JP5750208B2 - Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method - Google Patents

Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method Download PDF

Info

Publication number
JP5750208B2
JP5750208B2 JP2010274130A JP2010274130A JP5750208B2 JP 5750208 B2 JP5750208 B2 JP 5750208B2 JP 2010274130 A JP2010274130 A JP 2010274130A JP 2010274130 A JP2010274130 A JP 2010274130A JP 5750208 B2 JP5750208 B2 JP 5750208B2
Authority
JP
Japan
Prior art keywords
flaw detection
eddy current
excitation
current flaw
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010274130A
Other languages
Japanese (ja)
Other versions
JP2012122859A (en
Inventor
斎藤 直樹
直樹 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marktec Corp
Original Assignee
Marktec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marktec Corp filed Critical Marktec Corp
Priority to JP2010274130A priority Critical patent/JP5750208B2/en
Publication of JP2012122859A publication Critical patent/JP2012122859A/en
Application granted granted Critical
Publication of JP5750208B2 publication Critical patent/JP5750208B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本願発明は、励磁素子と検出素子からなる渦電流探傷プローブを所定の方向へ走査(移動)して、被検査体(被探傷体)のキズを検出する渦電流探傷プローブ、渦電流探傷装置及び渦電流探傷方法に関する。   The present invention relates to an eddy current flaw detection probe, an eddy current flaw detection device, which scans (moves) an eddy current flaw probe composed of an excitation element and a detection element in a predetermined direction to detect a flaw in a test object (flaw detection object), and The present invention relates to an eddy current flaw detection method.

被検査体の探傷面には、渦電流探傷プローブの走査方向に対して様々な方向に進展する(延在する)キズが存在するが、一般の渦電流探傷プローブは、キズの進展方向により検出感度が異なるため、キズを十分に検出できない場合があった。その点に鑑み、いずれの方向へ進展するキズも、即ち全方向のキズを検出できるように構成した渦電流探傷プローブが提案されている。
図8(a)の渦電流探傷プローブは、回転式の検出コイルを備えた渦電流探傷プローブを用いた例であり(特許文献1参照)、図8(b)の渦電流探傷プローブは、直交する2個の励磁コイルを備えている(特許文献2参照)。
There are flaws that extend (extend) in various directions with respect to the scanning direction of the eddy current flaw detection probe on the surface to be inspected, but general eddy current flaw detection probes are detected based on the flaw propagation direction. Since the sensitivity is different, scratches may not be detected sufficiently. In view of this point, an eddy current flaw detection probe has been proposed which is configured to detect flaws extending in any direction, that is, flaws in all directions.
The eddy current flaw detection probe shown in FIG. 8A is an example using an eddy current flaw detection probe having a rotary detection coil (see Patent Document 1), and the eddy current flaw detection probe shown in FIG. The two exciting coils are provided (see Patent Document 2).

まず図8(a)の渦電流探傷プローブについて説明する。
渦電流探傷プローブ11は、円形(ドウナツ状)の励磁コイル111と四角形の検出コイル112からなる。励磁コイル111は、コイル軸が被検査体Tの探傷面に垂直になる(コイル面は平行になる)ように配置し、検出コイル112は、コイル軸が被検査体Tの探傷面と平行になる(コイル面は垂直になる)ように配置してある。検出コイル112は、軸P1を中心に回転する。渦電流探傷プローブ11は、検出コイル112を回転しながら、走査方向SCの方向へ移動する。
なおここで本願は、コイルの巻線に囲まれた開口部の面(コイル軸と直交する面)をコイル面と呼ぶ。
First, the eddy current flaw detection probe shown in FIG.
The eddy current flaw detection probe 11 includes a circular (doughnut-shaped) excitation coil 111 and a square detection coil 112. The exciting coil 111 is arranged so that the coil axis is perpendicular to the flaw detection surface of the inspection object T (the coil surface is parallel), and the detection coil 112 is arranged so that the coil axis is parallel to the flaw detection surface of the inspection object T. (The coil surface is vertical). The detection coil 112 rotates around the axis P1. The eddy current flaw detection probe 11 moves in the scanning direction SC while rotating the detection coil 112.
In the present application, the surface of the opening (surface perpendicular to the coil axis) surrounded by the coil winding is referred to as a coil surface.

被検査体Tの探傷面には、走査方向SCの方向へ進展するキズ(以下長手キズと呼ぶ)F1、走査方向SCの方向と直交する方向へ進展するキズ(以下直交キズと呼ぶ)F2、走査方向SCの方向と45度の方向へ進展するキズF3が存在する。その場合、検出コイル112は、回転しながらキズF1,F2,F3を通過するから、いずれのキズに対してもコイル面が各キズの長手方向(進展方向)と直交するときがある。したがって検出コイル112は、いずれの方向のキズも高感度で検出できる。   The flaw detection surface of the inspection object T has a flaw (hereinafter referred to as a longitudinal flaw) F1 that develops in the direction of the scanning direction SC, a flaw that develops in a direction orthogonal to the direction of the scanning direction SC (hereinafter referred to as an orthogonal flaw) F2, There is a flaw F3 that progresses in the direction of 45 degrees with respect to the scanning direction SC. In that case, since the detection coil 112 passes through the flaws F1, F2, and F3 while rotating, the coil surface may be orthogonal to the longitudinal direction (progression direction) of each flaw. Therefore, the detection coil 112 can detect scratches in any direction with high sensitivity.

次に図8(b)の渦電流探傷プローブについて説明する。
渦電流探傷プローブ12は、四角形の励磁コイル121a,121bと円形(ドウナツ状)の検出コイル122からなる。励磁コイル121a,121bは、コイル軸が直交し(コイル面も直交する)、コイル軸が被検査体Tの探傷面と平行になる(コイル面は直交する)ように配置し、検出コイル122は、コイル軸が被検査体Tの探傷面に垂直になる(コイル面は平行になる)ように配置してある。渦電流探傷プローブ12は、走査方向SCの方向へ移動してキズF1,F2,F3を探傷する。
図8(b)の渦電流探傷プローブの場合、2種類の渦電流探傷方法がある。第1の渦電流探傷方法は、励磁コイル121a,121bに周波数が同じで位相が90度異なる励磁電流を供給して回転磁界を発生し、検出コイル122の検出電圧を励磁電流と同じ周波数の参照信号により同期検波して渦電流探傷信号を取り出す。第2の渦電流探傷方法は、励磁コイル121a,121bに周波数が異なる励磁電流を供給し、各励磁コイルの励磁中に発生する検出コイル122の検出電圧を夫々励磁電流と同じ周波数の参照信号により同期検波して2つの渦電流探傷信号を取り出し、両渦電流探傷信号を別々に、或いは加算して探傷に用いる。渦電流探傷プローブ12は、直交する2個の励磁コイル121a,121bにより被検査体Tに渦電流を発生(誘導)するから、進展方向の異なるキズを検出することができる。
Next, the eddy current flaw detection probe shown in FIG.
The eddy current flaw detection probe 12 includes rectangular excitation coils 121a and 121b and a circular (doughnut-shaped) detection coil 122. The exciting coils 121a and 121b are arranged so that the coil axes are orthogonal (coil surfaces are also orthogonal), and the coil axes are parallel to the flaw detection surface of the inspection object T (the coil surfaces are orthogonal), and the detection coil 122 is The coil axis is arranged so as to be perpendicular to the flaw detection surface of the inspection object T (the coil surface is parallel). The eddy current flaw detection probe 12 moves in the scanning direction SC to detect flaws F1, F2, and F3.
In the case of the eddy current flaw detection probe shown in FIG. 8B, there are two types of eddy current flaw detection methods. In the first eddy current flaw detection method, an excitation current having the same frequency and a phase different by 90 degrees is supplied to the excitation coils 121a and 121b to generate a rotating magnetic field, and the detection voltage of the detection coil 122 is referred to the same frequency as the excitation current. An eddy current flaw detection signal is extracted by synchronous detection with the signal. In the second eddy current flaw detection method, excitation currents having different frequencies are supplied to the excitation coils 121a and 121b, and the detection voltage of the detection coil 122 generated during the excitation of each excitation coil is determined by a reference signal having the same frequency as the excitation current. Two eddy current flaw detection signals are extracted by synchronous detection, and both eddy current flaw detection signals are used separately or added together for flaw detection. Since the eddy current flaw detection probe 12 generates (induces) eddy current in the inspection object T by the two exciting coils 121a and 121b orthogonal to each other, it is possible to detect scratches having different development directions.

