JP6612042B2 - Solar heat storage device - Google Patents

Solar heat storage device Download PDF

Info

Publication number
JP6612042B2
JP6612042B2 JP2015046702A JP2015046702A JP6612042B2 JP 6612042 B2 JP6612042 B2 JP 6612042B2 JP 2015046702 A JP2015046702 A JP 2015046702A JP 2015046702 A JP2015046702 A JP 2015046702A JP 6612042 B2 JP6612042 B2 JP 6612042B2
Authority
JP
Japan
Prior art keywords
heat
heat storage
storage material
solar
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015046702A
Other languages
Japanese (ja)
Other versions
JP2016166705A (en
Inventor
建三 有田
隆弘 丸本
聡 多田隈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Mitsubishi Hitachi Power Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Hitachi Power Systems Ltd filed Critical Mitsubishi Hitachi Power Systems Ltd
Priority to JP2015046702A priority Critical patent/JP6612042B2/en
Publication of JP2016166705A publication Critical patent/JP2016166705A/en
Application granted granted Critical
Publication of JP6612042B2 publication Critical patent/JP6612042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

本発明は、太陽熱蓄熱装置に係り、具体的には、給水を太陽の日射により過熱して蒸気を発生させて蒸気タービンを駆動して発電する太陽熱蒸気発生装置に好適な太陽熱蓄熱装置に関する。   The present invention relates to a solar heat storage device, and more particularly, to a solar heat storage device suitable for a solar heat steam generation device that generates heat by heating steam by generating heat by heating solar water with solar radiation.

集光型太陽熱発電プラントに用いる太陽熱蒸気発生装置は、日射量の変動によって集熱量が変化し、日射の無い夜間は太陽熱で直接蒸気を発生させることができない。そのため、日射量の多いときに蓄熱し、日射量が不足するときには放熱して、蒸気の発生を補うための蓄熱装置を設置すること必要となる。   The solar heat steam generator used in the concentrating solar power plant changes the amount of heat collection due to fluctuations in the amount of solar radiation, and cannot generate steam directly by solar heat at night when there is no solar radiation. For this reason, it is necessary to install a heat storage device that stores heat when the amount of solar radiation is large and dissipates heat when the amount of solar radiation is insufficient to compensate for the generation of steam.

ところで、発電プラントは、効率の点から蒸気温度は高い方が望ましく、蓄熱装置にも高温の蒸気を生成可能な高温の蓄熱材が要求される。例えば、500〜550℃の高温で用いられる蓄熱材には、特許文献1、特許文献2、特許文献3に記載されているように、蓄熱温度で液体となる硝酸ナトリウム、亜硝酸ナトリウムおよび硝酸カリウムの混合物から成る溶融塩が用いられる。これらの特許文献に開示された硝酸ナトリウム、亜硝酸ナトリウムおよび硝酸カリウムの共晶塩からなる溶融塩は、融点が140℃程度で、最高使用温度が650℃であり、作動温度域が広いことから、顕熱型の蓄熱装置には好適である。   By the way, it is desirable that the power plant has a high steam temperature from the viewpoint of efficiency, and the heat storage device also requires a high-temperature heat storage material capable of generating high-temperature steam. For example, in a heat storage material used at a high temperature of 500 to 550 ° C., as described in Patent Document 1, Patent Document 2, and Patent Document 3, sodium nitrate, sodium nitrite, and potassium nitrate that are liquid at the heat storage temperature are used. A molten salt consisting of a mixture is used. The molten salt comprising a eutectic salt of sodium nitrate, sodium nitrite and potassium nitrate disclosed in these patent documents has a melting point of about 140 ° C., a maximum operating temperature of 650 ° C., and a wide operating temperature range. It is suitable for a sensible heat storage device.

一方、上述した硝酸塩系の溶融塩からなる蓄熱材は、熱伝導率が低い(0.6W/mK)ので、容器に充填して使用する場合には温度偏差が発生しやすく、伝熱管や電気ヒータの損傷、出力応答が遅いという問題がある。この点について、上記文献には、熱伝導に優れたクリンカ状のマグネシアを主成分とする固体の蓄熱材を混合し、容器内に封入して蓄熱槽を形成し、蓄熱槽内に電気ヒータまたは伝熱管を設置して温度偏差を低減することが開示されている。   On the other hand, the heat storage material composed of the above-mentioned nitrate-based molten salt has a low thermal conductivity (0.6 W / mK), and therefore, when filled in a container, a temperature deviation is likely to occur. There is a problem that the heater is damaged and the output response is slow. In this regard, the above-mentioned document describes mixing a solid heat storage material mainly composed of clinker-like magnesia with excellent heat conduction, enclosing it in a container to form a heat storage tank, and an electric heater or It is disclosed that a temperature difference is reduced by installing a heat transfer tube.

また、特許文献1、2には、蓄熱槽内に設置する伝熱管の外周面にフィンを取り付け、管入口側から管出口側にかけて、フィン密度を増加させることが記載されている。これにより、伝熱管の出入口間に生ずる蓄熱材の温度偏差を低減して蒸気発生量を増やすことができるとしている。また、特許文献1、2には、伝熱管の入口側を二重管で形成して、熱衝撃による損傷を防止することが開示されている。   Patent Documents 1 and 2 describe that fins are attached to the outer peripheral surface of a heat transfer tube installed in a heat storage tank, and the fin density is increased from the tube inlet side to the tube outlet side. Thereby, the temperature deviation of the heat storage material generated between the entrance and exit of the heat transfer tube can be reduced to increase the amount of steam generated. Patent Documents 1 and 2 disclose that the inlet side of the heat transfer tube is formed of a double tube to prevent damage due to thermal shock.

さらに、特許文献2には、伝熱管の管材として、クロム含有量14wt%以上、カーボン含有量0.03wt%以下のオーステナイト系ステンレス鋼を用いることが開示されている。また、特許文献3には、蓄熱材を充填した容器に電気ヒータおよび伝熱管を封入した蓄熱槽は、使用する際に蓄熱材の凝固・溶融に伴う体積膨張により、容器が破損するおそれがあるため、電気ヒータを被加熱流体が流れる伝熱管から十分離して設置することが開示されている。   Further, Patent Document 2 discloses that an austenitic stainless steel having a chromium content of 14 wt% or more and a carbon content of 0.03 wt% or less is used as the tube material of the heat transfer tube. In Patent Document 3, a heat storage tank in which an electric heater and a heat transfer tube are sealed in a container filled with a heat storage material may be damaged by volume expansion accompanying solidification / melting of the heat storage material when used. For this reason, it is disclosed that the electric heater is installed sufficiently separated from the heat transfer tube through which the fluid to be heated flows.

特許03153867号Japanese Patent No.03153867 特許03165961号Patent 03165961 特許02736580号Japanese Patent No. 0273580

ところで、特許文献1〜3には、蓄熱槽内の溶融塩をポンプ等により流動させて、伝熱管を流通する給水を加熱または蒸気により蓄熱材を加熱することについては、配慮されていない。例えば、流動性を有する蓄熱材を流通する容器内に、給水と蒸気を流通する多数の伝熱管を収容した熱交換器を用い、容器内の蓄熱材をポンプ等により流動させることにより、特許文献1〜3に記載された問題を解決することが期待できる。しかし、発電プラント向けのように、蓄熱温度が高温で、かつ蓄熱容量が大きい蓄熱装置をコンパクト化することに課題がある。 By the way, Patent Documents 1 to 3 do not give consideration to heating the heat storage material by heating the feed water flowing through the heat transfer tubes or steam by flowing the molten salt in the heat storage tank using a pump or the like. For example, in a container that circulates a heat storage material having fluidity, a heat exchanger containing a large number of heat transfer tubes that distribute water and steam is used, and the heat storage material in the container is made to flow by a pump or the like, thereby obtaining It can be expected to solve the problems described in 1-3. However, there is a problem in downsizing a heat storage device having a high heat storage temperature and a large heat storage capacity as in a power plant.

