WO2015088301A1 - High-performance thermal sensor-transmitter for solar water heater - Google Patents

High-performance thermal sensor-transmitter for solar water heater Download PDF

Info

Publication number
WO2015088301A1
WO2015088301A1 PCT/MA2013/000049 MA2013000049W WO2015088301A1 WO 2015088301 A1 WO2015088301 A1 WO 2015088301A1 MA 2013000049 W MA2013000049 W MA 2013000049W WO 2015088301 A1 WO2015088301 A1 WO 2015088301A1
Authority
WO
WIPO (PCT)
Prior art keywords
solar water
transmitter
water heater
thermal sensor
water
Prior art date
Application number
PCT/MA2013/000049
Other languages
French (fr)
Inventor
Abdellatif BENABDELLAH
Mohsine BOUYA
Mohamed ELOUAHABI
Ernest Ihringer
Original Assignee
Universite Internationale De Rabat
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universite Internationale De Rabat filed Critical Universite Internationale De Rabat
Priority to PCT/MA2013/000049 priority Critical patent/WO2015088301A1/en
Publication of WO2015088301A1 publication Critical patent/WO2015088301A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S80/20Working fluids specially adapted for solar heat collectors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Definitions

  • thermal sensing device As the focal point reaches temperatures of 700 ° C we have created an entirely new thermal sensing device, which allows us to remove the intermediate transfer fluid (thermal oil) and transfer the calories directly to the primary fluid (water ), in the liquid state. This device is not placed in the optical focus, but one in front of it to disperse the thermal energy on a surface.
  • the calories are then transferred to the water through a heat exchanger consisting of a set of copper tubes with fins, located in the domestic water tank.
  • the sensing device (absorbent element or receiver) of the thermal radiation from an optical concentrator focusing the solar radiation is a heat exchange system: radiation - convection.
  • This device also serves as a heat exchanger with the liquid peddler. This device will be placed at a point a few centimeters before the optical focus of the mirror, in order to receive on its surface the total reflection of the optical concentrator, which point will receive all the thermal radiation but at a lower temperature, which will prevent the evaporation of the liquid.
  • FIG. 2 represents this exchanger in the shape of a rectangular box. It consists of two brass plates, one of which is blackened O to get closer to the thermal absorption of the black body. A space of 7 mm separates them from one another forming a chamber for the passage of water. A device for introducing water ⁇ allows regular diffusion on the exchange surface. The speed is calculated to have a Reynold number larger than 2500 (turbulent). A glass ⁇ glass treated avoids heat loss and creates a greenhouse effect. A box O encloses the absorbent element which is insulated from the outside by a glass wool plate ⁇
  • Figure 1 shows the overall operation of the system where a solar tracker (1) directs the mirror (2) in the direction of the sun.
  • the mirror reflects and concentrates the sun's rays in a square receiver (3).
  • An expansion tank (4) ensures the safety of the system.
  • the heated water carries out a heat exchange in the tank (5). Then the water is mixed for use (6).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

The invention concerns a thermal sensor-transmitter system for solar water heaters, with optimum capture of the radiated energy by a parabola, a large amount of turbulence being present in the capture region owing to the use of a heat exchanger (radiation - convection), in order to render uniform the temperature in the heat concentration region. Water is circulated with the aid of a circulation pump having low consumption owing to a low head loss.