特開2007―248169号公報JP 2007-248169 A 特開2009−287981号公報JP 2009-287981 A

前記図8(a)の回転式検出コイルからなる渦電流探傷プローブは、検出コイルを回転しなければならないから、探傷の高速化に限度があり、またメンテナンスの問題がある。一方図8(b)の直交型の励磁コイルからなる渦電流探傷プローブは、渦電流探傷プローブの構成や操作は簡単であるが、前記第1の渦電流探傷方法は、キズの方向により渦電流探傷信号の位相が変わるため、位相による雑音の分離が困難になる。また前記第2の渦電流探傷方法は、キズの進展する方向によりキズの検出感度が大きく異なり、例えば、直交キズの検出感度は高いが、長手キズの検出感度は低いため、長手キズの渦電流探傷信号対雑音の比(S/N)が悪くなってしまう。
本願発明は、従来の前記問題点に鑑み、直交型の検出コイルからなる渦電流探傷プローブ、その渦電流探傷プローブを備えた渦電流探傷装置とその渦電流探傷プローブを用いて行う渦電流探傷方法において、長手キズの渦電流探傷信号のS/Nを改善することを目的とする。
The eddy current flaw detection probe comprising the rotary detection coil shown in FIG. 8 (a) has a limitation in speeding up flaw detection and a maintenance problem because the detection coil must be rotated. On the other hand, the eddy current flaw detection probe including the orthogonal excitation coil shown in FIG. 8B has a simple configuration and operation of the eddy current flaw detection probe. However, the first eddy current flaw detection method uses the eddy current flaw detection method depending on the direction of the scratch. Since the phase of the flaw detection signal changes, it becomes difficult to separate noise by the phase. In the second eddy current flaw detection method, the flaw detection sensitivity differs greatly depending on the direction of flaw development. For example, the detection flaw of orthogonal flaws is high, but the detection flaw of longitudinal flaws is low. The ratio (S / N) of the flaw detection signal to noise is deteriorated.
In view of the above-mentioned problems, the present invention is an eddy current flaw detection probe comprising an orthogonal detection coil, an eddy current flaw detection device including the eddy current flaw detection probe, and an eddy current flaw detection method performed using the eddy current flaw detection probe. An object of the present invention is to improve the S / N of an eddy current flaw detection signal having a longitudinal flaw.

本願発明は、その目的を達成するため、請求項1に記載の渦電流探傷方法は、2個の励磁素子と1個の検出素子からなり、該励磁素子は導電板からなり、2個の導電板は、探傷面対向面が探傷面に平行で、探傷面対向面の励磁電流の方向は交差し走査方向中心線に対して±θとなるように配置してある、若しくは該励磁素子はコイルからなり、2個のコイルは、コイル軸が探傷面に平行で、コイル軸は交差し走査方向中心線に対して±θとなるように配置してある渦電流探傷プローブ、又は該渦電流探傷プローブにおいて、前記θは、45度である渦電流探傷プローブを用いて、
2個の励磁素子を周波数及び位相が同じ励磁電流により交互に励磁し、一方及び他方の励磁素子の励磁中に検出素子に発生した検出電圧を励磁電流と同じ周波数の参照信号により同期検波し、2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号の和信号又は差信号を発生し、その和信号又は差信号を用いてキズを評価することを特徴とする。
請求項2に記載の渦電流探傷方法は、請求項に記載の渦電流探傷方法において、前記参照信号は、励磁電流と位相が同じ参照信号と励磁電流と位相が90度異なる参照信号からなり、前記2個の励磁素子の一方及び他方の励磁中に2つの参照信号により同期検波し、参照信号毎に2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号の和信号又は差信号を発生し、2つの和信号又は差信号を用いてキズを評価することを特徴とする。
請求項3に記載の渦電流探傷方法は、2個の励磁素子と1個の検出素子からなり、該励磁素子は導電板からなり、2個の導電板は、探傷面対向面が探傷面に平行で、探傷面対向面の励磁電流の方向は交差し走査方向中心線に対して±θとなるように配置してある、若しくは該励磁素子はコイルからなり、2個のコイルは、コイル軸が探傷面に平行で、コイル軸は交差し走査方向中心線に対して±θとなるように配置してある渦電流探傷プローブ、又は該渦電流探傷プローブにおいて、前記θは、45度である渦電流探傷プローブを用いて、
2個の励磁素子を周波数及び位相が同じ励磁電流により交互に励磁し、一方及び他方の励磁素子の励磁中に検出素子に発生した検出電圧を励磁電流と同じ周波数の参照信号により同期検波し、2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号の和信号又は差信号を発生し、その和信号又は差信号を用いてキズを評価すると同時にその2つの渦電流探傷信号を用いてキズを評価することを特徴とする。
請求項4に記載の渦電流探傷方法は、請求項に記載の渦電流探傷方法において、前記参照信号は、励磁電流と位相が同じ参照信号と励磁電流と位相が90度異なる参照信号からなり、前記2個の励磁素子の一方及び他方の励磁中に2つの参照信号により同期検波し、参照信号毎に2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号を用いてキズを評価することを特徴とする。
請求項5に記載の渦電流探傷装置は、2個の励磁素子と1個の検出素子からなり、該励磁素子は導電板からなり、2個の導電板は、探傷面対向面が探傷面に平行で、探傷面対向面の励磁電流の方向は交差し走査方向中心線に対して±θとなるように配置してある、若しくは該励磁素子はコイルからなり、2個のコイルは、コイル軸が探傷面に平行で、コイル軸は交差し走査方向中心線に対して±θとなるように配置してある渦電流探傷プローブ、又は該渦電流探傷プローブにおいて、前記θは、45度である渦電流探傷プローブ、
2個の励磁素子に周波数及び位相が同じ励磁電流を交互に供給する励磁電源、励磁電流と同じ周波数の参照信号を供給する参照信号源、一方及び他方の励磁素子の励磁中に、検出素子に発生した検出電圧を参照信号により同期検波する同期検波器、同期検波器の出力から2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号の和信号又は差信号を発生する手段、その和信号又は差信号を用いてキズを評価する手段を備えていることを特徴とする。
請求項6に記載の渦電流探傷装置は、2個の励磁素子と1個の検出素子からなり、該励磁素子は導電板からなり、2個の導電板は、探傷面対向面が探傷面に平行で、探傷面対向面の励磁電流の方向は交差し走査方向中心線に対して±θとなるように配置してある、若しくは該励磁素子はコイルからなり、2個のコイルは、コイル軸が探傷面に平行で、コイル軸は交差し走査方向中心線に対して±θとなるように配置してある渦電流探傷プローブ、又は該渦電流探傷プローブにおいて、前記θは、45度である渦電流探傷プローブ、
2個の励磁素子に周波数及び位相が同じ励磁電流を交互に供給する励磁電源、励磁電流と同じ周波数の参照信号を供給する参照信号源、一方及び他方の励磁素子の励磁中に、検出素子に発生した検出電圧を参照信号により同期検波する同期検波器、同期検波器の出力から2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号の和信号又は差信号を発生する手段、その和信号又は差信号を用いてキズを評価すると同時にその2つの渦電流探傷信号を用いてキズを評価する手段を備えていることを特徴とする。
In order to achieve the object of the present invention, the eddy current flaw detection method according to claim 1 includes two excitation elements and one detection element, and the excitation element includes a conductive plate and includes two conductive elements. The plate is arranged so that the flaw detection surface facing surface is parallel to the flaw detection surface, and the excitation current directions of the flaw detection surface facing surface intersect and are ± θ with respect to the center line in the scanning direction. The two coils have an eddy current flaw detection probe arranged such that the coil axis is parallel to the flaw detection surface, the coil axes cross each other and ± θ with respect to the center line in the scanning direction, or the eddy current flaw detection In the probe, the θ is 45 degrees using an eddy current flaw detection probe,
Two excitation elements are excited alternately by the excitation current having the same frequency and phase, and the detection voltage generated in the detection element during excitation of one and the other excitation element is synchronously detected by a reference signal having the same frequency as the excitation current, Two eddy current flaw detection signals are taken out, a sum signal or a difference signal of the two eddy current flaw detection signals is generated, and scratches are evaluated using the sum signal or difference signal.
The eddy current flaw detection method according to claim 2 is the eddy current flaw detection method according to claim 1 , wherein the reference signal includes a reference signal having the same phase as the excitation current and a reference signal having a phase different from the excitation current by 90 degrees. During the excitation of one or the other of the two excitation elements, synchronous detection is performed by two reference signals, two eddy current flaw detection signals are extracted for each reference signal, and the sum signal or difference signal of the two eddy current flaw detection signals is extracted. And scratches are evaluated using two sum signals or difference signals.
The eddy current flaw detection method according to claim 3 is composed of two excitation elements and one detection element, the excitation element is composed of a conductive plate, and the two conductive plates have a flaw detection surface opposite to the flaw detection surface. Parallel, the direction of the excitation current on the surface facing the flaw detection surface intersects and is arranged to be ± θ with respect to the scanning direction center line, or the excitation element is composed of a coil, and the two coils are coil axes. Is parallel to the flaw detection surface, the coil axis intersects, and the eddy current flaw detection probe is arranged so as to be ± θ with respect to the scanning direction center line, or in the eddy current flaw detection probe, the θ is 45 degrees Using an eddy current flaw detection probe,
Two excitation elements are excited alternately by the excitation current having the same frequency and phase, and the detection voltage generated in the detection element during excitation of one and the other excitation element is synchronously detected by a reference signal having the same frequency as the excitation current, Two eddy current flaw detection signals are taken out, a sum signal or a difference signal of the two eddy current flaw detection signals is generated, and scratches are evaluated using the sum signal or difference signal, and at the same time, the two eddy current flaw detection signals are used. It is characterized by evaluating scratches.
The eddy current flaw detection method according to claim 4 is the eddy current flaw detection method according to claim 3 , wherein the reference signal includes a reference signal having the same phase as the excitation current, and a reference signal having a phase different from the excitation current by 90 degrees. During the excitation of one and the other of the two exciting elements, synchronous detection is performed with two reference signals, two eddy current flaw detection signals are extracted for each reference signal, and scratches are evaluated using the two eddy current flaw detection signals. It is characterized by doing.
The eddy current flaw detection apparatus according to claim 5 includes two excitation elements and one detection element, the excitation elements include a conductive plate, and the two conductive plates have a flaw detection surface opposite to the flaw detection surface. Parallel, the direction of the excitation current on the surface facing the flaw detection surface intersects and is arranged to be ± θ with respect to the scanning direction center line, or the excitation element is composed of a coil, and the two coils are coil axes. Is parallel to the flaw detection surface, the coil axis intersects, and the eddy current flaw detection probe is arranged so as to be ± θ with respect to the center line in the scanning direction. Eddy current testing probe,
An excitation power supply that alternately supplies excitation currents having the same frequency and phase to the two excitation elements, a reference signal source that supplies a reference signal having the same frequency as the excitation current, and a detection element during excitation of one and the other excitation elements A synchronous detector for synchronously detecting the generated detection voltage with a reference signal, means for taking out two eddy current flaw detection signals from the output of the synchronous detector and generating a sum signal or a difference signal of the two eddy current flaw detection signals, and the sum Means for evaluating a scratch using a signal or a difference signal is provided.
The eddy current flaw detection device according to claim 6 includes two excitation elements and one detection element, the excitation elements include a conductive plate, and the two conductive plates have a flaw detection surface facing surface on the flaw detection surface. Parallel, the direction of the excitation current on the surface facing the flaw detection surface intersects and is arranged to be ± θ with respect to the scanning direction center line, or the excitation element is composed of a coil, and the two coils are coil axes. Is parallel to the flaw detection surface, the coil axis intersects, and the eddy current flaw detection probe is arranged so as to be ± θ with respect to the scanning direction center line, or in the eddy current flaw detection probe, the θ is 45 degrees Eddy current testing probe,
An excitation power supply that alternately supplies excitation currents having the same frequency and phase to the two excitation elements, a reference signal source that supplies a reference signal having the same frequency as the excitation current, and a detection element during excitation of one and the other excitation elements A synchronous detector for synchronously detecting the generated detection voltage with a reference signal, means for taking out two eddy current flaw detection signals from the output of the synchronous detector and generating a sum signal or a difference signal of the two eddy current flaw detection signals, and the sum Means is provided for evaluating scratches using the signal or difference signal and simultaneously evaluating scratches using the two eddy current flaw detection signals.