本発明が解決しようとする課題は、太陽熱蒸気発生装置に適したコンパクトな太陽熱蓄熱装置を提供することにある。   The problem to be solved by the present invention is to provide a compact solar heat storage device suitable for a solar steam generator.

上記課題を解決するため、本発明の太陽熱蓄熱装置は、太陽熱蒸気発生装置で生成された蒸気を供給先に供給する蒸気配管と前記太陽熱蒸気発生装置に前記蒸気用の水を供給する給水配管とを連通してなる伝熱管を容器に収容して形成された熱交換器と、前記熱交換器の容器内に連通され流動性の蓄熱材を貯留する第1蓄熱槽と、前記熱交換器の容器内に連通され前記蓄熱材を貯留する第2蓄熱槽と、前記第1蓄熱槽と前記第2蓄熱槽との間で前記蓄熱材を前記熱交換器を介して相互に移送する蓄熱材移送ポンプとを備え、前記熱交換器の前記伝熱管は、前記容器内に曲折して平面状に形成されて並行に配置された複数の伝熱管を備え、前記第1蓄熱槽の前記蓄熱材が出入される前記容器内の高温域に配置される複数の前記伝熱管の間の前記蓄熱材が流通する流路に、前記蓄熱材よりも体積当たりの熱容量および熱伝導率が大きい固体蓄熱物質で形成された固体蓄熱部材を配置して構成することを特徴とする。 In order to solve the above problems, a solar heat storage device of the present invention includes a steam pipe that supplies steam generated by a solar heat steam generator to a supply destination, and a water supply pipe that supplies water for the steam to the solar heat steam generator. A heat exchanger formed by accommodating a heat transfer tube in a container, a first heat storage tank that is communicated in the container of the heat exchanger and stores a fluid heat storage material, and a heat exchanger of the heat exchanger A second heat storage tank that is communicated in a container and stores the heat storage material, and a heat storage material transfer that transfers the heat storage material to each other via the heat exchanger between the first heat storage tank and the second heat storage tank. e Bei a pump, the heat transfer tube of the heat exchanger comprises a plurality of heat transfer tubes arranged in parallel are formed in a planar shape by bending into the container, the heat storage material of the first thermal storage tank Between the plurality of heat transfer tubes arranged in a high temperature region in the container where A flow path heat material flows, characterized in that it constituted by arranging the solid heat storage member capacity and thermal conductivity are formed in a large solid heat storage material per volume than said heat storage material.

本発明によれば、蓄熱槽を第1蓄熱槽(高温蓄熱槽)と第2蓄熱槽(低温蓄熱槽)に分け、蓄熱モードと放熱モードに応じて、高温蓄熱槽と低温蓄熱槽の蓄熱材を熱交換器を介して流通させ、伝熱管内を流通する給水または蒸気と蓄熱材とを熱交換させて、蒸気の熱を蓄熱材に蓄熱させ、あるいは蓄熱材の熱を給水に放熱させることができる。また、熱伝導率が低い(0.6W/mK)流動性の蓄熱材を使用しても、熱交換器内に配置された伝熱管の入口と出口間の温度偏差の発生を抑制することができ、伝熱管の損傷を防止できる。また、伝熱管の入口側から出口側にかけてフィン密度を増加させるなど対策は、必ずしも必要がない。さらに、伝熱管の入口側の熱衝撃を緩和するために二重管で形成する必要もない。   According to this invention, a heat storage tank is divided into a 1st heat storage tank (high temperature heat storage tank) and a 2nd heat storage tank (low temperature heat storage tank), and the heat storage material of a high temperature heat storage tank and a low temperature heat storage tank according to heat storage mode and heat dissipation mode. Circulate through the heat exchanger, heat exchange between the feed water or steam circulating in the heat transfer pipe and the heat storage material, heat of the steam is stored in the heat storage material, or the heat of the heat storage material is dissipated to the water supply Can do. Moreover, even if a fluid heat storage material having a low thermal conductivity (0.6 W / mK) is used, it is possible to suppress the occurrence of temperature deviation between the inlet and outlet of the heat transfer tube disposed in the heat exchanger. This can prevent damage to the heat transfer tube. Further, measures such as increasing the fin density from the inlet side to the outlet side of the heat transfer tube are not necessarily required. Furthermore, it is not necessary to form a double tube in order to reduce the thermal shock on the inlet side of the heat transfer tube.

しかも、低温の蓄熱材が通流する熱交換器の容器内の領域を特定できるから、その低温の領域に配置される伝熱管は、腐食の問題が少ないことから安価な炭素鋼を使用できる。その結果、伝熱管の本数を増やして、伝熱面積を増大させることにより、伝熱効率を向上させて、熱交換器を安価でコンパクトにすることができる。   And since the area | region in the container of the heat exchanger through which a low temperature thermal storage material flows can be pinpointed, since the heat transfer tube arrange | positioned in the low temperature area | region has few problems of corrosion, cheap carbon steel can be used. As a result, by increasing the number of heat transfer tubes and increasing the heat transfer area, the heat transfer efficiency can be improved and the heat exchanger can be made inexpensive and compact.

また、本発明に用いる蓄熱材は、硝酸ナトリウム、亜硝酸ナトリウムおよび硝酸カリウムの共晶塩よりなる溶融塩を含んでなることが好ましい。   Moreover, it is preferable that the heat storage material used for this invention contains the molten salt which consists of eutectic salt of sodium nitrate, sodium nitrite, and potassium nitrate.

また、熱交換器の伝熱管は、給水配管に連通された部位から設定された長さがフィン付伝熱管で形成され、それ以外はフィン無伝熱管で形成されていることが好ましい。これによれば、低温の蓄熱材が通流する容器内の領域に配置される伝熱管は、腐食が進行しにくいので、安価な炭素鋼のフィン付伝熱管を採用できることから、伝熱管の本数を増やすことなく、伝熱面積を増大させることができる。これにより、伝熱効率を向上させて、熱交換器を安価でコンパクトにすることができる。フィン付伝熱管は、容器内における蓄熱材の温度が450℃以下の低温の設定領域に配置することが好ましい。   Moreover, it is preferable that the heat transfer tube of the heat exchanger is formed of a finned heat transfer tube with a length set from a portion communicating with the water supply pipe, and the other is formed of a finless heat transfer tube. According to this, since the heat transfer tubes arranged in the region in the container through which the low-temperature heat storage material flows are less susceptible to corrosion, it is possible to employ inexpensive carbon steel finned heat transfer tubes, so the number of heat transfer tubes The heat transfer area can be increased without increasing. Thereby, heat-transfer efficiency can be improved and a heat exchanger can be made cheap and compact. The finned heat transfer tube is preferably arranged in a low temperature setting region where the temperature of the heat storage material in the container is 450 ° C. or lower.

