では得られない、飛躍的に高い集光効率を得ることができる。また、各第1反射板と各第2反射板とを組み合わせることにより、従来の平面状の集熱装置で生じる平面の裏側からの熱損失をゼロにすることができる。すなわち、従来の平面状の集熱装置では、熱損失の生じる部分が平面の表裏両面であったのに対し、本発明に係る太陽集熱装置では、集熱管の表面のみとなるため、熱損失の生じる面積が約半分となる。このため、本発明に係る太陽集熱装置は、従来の平面状の集熱装置と比べて、熱損失を大幅に抑えることができる。   The solar heat collecting apparatus according to the present invention uses an involute reflector, which has been used only for light emission, for the first time for collecting light. The solar heat collecting apparatus according to the present invention uses each of the composite parabolic second reflectors capable of condensing in a plane having a predetermined width and light incident on the plane having a predetermined width as a heat collecting tube. By combining the involute-shaped first reflectors that can be collected, it is possible to obtain dramatically higher light collection efficiency that cannot be obtained by using each of them alone. Moreover, the heat loss from the back side of the plane which arises with the conventional planar heat collecting device can be made zero by combining each 1st reflecting plate and each 2nd reflecting plate. That is, in the conventional planar heat collecting device, the portion where heat loss occurs is on both the front and back surfaces of the plane, whereas in the solar heat collecting device according to the present invention, only the surface of the heat collecting tube is used. The area where this occurs is about half. For this reason, the solar heat collecting apparatus which concerns on this invention can suppress heat loss significantly compared with the conventional planar heat collecting apparatus.

本発明に係る太陽集熱装置で、前記集熱管は円筒形状を成し、各第1反射板は、前記集熱管の長さ方向に対して垂直な断面内で、前記集熱管の外周円の1点からそれぞれ左右に伸びて、各開口端縁を結ぶ直線が前記集熱管の外周円の前記1点とは反対側でほぼ接するよう形成されており、各開口端縁の間に入射した光が、直接または各第1反射板で反射して前記集熱管に当たるよう構成され、各第2反射板は、各入射端縁に向かって間隔が広がるよう取り付けられており、各入射端縁の間から入射した太陽光が各第1反射板の開口端縁の間に集光するよう構成されていることが好ましい。この場合、各第2反射板の入射端縁の間から入射した太陽光のほとんど全てを集熱管に当てることができ、特に集光効率が高く、非常に優れた集熱効果を有している。   In the solar heat collecting apparatus according to the present invention, the heat collecting tube has a cylindrical shape, and each of the first reflectors has a cross-section perpendicular to the length direction of the heat collecting tube, and the outer circumferential circle of the heat collecting tube. Light that extends from one point to the left and right, and is formed so that a straight line that connects each opening edge is substantially in contact with the one point on the opposite side of the outer circumference of the heat collecting tube. However, each of the second reflecting plates is attached so as to be widened toward each incident end edge, and is reflected between each incident end edge. It is preferable that the sunlight incident on the first reflecting plate is collected between the opening edges of the first reflecting plates. In this case, almost all of the sunlight incident between the incident edges of each second reflecting plate can be applied to the heat collecting tube, and in particular, the light collecting efficiency is high and has a very excellent heat collecting effect. .

本発明に係る太陽集熱装置は、前記集熱管と各第1反射板と各第2反射板とで構成される集熱器を2組有し、各集熱器は、前記真空透明管の内部に、各入射端縁間の開口の向きを揃えて並べて配置されていてもよい。この場合、真空透明管の内部空間を効率的に利用することができ、設置面積に対する太陽光の利用率を高めることができる。   The solar heat collecting apparatus according to the present invention has two sets of heat collectors composed of the heat collecting tubes, the first reflecting plates, and the second reflecting plates, and each of the heat collecting devices is a vacuum transparent tube. The openings may be arranged inside each other with the direction of the opening between the incident end edges aligned. In this case, the internal space of the vacuum transparent tube can be used efficiently, and the utilization rate of sunlight relative to the installation area can be increased.

本発明によれば、比較的簡単な構成で熱損失を抑えることができ、メンテナンスが容易で、製造コストなどの費用を低減することができる太陽集熱装置を提供することができる。   According to the present invention, it is possible to provide a solar heat collecting apparatus that can suppress heat loss with a relatively simple configuration, can be easily maintained, and can reduce costs such as manufacturing costs.