本願発明の渦電流探傷プローブを用いると、2個の励磁素子により発生する渦電流は、走査方向に並んで発生する渦電流は同相になり、走査方向と直交する方向に並んで発生する渦電流は、逆相になる。また励磁素子と励磁電源の接続を変えるとその位相関係は、逆になる。したがって前者の場合には、渦電流探傷信号の和を取ることにより、また後者の場合には、渦電流探傷信号の差を取ることにより、長手キズに起因する渦電流探傷信号を増大し、直交キズに起因する渦電流探傷信号を抑制できるから、長手キズに起因する渦電流探傷信号のS/Nを改善することができる。   When the eddy current flaw detection probe according to the present invention is used, the eddy current generated by the two exciting elements is in-phase with the eddy current generated side by side in the scanning direction, and is generated side by side in the direction orthogonal to the scanning direction. Is out of phase. When the connection between the excitation element and the excitation power source is changed, the phase relationship is reversed. Therefore, in the former case, the sum of the eddy current flaw detection signals is taken, and in the latter case, the difference between the eddy current flaw detection signals is taken to increase the eddy current flaw detection signal due to the longitudinal flaw, Since the eddy current flaw detection signal caused by the scratch can be suppressed, the S / N of the eddy current flaw detection signal caused by the longitudinal flaw can be improved.

図1は、本願発明の実施例に係る渦電流探傷プローブの励磁素子と検出素子の配置、及び励磁素子により発生する渦電流を示す。FIG. 1 shows the arrangement of excitation elements and detection elements of an eddy current flaw detection probe according to an embodiment of the present invention, and eddy currents generated by the excitation elements. 図2は、本願発明の実施例に係る渦電流探傷プローブの構造を示す。FIG. 2 shows the structure of an eddy current flaw detection probe according to an embodiment of the present invention. 図3は、本願発明の実施例に係る渦電流探傷装置の構成を示す。FIG. 3 shows the configuration of an eddy current flaw detector according to an embodiment of the present invention. 図4は、本願発明の実施例に係る渦電流探傷装置の構成を示す。FIG. 4 shows the configuration of an eddy current flaw detector according to an embodiment of the present invention. 図5は、図4の渦電流探傷装置の変形例を示す。FIG. 5 shows a modification of the eddy current flaw detector shown in FIG. 図6は、長手キズに対する渦電流探傷プローブの走査時間(走査位置)と渦電流探傷信号のピーク値の試験結果を示す。FIG. 6 shows the test results of the scanning time (scanning position) of the eddy current flaw detection probe and the peak value of the eddy current flaw detection signal with respect to the longitudinal flaw. 図7は、直交キズに対する渦電流探傷プローブの走査時間(走査位置)と渦電流探傷信号のピーク値の試験結果を示す。FIG. 7 shows the test results of the scanning time (scanning position) of the eddy current flaw detection probe and the peak value of the eddy current flaw detection signal with respect to the orthogonal flaw. 図8は、従来の渦電流探傷プローブの構成を示す。FIG. 8 shows the configuration of a conventional eddy current flaw detection probe.

本実施形態の渦電流探傷プローブは、2個の励磁素子と1個の検出素子からなり、励磁素子が導電板の場合、2個の導電板は、励磁電流の方向が交差しその交差部の中心を通り渦電流探傷プローブの走査方向に平行な線(走査方向中心線)において左右対称になるように配置してある。また2個の導電板は、交互に励磁するように構成してある。2個の導電板を励磁すると、渦電流探傷プローブの走査方向に並んで発生する渦電流は、同相になり、渦電流探傷プローブの走査方向と直交する方向に並んで発生する渦電流は、逆相になる。その特性を利用して、渦電流探傷プローブの走査方向に進展するキズ(長手キズ)に起因する渦電流探傷信号は加わり合い、渦電流探傷プローブの走査方向と直交する方向に進展するキズ(直交キズ)に起因する渦電流探傷信号は打ち消し合うように構成してある。その結果長手キズに起因する渦電流探傷信号は増大し、直交キズに起因する渦電流探傷信号は抑制されるとともに、後述するように走査方向と直交する方向に進展する電磁気特性の変化に起因する雑音も抑制されて、長手キズの渦電流探傷信号のS/Nを改善することができる。   The eddy current flaw detection probe according to this embodiment includes two excitation elements and one detection element. When the excitation element is a conductive plate, the two conductive plates intersect each other in the direction of the excitation current. They are arranged so as to be symmetrical on a line passing through the center and parallel to the scanning direction of the eddy current flaw detection probe (scanning direction center line). Further, the two conductive plates are configured to be excited alternately. When two conductive plates are excited, the eddy currents generated in the scanning direction of the eddy current testing probe are in phase, and the eddy currents generated in the direction perpendicular to the scanning direction of the eddy current testing probe are reversed. Become a phase. Using this characteristic, eddy current flaw detection signals due to flaws (longitudinal flaws) that develop in the scanning direction of the eddy current flaw detection probe are added together, and flaws that propagate in the direction perpendicular to the scanning direction of the eddy current flaw detection probe (orthogonal) Eddy current flaw detection signals due to scratches are configured to cancel each other. As a result, the eddy current flaw detection signal due to the longitudinal flaw increases, the eddy current flaw detection signal due to the orthogonal flaw is suppressed, and it is caused by a change in electromagnetic characteristics that develops in a direction perpendicular to the scanning direction as will be described later. Noise is also suppressed, and the S / N of the eddy current flaw detection signal having a longitudinal flaw can be improved.

次に渦電流探傷の際に発生する雑音についてみると、被検査体の探傷面の電磁気的特性は、キズ以外に探傷面の微細な凹凸等形状の変化や材質の変化等によっても変わるから、渦電流探傷信号には、キズ以外の電磁気的特性の変化に起因して発生する信号、即ち雑音が混入している。雑音は、渦電流探傷信号と同様に、渦電流探傷プローブの走査方向に平行な方向へ進展する電磁気特性の変化に起因する雑音よりも、その走査方向と直交する方向へ進展する電磁気特性の変化に起因する雑音の方が大きくなる。しかし前記のように直交キズに起因する渦電流探傷信号を抑制すると、渦電流探傷プローブの走査方向と直交する方向の雑音も抑制される。したがって本実施形態の渦電流探傷装置は、直交キズに起因する渦電流探傷信号を抑制するとともに、走査方向と直交する方向へ進展する電磁気特性の変化に起因する雑音も抑制できるから、長手キズに起因する渦電流探傷信号のS/Nを大幅に改善できる。   Next, looking at noise generated during eddy current flaw detection, the electromagnetic characteristics of the flaw detection surface of the object to be inspected also change due to changes in the shape of the flaw detection surface such as fine irregularities and changes in the material, etc. The eddy current flaw detection signal is mixed with a signal generated due to a change in electromagnetic characteristics other than scratches, that is, noise. As with eddy current flaw detection signals, noise changes in the electromagnetic characteristics that propagate in the direction perpendicular to the scanning direction rather than noise caused by changes in the electromagnetic characteristics that propagate in the direction parallel to the scanning direction of the eddy current flaw detection probe. The noise caused by is larger. However, if the eddy current flaw detection signal due to the orthogonal flaw is suppressed as described above, the noise in the direction orthogonal to the scanning direction of the eddy current flaw detection probe is also suppressed. Therefore, the eddy current flaw detection apparatus according to the present embodiment can suppress the eddy current flaw detection signal caused by the orthogonal flaw and also suppress the noise caused by the change in electromagnetic characteristics that propagate in the direction orthogonal to the scanning direction. The S / N of the resulting eddy current flaw detection signal can be greatly improved.