一方、給水配管から離れた部位の伝熱管は、比較的高温の領域に配置されることから、例えば450〜500℃を超えるとフィン付伝熱管のフィン本体やフィン溶接部の腐食が進行しやすい。そこで、450〜500℃を超える運用温度域では、安価な炭素鋼のフィン付伝熱管を採用することは好ましくない。そこで、この領域の伝熱管は、炭素鋼のフィン無伝熱管を用いる。あるいは、クロムを含有するステンレス鋼は、表面に緻密なクロム酸化被膜を生じることから、500℃〜600℃の領域でも材料の腐食の進行はほとんどないので、フィン無伝熱管に用いることが好ましい。このように、本発明によれば、熱交換器の容器内の低温領域と高温領域で、フィン付伝熱管とフィン無伝熱管を使い分けることに特徴を有する。なお、SUS304等のオーステナイト系ステンレス鋼のフィン付伝熱管を用いると腐食耐久性が増し、熱衝撃に強くなるが、費用が増大するという問題がある。   On the other hand, since the heat transfer tube at a position away from the water supply pipe is disposed in a relatively high temperature region, for example, when the temperature exceeds 450 to 500 ° C., the corrosion of the fin body or fin welded portion of the heat transfer tube with fins easily proceeds. . Therefore, it is not preferable to employ an inexpensive carbon steel finned heat transfer tube in an operating temperature range exceeding 450 to 500 ° C. Therefore, a finless heat transfer tube made of carbon steel is used as the heat transfer tube in this region. Alternatively, the stainless steel containing chromium produces a dense chromium oxide film on the surface, and therefore, the corrosion of the material hardly occurs even in the region of 500 ° C. to 600 ° C., so that it is preferably used for the fin non-heat transfer tube. Thus, according to the present invention, the heat transfer tube with fins and the heat transfer tube without fins are selectively used in the low temperature region and the high temperature region in the container of the heat exchanger. In addition, when austenitic stainless steel finned heat transfer tubes such as SUS304 are used, corrosion durability increases and resistance to thermal shock increases, but there is a problem that costs increase.

本発明において、熱交換器の伝熱管は、蒸気配管と給水配管にそれぞれ連通され、かつ容器内に曲折して平面状に形成されて並行に配置された複数の伝熱管を備え、第1蓄熱槽の蓄熱材が出入される容器内の高温域に配置される複数の伝熱管の間の蓄熱材が流通する流路に、蓄熱材よりも体積当たりの熱容量および熱伝導率が大きい固体蓄熱物質で形成された固体蓄熱部材を配置してなることが好ましい。これによれば、高温域に配置される複数の伝熱管(例えば、フィン無伝熱管群または裸伝熱管群)の周りの蓄熱材が通流する流路に、固体蓄熱物質で形成された固体蓄熱部材が配置されることから、流動性を有する蓄熱材の流れが変化して、その高温領域における熱伝達率が向上して、熱交換効率が向上する。つまり、流動性を有する蓄熱材が通流する流路は、フィン無伝熱管群の隙間であり、固体蓄熱部材を配置することによって、その流路が狭まり、縮流が生じて管群近傍の流速が増大し、フィン無伝熱管群の熱伝達率が増大する。さらに、固体蓄熱部材により蓄熱装置の蓄熱密度が増大し、熱伝導率の高い蓄熱材を用いることで伝熱による固体蓄熱部材の内部応力の発生が抑制され、固体蓄熱部材が破損しにくくなるほか、熱交換器内の蓄熱材に一様な温度成層を形成することができる。その結果、熱交換器のコンパクト化が図れるほか、低温部分の伝熱管に安価な炭素鋼のフィン付き管を使用することでコスト低減を図ることができる。   In the present invention, the heat transfer pipe of the heat exchanger includes a plurality of heat transfer pipes that are respectively connected to the steam pipe and the water supply pipe, bent in the container, are formed in a planar shape, and are arranged in parallel. Solid heat storage material with a larger heat capacity and thermal conductivity per volume than the heat storage material in the flow path through which the heat storage material flows between a plurality of heat transfer tubes arranged in a high temperature region in the container where the heat storage material of the tank is put in and out It is preferable to arrange a solid heat storage member formed of According to this, the solid formed with the solid heat storage material in the flow path through which the heat storage material flows around the plurality of heat transfer tubes (for example, the fin non-heat transfer tube group or the bare heat transfer tube group) arranged in the high temperature region. Since the heat storage member is arranged, the flow of the heat storage material having fluidity changes, the heat transfer coefficient in the high temperature region is improved, and the heat exchange efficiency is improved. In other words, the flow path through which the heat storage material having fluidity flows is a gap between the fin non-heat transfer tube groups, and by disposing the solid heat storage member, the flow path is narrowed and a contracted flow is generated, so that The flow rate increases, and the heat transfer coefficient of the fin non-heat transfer tube group increases. Furthermore, the solid heat storage member increases the heat storage density of the heat storage device, and by using a heat storage material with high thermal conductivity, the occurrence of internal stress in the solid heat storage member due to heat transfer is suppressed, making the solid heat storage member less likely to break. A uniform temperature stratification can be formed on the heat storage material in the heat exchanger. As a result, the heat exchanger can be made compact, and the cost can be reduced by using an inexpensive carbon steel finned tube for the heat transfer tube in the low temperature portion.

本発明によれば、太陽熱蒸気発生装置に適したコンパクトな太陽熱蓄熱装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the compact solar heat storage apparatus suitable for a solar-heat-steam generator can be provided.

集光型太陽熱発電プラントの太陽熱蒸気発生装置に適用した本発明の太陽熱蓄熱装置の実施例1のブロック構成図であり、蓄熱時の動作を説明する図である。It is a block block diagram of Example 1 of the solar thermal storage device of the present invention applied to the solar thermal steam generator of the concentrating solar thermal power plant, and is a diagram for explaining the operation during thermal storage. 図1実施例における太陽熱蓄熱装置の放熱時の動作を説明する図である。It is a figure explaining the operation | movement at the time of thermal radiation of the solar thermal energy storage apparatus in FIG. 1 Example. 図1実施例における熱交換器容器内の伝熱管配置構成を示す図である。It is a figure which shows the heat exchanger tube arrangement | positioning structure in the heat exchanger container in FIG. 1 Example. 図3における熱交換器容器内に配置した固体蓄熱材による蓄熱材の流れを説明する図である。It is a figure explaining the flow of the thermal storage material by the solid thermal storage material arrange | positioned in the heat exchanger container in FIG. 本発明の熱交換器の効果を説明するための比較例1の交換器容器内の伝熱管配置構成を示す図である。It is a figure which shows the heat exchanger tube arrangement | positioning structure in the exchanger container of the comparative example 1 for demonstrating the effect of the heat exchanger of this invention. 本発明の熱交換器の効果を説明するための比較例2の交換器容器内の伝熱管配置構成を示す図である。It is a figure which shows the heat exchanger tube arrangement | positioning structure in the exchanger container of the comparative example 2 for demonstrating the effect of the heat exchanger of this invention. 本発明の実施例2の熱交換器容器内の伝熱管配置構成を示す図である。It is a figure which shows the heat exchanger tube arrangement | positioning structure in the heat exchanger container of Example 2 of this invention. 本発明の実施例3の熱交換器容器内の伝熱管配置構成を示す図である。It is a figure which shows the heat exchanger tube arrangement | positioning structure in the heat exchanger container of Example 3 of this invention.

以下、集光型太陽熱発電プラントの太陽熱蒸気発生装置に適用した本発明の太陽熱蓄熱装置を、実施例に基づいて説明する。   Hereinafter, a solar heat storage device of the present invention applied to a solar steam generator of a concentrating solar power plant will be described based on examples.

図1に、太陽熱蒸気発生装置に適用してなる本発明の実施例1の太陽熱蓄熱装置のブロック構成図を示す。本実施例1は、集光型太陽熱発電プラントの太陽熱蒸気発生装置に適用した太陽熱蓄熱装置である。太陽熱蒸気発生装置8は、太陽12の日射13を図示していないミラーやレンズで集光・集熱し蒸気を発生する蒸発器1と、同様に図示していないミラーやレンズで集光・集熱し過熱蒸気を得る過熱器2と、汽水分離器3と循環ポンプ4から構成されている。過熱器2で生成された過熱蒸気は、蒸気止め弁16を有する蒸気配管10を介して、図示していない蒸気タービン発電系統に供給されて、蒸気タービンを駆動して発電するようになっている。蒸気タービンを駆動して復水された水を含む給水は、給水止め弁15を有する給水配管11を介して循環ポンプ4aにより太陽熱蒸気発生装置8の蒸発器1に戻されるようになっている In FIG. 1, the block block diagram of the solar thermal energy storage apparatus of Example 1 of this invention applied to a solar thermal steam generator is shown. Example 1 is a solar heat storage device applied to a solar heat steam generator of a concentrating solar power plant. The solar steam generator 8 collects and collects the solar radiation 13 of the sun 12 with a mirror or lens (not shown) and generates steam to collect and collect heat with a mirror or lens (not shown). It comprises a superheater 2 that obtains superheated steam, a brackish water separator 3 and a circulation pump 4. The superheated steam generated by the superheater 2 is supplied to a steam turbine power generation system (not shown) via a steam pipe 10 having a steam stop valve 16 to drive the steam turbine to generate power. . The feed water containing the water condensed by driving the steam turbine is returned to the evaporator 1 of the solar heat steam generator 8 by the circulation pump 4a through the feed water pipe 11 having the feed stop valve 15 .