Description

DESCRIPTION  DESCRIPTION
Dans l'état actuel de la technique, le captage de l'énergie thermique provenant d'un système de concentration optique, lequel permet d'atteindre de hautes températures, est réalisé par un fluide intermédiaire (caloporteur) dont le point d'ébullition est élevé, évitant ainsi la formation de vapeur et une montée de pression dans l'installation. Il est utilisé pour cela des huiles thermiques ainsi que des sels eutectiques. Ces fluides caloporteurs cèdent leurs calories dans des échahgeurs ou des évaporateurs, selon l'usage qui sera fait de l'énergie obtenue par le captage solaire. Ces fluides intermédiaires imposent des systèmes techniques assez complexes : pompes spéciales, réchauffement des tuyauteries, échangeurs de chaleur spéciaux etc. In the current state of the art, the capture of thermal energy from an optical concentration system, which achieves high temperatures, is achieved by an intermediate fluid (coolant) whose boiling point is high, thus avoiding the formation of steam and a rise in pressure in the installation. It is used for this thermal oils and eutectic salts. These heat transfer fluids yield their calories in sinks or evaporators, according to the use that will be made of the energy obtained by the solar collection. These intermediary fluids impose rather complex technical systems: special pumps, heating of the pipes, special heat exchangers etc.
Ces dispositifs ont comme défaut des pertes de charge importantes, ce qui réduit le bilan du rendement.  These devices have the defect of significant pressure losses, which reduces the performance report.
Le but final de ce capteur solaire objet de cette invention est d'exclure les transferts thermiques de hautes technologies. On doit donc se servir d'eau pour le transfert de l'énergie thermique. The ultimate goal of this solar collector object of this invention is to exclude thermal transfer of high technologies. We must therefore use water for the transfer of thermal energy.
Le point focal atteignant des températures de l'ordre de 700°C nous avons créé un dispositif entièrement nouveau de captage thermique, ce qui nous permet de supprimer le fluide de transfert intermédiaire (huile thermique) et transférer les calories directement au fluide primaire (eau), à l'état liquide. Ce dispositif n'est pas placé au foyer optique, mais un en avant de celui-ci afin de disperser l'énergie thermique sur une surface.  As the focal point reaches temperatures of 700 ° C we have created an entirely new thermal sensing device, which allows us to remove the intermediate transfer fluid (thermal oil) and transfer the calories directly to the primary fluid (water ), in the liquid state. This device is not placed in the optical focus, but one in front of it to disperse the thermal energy on a surface.
Les calories sont ensuite transférées à l'eau par l'intermédiaire d'un échangeur de chaleur constitué d'un ensemble de tubes en cuivre possédant des ailettes, situé dans le réservoir d'eau sanitaire.  The calories are then transferred to the water through a heat exchanger consisting of a set of copper tubes with fins, located in the domestic water tank.
Le disposi tif de captage (élément absorbant ou récepteur) du rayonnement thermique provenant d'un concentrateur optique focalisant le rayonnement solaire est un système d'échange de chaleur : rayonnement - convection. Ce dispositif sert également d'échangeur avec le liquide colporteur. Ce dispositif sera placé en un point quelques centimètres avant le foyer optique du miroir, afin de recevoir à sa surface la réflexion totale du concentrateur optique, point qui recevra l'intégralité du rayonnement thermique mais à une température inférieure, qui évitera l'évaporation du liquide. The sensing device (absorbent element or receiver) of the thermal radiation from an optical concentrator focusing the solar radiation is a heat exchange system: radiation - convection. This device also serves as a heat exchanger with the liquid peddler. This device will be placed at a point a few centimeters before the optical focus of the mirror, in order to receive on its surface the total reflection of the optical concentrator, which point will receive all the thermal radiation but at a lower temperature, which will prevent the evaporation of the liquid.
Un système de fixation réglable permet de choisir un point d'ancrage du dispositif entre le miroir et le foyer optique de ce dernier, afin de choisir la meilleure plage de température. La figure 2 représente cet échangeur en forme de boite rectangulaire. Il est constitué de deux plaques de cuivres, dont l'une est noircie O afin de se rapprocher de l'absorption thermique du corps noir. Un espace de 7 mm les sépare l'une de l'autre formant de ce fait une chambre pour le passage de l'eau. Un dispositif d'introduction de l'eau Θ permet une diffusion régulière sur la surface d'échange. La vitesse est calculée pour avoir un nombre de Reynold plus grand que 2500 (turbulent). Une vitre Θ de verre traité évite les déperditions thermiques et crée un effet de serre. Un boitier O enferme l'élément absorbant qui est isolé de l'extérieur par une plaque de laine de verre Θ  An adjustable fixing system allows to choose an anchorage point of the device between the mirror and the optical focus of the latter, in order to choose the best temperature range. FIG. 2 represents this exchanger in the shape of a rectangular box. It consists of two brass plates, one of which is blackened O to get closer to the thermal absorption of the black body. A space of 7 mm separates them from one another forming a chamber for the passage of water. A device for introducing water Θ allows regular diffusion on the exchange surface. The speed is calculated to have a Reynold number larger than 2500 (turbulent). A glass Θ glass treated avoids heat loss and creates a greenhouse effect. A box O encloses the absorbent element which is insulated from the outside by a glass wool plate Θ
La figure 1 représente le fonctionnement global du système où un traqueur solaire (1) oriente le miroir (2) dans la direction du soleil. Le miroir reflète et concentre les rayons du soleil dans un récepteur carré (3). Une vase d'expansion (4) assure la sécurité du système. L'eau chauffée effectue un échange thermique dans le réservoir (5). Puis l'eau est mitigée pour utilisation (6).  Figure 1 shows the overall operation of the system where a solar tracker (1) directs the mirror (2) in the direction of the sun. The mirror reflects and concentrates the sun's rays in a square receiver (3). An expansion tank (4) ensures the safety of the system. The heated water carries out a heat exchange in the tank (5). Then the water is mixed for use (6).