図1〜図7により本願発明の実施例について説明する。
なお各図に共通の部分は、同じ符号を使用している。
An embodiment of the present invention will be described with reference to FIGS.
In addition, the same code | symbol is used for the part common to each figure.

図1、図2により本願発明の実施例に係る渦電流探傷プローブを説明する。
図1は、渦電流探傷プローブの励磁素子と検出素子の配置例、及び励磁素子により発生(誘導)する渦電流を示す。
渦電流探傷プローブPは、励磁素子として2個の導電板EP1,EP2と検出素子として1個の検出コイルDCを備えている。
An eddy current flaw detection probe according to an embodiment of the present invention will be described with reference to FIGS.
FIG. 1 shows an arrangement example of excitation elements and detection elements of an eddy current flaw detection probe, and eddy currents generated (induced) by the excitation elements.
The eddy current flaw detection probe P includes two conductive plates EP1 and EP2 as excitation elements and one detection coil DC as a detection element.

まず図1(a)について説明する。
導電板EP1,EP2は、被検査体の探傷面に対向する面(探傷面対向面と呼ぶ)を被検査体の探傷面に平行に配置し、探傷面対向面を流れる励磁電流ie1,ie2の方向(励磁電流の方向)が交差するように配置してあり、その交差部の中心PCを通り、渦電流探傷プローブPの走査方向SCと平行な線(走査方向中心線と呼ぶ)に対して±θとなるように配置してある。即ち導電板EP1,EP2は、励磁電流の方向が走査方向中心線において左右対称となるように配置してある。θは、0度より大きく90度より小さい範囲に設定するが、45度前後に設定すると、0〜90度の方向(全方向)に進展するキズを高感度で検出できる。
なお励磁素子として2個の励磁コイルを用いる場合には、両励磁コイルのコイル軸又はコイル面が走査方向SCに対して±θとなるように配置する。また検出素子は、巨大磁気抵抗効果を用いたGMR素子を用いることもできる。
First, FIG. 1A will be described.
The conductive plates EP1 and EP2 are arranged such that a surface (referred to as a flaw detection surface facing surface) facing the flaw detection surface of the inspection object is arranged in parallel with the flaw detection surface of the inspection object, and excitation currents ie1 and ee2 flowing through the flaw detection surface facing surface. Are arranged so that the directions (excitation current directions) intersect each other, pass through the center PC of the intersection, and are parallel to the scanning direction SC of the eddy current flaw probe P (referred to as the scanning direction center line). They are arranged to be ± θ. That is, the conductive plates EP1 and EP2 are arranged such that the direction of the excitation current is symmetrical with respect to the center line in the scanning direction. θ is set in a range larger than 0 degree and smaller than 90 degrees. However, when set to around 45 degrees, a scratch that develops in a direction of 0 to 90 degrees (all directions) can be detected with high sensitivity.
When two exciting coils are used as the exciting elements, they are arranged so that the coil axes or the coil surfaces of both exciting coils are ± θ with respect to the scanning direction SC. The detection element can also be a GMR element using a giant magnetoresistance effect.

導電板EP1,EP2は、スイッチSW11,SW12を介して交互に励磁電源RVへ接続して、交互に励磁する。即ち励磁電源RVは、スイッチSW11,SW12が接点a1側へ切替わっているとき、導電板EP1に接続され、接点a2側へ切替わっているとき導電板EP2に接続される。スイッチSW11,SW12は、時分割で交互に切替えて探傷するが、時分割でなく、スイッチSW11,SW12を接点a1側へ切替えたまま、渦電流探傷プローブPを走査して第1回目の探傷を行い、次にスイッチSW11,SW12を接点a2側へ切替えて第1回目の探傷と同じ場所を再度走査して第2回目の探傷を行うこともできる。その場合、スイッチSW11,SW12の切替え制御は簡単になるが、同じ場所を2回走査することになるから、探傷時間が長くなる。   The conductive plates EP1 and EP2 are alternately connected to the excitation power source RV via the switches SW11 and SW12 and are excited alternately. That is, the excitation power source RV is connected to the conductive plate EP1 when the switches SW11 and SW12 are switched to the contact a1 side, and is connected to the conductive plate EP2 when the switches SW11 and SW12 are switched to the contact a2 side. The switches SW11 and SW12 are alternately switched in time division to detect flaws. However, instead of time division, the switches SW11 and SW12 are switched to the contact a1 side to scan the eddy current flaw detection probe P to perform the first flaw detection. It is also possible to perform the second flaw detection by switching the switches SW11 and SW12 to the contact a2 side and then scanning again at the same place as the first flaw detection. In this case, the switching control of the switches SW11 and SW12 becomes simple, but the same place is scanned twice, so that the flaw detection time becomes long.

次に図1(b1)〜(b3)により、導電板EP1,EP2の励磁電流によって被検査体の探傷面に発生する渦電流ついて説明する。
図1(b1)において、導電板EP1に励磁電流ie1を流すと励磁電流ie1の両側(励磁電流の方向の両側)に位相が180度異なる(逆相の)渦電流iu11,iu12が発生する。また図1(b2)において、導電板EP2に励磁電流ie2を流すと励磁電流ie2の両側に位相が180度異なる渦電流iu21,iu22が発生する。
Next, eddy currents generated on the flaw detection surface of the object to be inspected by the excitation currents of the conductive plates EP1 and EP2 will be described with reference to FIGS. 1 (b1) to (b3).
In FIG. 1B1, when an exciting current ie1 is passed through the conductive plate EP1, eddy currents iu11 and iu12 that are 180 degrees out of phase (in opposite phases) are generated on both sides of the exciting current ie1 (both sides in the direction of the exciting current). Further, in FIG. 1 (b2), when an exciting current ie2 is passed through the conductive plate EP2, eddy currents iu21 and iu22 that are 180 degrees out of phase are generated on both sides of the exciting current ie2.

図1(b1)と図1(b2)を重ねると、図1(b3)のようになる。即ち図1(a)の渦電流探傷プローブPが発生する渦電流は、図1(b3)のようになる。図1(b3)の場合、渦電流iu11,iu21は同相になり、渦電流iu22,iu12も同相になる。一方渦電流iu11,iu22は逆相になり、渦電流iu21,iu12も逆相になる。したがって走査方向SCと平行な方向へ進展するキズ(長手キズ)に起因して発生する渦電流探傷信号、例えば渦電流iu11,iu21によって発生する渦電流探傷信号は、加わり合って増大する。渦電流iu22,iu12についても同様である。一方走査方向SCに直交する方向へ進展するキズ(直交キズ)に起因して発生する渦電流探傷信号、例えば渦電流iu11,iu22によって発生する渦電流探傷信号は、打ち消し合って抑制される。渦電流iu21,iu12についても同様である。   When FIG. 1 (b1) and FIG. 1 (b2) are overlapped, FIG. 1 (b3) is obtained. That is, the eddy current generated by the eddy current testing probe P in FIG. 1A is as shown in FIG. 1B3. In the case of FIG. 1 (b3), the eddy currents iu11 and iu21 are in phase, and the eddy currents iu22 and iu12 are also in phase. On the other hand, the eddy currents iu11 and iu22 are out of phase, and the eddy currents iu21 and iu12 are out of phase. Therefore, an eddy current flaw detection signal generated due to a flaw (longitudinal flaw) that develops in a direction parallel to the scanning direction SC, for example, an eddy current flaw detection signal generated by the eddy currents iu11 and iu21, is added and increased. The same applies to the eddy currents iu22 and iu12. On the other hand, eddy current flaw detection signals generated due to flaws extending in a direction orthogonal to the scanning direction SC (orthogonal flaws), for example, eddy current flaw detection signals generated by the eddy currents iu11 and iu22 are canceled and suppressed. The same applies to the eddy currents iu21 and iu12.

以上のように2個の導電板EP1,EP2によって発生する渦電流の内、走査方向SCと平行な方向に並んで発生する渦電流(例えば渦電流iu11,iu21)により発生する渦電流探傷信号は増大し、走査方向SCと直交する方向に並んで発生する渦電流(例えば渦電流iu11,iu22)により発生する渦電流探傷信号は抑制される。したがって長手キズに起因する渦電流探傷信号の検出感度は、高くなり、直交キズに起因する渦電流探傷信号の検出感度は、低くなる。
図1(b3)において、励磁電流ie1,ie2の方向が逆になると、渦電流iu11〜iu22の方向も逆になるから、長手キズに起因する渦電流探傷信号の検出感度と、直交キズに起因する渦電流探傷信号の検出感度の関係は、図1(b3)の場合と同じである。しかし励磁電流ie1,ie2のいずれか一方が逆になると、走査方向SCと平行な方向に並んで発生する渦電流により発生する渦電流探傷信号は抑制され、走査方向SCと直交する方向に並んで発生する渦電流により発生する渦電流探傷信号は増大する。
As described above, of the eddy currents generated by the two conductive plates EP1 and EP2, the eddy current flaw detection signal generated by the eddy currents generated side by side in the direction parallel to the scanning direction SC (for example, eddy currents iu11 and iu21) is The eddy current flaw detection signal generated by eddy currents (for example, eddy currents iu11 and iu22) that increase and are aligned in the direction orthogonal to the scanning direction SC is suppressed. Therefore, the detection sensitivity of the eddy current flaw detection signal due to the longitudinal flaw is high, and the detection sensitivity of the eddy current flaw detection signal due to the orthogonal flaw is low.
In FIG. 1 (b3), when the directions of the excitation currents ie1 and ee2 are reversed, the directions of the eddy currents iu11 to iu22 are also reversed. Therefore, the detection sensitivity of the eddy current flaw detection signal due to the longitudinal flaw and the orthogonal flaw are caused. The relationship of the detection sensitivity of the eddy current flaw detection signal is the same as in the case of FIG. However, when one of the excitation currents ie1 and ee2 is reversed, the eddy current flaw detection signals generated by the eddy currents generated side by side in the direction parallel to the scanning direction SC are suppressed, and are aligned in the direction orthogonal to the scanning direction SC. The eddy current flaw detection signal generated by the generated eddy current increases.