太陽熱蓄熱装置9は、流動性を有する高温の蓄熱材(溶融塩)を貯蔵する第1蓄熱槽としての高温蓄熱槽6と、流動性を有する低温の蓄熱材(溶融塩)を貯蔵する第2蓄熱槽としての低温蓄熱槽7と、多管型の熱交換器5を有して構成されている。高温蓄熱槽6は、移送配管6aを介して熱交換器5の容器に連通されている。移送配管6aには、蓄熱材止め弁17aが介装されている。低温蓄熱槽7は、移送配管7aを介して熱交換器5の容器に連通されている。移送配管7aには、蓄熱材移送ポンプ14と蓄熱材止め弁17bが介装されている。   The solar heat storage device 9 includes a high-temperature heat storage tank 6 as a first heat storage tank for storing a high-temperature heat storage material (molten salt) having fluidity, and a second for storing a low-temperature heat storage material (molten salt) having fluidity. It has a low-temperature heat storage tank 7 as a heat storage tank and a multi-tube heat exchanger 5. The high-temperature heat storage tank 6 is communicated with the container of the heat exchanger 5 through the transfer pipe 6a. A heat storage material stop valve 17a is interposed in the transfer pipe 6a. The low-temperature heat storage tank 7 is communicated with the container of the heat exchanger 5 through the transfer pipe 7a. A heat storage material transfer pump 14 and a heat storage material stop valve 17b are interposed in the transfer pipe 7a.

このように構成される本実施例の蓄熱時の動作を、図1を参照して説明する。基本的に、太陽熱蒸気発生装置8に給水配管11から給水を供給して、高温の過熱蒸気を発生させる。昼間、太陽熱蒸気発生装置8の過熱蒸気の発生量は、集光型太陽熱発電プラントの要求量を上回るように設定されている。この場合、発生された過熱蒸気の一部は、蒸気配管10から取り出され、蓄熱装置9の熱交換器5の伝熱管21に送られて蓄熱され、残りの過熱蒸気は図示していない蒸気タービン発電系統へ供給される。この蓄熱過程では、低温蓄熱槽7に貯蔵された蓄熱材が蓄熱材移送ポンプ14により熱交換器5の容器内(容器サイド)に流通される。熱交換器5の伝熱管21を流通する過熱蒸気(例えば、500〜550℃)と、容器サイドを流通する蓄熱材との熱交換により蓄熱材は加熱される。これにより高温となった溶融塩(例えば、500〜550℃)は高温蓄熱槽6へ送られて、貯蔵される。   The operation at the time of heat storage of the present embodiment configured as described above will be described with reference to FIG. Basically, water is supplied from the water supply pipe 11 to the solar thermal steam generator 8 to generate high-temperature superheated steam. During the day, the amount of superheated steam generated by the solar heat steam generator 8 is set to exceed the required amount of the concentrating solar power plant. In this case, a part of the generated superheated steam is taken out from the steam pipe 10, sent to the heat transfer pipe 21 of the heat exchanger 5 of the heat storage device 9 and stored, and the remaining superheated steam is not shown in the steam turbine. Supplied to the power generation system. In this heat storage process, the heat storage material stored in the low-temperature heat storage tank 7 is circulated into the container (container side) of the heat exchanger 5 by the heat storage material transfer pump 14. The heat storage material is heated by heat exchange between superheated steam (for example, 500 to 550 ° C.) flowing through the heat transfer tube 21 of the heat exchanger 5 and the heat storage material flowing through the container side. The molten salt (for example, 500-550 degreeC) which became high temperature by this is sent to the high temperature thermal storage tank 6, and is stored.

一方、熱交換器5の伝熱管21に送られた過熱蒸気は、伝熱管21を流通する過程で熱交換により凝縮される。この凝縮水は、循環ポンプ4bにより給水配管11を介して循環ポンプ4aにより蒸発器1に戻される。蓄熱モードが継続して、例えば、低温蓄熱槽7が空となった場合には、蓄熱材止め弁17a、17bを閉じ、蓄熱材移送ポンプ14および循環ポンプ4bを停止させて、蓄熱モードを終了する。   On the other hand, the superheated steam sent to the heat transfer tube 21 of the heat exchanger 5 is condensed by heat exchange in the process of flowing through the heat transfer tube 21. This condensed water is returned to the evaporator 1 by the circulation pump 4a through the water supply pipe 11 by the circulation pump 4b. When the heat storage mode continues, for example, when the low-temperature heat storage tank 7 becomes empty, the heat storage material stop valves 17a and 17b are closed, the heat storage material transfer pump 14 and the circulation pump 4b are stopped, and the heat storage mode is ended. To do.

次に、図2を参照して、蓄熱装置9の放熱時の動作例を示す。太陽熱蒸気発生装置8では熱源である日射がなくなる夜間には、過熱蒸気の出力がなくなるため、太陽熱蒸気発生装置8を停止するそして、蓄熱装置9から放熱して過熱蒸気を発生させて、光型太陽熱発電プラントを駆動して発電を継続して行う。この放熱過程では、給水止め弁15および蒸気止め弁16を閉じて、集熱装置8へ供給される給水を停止する。そして、高温蓄熱槽7に貯蔵された高温(例えば、500〜550℃)の蓄熱材を熱交換器5の容器サイドに流通させるとともに、循環ポンプ4bを駆動して熱交換器5の伝熱管21に給水を流通させる。これにより、熱交換器5において、伝熱管21を通流する給水が容器サイドを流通される高温の蓄熱材により加熱されて、熱交換により過熱蒸気(例えば、500〜550℃)が発生する。発生した過熱蒸気は、蒸気配管10に供給され、図示しない集光型太陽熱発電プラントの蒸気タービン発電系統へ供給される。その熱交換後の蓄熱材は、低温蓄熱槽7に送られて貯蔵される。高温蓄熱槽6が空となる場合には、蓄熱材止め弁17a、17bを閉じ、蓄熱材移送ポンプ14を停止し、循環ポンプ4bも停止する。
Next, with reference to FIG. 2, the operation example at the time of thermal radiation of the thermal storage apparatus 9 is shown. The solar heat steam generator 8 stops the solar heat steam generator 8 because there is no superheated steam output at night when there is no solar radiation as a heat source . Then, the heat radiation from the heat storage device 9 to generate superheated steam continues to perform power generation by driving the condensing type solar thermal power plant. In this heat radiation process, the water supply stop valve 15 and the steam stop valve 16 are closed to stop the water supply supplied to the heat collecting device 8. And while circulating the high temperature (for example, 500-550 degreeC) thermal storage material stored in the high temperature thermal storage tank 7 to the container side of the heat exchanger 5, the circulation pump 4b is driven and the heat exchanger tube 21 of the heat exchanger 5 is supplied. Circulate water supply. Thereby, in the heat exchanger 5, the feed water flowing through the heat transfer tube 21 is heated by the high-temperature heat storage material that flows through the container side, and superheated steam (for example, 500 to 550 ° C.) is generated by heat exchange. The generated superheated steam is supplied to the steam pipe 10 and supplied to a steam turbine power generation system of a concentrating solar power generation plant (not shown). The heat storage material after the heat exchange is sent to the low-temperature heat storage tank 7 and stored. When the high-temperature heat storage tank 6 becomes empty, the heat storage material stop valves 17a and 17b are closed, the heat storage material transfer pump 14 is stopped, and the circulation pump 4b is also stopped.