Claims

REVENDICATIONS
Les réalisations de l'invention, au sujet desquelles un droit exclusif de propriété ou de privilège est revendiqué, sont comme il suit: The embodiments of the invention, for which an exclusive right of ownership or privilege is claimed, are as follows:
1- Système capteur-transmetteur thermique pour chauffe eau solaire, caractérisé par l'utilisation de l'eau comme liquide colporteur. 1- Sensor-thermal transmitter system for solar water heating, characterized by the use of water as a peddler liquid.
2- Système capteur-transmetteur thermique pour chauffe eau solaire selon la revendication 1 caractérisé par l'utilisation d'un miroir parabolique qui concentre les rayonnements du soleil sur un échangeur placé devant son point focal.  2- sensor system-heat transmitter for solar water heater according to claim 1 characterized by the use of a parabolic mirror which concentrates the radiation of the sun on an exchanger placed in front of its focal point.
3- Système capteur-transmetteur thermique pour chauffe eau solaire selon les revendications 1 et 2 caractérisé par un échangeur composé d'un boitier (Figure l) rectangulaire. Le boitier est constitué de deux plaques de cuivres, dont l'une est noircie O. Un espace d'approximativement 7 mm les sépare l'une de l'autre formant de ce fait une chambre pour le passage de l'eau avec turbulence. Une vitre Θ de verre traité est placée devant la plaque de cuivre noircie. Un boitier O enferme l'élément absorbant qui est isolé de l'extérieur par une plaque de laine de verre Θ.  3- sensor system-thermal transmitter for solar water heater according to claims 1 and 2 characterized by an exchanger composed of a box (Figure 1) rectangular. The case consists of two brass plates, one of which is blackened O. A space of approximately 7 mm separates them from one another forming a chamber for the passage of water with turbulence. A glass pane of treated glass is placed in front of the blackened copper plate. A box O encloses the absorbent element which is isolated from the outside by a plate of glass wool Θ.
PCT/MA2013/000049 2013-12-09 2013-12-09 High-performance thermal sensor-transmitter for solar water heater WO2015088301A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/MA2013/000049 WO2015088301A1 (en) 2013-12-09 2013-12-09 High-performance thermal sensor-transmitter for solar water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/MA2013/000049 WO2015088301A1 (en) 2013-12-09 2013-12-09 High-performance thermal sensor-transmitter for solar water heater

Publications (1)

Publication Number Publication Date
WO2015088301A1 true WO2015088301A1 (en) 2015-06-18

Family

ID=49950015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/MA2013/000049 WO2015088301A1 (en) 2013-12-09 2013-12-09 High-performance thermal sensor-transmitter for solar water heater

Country Status (1)