図2は、渦電流探傷プローブの構造例を示す。
図2(a1),(a2),(a3)は、励磁素子が導電板からなる渦電流探傷プローブを、図2(b1),(b2)は、励磁素子が励磁コイルからなる渦電流探傷プローブを示す。
図2(a1),(a2),(a3)について、図2(a1)は、渦電流探傷プローブの平面図、図2(a2)は、図2(a1)のA部分の矢印方向の断面図、図2(a3)は、導電板の斜視図である。
導電板EP1、導電板EP2は、四角形の導電板からなり、両導電板の探傷面対向面は、互いに平行で、かつ探傷面と平行に配置してある。また検出コイルDCは、コイル面が導電板EP1,EP2の探傷面対向面と平行に、両探傷面対向面の略中央に配置してある。そして導電板EP1,EP2には、導電板EP1の探傷面対向面を流れる励磁電流ie1と導電板EP2の探傷面対向面を流れる励磁電流ie2が交差する方向へ流れるように、即ち両導電板の励磁電流方向が交差するように励磁電源RVを接続してある。なお導電板EP1,EP2の間は、絶縁材等により絶縁してある。
FIG. 2 shows an example of the structure of an eddy current flaw detection probe.
2 (a1), (a2), and (a3) are eddy current flaw probes in which the excitation element is a conductive plate, and FIGS. 2 (b1) and (b2) are eddy current flaw probes in which the excitation element is an excitation coil. Indicates.
2 (a1), (a2), and (a3), FIG. 2 (a1) is a plan view of the eddy current flaw detection probe, and FIG. 2 (a2) is a cross-section in the direction of the arrow of portion A in FIG. 2 (a1). FIG. 2 and FIG. 2 (a3) are perspective views of the conductive plate.
The conductive plates EP1 and EP2 are made of rectangular conductive plates, and the flaw detection surface facing surfaces of both conductive plates are parallel to each other and arranged in parallel to the flaw detection surface. Further, the detection coil DC has a coil surface arranged in parallel with the flaw detection surface facing surfaces of the conductive plates EP1 and EP2 and substantially at the center of both flaw detection surface facing surfaces. In the conductive plates EP1 and EP2, the excitation current ie1 flowing through the surface facing the flaw detection surface of the conductive plate EP1 and the excitation current ie2 flowing through the surface facing the flaw detection surface of the conductive plate EP2 flow in a crossing direction. The excitation power supply RV is connected so that the excitation current directions intersect. The conductive plates EP1 and EP2 are insulated by an insulating material or the like.

導電板EP1,EP2は、長さL、幅W、厚さtの四角形の板状体である。また導電板EP1,EP2は、長さLで所定の厚さ(幅W方向の厚さ)の導体片(例えば銅の導体片)を複数個幅W方向へ積層し貼り合せて、板状体に形成してある。導電板EP1,EP2は、導体片を貼り合せない一枚板であってもよい。
図2(a1),(a2)の渦電流探傷プローブは、導電板EP1,EP2の探傷面対向面を被検査体Tの探傷面と平行に配置するから、薄く形成することができ、構造が簡単になる。
The conductive plates EP1 and EP2 are rectangular plate-like bodies having a length L, a width W, and a thickness t. The conductive plates EP1 and EP2 are formed by laminating and laminating a plurality of conductor pieces (for example, copper conductor pieces) having a length L and a predetermined thickness (thickness in the width W direction) in the width W direction. Is formed. The conductive plates EP1 and EP2 may be a single plate that does not bond the conductor pieces.
The eddy current flaw detection probe shown in FIGS. 2 (a1) and (a2) can be formed thin because the flaw detection surface facing surfaces of the conductive plates EP1 and EP2 are arranged in parallel with the flaw detection surface of the object T to be inspected. It will be easy.

図2(b1),(b2)について、図2(b1)は、渦電流探傷プローブの平面図、図2(b2)は、図2(b1)のB部分の矢印方向の断面図である。
四角形の励磁コイルEC1,EC2は、コイル軸が直交する(コイル面も直交する)ように配置し、四角形の検出コイルDCは、コイル軸が励磁コイルEC1,EC2のコイル軸と直交し、励磁コイルEC1,EC2の交差部と略対向する位置に配置してある。渦電流探傷プローブPは、励磁コイルEC1,EC2のコイル軸が探傷面に平行になり、検出コイルDCのコイル軸が被検査体Tの探傷面に垂直になるように設置して探傷する。
なお励磁コイルEC1,EC2、検出コイルDCは、四角形に限らず、楕円形、円形等であってもよい。
2 (b1) and 2 (b2), FIG. 2 (b1) is a plan view of the eddy current flaw detection probe, and FIG. 2 (b2) is a cross-sectional view in the direction of the arrow of portion B in FIG. 2 (b1).
The square excitation coils EC1 and EC2 are arranged so that the coil axes are orthogonal (coil surfaces are also orthogonal), and the square detection coil DC is orthogonal to the coil axes of the excitation coils EC1 and EC2, and the excitation coil It is arranged at a position substantially opposite to the intersection of EC1 and EC2. The eddy current flaw detection probe P is installed and flawed so that the coil axes of the excitation coils EC1 and EC2 are parallel to the flaw detection surface and the coil axis of the detection coil DC is perpendicular to the flaw detection surface of the inspection object T.
The excitation coils EC1 and EC2 and the detection coil DC are not limited to a rectangle, but may be an ellipse or a circle.

図3(a)は、図1の渦電流探傷プローブを用いた渦電流探傷装置のブロック図、図3(b)は、渦電流探傷プローブの走査方向を示す図である。
導電板EP1,EP2には、スイッチSW1を介して励磁電源EVが接続され、所定周波数の励磁電流が時分割で交互に供給される。導電板EP1,EP2のいずれかが励磁されているとき、検出コイルDCの検出電圧は、同期検波器DE1に供給される。また同期検波器DE1には、参照信号源RVから励磁電流と同じ周波数の参照信号RS1が供給される。
FIG. 3A is a block diagram of an eddy current flaw detection apparatus using the eddy current flaw detection probe of FIG. 1, and FIG. 3B is a diagram showing a scanning direction of the eddy current flaw detection probe.
An excitation power supply EV is connected to the conductive plates EP1 and EP2 via a switch SW1, and an excitation current having a predetermined frequency is alternately supplied in a time division manner. When one of the conductive plates EP1 and EP2 is excited, the detection voltage of the detection coil DC is supplied to the synchronous detector DE1. Further, the reference signal RS1 having the same frequency as the exciting current is supplied from the reference signal source RV to the synchronous detector DE1.

スイッチSW1が接点a1側へ切り替っているとき、即ち導電板EP1が励磁されているとき、スイッチSW4は接点d1側へ切り替る。そのとき同期検波器DE1の検波出力は、ローパスフィルタLPF1、ハイパスフィルタHPF1へ供給され、渦電流探傷信号X1が取り出される。スイッチSW1が接点a2側へ切り替り、スイッチSW4が接点d2側へ切り替ると、同期検波器DE1の検波出力は、ローパスフィルタLPF2、ハイパスフィルタHPF2へ供給され、渦電流探傷信号X2が取り出される。渦電流探傷信号X1,X2は、夫々メモリME11,ME21に保存する。加算器AD1は、渦電流探傷信号X1,X2の和信号ZXを出力する。和信号ZXは、キズの評価に用いる。なお渦電流探傷信号X1,X2は、夫々和を取らずにキズの評価に用いることができる。   When the switch SW1 is switched to the contact a1 side, that is, when the conductive plate EP1 is excited, the switch SW4 is switched to the contact d1 side. At that time, the detection output of the synchronous detector DE1 is supplied to the low-pass filter LPF1 and the high-pass filter HPF1, and the eddy current flaw detection signal X1 is taken out. When the switch SW1 is switched to the contact a2 side and the switch SW4 is switched to the contact d2 side, the detection output of the synchronous detector DE1 is supplied to the low-pass filter LPF2 and the high-pass filter HPF2, and the eddy current flaw detection signal X2 is taken out. Eddy current flaw detection signals X1 and X2 are stored in the memories ME11 and ME21, respectively. The adder AD1 outputs a sum signal ZX of the eddy current flaw detection signals X1 and X2. The sum signal ZX is used for scratch evaluation. The eddy current flaw detection signals X1 and X2 can be used for scratch evaluation without taking the sum.