図3を参照して、熱交換器5の詳細な構成および蓄熱時の動作を説明する。図3において、(a)は正面から見た伝熱管21の配置を示し、(b)は側面から見た伝熱管21の配置を示している。図示のように、本実施例の熱交換器5は、給水または蒸気が通流される伝熱管21が複数配置されている。すなわち、各伝熱管21は、蒸気配管10と給水配管11にそれぞれ連通されている。また、各伝熱管21は、蒸気配管10と給水配管11にそれぞれ連通され、かつ容器19内に曲折して平面状に形成されて並行に配置されている。   With reference to FIG. 3, the detailed structure of the heat exchanger 5 and the operation | movement at the time of thermal storage are demonstrated. In FIG. 3, (a) shows the arrangement of the heat transfer tubes 21 viewed from the front, and (b) shows the arrangement of the heat transfer tubes 21 viewed from the side. As shown in the figure, the heat exchanger 5 of the present embodiment has a plurality of heat transfer tubes 21 through which water supply or steam flows. That is, each heat transfer tube 21 is connected to the steam pipe 10 and the water supply pipe 11, respectively. The heat transfer tubes 21 are respectively connected to the steam pipe 10 and the water supply pipe 11, bent in the container 19, formed in a planar shape, and arranged in parallel.

一方、高温蓄熱槽6の蓄熱材を熱交換器5の容器19内に移送する移送配管6aは、容器19の下部に配列された複数の高温蓄熱材ノズル29に連結されている。つまり、複数の高温蓄熱材ノズル29は、ヘッダ等の管寄せ構造で伝熱管21の管群に結合されている。一方、熱交換器5の容器19内から蓄熱材を低温蓄熱槽7に移送する移送配管7aは、容器19の上部に配列された複数の低温蓄熱材ノズル30に連結されている。複数の低温蓄熱材ノズル30は、ヘッダ等の管寄せ構造で伝熱管21の管群に結合されている。つまり、熱交換器5は、伝熱管21内を流通する蒸気(放熱時は、給水)の流れに対して、蓄熱材が向流となるように容器19に接続されてなる多管式の熱交換器を構成している。   On the other hand, the transfer pipe 6 a that transfers the heat storage material of the high-temperature heat storage tank 6 into the container 19 of the heat exchanger 5 is connected to a plurality of high-temperature heat storage material nozzles 29 arranged in the lower part of the container 19. That is, the plurality of high-temperature heat storage material nozzles 29 are coupled to the tube group of the heat transfer tubes 21 with a header structure such as a header. On the other hand, the transfer pipe 7 a for transferring the heat storage material from the container 19 of the heat exchanger 5 to the low-temperature heat storage tank 7 is connected to a plurality of low-temperature heat storage material nozzles 30 arranged at the upper part of the container 19. The plurality of low-temperature heat storage material nozzles 30 are coupled to the tube group of the heat transfer tubes 21 with a header structure such as a header. That is, the heat exchanger 5 is a multi-tube heat connected to the container 19 so that the heat storage material is counterflowed with respect to the flow of steam (water supply during heat dissipation) flowing through the heat transfer tube 21. It constitutes an exchange.

また、各伝熱管21は、給水配管10に連通された部位から設定された長さの部分に、フィン20が巻き付けられたフィン付伝熱管で形成されている。このフィン付伝熱管が配置された領域は、低温蓄熱槽7との間で蓄熱材が出入される容器19内の低温領域Bである。それ以外の領域、つまり高温蓄熱槽6の蓄熱材が出入される容器19内の高温領域Aに配置される各伝熱管21は、フィン無伝熱管で形成されている。   Each heat transfer tube 21 is formed of a finned heat transfer tube in which a fin 20 is wound around a portion having a length set from a portion communicating with the water supply pipe 10. The region where the finned heat transfer tubes are arranged is a low temperature region B in the container 19 in which a heat storage material is put in and out of the low temperature heat storage tank 7. The heat transfer tubes 21 arranged in the other region, that is, the high temperature region A in the container 19 in which the heat storage material of the high temperature heat storage tank 6 is put in and out are formed of finless heat transfer tubes.

さらに、図3に示すように、高温蓄熱槽6の蓄熱材が出入される容器19内の高温領域Aに配置される複数の伝熱管21の間の蓄熱材が流通する流路に位置させて、蓄熱材よりも体積当たりの熱容量および熱伝導率が大きい固体蓄熱物質で形成された丸棒状の固体蓄熱部材24が複数配置されている。   Furthermore, as shown in FIG. 3, the heat storage material between the plurality of heat transfer tubes 21 arranged in the high temperature region A in the container 19 through which the heat storage material of the high temperature heat storage tank 6 enters and exits is positioned. A plurality of round bar-shaped solid heat storage members 24 formed of a solid heat storage material having a larger heat capacity and thermal conductivity per volume than the heat storage material are arranged.

ここで、フィン付伝熱管およびフィン無伝熱管は同一の材料である必要はなく、例えば一部をSUS304等のオーステナイト系ステンレス鋼で構成し、他の部分をSTB340等の炭素鋼で構成してもよい。また、全部をオーステナイト系ステンレス鋼としてもよい。フィン20は、伝熱管21と同一の材料である必要はなく、例えばオーステナイト系ステンレス鋼の伝熱管にクロムを0.11wt%以上含むフェライト鋼のフィン20を取り付けてもよい。また、炭素鋼の伝熱管21にクロムを0.11wt%以上含むフェライト鋼やオーステナイト系ステンレス鋼のフィン21を取り付けてもよい。さらに、フィン20は、プレートを巻き付け溶接するのが好ましいが、巻き付け加工したものでなくてもよい。   Here, the finned heat transfer tube and the finless heat transfer tube need not be made of the same material. For example, a part is made of austenitic stainless steel such as SUS304, and the other part is made of carbon steel such as STB340. Also good. Further, all may be austenitic stainless steel. The fins 20 do not have to be made of the same material as that of the heat transfer tube 21. For example, a ferrite steel fin 20 containing 0.11 wt% or more of chromium may be attached to an austenitic stainless steel heat transfer tube. Moreover, you may attach the fin 21 of the ferritic steel and austenitic stainless steel which contain 0.11 wt% or more of chromium to the heat transfer tube 21 of carbon steel. Furthermore, although it is preferable that the fin 20 winds and welds a plate, it does not need to be wound.

蓄熱時は、蒸気配管10から伝熱管21に過熱蒸気が流入し、容器19には低温蓄熱槽7から蓄熱材が流入する。その結果、伝熱管21に流入した過熱蒸気は、蓄熱材に熱を奪われて凝縮して給水配管11に流出され、高温になった蓄熱材は高温蓄熱槽6に流出される。放熱時は、給水および蓄熱材の流れが蓄熱時と逆になる。また、図3(a)に示すように、熱交換器5の幅方向に渡って複数設けられた高温蓄熱材ノズル29と低温蓄熱材ノズル30は、熱伝導率が低く、流れにくい特性を持つ蓄熱材を均一に流入させ、熱交換器5の幅方向に渡って温度差が発生しにくくしている。   During heat storage, superheated steam flows from the steam pipe 10 into the heat transfer pipe 21, and heat storage material flows into the container 19 from the low-temperature heat storage tank 7. As a result, the superheated steam that has flowed into the heat transfer pipe 21 is deprived of heat by the heat storage material, condenses and flows out to the water supply pipe 11, and the heat storage material that has reached a high temperature flows out to the high temperature heat storage tank 6. During heat dissipation, the flow of water supply and heat storage material is reversed from that during heat storage. Moreover, as shown to Fig.3 (a), the high temperature thermal storage material nozzle 29 and the low temperature thermal storage material nozzle 30 which were provided with multiple across the width direction of the heat exchanger 5 have the characteristic that heat conductivity is low and it is hard to flow. The heat storage material is made to flow uniformly, and a temperature difference is hardly generated over the width direction of the heat exchanger 5.