本発明の実施の形態の太陽集熱装置を示す断面図である。It is sectional drawing which shows the solar heat collecting device of embodiment of this invention. 図1に示す太陽集熱装置の設計方法を説明するための(a)各第2反射板を示す断面図、(b)設置状態を示す断面図である。It is sectional drawing which shows (a) each 2nd reflecting plate for demonstrating the design method of the solar heat collecting apparatus shown in FIG. 1, (b) It is sectional drawing which shows an installation state. 図1に示す太陽集熱装置の光学効率および熱効率を示すグラフである。It is a graph which shows the optical efficiency and thermal efficiency of the solar heat collecting apparatus shown in FIG. 図1に示す太陽集熱装置の集熱管の温度と熱効率との関係を示すグラフである。It is a graph which shows the relationship between the temperature of the heat collecting tube of the solar heat collecting apparatus shown in FIG. 1, and thermal efficiency. 本発明の実施の形態の太陽集熱装置の、集熱器を2組有する変形例を示す(a)断面図、(b)斜視図である。It is (a) sectional drawing and (b) perspective view which show the modification which has two sets of heat collectors of the solar heat collecting device of embodiment of this invention. 図5に示す太陽集熱装置の使用状態を示す斜視図である。It is a perspective view which shows the use condition of the solar heat collecting device shown in FIG.

以下、図面に基づき、本発明の実施の形態について説明する。
図1乃至図6は、本発明の実施の形態の太陽集熱装置を示している。
図1に示すように、太陽集熱装置10は、真空透明管11と集熱管12と1対の第1反射板13と1対の第2反射板14とを有している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 6 show a solar heat collecting apparatus according to an embodiment of the present invention.
As shown in FIG. 1, the solar heat collecting apparatus 10 includes a vacuum transparent tube 11, a heat collecting tube 12, a pair of first reflecting plates 13, and a pair of second reflecting plates 14.

真空透明管11は、ガラス製で円筒形状を成している。真空透明管11は、内部の空気を抜いて真空状態を保持可能に構成されている。
集熱管12は、円筒形状を成し、内部に水や油などの熱媒体を流すよう構成されている。集熱管12は、真空透明管11の内部を通るよう、真空透明管11の長さ方向に沿って配置されている。
The vacuum transparent tube 11 is made of glass and has a cylindrical shape. The vacuum transparent tube 11 is configured to be able to maintain a vacuum state by extracting the air inside.
The heat collecting tube 12 has a cylindrical shape and is configured to allow a heat medium such as water or oil to flow inside. The heat collecting tube 12 is arranged along the length direction of the vacuum transparent tube 11 so as to pass through the inside of the vacuum transparent tube 11.

各第1反射板13は、真空透明管11の内部に、集熱管12に沿って設けられている。各第1反射板13は、集熱管12の長さ方向に対して垂直な断面内で、集熱管12の外周円の1点Eから、左右対称にそれぞれインボリュート曲線状に伸びて形成されている。各第1反射板13は、それぞれ集熱管12とは反対側の開口端縁A,Dを結ぶ直線が、集熱管12の外周円の1点Eとは反対側でほぼ接するよう形成されている。また、各第1反射板13は、それぞれの開口端縁A,Dを結ぶ直線の長さが、集熱管12の円周と同じ長さに形成されている。これにより、各第1反射板13は、各開口端縁A,Dの間に入射した光が、直接または各第1反射板13で反射して集熱管12に当たるよう構成されている。   Each first reflecting plate 13 is provided inside the vacuum transparent tube 11 along the heat collecting tube 12. Each first reflecting plate 13 is formed in a cross section perpendicular to the length direction of the heat collecting tube 12 so as to extend symmetrically from one point E on the outer circumference of the heat collecting tube 12 in an involute curve shape. . Each first reflecting plate 13 is formed such that a straight line connecting the opening edges A and D on the opposite side of the heat collecting tube 12 is substantially in contact with one point E of the outer circumference of the heat collecting tube 12. . Further, each first reflecting plate 13 is formed such that the length of the straight line connecting the opening edges A and D is the same as the circumference of the heat collecting tube 12. Thereby, each 1st reflecting plate 13 is comprised so that the light which entered between each opening edge A and D may be reflected by the 1st reflecting plate 13 directly or hits the heat collecting tube 12. FIG.

各第2反射板14は、真空透明管11の内部で、各第1反射板13の開口端縁A,Dにそれぞれ接続されている。各第2反射板14は、複合放物面集光(CPC)型反射鏡から成り、第1反射板13とは反対側の入射端縁B,Cに向かって互いの間隔が広がるよう取り付けられている。各第2反射板14は、各入射端縁B,Cの間から入射した太陽光が、各第1反射板13の開口端縁A,Dの間に集光するよう構成されている。こうして、太陽集熱装置10は、各第2反射板14の入射端縁B,Cの間から入射した太陽光が、直接または、各第1反射板13もしくは各第2反射板14で少なくとも1回反射して集熱管12に当たるよう構成されている。   Each second reflecting plate 14 is connected to the opening edges A and D of each first reflecting plate 13 inside the vacuum transparent tube 11. Each of the second reflecting plates 14 is composed of a compound paraboloidal concentrating (CPC) type reflecting mirror, and is attached so that the distance between the second reflecting plates 14 increases toward the incident edges B and C on the opposite side to the first reflecting plate 13. ing. Each of the second reflecting plates 14 is configured such that sunlight incident between the incident edges B and C is condensed between the opening edges A and D of the first reflecting plates 13. Thus, in the solar heat collecting apparatus 10, at least one of the sunlight incident between the incident edges B and C of each second reflecting plate 14 is directly or at each first reflecting plate 13 or each second reflecting plate 14. It is configured to be reflected once and hit the heat collecting tube 12.