次に図3(b)のように渦電流探傷プローブPをSC方向へ走査するとき、その走査方向SCと平行な方向に進展する長手キズF1、走査方向SCと直交する方向に進展する直交キズF2と渦電流探傷信号X1,X2の関係について説明する。
前述した図1の導電板EP1,EP2により発生する渦電流の説明から分かるように、渦電流探傷プローブPが長手キズF1を通過するとき、導電板EP1の励磁中に得られた渦電流探傷信号X1と、導電板EP2の励磁中に得られた渦電流探傷信号X2は、位相が同じになる(ただし渦電流探傷プローブPの交差部の中心PCが長手キズF1を通過するときは、逆相となる)。一方渦電流探傷プローブPが直交キズF2を通過するとき、導電板EP1の励磁中に得られた渦電流探傷信号X1と、導電板EP2の励磁中に得られた渦電流探傷信号X2は、位相が逆になる。したがって加算器AD1により、渦電流探傷信号X1と渦電流探傷信号X2の和を取ると、長手キズF1に起因する渦電流探傷信号X1と渦電流探傷信号X2は加わり合って増大するから加算信号ZYは増大するが、直交キズF2に起因する渦電流探傷信号X1と渦電流探傷信号X2は打ち消し合って抑制されるから加算信号ZYは小さくなる。
なお前記θが45度の場合、渦電流探傷プローブPの走査方向に平行する方向と直交する方向の間の方向に進展するキズは、その走査方向と0度〜±45度の方向のキズに起因する渦電流探傷信号X1,X2は、同相になり、±45度〜±90度の方向のキズに起因する渦電流探傷信号X1,X2は、逆相になる。
Next, when the eddy current flaw detection probe P is scanned in the SC direction as shown in FIG. 3B, a longitudinal flaw F1 that develops in a direction parallel to the scanning direction SC and an orthogonal flaw that develops in a direction orthogonal to the scanning direction SC. The relationship between F2 and eddy current flaw detection signals X1 and X2 will be described.
As can be seen from the description of the eddy currents generated by the conductive plates EP1 and EP2 in FIG. 1, the eddy current flaw detection signal obtained during excitation of the conductive plate EP1 when the eddy current flaw probe P passes through the longitudinal flaw F1. X1 and the eddy current flaw detection signal X2 obtained during excitation of the conductive plate EP2 have the same phase (however, when the center PC at the intersection of the eddy current flaw probe P passes through the longitudinal flaw F1, the phase is reversed. Become). On the other hand, when the eddy current flaw probe P passes through the orthogonal flaw F2, the eddy current flaw detection signal X1 obtained during excitation of the conductive plate EP1 and the eddy current flaw detection signal X2 obtained during excitation of the conductive plate EP2 are in phase. Is reversed. Therefore, when the sum of the eddy current flaw detection signal X1 and the eddy current flaw detection signal X2 is obtained by the adder AD1, the eddy current flaw detection signal X1 and the eddy current flaw detection signal X2 due to the longitudinal flaw F1 are added and increased, so that the addition signal ZY However, since the eddy current flaw detection signal X1 and the eddy current flaw detection signal X2 caused by the orthogonal flaw F2 cancel each other and are suppressed, the addition signal ZY becomes small.
When the angle θ is 45 degrees, a scratch that develops in a direction between the direction parallel to the scanning direction of the eddy current flaw detection probe P is a scratch in the direction of 0 to ± 45 degrees with the scanning direction. The resulting eddy current flaw detection signals X1 and X2 are in phase, and the eddy current flaw detection signals X1 and X2 due to flaws in the direction of ± 45 degrees to ± 90 degrees are in reverse phase.

図3の渦電流探傷装置において、長手キズに起因する2つの渦電流探傷信号及び直交キズに起因する2つの渦電流探傷信号の位相関係は、前述したように、励磁電源EVと導電板EP1、EP2の接続の仕方により変わるが、その位相関係を確認する必要のあるときは、例えば、被検査体に人工的にキズを形成し、そのキズの長手方向と直交する方向へ渦電流探傷プローブPを走査し、そのとき得られた渦電流探傷信号X1,X2の位相から確認できる。その場合渦電流探傷プローブPは、そのキズの長手方向と平行する方向へ走査してもよい。
なお図3の渦電流探傷装置は、1個の渦電流探傷プローブPを用いているが、複数個の渦電流探傷プローブPを千鳥状に配置すれば、広い範囲のキズを漏れなく探傷できる。
In the eddy current flaw detector shown in FIG. 3, the phase relationship between the two eddy current flaw detection signals caused by longitudinal flaws and the two eddy current flaw detection signals caused by orthogonal flaws is, as described above, the excitation power supply EV and the conductive plate EP1, Although it depends on how EP2 is connected, when it is necessary to confirm the phase relationship, for example, an artificial flaw is formed in the object to be inspected, and an eddy current flaw probe P is formed in a direction perpendicular to the longitudinal direction of the flaw. Can be confirmed from the phase of the eddy current flaw detection signals X1 and X2 obtained at that time. In that case, the eddy current flaw detection probe P may scan in a direction parallel to the longitudinal direction of the scratch.
The eddy current flaw detection apparatus shown in FIG. 3 uses one eddy current flaw detection probe P. However, if a plurality of eddy current flaw detection probes P are arranged in a staggered manner, a wide range of flaws can be flawlessly detected.

次に図4の渦電流探傷装置について説明する。
図4は、図1の渦電流探傷プローブを用いた渦電流探傷装置のブロック図で、位相が励磁電流と同じ参照信号と位相が励磁電流と90度異なる参照信号を用いている。基本的構成は、図3の渦電流探傷装置と同じである。
導電板EP1,EP2には、励磁電源EVから所定周波数の励磁電流がスイッチSW1を介して交互に供給される。検出コイルDCの検出電圧は、スイッチSW1が接点a1側へ切り替り、スイッチSW2が接点b1側へ切り替っているとき、同期検波器DE11,DE12に供給され、スイッチSW1が接点a2側へ切り替り、スイッチSW2が接点b2側へ切り替っているとき、同期検波器DE21,DE22に供給される。また同期検波器DE11〜DE22には、参照信号源RVから励磁電源EVの周波数(励磁電流の周波数)と同じ周波数の第1参照信号RS1、第2参照信号RS2が供給される。参照信号RS1は、励磁電流と同じ位相であるが、参照信号RS2は、移相回路PSにより90度移相してある。即ち同期検波器DE11〜DE22には、周波数及び位相が励磁電流と同じ第1参照信号RS1(位相0度)と、周波数が励磁電流と同じで位相が90度異なる(位相90度の)第2参照信号RS2が供給される。スイッチSW1,SW2は、時分割で切替えることができる。
Next, the eddy current flaw detector shown in FIG. 4 will be described.
FIG. 4 is a block diagram of an eddy current flaw detection apparatus using the eddy current flaw detection probe of FIG. 1, and uses a reference signal having the same phase as the excitation current and a reference signal having a phase different from the excitation current by 90 degrees. The basic configuration is the same as that of the eddy current flaw detector shown in FIG.
An excitation current having a predetermined frequency is alternately supplied from the excitation power supply EV to the conductive plates EP1 and EP2 via the switch SW1. The detection voltage of the detection coil DC is supplied to the synchronous detectors DE11 and DE12 when the switch SW1 is switched to the contact a1 side and the switch SW2 is switched to the contact b1 side, and the switch SW1 is switched to the contact a2 side. When the switch SW2 is switched to the contact b2 side, it is supplied to the synchronous detectors DE21 and DE22. The synchronous detectors DE11 to DE22 are supplied with the first reference signal RS1 and the second reference signal RS2 having the same frequency as the frequency of the excitation power supply EV (excitation current frequency) from the reference signal source RV. The reference signal RS1 has the same phase as the excitation current, but the reference signal RS2 is shifted by 90 degrees by the phase shift circuit PS. That is, the synchronous detectors DE11 to DE22 include a first reference signal RS1 (phase 0 degree) having the same frequency and phase as the excitation current, and a second signal having the same frequency as the excitation current and a phase different by 90 degrees (with a phase of 90 degrees). A reference signal RS2 is supplied. The switches SW1 and SW2 can be switched in a time division manner.

同期検波器DE11〜DE22は、検出コイルDCの検出電圧を参照信号RS1又は参照信号RS2により同期検波する。その検波出力は、ローパスフィルタLPF11〜LPF22、ハイパスフィルタHPF11〜HPF22に供給され、渦電流探傷信号X1,X2,Y1,Y2が取り出される。渦電流探傷信号X1,X2,Y1,Y2は、夫々メモリME11〜ME22に保存する。   The synchronous detectors DE11 to DE22 synchronously detect the detection voltage of the detection coil DC using the reference signal RS1 or the reference signal RS2. The detection output is supplied to low-pass filters LPF11 to LPF22 and high-pass filters HPF11 to HPF22, and eddy current flaw detection signals X1, X2, Y1, and Y2 are taken out. Eddy current flaw detection signals X1, X2, Y1, and Y2 are stored in memories ME11 to ME22, respectively.