さらに、実施例1では、熱伝導率の良い固体蓄熱部材24を伝熱管21の管群隙間に配置している。本実施例では、同列(インライン)に配置された伝熱管21の隙間に、固体蓄熱部材24を同列に配置している。これにより、伝熱管21と固体蓄熱部材24は、全体として千鳥状に配置されている。これにより、熱交換器5の幅方向に渡る温度差が発生しにくくして、熱交換効率を向上させることができる。このように、熱交換器5の容器19内にも固体蓄熱部材24を配置することで蓄熱装置9の蓄熱性能及び熱交換性能が向上する。固体蓄熱部材24は、溶融塩からなる蓄熱材よりも体積当たりの蓄熱量が多く、蓄熱材よりも熱伝導率が高いという性質を満たす物質を用い、例えば丸棒状に形成することが望ましい。例えば、ボーキサイト、コランダム、菱苦土石といった鉱物の粉砕物やマグネシアクリンカやアルミナクリンカといった素材が好適である。   Furthermore, in the first embodiment, the solid heat storage member 24 with good thermal conductivity is arranged in the tube group gap of the heat transfer tube 21. In the present embodiment, the solid heat storage members 24 are arranged in the same row in the gaps between the heat transfer tubes 21 arranged in the same row (inline). Thereby, the heat exchanger tube 21 and the solid heat storage member 24 are arrange | positioned in zigzag form as a whole. Thereby, the temperature difference over the width direction of the heat exchanger 5 hardly occurs, and the heat exchange efficiency can be improved. Thus, the heat storage performance and heat exchange performance of the heat storage device 9 are improved by disposing the solid heat storage member 24 in the container 19 of the heat exchanger 5 as well. The solid heat storage member 24 is preferably formed in a round bar shape, for example, using a material that satisfies the properties of having a larger amount of heat storage per volume than the heat storage material made of molten salt and having a higher thermal conductivity than the heat storage material. For example, pulverized minerals such as bauxite, corundum, and rhododendron, and materials such as magnesia clinker and alumina clinker are suitable.

ここで、固体蓄熱部材24を配置したときの容器19内における蓄熱材の流れを図4(a)、(b)を参照して説明する。同図(b)は、固体蓄熱部材24を配置しない状態のときの蓄熱材の流れ25を示している。これに対し、同図(a)は本実施例の固体蓄熱部材24を配置したときの蓄熱材の流れ25を示している。それらの図から明らかなように、伝熱管21の間に固体蓄熱部材24を配置することにより、蓄熱材の流れ25に渦流が発生する。この渦流により蓄熱材の混合が促進され、蓄熱材と伝熱管21内の水または蒸気との熱伝達率を向上させることができる。   Here, the flow of the heat storage material in the container 19 when the solid heat storage member 24 is arranged will be described with reference to FIGS. FIG. 5B shows the heat storage material flow 25 when the solid heat storage member 24 is not disposed. On the other hand, the same figure (a) has shown the flow 25 of the thermal storage material when the solid thermal storage member 24 of a present Example is arrange | positioned. As is apparent from these drawings, by arranging the solid heat storage member 24 between the heat transfer tubes 21, a vortex is generated in the flow 25 of the heat storage material. Mixing of the heat storage material is promoted by this eddy current, and the heat transfer coefficient between the heat storage material and water or steam in the heat transfer tube 21 can be improved.

ここで、本実施例の熱交換器5の効果について、図5、図6に示した比較例1、2と対比して説明する。図5の比較例1は、蒸気条件が300℃程度の熱交換器の例を示す。伝熱管21の管外にフィン20を取り付けたフィン付管を使用している。300℃程度であれば、伝熱管21に安価な炭素鋼を使用でき、かつフィン付管を使用できることから、伝熱面積を増大させて伝熱効率を向上し、熱交換器を安価でコンパクトにすることができる。しかし、実施例1のような硝酸塩系の溶融塩の蓄熱材は、強い酸化性を有しており、炭素鋼では500℃以上になると腐食が激しくなる。特に、フィン付管のフィン本体やフィン管溶接部の腐食が進行しやすく、500℃を超える運用温度では安価な炭素鋼のフィン付き管は採用できない。一方、クロムを含有するステンレス鋼では表面に緻密なクロム酸化被膜を生じることから500℃〜600℃でも材料の腐食の進行はほとんどない。また、SUS304等のオーステナイト系ステンレス鋼のフィン付管を用いると腐食耐久性が増し、熱衝撃に強くなるが、費用が増大するという問題がある。   Here, the effect of the heat exchanger 5 of the present embodiment will be described in comparison with Comparative Examples 1 and 2 shown in FIGS. The comparative example 1 of FIG. 5 shows the example of the heat exchanger whose steam conditions are about 300 degreeC. A finned tube in which the fins 20 are attached to the outside of the heat transfer tube 21 is used. If it is about 300 degreeC, since cheap carbon steel can be used for the heat exchanger tube 21, and a pipe with a fin can be used, it increases heat transfer area, improves heat transfer efficiency, and makes a heat exchanger cheap and compact. be able to. However, the nitrate-based molten salt heat storage material as in Example 1 has strong oxidizability, and carbon steel becomes severely corroded at 500 ° C. or higher. In particular, corrosion of the fin body of the finned tube and the welded portion of the fin tube is likely to proceed, and an inexpensive carbon steel finned tube cannot be employed at an operating temperature exceeding 500 ° C. On the other hand, in stainless steel containing chromium, a dense chromium oxide film is formed on the surface, so that the corrosion of the material hardly progresses even at 500 ° C to 600 ° C. Further, when an austenitic stainless steel finned tube such as SUS304 is used, corrosion durability increases and resistance to thermal shock increases, but there is a problem that costs increase.

図6の比較例2は、蒸気条件が500〜550℃の場合の熱交換器の例を示す。容器19内の最も低温の流体である給水が流れる伝熱管21の出入口から高温領域までの低温領域Bにはフィン付管を採用する。一方、容器19内の最も高温の流体である蒸気が流れる伝熱管21の出入口から低温領域までの低温領域Aにはフィン無管(裸管)を使用した例である。比較例2によれば、フィン効果が得られないために、伝熱管21の高温領域の管員数が大幅に増大する。そのため、蓄熱装置9の熱交換器5が大型化するという問題がある。   The comparative example 2 of FIG. 6 shows the example of a heat exchanger in case steam conditions are 500-550 degreeC. A finned tube is employed in the low temperature region B from the inlet / outlet of the heat transfer tube 21 through which the feed water, which is the coldest fluid in the container 19, flows. On the other hand, a finless tube (bare tube) is used in the low temperature region A from the inlet / outlet of the heat transfer tube 21 through which steam, which is the hottest fluid in the container 19, flows. According to the comparative example 2, since the fin effect cannot be obtained, the number of members in the high temperature region of the heat transfer tube 21 is significantly increased. Therefore, there is a problem that the heat exchanger 5 of the heat storage device 9 is enlarged.

本実施例1では、熱交換器5の容器19の内部にフィン付伝熱管とフィン無伝熱管の領域に分けて配置する例を示したが、本発明はこれに限られるものではない。すなわち、フィン付伝熱管とフィン無伝熱管の領域に合わせて、熱交換器5を分割して形成し、これらの熱交換器を直列に接続して構成してもよい。   In the present Example 1, although the example arrange | positioned and divided | segmented into the area | region of the finned heat exchanger tube and the fin non-heat exchanger tube inside the container 19 of the heat exchanger 5 was shown, this invention is not limited to this. That is, the heat exchanger 5 may be divided and formed in accordance with the areas of the finned heat transfer tubes and the finless heat transfer tubes, and these heat exchangers may be connected in series.