太陽集熱装置10は、具体的には、以下のようにして設計される。ここでは、仙台市(緯度38.254162°、経度140.891403°)で使用することを仮定して設計を行う。図2に示すように、仙台の夏至の太陽高度は74.4664°、冬至の太陽高度は28.0169°であるため、入射端縁B,Cの向きを南向きにすると、各第2反射板14の南中時における最適な開口角度θは23.22°、仰角は51.24°となる。 Specifically, the solar heat collecting apparatus 10 is designed as follows. Here, the design is performed on the assumption that it is used in Sendai City (latitude 38.254162 °, longitude 140.891403 °). As shown in FIG. 2, the solar altitude of Sendai in the summer solstice is 74.4664 °, and the solar altitude of the winter solstice is 28.0169 °. The optimum opening angle θ i of the plate 14 in the south-central time is 23.22 °, and the elevation angle is 51.24 °.

次に、集熱管12の直径を15mmと仮定すると、各第1反射板13の開口端縁A,Dを結ぶ直線の長さa’は、47.1mmとなる。また、各第2反射板14がCPC型反射鏡から成るため、各第2反射板14のパラメータは、以下の(1)〜(4)式で計算することができる。   Next, assuming that the diameter of the heat collecting tube 12 is 15 mm, the length a ′ of the straight line connecting the opening edges A and D of the first reflecting plates 13 is 47.1 mm. Moreover, since each 2nd reflecting plate 14 consists of a CPC type | mold reflecting mirror, the parameter of each 2nd reflecting plate 14 can be calculated by the following (1)-(4) formula.

(1)〜(4)式から、各第2反射板14の焦点距離fは65.7mm、各開口端縁A,Dの間隔aは119.5mm、長さLは388.3mm、CPC型反射鏡である各第2反射板14の単体での理論最大集光率Cは2.54となる。   From the formulas (1) to (4), the focal length f of each second reflector 14 is 65.7 mm, the distance a between the opening edges A and D is 119.5 mm, the length L is 388.3 mm, CPC type The theoretical maximum condensing rate C of each second reflecting plate 14 that is a reflecting mirror is 2.54.

次に、このようにして設計した太陽集熱装置10の光学効率を計算する。ここで、光学効率とは、太陽集熱装置10に入射した太陽光のうち集熱管12へ到達する光の割合を示したものである。太陽光はガラス製の真空透明管11を透過する際に減衰し、また各第1反射板13や各第2反射板14で反射する際に一部が吸収されるため、太陽集熱装置10の集光性能を評価する上で光学効率が重要となる。太陽光に対する真空透明管11のガラスの透過率を0.95、集熱管12の吸収率を0.90、各第1反射板13および各第2反射板14の反射率を0.90と仮定したときの太陽集熱装置10の光学効率を、図3に示す。図3に示すように、太陽光の入射角度が開口角度θの23.2°以下の場合、光学効率が約70%となっており、入射角によらず高い光学効率が得られている。 Next, the optical efficiency of the solar heat collecting apparatus 10 designed in this way is calculated. Here, the optical efficiency indicates the ratio of the light reaching the heat collecting tube 12 in the sunlight incident on the solar heat collecting apparatus 10. The sunlight is attenuated when passing through the glass vacuum transparent tube 11, and part of the sunlight is absorbed when reflected by each first reflector 13 or each second reflector 14. Optical efficiency is important in evaluating the light condensing performance. It is assumed that the transmittance of the glass of the vacuum transparent tube 11 with respect to sunlight is 0.95, the absorption rate of the heat collecting tube 12 is 0.90, and the reflectivity of each of the first reflector 13 and each second reflector 14 is 0.90. FIG. 3 shows the optical efficiency of the solar heat collecting apparatus 10 when it is done. As shown in FIG. 3, when the incident angle of sunlight is 23.2 ° or less of the opening angle θ i , the optical efficiency is about 70%, and a high optical efficiency is obtained regardless of the incident angle. .

次に、太陽集熱装置10の熱効率を計算する。ここで、熱効率とは、入射した太陽エネルギーの中で集熱管12へ吸収されるエネルギーの割合を表している。太陽集熱装置10は、ガラス製の真空透明管11の内部を真空に保っているため、集熱管12から環境への熱損失は、熱ふく射(放射)によってのみ生じる。このため、熱効率ηthermalは、光学効率ηoptを用いて次式で計算することができる。 Next, the thermal efficiency of the solar heat collecting apparatus 10 is calculated. Here, the thermal efficiency represents the proportion of energy absorbed into the heat collecting tube 12 in the incident solar energy. Since the solar heat collecting apparatus 10 keeps the inside of the glass vacuum transparent tube 11 in a vacuum, heat loss from the heat collecting tube 12 to the environment occurs only by heat radiation (radiation). Therefore, the thermal efficiency η thermal can be calculated by the following equation using the optical efficiency η opt .