渦電流探傷信号X1,Y1は、導電板EP1に励磁電流が流れているとき、即ち導電板EP1の励磁中に検出された検出電圧(第1検出電圧)を、夫々参照信号RS1又は参照信号RS2により同期検波して得られた渦電流探傷信号であり、渦電流探傷信号X2,Y2は、導電板EP2に励磁電流が供給されているとき、即ち導電板EP2の励磁中に検出された検出電圧(第2検出電圧)を、夫々参照信号RS1又は参照信号RS2により同期検波して得られた渦電流探傷信号である。また渦電流探傷信号X1,X2は、導電板EP1又は導電板EP2の励磁中に検出された検出電圧(第1検出電圧又は第2検出電圧)を、参照信号RS1により同期検波して得られた渦電流探傷信号であり、渦電流探傷信号Y1,Y2は、導電板EP1又は導電板EP2の励磁中に検出された検出電圧(第1検出電圧又は第2検出電圧)を、参照信号RS2により同期検波して得られた渦電流探傷信号である。
加算器AD1は、メモリME12,ME22の渦電流探傷信号Y1,Y2の和を取って和信号ZYを、また加算器AD2は、メモリME11,ME21の渦電流探傷信号X1,X2の和を取って和信号ZXを出力する。
The eddy current flaw detection signals X1 and Y1 are the detection voltage (first detection voltage) detected when the excitation current flows through the conductive plate EP1, that is, during the excitation of the conductive plate EP1, respectively, as the reference signal RS1 or the reference signal RS2. The eddy current flaw detection signals X2 and Y2 obtained by synchronous detection by the eddy current flaw detection signals X2 and Y2 are detected voltages detected when the excitation current is supplied to the conductive plate EP2, that is, during the excitation of the conductive plate EP2. (Second detection voltage) is an eddy current flaw detection signal obtained by synchronous detection with the reference signal RS1 or the reference signal RS2, respectively. Further, the eddy current flaw detection signals X1 and X2 are obtained by synchronously detecting the detection voltage (first detection voltage or second detection voltage) detected during excitation of the conductive plate EP1 or the conductive plate EP2 by the reference signal RS1. This is an eddy current flaw detection signal, and the eddy current flaw detection signals Y1 and Y2 synchronize the detection voltage (first detection voltage or second detection voltage) detected during excitation of the conductive plate EP1 or the conductive plate EP2 with the reference signal RS2. This is an eddy current flaw detection signal obtained by detection.
The adder AD1 calculates the sum of the eddy current flaw detection signals Y1 and Y2 of the memories ME12 and ME22, and the adder AD2 calculates the sum of the eddy current flaw detection signals X1 and X2 of the memories ME11 and ME21. The sum signal ZX is output.

和信号ZXは、長手キズの場合、渦電流探傷信号X1,X2が加わり合って増大し、直交キズの場合、渦電流探傷信号X1,X2が打消し合って抑制される。和信号ZYも同様に、長手キズの場合、渦電流探傷信号Y1,Y2が加わり合って増大し、直交キズの場合、渦電流探傷信号Y1,Y2が打消し合って抑制される。
キズの評価は、加算器AD1の和信号ZYと加算器AD2の和信号ZXを演算器(図示せず)で演算して行う。またキズの評価は、渦電流探傷信号X1,X2,Y1,Y2を演算器で演算して行うこともできる。
以上は、加算器AD1により渦電流探傷信号Y1,Y2の和を取り、加算器AD2により渦電流探傷信号X1,X2の和を取る例であるが、差を取ることもできる。その場合、長手キズに起因する差信号ZY、差信号ZXは抑制され、直交キズに起因する差信号ZY、差信号ZXは増大する。
In the case of a longitudinal flaw, the sum signal ZX increases with the addition of eddy current flaw detection signals X1 and X2, and in the case of an orthogonal flaw, the eddy current flaw detection signals X1 and X2 cancel each other and are suppressed. Similarly, in the case of a longitudinal flaw, the sum signal ZY increases with the addition of eddy current flaw detection signals Y1 and Y2, and in the case of a quadrature flaw, the eddy current flaw detection signals Y1 and Y2 cancel each other and are suppressed.
Scratch evaluation is performed by calculating the sum signal ZY of the adder AD1 and the sum signal ZX of the adder AD2 with an arithmetic unit (not shown). Scratch evaluation can also be performed by calculating eddy current flaw detection signals X1, X2, Y1, and Y2 with a calculator.
The above is an example in which the adder AD1 takes the sum of the eddy current flaw detection signals Y1 and Y2, and the adder AD2 takes the sum of the eddy current flaw detection signals X1 and X2, but a difference can also be taken. In this case, the difference signal ZY and the difference signal ZX caused by the longitudinal flaw are suppressed, and the difference signal ZY and the difference signal ZX caused by the orthogonal flaw are increased.

なお図4において、スイッチSW1を接点a1側へ切り替えた状態で第1回目の探傷を行って渦電流探傷信号X1,Y1を取得し、次に接点a2側へ切り替えた状態で第2回目の探傷を行って渦電流探傷信号X2,Y2を取得することもできる。その場合、スイッチSW2は省略して検出コイルDCを同期検波器DE11,DE12に直接接続し、ハイパスフィルタHPF11,HPF12の夫々の出力にスイッチSW1と同様のスイッチを接続して、ハイパスフィルタHPF11,HPF12の出力から渦電流探傷信号X1,Y1を取り出してメモリ等(例えばメモリME11,ME12)に保存し、その後ハイパスフィルタHPF11,HPF12の出力から渦電流探傷信号X2,Y2を取り出してメモリ等(例えばメモリME21,ME22)に保存するように構成することもできる。その場合には、同じ箇所を複数回走査する必要があるが同期検波器DE21〜ハイパスフィルタHPF21、同期検波器DE22〜ハイパスフィルタHPF22を省略できる。   In FIG. 4, the first flaw detection is performed with the switch SW1 switched to the contact a1 side to obtain the eddy current flaw detection signals X1 and Y1, and then the second flaw detection is performed with the switch SW1 switched to the contact a2 side. To obtain eddy current flaw detection signals X2 and Y2. In that case, the switch SW2 is omitted, and the detection coil DC is directly connected to the synchronous detectors DE11 and DE12. The same switches as the switch SW1 are connected to the outputs of the highpass filters HPF11 and HPF12, respectively, and the highpass filters HPF11 and HPF12 are connected. Eddy current flaw detection signals X1 and Y1 are taken out from the output of the output and stored in a memory or the like (for example, the memories ME11 and ME12), and then the eddy current flaw detection signals X2 and Y2 are taken out from the outputs of the high pass filters HPF11 and HPF12. It can also be configured to store in ME21, ME22). In this case, it is necessary to scan the same portion a plurality of times, but the synchronous detector DE21 to high-pass filter HPF21 and the synchronous detector DE22 to high-pass filter HPF22 can be omitted.

図5は、図4の渦電流探傷装置の変形例で、図4の4個の同期検波器を1個にし、1個の同期検波器DE12を時分割で使用する例である。
スイッチSW1を接点a1側へ、スイッチSW51,SW52を接点e1,f1側へ切替える。その間にスイッチSW3、SW4を接点c1、d1へ切替えて渦電流探傷信号X1を取り出し、メモリME11に保存する。次にスイッチSW3,SW4を接点c2,d2側へ切替えて渦電流探傷信号Y1を取り出し、メモリME12に保存する。
次にスイッチSW1を接点a2側へ、スイッチSW51,SW52を接点e2,f2側へ切替える。その間に、スイッチSW3,SW4を接点c1,d1側へ切替えて渦電流探傷信号X2を取り出し、メモリME22に保存する。次にスイッチSW3,SW4を接点c2,d2側へ切替えて渦電流探傷信号Y2を取り出し、メモリME21に保存する。
図2の渦電流探傷装置は、同期検波器が1個でよいから、構成が簡単になる。
FIG. 5 is a modification of the eddy current flaw detector shown in FIG. 4, and is an example in which the four synchronous detectors in FIG. 4 are combined into one and the single synchronous detector DE12 is used in a time division manner.
The switch SW1 is switched to the contact a1 side, and the switches SW51 and SW52 are switched to the contacts e1 and f1 side. In the meantime, the switches SW3 and SW4 are switched to the contacts c1 and d1, and the eddy current flaw detection signal X1 is taken out and stored in the memory ME11. Next, the switches SW3 and SW4 are switched to the contact points c2 and d2 to take out the eddy current flaw detection signal Y1 and store it in the memory ME12.
Next, the switch SW1 is switched to the contact a2 side, and the switches SW51 and SW52 are switched to the contacts e2 and f2 side. In the meantime, the switches SW3 and SW4 are switched to the contacts c1 and d1 side to take out the eddy current flaw detection signal X2 and store it in the memory ME22. Next, the switches SW3 and SW4 are switched to the contact points c2 and d2 to take out the eddy current flaw detection signal Y2 and store it in the memory ME21.
The eddy current flaw detector shown in FIG. 2 has a simple configuration because only one synchronous detector is required.

ここで図6、図7により、図4の渦電流探傷装置の探傷試験の結果について説明する。
探傷試験は、渦電流探傷プローブPをSC方向へ走査して渦電流探傷信号Y1,Y2を取得した。図6、図7は、取得した渦電流探傷信号Y1,Y2の波形を示す。
試験に用いた渦電流探傷プローブPの導電板EP1、EP2のサイズは、図2(a3)において、厚さt=1mm、長さL=幅w=12mm、導体片の厚さ=0.2mmである。また被試験体は、長さ20mmのSS400の鋼板に深さ0.5mmの放電加工キズを形成したものを用いた。励磁電流と参照信号の周波数は、36kHzで、参照信号は、位相が励磁電流と90度異なる参照信号を用いた。また渦電流探傷プローブPは、リフトオフ1mmで走査した。
Here, the result of the flaw detection test of the eddy current flaw detector shown in FIG. 4 will be described with reference to FIGS.
In the flaw detection test, eddy current flaw detection signals Y1 and Y2 were obtained by scanning the eddy current flaw detection probe P in the SC direction. 6 and 7 show waveforms of the acquired eddy current flaw detection signals Y1 and Y2.
The sizes of the conductive plates EP1 and EP2 of the eddy current testing probe P used in the test are as follows: thickness t = 1 mm, length L = width w = 12 mm, conductor piece thickness = 0.2 mm in FIG. It is. Further, the test object used was an SS400 steel plate having a length of 20 mm formed with an electric discharge machining scratch having a depth of 0.5 mm. The frequency of the excitation current and the reference signal was 36 kHz, and the reference signal used was a reference signal whose phase was 90 degrees different from the excitation current. The eddy current flaw detection probe P was scanned with a lift-off of 1 mm.