また、本発明に係る熱交換器5は強制対流によるものであるから、熱交換器5の設置に関して重力に関する方向性はない。したがって、伝熱管21に高温の流体が出入する領域にフィン無管からなる伝熱管群を配置し、伝熱管21に低温の流体が出入する領域にフィン付管からなる伝熱管群を配置し、フィン無管群の領域に固体蓄熱部材24を複数配置すればよい。   Moreover, since the heat exchanger 5 according to the present invention is based on forced convection, there is no directionality regarding gravity with respect to the installation of the heat exchanger 5. Therefore, a heat transfer tube group consisting of finless tubes is arranged in a region where a high temperature fluid enters and exits the heat transfer tube 21, and a heat transfer tube group consisting of finned tubes is arranged in a region where a low temperature fluid enters and exits the heat transfer tube 21, A plurality of solid heat storage members 24 may be arranged in the finless tube group region.

図7を参照して、本発明の熱交換器の実施例2を説明する。実施例1では、複数の伝熱管21を並列に配置した例を示したが、本実施例2では、隣り合う伝熱管21の位置を交互にずらして千鳥状に配置した例である。また、これに合わせて固体蓄熱部材24も千鳥状に配置する。また、固体蓄熱部材24の形状は伝熱管21と同じ円柱状で、長さは熱交換器5の容器幅程度が望ましく、寸法は適宜調節できる。   With reference to FIG. 7, Example 2 of the heat exchanger of this invention is demonstrated. In Example 1, although the example which arrange | positioned the several heat exchanger tube 21 in parallel was shown, in this Example 2, it is the example arrange | positioned by staggering the position of the adjacent heat exchanger tube 21 alternately. In accordance with this, the solid heat storage members 24 are also arranged in a staggered manner. Moreover, the shape of the solid heat storage member 24 is the same cylindrical shape as the heat transfer tube 21, and the length is preferably about the width of the container of the heat exchanger 5, and the dimensions can be adjusted as appropriate.

図8を参照して、本発明の熱交換器の実施例3を説明する。本実施例は、実施例1の固体蓄熱部材24に代えて、固体蓄熱材を封入した固体蓄熱材封入管27を配置した例である。蓄熱材を管の内部に封入したことから、蓄熱材を成型する必要がなくなる。その結果、粉体状や液状の蓄熱材を用いることができる。また、実施例1のように、溶融塩からなる蓄熱材と、固体蓄熱部材24が直接接触する場合には、固体蓄熱部材24の近傍の蓄熱材の流速が大きくなりエロージョンの発生が懸念される。これにより、固体蓄熱部材24が砕けて蓄熱材内に飛散して、蓄熱材移送ポンプ14や蓄熱材止め弁17a,17b等の機器の動作に影響する。この点、本実施例3のように、固体蓄熱材封入管27を用いて、溶融塩からなる蓄熱材と、固体蓄熱材が間接的に接触させることにより、エロージョンの問題を解決できる。   With reference to FIG. 8, Example 3 of the heat exchanger of this invention is demonstrated. In this embodiment, instead of the solid heat storage member 24 of the first embodiment, a solid heat storage material enclosing tube 27 enclosing a solid heat storage material is disposed. Since the heat storage material is enclosed in the pipe, it is not necessary to mold the heat storage material. As a result, a powder or liquid heat storage material can be used. Further, when the heat storage material made of molten salt and the solid heat storage member 24 are in direct contact as in the first embodiment, the flow rate of the heat storage material in the vicinity of the solid heat storage member 24 is increased, and erosion may occur. . Thereby, the solid heat storage member 24 is crushed and scattered in the heat storage material, which affects the operation of the devices such as the heat storage material transfer pump 14 and the heat storage material stop valves 17a and 17b. In this regard, as in the third embodiment, the erosion problem can be solved by causing the solid heat storage material and the solid heat storage material to contact each other indirectly using the solid heat storage material enclosing tube 27.

以上、本発明を実施例に基づいて説明したが、本発明はこれらに限定されるものではなく、本発明の主旨の範囲で変形又は変更された形態で実施することが可能であることは、当業者にあっては明白なことであり、そのような変形又は変更された形態が本願の特許請求の範囲に属することは当然のことである。   As described above, the present invention has been described based on the embodiments, but the present invention is not limited thereto, and can be implemented in a form that is modified or changed within the scope of the gist of the present invention. It will be apparent to those skilled in the art that such variations or modifications are within the scope of the claims.

1 蒸発器
2 過熱器
3 汽水分離器
4a、4b 循環ポンプ
5 熱交換器
6 高温蓄熱槽
7 低温蓄熱槽
8 太陽熱蒸気発生装置
9 蓄熱装置
10 蒸気配管
11 給水配管
14 蓄熱材移送ポンプ
19 容器
20 フィン
21 伝熱管
24 固体蓄熱部材
27 固体蓄熱材封入管
29 高温蓄熱材ノズル
30 低温蓄熱材ノズル
A 低温領域
B 高温領域
DESCRIPTION OF SYMBOLS 1 Evaporator 2 Superheater 3 Brackish water separator 4a, 4b Circulation pump 5 Heat exchanger 6 High temperature thermal storage tank 7 Low temperature thermal storage tank 8 Solar thermal steam generator 9 Thermal storage apparatus 10 Steam piping 11 Feed water piping 14 Thermal storage material transfer pump 19 Container 20 Fin 21 Heat Transfer Tube 24 Solid Heat Storage Member 27 Solid Heat Storage Material Enclosed Tube 29 High Temperature Storage Material Nozzle 30 Low Temperature Heat Storage Material Nozzle A Low Temperature Region B High Temperature Region

Claims (6)