ここで、(5)式の右辺第二項は、ふく射による熱損失を表しており、εは放射率で0.90、σはステファン‐ボルツマン定数、qinは太陽定数、Cは集光比で太陽集熱装置10の開口面積を集熱管12の表面積で除したものである。Tambは環境温度で、ここでは20℃とした。また、Tは集熱管12の温度で、太陽集熱装置10でお湯を作ることを想定し、100℃とした。 Here, the second term on the right side of equation (5) represents the heat loss due to radiation, ε is the emissivity of 0.90, σ is the Stefan-Boltzmann constant, q in is the solar constant, and C is the concentration ratio. The opening area of the solar heat collecting device 10 is divided by the surface area of the heat collecting tube 12. T amb is the ambient temperature, here 20 ° C. Further, T a is a temperature of the heat collecting pipe 12, assuming that make hot water solar heat collector 10, was 100 ° C..

(5)式を用いた熱効率の計算結果を、図3に示す。図3に示すように、太陽集熱装置10を100℃のお湯を作るために動作させた場合、約50%の熱効率で集熱可能であることが確認できる。また、(5)式に示すように、残りの50%はふく射による損失であり、集熱管12の放射特性を改善することにより、熱効率を大幅に向上させることができる。なお、図3での計算では、集熱管12の放射率εを0.9としているが、これは集熱管12として完全に酸化した鉄を使用した場合や、黒色のペンキで表面を塗装したものを使用した場合などを想定したものである。   The calculation result of the thermal efficiency using the equation (5) is shown in FIG. As shown in FIG. 3, when the solar heat collecting apparatus 10 is operated to make hot water of 100 ° C., it can be confirmed that heat can be collected with a thermal efficiency of about 50%. Further, as shown in the equation (5), the remaining 50% is a loss due to radiation, and by improving the radiation characteristics of the heat collecting tube 12, the thermal efficiency can be greatly improved. In the calculation in FIG. 3, the emissivity ε of the heat collecting tube 12 is set to 0.9. This is the case where iron that is completely oxidized is used as the heat collecting tube 12, or the surface is painted with black paint. It is assumed that is used.

集熱管12の温度と熱効率との関係を、図4に示す。図4に示すように、低温で太陽集熱装置10を動作させると、熱効率は高くなることが確認できる。一方、高温で動作させると、ふく射による熱損失の割合が増加し、熱効率が低下することがわかる。また、図4に示すように、この例での太陽集熱装置10は、最高到達温度が180℃となる。   FIG. 4 shows the relationship between the temperature of the heat collecting tube 12 and the thermal efficiency. As shown in FIG. 4, it can be confirmed that when the solar heat collecting apparatus 10 is operated at a low temperature, the thermal efficiency is increased. On the other hand, it can be seen that when operated at a high temperature, the rate of heat loss due to radiation increases and the thermal efficiency decreases. Moreover, as shown in FIG. 4, the solar collector 10 in this example has a maximum temperature of 180 ° C.

次に、作用について説明する。
太陽集熱装置10は、各第2反射板14が複合放物面形状を成しており、各第2反射板14の入射端縁B,Cの間から入射した太陽光のうち、各第2反射板14に当たる光を1回または複数回反射して、各第1反射板13または集熱管12に当てることができる。また、各第1反射板13が、集熱管12の長さ方向に対して垂直な断面内で、集熱管12から左右対称にそれぞれインボリュート曲線状に伸びるよう構成されているため、各第1反射板13に当たる光を集熱管12に集めることができる。このように、太陽集熱装置10は、各第2反射板14の入射端縁B,Cの間から入射した太陽光が、直接または、各第1反射板13もしくは各第2反射板14で1回以上反射して集熱管12に当たるよう構成されており、集光効率が高く、優れた集熱効果を有している。
Next, the operation will be described.
In the solar heat collecting apparatus 10, each second reflecting plate 14 has a compound parabolic shape, and each of the second reflecting plates 14 out of sunlight incident between the incident edges B and C of each second reflecting plate 14. The light hitting the two reflecting plates 14 can be reflected once or a plurality of times and applied to each first reflecting plate 13 or the heat collecting tube 12. In addition, each first reflecting plate 13 is configured to extend in an involute curve shape symmetrically from the heat collecting tube 12 in a cross section perpendicular to the length direction of the heat collecting tube 12, and thus each first reflecting plate 13. Light hitting the plate 13 can be collected in the heat collecting tube 12. As described above, in the solar heat collecting apparatus 10, the sunlight incident between the incident end edges B and C of each second reflecting plate 14 is directly or each first reflecting plate 13 or each second reflecting plate 14. It is configured to reflect at least once and hit the heat collecting tube 12, has high light collection efficiency, and has an excellent heat collecting effect.