Country Link
WO (1) WO2015088301A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242329A (en) * 2015-10-30 2016-01-13 南京理工大学紫金学院 Sun-image-movement-based atmosphere turbulence measurement apparatus and method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1122344A (en) * 1955-02-21 1956-09-05 Radiated energy sensor
US4286583A (en) * 1979-07-02 1981-09-01 U.S. Elevator Corporation Solar heater unit
US4888063A (en) * 1985-11-21 1989-12-19 Powell Roger A Variable aperture, variable flux density, aerospace solar collector
DE19518872A1 (en) * 1995-05-23 1996-11-28 Lothar Wanzke Thermal solar plant
US20040031517A1 (en) * 2002-08-13 2004-02-19 Bareis Bernard F. Concentrating solar energy receiver
WO2005090873A1 (en) * 2004-03-23 2005-09-29 Menova Engineering Inc. Solar collector
US20130255752A1 (en) * 2012-03-30 2013-10-03 Egypt Nanotechnology Center Photovoltaic thermal hybrid solar receivers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1122344A (en) * 1955-02-21 1956-09-05 Radiated energy sensor
US4286583A (en) * 1979-07-02 1981-09-01 U.S. Elevator Corporation Solar heater unit
US4888063A (en) * 1985-11-21 1989-12-19 Powell Roger A Variable aperture, variable flux density, aerospace solar collector
DE19518872A1 (en) * 1995-05-23 1996-11-28 Lothar Wanzke Thermal solar plant
US20040031517A1 (en) * 2002-08-13 2004-02-19 Bareis Bernard F. Concentrating solar energy receiver
WO2005090873A1 (en) * 2004-03-23 2005-09-29 Menova Engineering Inc. Solar collector
US20130255752A1 (en) * 2012-03-30 2013-10-03 Egypt Nanotechnology Center Photovoltaic thermal hybrid solar receivers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105242329A (en) * 2015-10-30 2016-01-13 南京理工大学紫金学院 Sun-image-movement-based atmosphere turbulence measurement apparatus and method thereof

Similar Documents

Publication Publication Date Title
US10345008B2 (en) Solar thermal concentrator apparatus, system, and method
Hassan et al. Impact of condenser heat transfer on energy and exergy performance of active single slope solar still under hot climate conditions
JP6421997B2 (en) Solar energy collector and solar energy collection system
MA49271B1 (en) System and method for thermomechanical monitoring of a solar receiver
Pandya et al. Experimental study of V-through solar water heater for tilt angle and glass transmissivity
Geete et al. Experimental analysis on fabricated parabolic solar collector with various flowing fluids and pipe materials
JP2014052153A (en) Solar heat collection device
Ali et al. Design and experimental analysis of a static 3-D elliptical hyperboloid concentrator for process heat applications
WO2015088301A1 (en) High-performance thermal sensor-transmitter for solar water heater
JP2011027268A (en) High efficiency sunlight tracking and heat collecting apparatus, desalination apparatus, and generator
KR101499357B1 (en) Solar heat accumulation apparatus using fresnel lens complex and heatpipe
Banakar et al. Evaluation of a pre-heating system for solar desalination system with linear Fresnel lens
KR101218192B1 (en) Solar hot water Boiler
RU2194928C1 (en) Solar collector
KR100779547B1 (en) Solar collector with reflector and double-sided coating to collect solar thermal
KR100779428B1 (en) Solar collector with reflector and double-sided coating to collect solar thermal
CN107152793A (en) A kind of solar energy collector in high efficiency
RU2679341C1 (en) Solar water heater
KR101001733B1 (en) solar heat collecting unit
KR20100067496A (en) Solar collector
KR200262084Y1 (en) Evacuated glass tubes solar collector
RU2569780C1 (en) Double-sided solar collector
KR20150029776A (en) solar energy generation apparatus using sunlight and heat absorbing system
RU96224U1 (en) SOLAR COLLECTOR
KR20210066465A (en) Parabolic trough concentrator type solar thermal energy system providing hot air

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13819100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13819100

Country of ref document: EP

Kind code of ref document: A1