太陽熱蒸気発生装置で生成された蒸気を供給先に供給する蒸気配管と前記太陽熱蒸気発生装置に前記蒸気用の水を供給する給水配管とを連通してなる伝熱管を容器に収容して形成された熱交換器と、
前記熱交換器の容器内に連通され流動性の蓄熱材を貯留する第1蓄熱槽と、
前記熱交換器の容器内に連通され前記蓄熱材を貯留する第2蓄熱槽と、
前記第1蓄熱槽と前記第2蓄熱槽との間で前記蓄熱材を前記熱交換器を介して相互に移送する蓄熱材移送ポンプとを備え、
前記熱交換器の前記伝熱管は、前記容器内に曲折して平面状に形成されて並行に配置された複数の伝熱管を備え、
前記第1蓄熱槽の前記蓄熱材が出入される前記容器内の高温域に配置される複数の前記伝熱管の間の前記蓄熱材が流通する流路に、前記蓄熱材よりも体積当たりの熱容量および熱伝導率が大きい固体蓄熱物質で形成された固体蓄熱部材を配置してなることを特徴とする太陽熱蓄熱装置。
A heat transfer pipe formed by connecting a steam pipe for supplying steam generated by a solar heat steam generator to a supply destination and a water supply pipe for supplying water for steam to the solar steam generator is housed in a container. Heat exchanger,
A first heat storage tank communicating with the heat exchanger and storing a fluid heat storage material;
A second heat storage tank communicating with the heat exchanger container and storing the heat storage material;
E Bei a heat storage material transfer pump for transferring the heat storage material to each other via the heat exchanger between said second thermal storage tank and said first heat-storage tank,
The heat transfer tube of the heat exchanger includes a plurality of heat transfer tubes that are bent in the container and formed in a planar shape and arranged in parallel.
The heat capacity per volume than the heat storage material in the flow path through which the heat storage material between a plurality of the heat transfer tubes arranged in a high temperature region in the container into and out of the heat storage material of the first heat storage tank. And a solar heat storage device comprising a solid heat storage member formed of a solid heat storage material having a high thermal conductivity .
前記蓄熱材は、硝酸ナトリウム、亜硝酸ナトリウムおよび硝酸カリウムの共晶塩よりなる溶融塩を含んでなることを特徴とする請求項1に記載の太陽熱蓄熱装置。   2. The solar heat storage device according to claim 1, wherein the heat storage material includes a molten salt made of a eutectic salt of sodium nitrate, sodium nitrite, and potassium nitrate. 前記熱交換器の前記伝熱管は、前記給水配管に連通された側の容器内の部位から設定された長さがフィン付伝熱管で形成され、それ以外はフィン無伝熱管で形成されていることを特徴とする請求項1または2に記載の太陽熱蓄熱装置。   The heat transfer tube of the heat exchanger is formed of a finned heat transfer tube with a length set from a portion in the container communicated with the water supply pipe, and the other is formed of a fin non-heat transfer tube. The solar thermal energy storage device according to claim 1 or 2, wherein 前記フィン付伝熱管は、前記容器内における前記蓄熱材の温度が450℃以下の低温の設定領域に配置されることを特徴とする請求項3に記載の太陽熱蓄熱装置。   The solar heat storage device according to claim 3, wherein the finned heat transfer tube is disposed in a low temperature setting region in which the temperature of the heat storage material in the container is 450 ° C or lower. 前記太陽熱蒸気発生装置は、前記給水配管からの給水を太陽の日射により過熱して蒸気を発生して前記蒸気配管から送出するように形成されてなることを特徴とする請求項1乃至のいずれか1項に記載の太陽熱蓄熱装置。 The solar heat steam generator, one of the claims 1 to 4, characterized by being formed so as to deliver from the water supply to the steam pipe and generate steam superheated by solar radiation of the sun from the water supply pipe The solar heat storage apparatus of Claim 1. 前記蓄熱材移送ポンプは、蓄熱運転モードにおいて前記第2蓄熱槽の前記蓄熱材を前記熱交換器の前記伝熱管を介して前記第1蓄熱槽に移送し、
放熱運転モードにおいて前記第1蓄熱槽の前記蓄熱材を前記熱交換器の前記伝熱管を介して前記第2蓄熱槽に移送するように構成されていることを特徴とする請求項1乃至のいずれか1項に記載の太陽熱蓄熱装置。
The heat storage material transfer pump transfers the heat storage material of the second heat storage tank to the first heat storage tank via the heat transfer pipe of the heat exchanger in a heat storage operation mode,
Of claims 1 to 5, characterized in that it is configured so that the heat storage material of the first thermal storage tank in the radiating operation mode through the heat transfer tube of the heat exchanger is transferred to the second thermal storage tank The solar heat storage apparatus of any one of Claims.
JP2015046702A 2015-03-10 2015-03-10 Solar heat storage device Active JP6612042B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015046702A JP6612042B2 (en) 2015-03-10 2015-03-10 Solar heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015046702A JP6612042B2 (en) 2015-03-10 2015-03-10 Solar heat storage device

Publications (2)

Publication Number Publication Date
JP2016166705A JP2016166705A (en) 2016-09-15
JP6612042B2 true JP6612042B2 (en) 2019-11-27

Family

ID=56898334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015046702A Active JP6612042B2 (en) 2015-03-10 2015-03-10 Solar heat storage device

Country Status (1)

Country Link
JP (1) JP6612042B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6765258B2 (en) 2016-08-29 2020-10-07 ヒロセ電機株式会社 connector
CN106767081A (en) * 2016-12-30 2017-05-31 北京建筑大学 A kind of fountain phase change energy storage apparatus
CN110945306B (en) * 2017-11-16 2021-05-11 株式会社Ihi Energy storage device
CN110173902B (en) * 2019-04-30 2020-08-07 云南大学 Combined heat and power system combining vacuum tube and flat plate solar collector
CN110701801A (en) * 2019-09-27 2020-01-17 浙江中控太阳能技术有限公司 Fused salt conveying system for solar photo-thermal power station
CN114322334A (en) * 2021-11-29 2022-04-12 郑州大学 Tower type solar heat collection steam heating system
CN115013853B (en) * 2022-05-20 2024-04-12 东北石油大学 Solar phase-change heat-storage heating system containing phase-change materials with different melting points
CN117553342B (en) * 2024-01-12 2024-05-03 四川大学 Heating system with efficient unit operation and heating method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5911817B2 (en) * 1981-09-21 1984-03-17 工業技術院長 Temperature control method for solar heat collector
JPS6162791A (en) * 1984-09-05 1986-03-31 Nippon Kokan Kk <Nkk> Heat accumulating and heat exchanging device
JP3165961B2 (en) * 1990-03-30 2001-05-14 バブコック日立株式会社 Heat storage device
JP3153867B2 (en) * 1990-03-30 2001-04-09 バブコツク日立株式会社 Steam generator
JP4322902B2 (en) * 2006-08-10 2009-09-02 川崎重工業株式会社 Solar power generation equipment and heat medium supply equipment
EP2470837B1 (en) * 2009-06-30 2019-12-18 Sunrise CSP Pty Limited Vapour only cycling of heat transfer fluid for the thermal storage of solar energy
JP5225359B2 (en) * 2010-11-19 2013-07-03 株式会社東芝 Heat storage device
JP5707546B2 (en) * 2011-04-11 2015-04-30 三菱日立パワーシステムズ株式会社 Solar thermal boiler system
JP5752511B2 (en) * 2011-07-28 2015-07-22 株式会社東芝 Solar thermal collector and solar thermal power generation system
JP5799692B2 (en) * 2011-09-10 2015-10-28 Jfeエンジニアリング株式会社 Steam generation method and apparatus using solar heat
JP2014001641A (en) * 2012-06-15 2014-01-09 Tokyo Institute Of Technology Solar heat gas turbine power generation system
JP5984935B2 (en) * 2012-07-17 2016-09-06 三菱日立パワーシステムズ株式会社 Solar power generation system
JP2014092086A (en) * 2012-11-05 2014-05-19 Hitachi Ltd Solar heat power plant, and solar heat storage and radiation apparatus
JP2014159892A (en) * 2013-02-19 2014-09-04 Toshiba Corp Solar heat collection device and solar heat power generation system

Also Published As

Publication number Publication date
JP2016166705A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
JP6612042B2 (en) Solar heat storage device
US10030636B2 (en) Solar thermal energy storage system
US20110083619A1 (en) Dual enhanced tube for vapor generator
US10935327B2 (en) Thermal energy storage system
US20100230075A1 (en) Thermal Storage System
US20150107246A1 (en) System and method for heat storage in solar thermal power plants
JP2010223537A (en) Heat pump hot water supply system
GB2532485A (en) An apparatus for storage of sensible heat
CN103148719B (en) Heat exchanger
CN100443850C (en) Heat pipe type solid phase powder heat exchanging system
CN110691953B (en) Heat exchanger for a molten salt steam generator in a concentrated solar power plant
JP4388253B2 (en) Latent heat storage device
RU2436020C1 (en) Heat accumulator
KR101602755B1 (en) Hybrid electricity boiler system for heating and hot water using both solar
CN110243092B (en) Heat exchanger capable of improving heat exchange efficiency
EP3147618B1 (en) Heat energy accumulator based on solid-liquid phase-change materials, and method for producing the unit
WO2017007371A2 (en) Steam generator
CN104633938B (en) Electric boiler heat exchanger
CN109253636A (en) A kind of three runner spiral wound tube type heat exchangers
CN210441710U (en) Heat exchanger for electric boiler
CN219736085U (en) Energy accumulator
JP4001025B2 (en) Water heater
CN102759199A (en) Coiler heat-exchange evaporation system for trough-type solar photothermal power generation
EP4105479A1 (en) Particle heat exchanger for a solar tower power plant
KR20190081998A (en) Heat Accumulation System

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20180117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180814

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190527

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191008

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191030

R150 Certificate of patent or registration of utility model

Ref document number: 6612042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150