太陽集熱装置10は、設置地域に応じて、各第1反射板13や各第2反射板14の大きさ、各第2反射板14の入射端縁B,Cの受光開口角や取付角度を最適に設計することができ、季節変動によらず固定したまま集光することができる。このため、太陽追尾機構のような複雑な構成が不要で、比較的簡単な構成で集光効率を高めることができる。また、メンテナンスも容易となり、製造コストなどの費用を低減することができる。   The solar heat collecting apparatus 10 has a size of each first reflecting plate 13 and each second reflecting plate 14, a light receiving opening angle and an attachment angle of the incident edges B and C of each second reflecting plate 14 according to the installation area. Can be designed optimally, and can be condensed while being fixed regardless of seasonal variations. For this reason, the complicated structure like a solar tracking mechanism is unnecessary, and it can raise condensing efficiency with a comparatively simple structure. In addition, maintenance is facilitated, and costs such as manufacturing costs can be reduced.

また、太陽集熱装置10は、集熱管12と各第1反射板13と各第2反射板14とが真空透明管11の内部に設置されているため、真空透明管11の内部を真空にすることにより、集熱管12、各第1反射板13および各第2反射板14から周囲空気への熱伝達による熱損失を防ぐことができる。熱損失の中で大きな割合を占める熱伝達による熱損失が無くなるため、熱損失を、真空透明管11と周囲空気との間の熱伝達、ならびに、集熱管12、各第1反射板13および各第2反射板14からの放射に限定することができる。また、集熱管12の直径を小さくすることにより、集熱管12からのふく射損失を低減することができる。各第1反射板13がインボリュート曲線状を成しているため、各第1反射板13と集熱管12との接触面積を小さくすることができ、集熱管12から各第1反射板13への熱伝導損失も最小限にすることができる。このように、太陽集熱装置10は、比較的簡単な構成で熱損失を抑えることができる。   Moreover, since the solar heat collecting apparatus 10 has the heat collection tube 12, each 1st reflecting plate 13, and each 2nd reflecting plate 14 installed in the inside of the vacuum transparent tube 11, the inside of the vacuum transparent tube 11 is evacuated. By doing so, it is possible to prevent heat loss due to heat transfer from the heat collecting tubes 12, the first reflecting plates 13 and the second reflecting plates 14 to the ambient air. Since heat loss due to heat transfer that occupies a large proportion of heat loss is eliminated, heat loss is reduced between heat transfer between the vacuum transparent tube 11 and ambient air, and the heat collecting tube 12, each first reflector 13 and each heat loss. It can be limited to radiation from the second reflector 14. Further, by reducing the diameter of the heat collecting tube 12, the radiation loss from the heat collecting tube 12 can be reduced. Since each first reflecting plate 13 has an involute curve shape, the contact area between each first reflecting plate 13 and the heat collecting tube 12 can be reduced, and from the heat collecting tube 12 to each first reflecting plate 13. Thermal conduction losses can also be minimized. Thus, the solar heat collecting apparatus 10 can suppress heat loss with a relatively simple configuration.

太陽集熱装置10は、集熱管12と各第1反射板13と各第2反射板14とが真空透明管11に覆われるため、塵や埃などがそれらに付着するのを防ぐことができ、塵や埃などによる故障等を防止することができる。また、真空透明管11の外側を拭くだけで、塵や埃などを取り除くことができ、クリーニングなどのメンテナンスが容易である。この集熱管12、各第1反射板13および各第2反射板14を封入した真空透明管11を一単位として製造することにより、設置場所の大きさに合わせて必要単位数や配列などを構成することができ、コストを削減することができる。   In the solar heat collecting apparatus 10, since the heat collecting tube 12, each first reflecting plate 13, and each second reflecting plate 14 are covered with the vacuum transparent tube 11, dust and dust can be prevented from adhering to them. Failure due to dust or dust can be prevented. In addition, dust and dirt can be removed simply by wiping the outside of the vacuum transparent tube 11, and maintenance such as cleaning is easy. By manufacturing the heat collecting tube 12, the first reflector 13 and the vacuum transparent tube 11 enclosing the second reflector 14 as a unit, the required number of units, arrangement, etc. are configured according to the size of the installation location. Can reduce costs.

なお、太陽集熱装置10は、真空透明管11の内部の各第1反射板13および各第2反射板14の裏側の熱損失を抑えるために、各第1反射板13および各第2反射板14の裏側に断熱材が設けられていてもよい。   In addition, the solar heat collecting apparatus 10 has each 1st reflecting plate 13 and each 2nd reflection in order to suppress the heat loss of the back side of each 1st reflecting plate 13 and each 2nd reflecting plate 14 inside the vacuum transparent tube 11. FIG. A heat insulating material may be provided on the back side of the plate 14.

また、図5に示すように、太陽集熱装置10は、集熱管12と各第1反射板13と各第2反射板14とで構成される集熱器20を2組有し、各集熱器20は、真空透明管11の内部に、各入射端縁B,C間の開口の向きを揃えて並べて配置されていてもよい。この場合、真空透明管11の内部空間を効率的に利用することができ、設置面積に対する太陽光の利用率を高めることができる。例えば、図1に示す集熱器20が1組だけの場合、真空透明管11の直径に対し、各入射端縁B,C間の開口の割合が小さく、真空透明管11に到達した太陽光のうち50%程度しか各入射端縁B,C間の開口から入射しない。これに対し、図6に示す集熱器20を2組設けた場合、真空透明管11に到達した太陽光の80%程度を集熱管12へ集めることができる。また、図5(b)に示すように、1本の集熱管12を真空透明管11の内部で折り返すことにより、各集熱器20に使用することができる。このとき、真空透明管11の一方の端面のみから真空透明管11の内部に集熱管20を配設することができるため、他方の端面を封じ切ることができる。このため、真空透明管11の密封処理を容易にすることができるとともに、熱損失部を少なくすることができる。   As shown in FIG. 5, the solar heat collecting apparatus 10 includes two sets of heat collectors 20 each including a heat collecting tube 12, each first reflecting plate 13, and each second reflecting plate 14. The heater 20 may be arranged inside the vacuum transparent tube 11 with the direction of the opening between the incident edges B and C aligned. In this case, the internal space of the vacuum transparent tube 11 can be used efficiently, and the utilization factor of sunlight with respect to the installation area can be increased. For example, when there is only one set of the heat collector 20 shown in FIG. 1, the ratio of the opening between the incident edges B and C is small with respect to the diameter of the vacuum transparent tube 11, and the sunlight that has reached the vacuum transparent tube 11 Only about 50% of the light enters from the opening between the incident edges B and C. On the other hand, when two sets of the heat collector 20 shown in FIG. 6 are provided, about 80% of the sunlight reaching the vacuum transparent tube 11 can be collected in the heat collection tube 12. Further, as shown in FIG. 5 (b), by folding one heat collecting tube 12 inside the vacuum transparent tube 11, it can be used for each heat collector 20. At this time, since the heat collecting tube 20 can be disposed inside the vacuum transparent tube 11 from only one end surface of the vacuum transparent tube 11, the other end surface can be sealed. For this reason, while being able to make the sealing process of the vacuum transparent tube 11 easy, a heat loss part can be decreased.

太陽集熱装置10は、集熱管12の内部を流れる熱媒体として、例えば、水、油、超臨界二酸化炭素などを用いることができる。図6に、熱媒体として代替フロンなどの冷媒を使用した場合の使用例を示す。図6に示す使用例では、太陽集熱装置10として図5に示すものを使用しており、ポンプ51により、集熱管12とタービン52と復水器53との間を冷媒が循環するよう構成されている。すなわち、集熱管12を通過して温められた冷媒は、過熱蒸気に変換されてタービン52を回すよう構成されている。これにより、タービン52に接続された発電機54で発電を行うことができる。また、タービン52を通過した過熱蒸気は、復水器53で液体に戻された後、再び集熱管12に循環するよう構成されている。   The solar heat collecting apparatus 10 can use, for example, water, oil, supercritical carbon dioxide, or the like as a heat medium flowing inside the heat collecting tube 12. FIG. 6 shows an example of use when a refrigerant such as alternative chlorofluorocarbon is used as the heat medium. In the usage example shown in FIG. 6, the solar heat collecting device 10 shown in FIG. 5 is used, and the refrigerant is circulated between the heat collecting pipe 12, the turbine 52, and the condenser 53 by the pump 51. Has been. That is, the refrigerant heated through the heat collecting pipe 12 is converted to superheated steam and rotates the turbine 52. Thereby, it is possible to generate power with the generator 54 connected to the turbine 52. Further, the superheated steam that has passed through the turbine 52 is returned to the liquid by the condenser 53 and then circulated again to the heat collecting pipe 12.

本発明に係る太陽集熱装置は、メンテナンスが容易であるため、日本の住宅や工場の屋根だけではなく、特にユーラシア大陸の中心部やアフリカ大陸など、日射量が豊富な地域での設置に適している。また、熱媒体の循環装置と組み合わせることにより、例えば、熱媒体として水を用いた場合には、動作圧力にもよるが、100℃程度のお湯を供給可能な給湯器として利用することができる。また、熱媒体として超臨界二酸化炭素や油など、水以外の熱媒体を利用した場合、動作圧力を調整することにより、150℃程度の熱源とすることができ、過熱蒸気を発生させることができる。このため、この蒸気を工場で利用したり、発電に利用したりすることができる。   Since the solar heat collecting apparatus according to the present invention is easy to maintain, it is suitable for installation not only in the roofs of Japanese houses and factories, but also in areas with abundant solar radiation, especially in the center of Eurasia and Africa. ing. Further, when combined with a heat medium circulation device, for example, when water is used as the heat medium, it can be used as a water heater capable of supplying hot water of about 100 ° C., depending on the operating pressure. In addition, when a heat medium other than water, such as supercritical carbon dioxide or oil, is used as the heat medium, the heat pressure can be adjusted to about 150 ° C. by adjusting the operating pressure, and superheated steam can be generated. . For this reason, this steam can be used in a factory or used for power generation.

10 太陽集熱装置
11 真空透明管
12 集熱管
13 第1反射板
A,D 開口端縁
14 第2反射板
B,C 入射端縁
DESCRIPTION OF SYMBOLS 10 Solar collector 11 Vacuum transparent tube 12 Heat collection tube 13 1st reflector A, D Opening edge 14 2nd reflector B, C Incident edge

Claims (3)

内部を真空にすることができる真空透明管と、
前記真空透明管の内部に配置された、内部に熱媒体を流すための集熱管と、
前記真空透明管の内部に前記集熱管に沿って設けられ、前記集熱管の長さ方向に対して垂直な断面内で、前記集熱管から左右対称にそれぞれインボリュート曲線状に伸びる1対の第1反射板と、
前記真空透明管の内部で各第1反射板の前記集熱管とは反対側の開口端縁にそれぞれ接続された、複合放物面形状を成す1対の第2反射板とを有し、
各第2反射板の各第1反射板とは反対側の入射端縁の間から入射した太陽光が、直接または、各第1反射板もしくは各第2反射板で少なくとも1回反射して前記集熱管に当たるよう構成されていることを特徴とする太陽集熱装置。
A vacuum transparent tube that can be evacuated inside,
A heat collecting tube disposed inside the vacuum transparent tube for flowing a heat medium therein;
A pair of firsts provided in the vacuum transparent tube along the heat collecting tube and extending symmetrically from the heat collecting tube in an involute curve shape in a cross section perpendicular to the length direction of the heat collecting tube. A reflector,
A pair of second reflectors each having a compound paraboloid shape connected to an opening edge of each first reflector opposite to the heat collecting tube inside the vacuum transparent tube;
Sunlight incident from between the incident edges of the second reflecting plates opposite to the first reflecting plates is reflected directly or at least once by each first reflecting plate or each second reflecting plate, and A solar heat collecting apparatus, characterized by being configured to hit a heat collecting tube.
前記集熱管は円筒形状を成し、
各第1反射板は、前記集熱管の長さ方向に対して垂直な断面内で、前記集熱管の外周円の1点からそれぞれ左右に伸びて、各開口端縁を結ぶ直線が前記集熱管の外周円の前記1点とは反対側でほぼ接するよう形成されており、各開口端縁の間に入射した光が、直接または各第1反射板で反射して前記集熱管に当たるよう構成され、
各第2反射板は、各入射端縁に向かって間隔が広がるよう取り付けられており、各入射端縁の間から入射した太陽光が各第1反射板の開口端縁の間に集光するよう構成されていることを
特徴とする請求項1記載の太陽集熱装置。
The heat collecting tube has a cylindrical shape,
Each of the first reflectors extends left and right from one point of the outer circumference of the heat collecting tube in a cross section perpendicular to the length direction of the heat collecting tube, and a straight line connecting each opening edge is the heat collecting tube. The outer circumferential circle is formed so as to be substantially in contact with the one point opposite to the one point, and is configured such that light incident between each opening edge is reflected directly or by each first reflecting plate and hits the heat collecting tube. ,
Each of the second reflectors is attached so that the distance between the second reflectors increases toward each incident edge, and sunlight incident from between each incident edge gathers between the opening edges of each first reflector. The solar heat collecting apparatus according to claim 1, wherein the solar heat collecting apparatus is configured as follows.
前記集熱管と各第1反射板と各第2反射板とで構成される集熱器を2組有し、
各集熱器は、前記真空透明管の内部に、各入射端縁間の開口の向きを揃えて並べて配置されていることを
特徴とする請求項1または2記載の太陽集熱装置。
Two sets of heat collectors composed of the heat collecting tubes, the first reflecting plates, and the second reflecting plates,
3. The solar heat collector according to claim 1, wherein the heat collectors are arranged in the vacuum transparent tube so that the openings between the incident end edges are aligned.
JP2012198077A 2012-09-10 2012-09-10 Solar heat collection device Pending JP2014052153A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012198077A JP2014052153A (en) 2012-09-10 2012-09-10 Solar heat collection device
CN201310409068.0A CN103673320A (en) 2012-09-10 2013-09-10 Solar heat collection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012198077A JP2014052153A (en) 2012-09-10 2012-09-10 Solar heat collection device

Publications (1)

Publication Number Publication Date
JP2014052153A true JP2014052153A (en) 2014-03-20

Family

ID=50311632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012198077A Pending JP2014052153A (en) 2012-09-10 2012-09-10 Solar heat collection device

Country Status (2)

Country Link
JP (1) JP2014052153A (en)
CN (1) CN103673320A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783290A (en) * 2016-04-26 2016-07-20 中国华能集团清洁能源技术研究院有限公司 Easily cleaned heat absorber for linear Fresnel heat collecting system
US20170370618A1 (en) * 2016-06-24 2017-12-28 Alliance For Sustainable Energy, Llc Secondary reflectors for solar collectors and methods of making the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105650905A (en) * 2016-01-25 2016-06-08 山东中信能源联合装备股份有限公司 Light condensation heat collector based on composite paraboloid
CN106352564B (en) * 2016-10-17 2018-04-03 广东石油化工学院 A kind of Salar light-gathering heat storage type fuse salt Anti-solidification vacuum heat-preserving tube
CH715527A2 (en) * 2018-11-08 2020-05-15 Eni Spa Procedure for operating a receiver and receiver for executing the procedure.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119542A (en) * 1974-07-26 1976-02-16 Us Energy
GB1509476A (en) * 1975-12-04 1978-05-04 Euratom Solar energy collector
JPH11287521A (en) * 1998-04-01 1999-10-19 Exedy Corp Reflection plate assembly with composite paraboloid and heat collector using such assembly
JP2005114342A (en) * 2003-09-19 2005-04-28 Showa Denko Kk Installation structure of compound parabolic concentrator type reflection plate, solar heat collector, operation method for solar heat collector, radiation cooler and operation method for radiation cooler

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2475975Y (en) * 2001-05-14 2002-02-06 芮庄 Solar water heating stove
DE102005049221A1 (en) * 2005-10-10 2007-04-12 Horst Müller Vacuum tube collector module for solar heating has members of U-tube asymmetrically connected to head section in positive locking manner and fixed by retaining clips and spring clip
ATE391889T1 (en) * 2006-02-24 2008-04-15 Raymond Mattioli SOLAR COLLECTOR WITH CONCENTRATION
CN201281472Y (en) * 2008-08-27 2009-07-29 黄永定 Concentration type solar heat-collecting glass tube

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5119542A (en) * 1974-07-26 1976-02-16 Us Energy
GB1509476A (en) * 1975-12-04 1978-05-04 Euratom Solar energy collector
JPH11287521A (en) * 1998-04-01 1999-10-19 Exedy Corp Reflection plate assembly with composite paraboloid and heat collector using such assembly
JP2005114342A (en) * 2003-09-19 2005-04-28 Showa Denko Kk Installation structure of compound parabolic concentrator type reflection plate, solar heat collector, operation method for solar heat collector, radiation cooler and operation method for radiation cooler

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105783290A (en) * 2016-04-26 2016-07-20 中国华能集团清洁能源技术研究院有限公司 Easily cleaned heat absorber for linear Fresnel heat collecting system
CN105783290B (en) * 2016-04-26 2017-12-01 中国华能集团清洁能源技术研究院有限公司 A kind of linear Fresnel collecting system heat dump of easy cleaning
US20170370618A1 (en) * 2016-06-24 2017-12-28 Alliance For Sustainable Energy, Llc Secondary reflectors for solar collectors and methods of making the same
US10808965B2 (en) * 2016-06-24 2020-10-20 Alliance For Sustainable Energy, Llc Secondary reflectors for solar collectors and methods of making the same
US11644219B2 (en) 2016-06-24 2023-05-09 Alliance For Sustainable Energy, Llc Secondary reflectors for solar collectors and methods of making the same

Also Published As

Publication number Publication date
CN103673320A (en) 2014-03-26

Similar Documents

Publication Publication Date Title
CN1773190B (en) Solar energy thermoelectric co-supply system
US4026273A (en) Solar fluid heater with electromagnetic radiation trap
CN102620442B (en) Solar heat collector based on groove type parabolic mirror and artificial blackbody
AU2013270295B2 (en) Solar photo-thermal receiving device
JP2014052153A (en) Solar heat collection device
CN105157257A (en) Slot type light gathering type solar vacuum heat collecting pipe
CN110513892A (en) Semi-circular thermal-collecting tube and big opening high concentration ratio slot light collection collecting system with fin
CN106679196A (en) Straight ribbed pipe fin inserting trough-type condensation vacuum solar heat collector
KR101233976B1 (en) Condenser for solar heat absorber of vacuum tube type for concentrating sunlight having curvature type reflector
CN106766275B (en) A kind of groove type solar high-temperature vacuum heat-collecting tube
KR20100067519A (en) Evacuated tubular solar collector
CN205037606U (en) Slot type spotlight type solar vacuum heat collection tube
KR102358978B1 (en) Parabolic trough concentrator type solar thermal energy system having concentrated photovoltaic
CN106288441B (en) A kind of pipe back side optically focused tower type solar heat dump heating surface module
KR20120113632A (en) Condenser for solar heat absorber of vacuum tube type for concentrating sunlight having uneven type reflector
JP2007205646A (en) Solar heat collector and solar heat utilization device having the same
WO2015088301A1 (en) High-performance thermal sensor-transmitter for solar water heater
CN205606933U (en) Area reflection separates solar energy high temperature thermal -collecting tube of heat exchanger and support frame
CN219640465U (en) Solar photo-thermal utilization energy collecting device with Fresnel lens array
TW201351674A (en) Solar power system and solar energy collection device thereof
KR20100076420A (en) Dish solar concentrator
CN202485242U (en) Solar thermal collector based on slot-type parabolic reflector and artificial blackbody
CN108317744B (en) Light-gathering vacuum tube and high-light-gathering-ratio groove type heat collection device
CN103017356B (en) Trough type solar secondary condensation and uniform heat collection thermoelectric integrated device
CN103808030A (en) Solar linear concentrating heat-collecting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170307