図6、図7において、縦軸は、渦電流探傷信号Y1,Y2(Yと表示)の振幅の最大値(V)を、横軸は、渦電流探傷プローブPの走査時間(s)を表している。
図6は、長手キズに起因する渦電流探傷信号Y1,Y2の波形で、図6(a)は、導電板EP1の励磁中に得られた渦電流探傷信号Y1、図6(b)は、導電板EP2の励磁中に得られた渦電流探傷信号Y2、図6(c)は、渦電流探傷信号Y1,Y2の和信号の波形である。
図6(a),(b)の波形は、位相が同じであるから、渦電流探傷信号Y1,Y2の和信号は、両渦電流探傷信号が加わり合って図6(c)のように増大した波形になる。
6 and 7, the vertical axis represents the maximum amplitude (V) of the eddy current flaw detection signals Y1 and Y2 (indicated as Y), and the horizontal axis represents the scanning time (s) of the eddy current flaw detection probe P. ing.
FIG. 6 shows waveforms of eddy current flaw detection signals Y1 and Y2 caused by longitudinal flaws. FIG. 6A shows eddy current flaw detection signals Y1 obtained during excitation of the conductive plate EP1, and FIG. The eddy current flaw detection signal Y2 obtained during excitation of the conductive plate EP2 and FIG. 6C are waveforms of the sum signal of the eddy current flaw detection signals Y1 and Y2.
Since the waveforms in FIGS. 6A and 6B have the same phase, the sum signal of the eddy current flaw detection signals Y1 and Y2 increases as shown in FIG. It becomes the waveform.

図7は、直交キズに起因する渦電流探傷信号Y1,Y2の波形で、図7(a)は、導電板EP1の励磁中に得られた渦電流探傷信号Y1、図7(b)は、導電板EP2の励磁中に得られた渦電流探傷信号Y2、図7(c)は、渦電流探傷信号Y1,Y2の和信号の波形である。
図7(a),(b)の波形は、位相が逆になるから、渦電流探傷信号Y1,Y2の和信号は、両渦電流探傷信号が打消し合って図7(c)のように抑制された波形になる。
以上図6、図7から明らかなように、図4の渦電流探傷装置は、長手キズに起因する渦電流探傷信号を増大し、直交キズに起因する渦電流探傷信号を抑制するから、従来十分には検出できなかった長手キズを確実に検出することができる。
FIG. 7 shows waveforms of eddy current flaw detection signals Y1 and Y2 caused by orthogonal flaws. FIG. 7A shows eddy current flaw detection signals Y1 obtained during excitation of the conductive plate EP1, and FIG. The eddy current flaw detection signal Y2 obtained during excitation of the conductive plate EP2 and FIG. 7C are waveforms of the sum signal of the eddy current flaw detection signals Y1 and Y2.
Since the waveforms of FIGS. 7A and 7B are reversed in phase, the sum signal of the eddy current flaw detection signals Y1 and Y2 cancels both eddy current flaw detection signals as shown in FIG. 7C. It becomes a suppressed waveform.
As is apparent from FIGS. 6 and 7, the eddy current flaw detection apparatus of FIG. 4 increases the eddy current flaw detection signal due to the longitudinal flaw and suppresses the eddy current flaw detection signal due to the orthogonal flaw. It is possible to reliably detect longitudinal flaws that could not be detected.

AD1,AD2 加算器
DE1,DE11,DE12,DE21,DE22 同期検波器
DC 検出コイル
EC1,EC2 励磁コイル
EP1,EP2 導電板
EV 励磁電源
LPF1,LPF2,LPF11,LPF12,LPF21,LPF22 ローパスフィルタ
HPF1,HPF2,HPF11,HPF12,HPF21,HPF22 ハイパスフィルタ
ME11,ME12,ME21,ME22 メモリ
P 渦電流探傷プローブ
PS 移相器(90度移相)
RS1,RS2 参照信号
RV 参照信号源
T 被検査体
AD1, AD2 adder DE1, DE11, DE12, DE21, DE22 synchronous detector DC detection coil EC1, EC2 excitation coil EP1, EP2 conductive plate EV excitation power source LPF1, LPF2, LPF11, LPF12, LPF21, LPF22 low-pass filter HPF1, HPF2, HPF11, HPF12, HPF21, HPF22 High pass filters ME11, ME12, ME21, ME22 Memory P Eddy current testing probe PS Phase shifter (90 degree phase shift)
RS1, RS2 Reference signal RV Reference signal source T Inspected object

Claims (6)

2個の励磁素子と1個の検出素子からなり、該励磁素子は導電板からなり、2個の導電板は、探傷面対向面が探傷面に平行で、探傷面対向面の励磁電流の方向は交差し走査方向中心線に対して±θとなるように配置してある、若しくは該励磁素子はコイルからなり、2個のコイルは、コイル軸が探傷面に平行で、コイル軸は交差し走査方向中心線に対して±θとなるように配置してある渦電流探傷プローブ、又は該渦電流探傷プローブにおいて、前記θは、45度である渦電流探傷プローブを用いて、
2個の励磁素子を周波数及び位相が同じ励磁電流により交互に励磁し、一方及び他方の励磁素子の励磁中に検出素子に発生した検出電圧を励磁電流と同じ周波数の参照信号により同期検波し、2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号の和信号又は差信号を発生し、その和信号又は差信号を用いてキズを評価することを特徴とする渦電流探傷方法。
Consisting of two excitation elements and one detection element, the excitation elements are composed of conductive plates, and the two conductive plates are parallel to the flaw detection surface and the direction of the excitation current on the flaw detection surface opposite surface Are arranged so as to intersect and ± θ with respect to the center line in the scanning direction, or the excitation element is a coil, and the two coils have a coil axis parallel to the flaw detection surface and the coil axes intersect. In the eddy current flaw detection probe arranged so as to be ± θ with respect to the center line in the scanning direction, or in the eddy current flaw detection probe, the θ is 45 degrees using an eddy current flaw detection probe,
Two excitation elements are excited alternately by the excitation current having the same frequency and phase, and the detection voltage generated in the detection element during excitation of one and the other excitation element is synchronously detected by a reference signal having the same frequency as the excitation current, An eddy current flaw detection method comprising: extracting two eddy current flaw detection signals, generating a sum signal or a difference signal of the two eddy current flaw detection signals, and evaluating a scratch using the sum signal or difference signal.
請求項に記載の渦電流探傷方法において、前記参照信号は、励磁電流と位相が同じ参照信号と励磁電流と位相が90度異なる参照信号からなり、前記2個の励磁素子の一方及び他方の励磁中に2つの参照信号により同期検波し、参照信号毎に2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号の和信号又は差信号を発生し、2つの和信号又は差信号を用いてキズを評価することを特徴とする渦電流探傷方法。 2. The eddy current flaw detection method according to claim 1 , wherein the reference signal includes a reference signal having the same phase as the excitation current and a reference signal having a phase different from the excitation current by 90 degrees, and one of the two excitation elements and the other of the two excitation elements. Synchronous detection is performed with two reference signals during excitation, two eddy current flaw detection signals are extracted for each reference signal, a sum signal or a difference signal of the two eddy current flaw detection signals is generated, and two sum signals or difference signals are obtained. An eddy current flaw detection method characterized by using it to evaluate scratches. 2個の励磁素子と1個の検出素子からなり、該励磁素子は導電板からなり、2個の導電板は、探傷面対向面が探傷面に平行で、探傷面対向面の励磁電流の方向は交差し走査方向中心線に対して±θとなるように配置してある、若しくは該励磁素子はコイルからなり、2個のコイルは、コイル軸が探傷面に平行で、コイル軸は交差し走査方向中心線に対して±θとなるように配置してある渦電流探傷プローブ、又は該渦電流探傷プローブにおいて、前記θは、45度である渦電流探傷プローブを用いて、
2個の励磁素子を周波数及び位相が同じ励磁電流により交互に励磁し、一方及び他方の励磁素子の励磁中に検出素子に発生した検出電圧を励磁電流と同じ周波数の参照信号により同期検波し、2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号の和信号又は差信号を発生し、その和信号又は差信号を用いてキズを評価すると同時にその2つの渦電流探傷信号を用いてキズを評価することを特徴とする渦電流探傷方法。
Consisting of two excitation elements and one detection element, the excitation elements are composed of conductive plates, and the two conductive plates are parallel to the flaw detection surface and the direction of the excitation current on the flaw detection surface opposite surface Are arranged so as to intersect and ± θ with respect to the center line in the scanning direction, or the excitation element is a coil, and the two coils have a coil axis parallel to the flaw detection surface and the coil axes intersect. In the eddy current flaw detection probe arranged so as to be ± θ with respect to the center line in the scanning direction, or in the eddy current flaw detection probe, the θ is 45 degrees using an eddy current flaw detection probe,
Two excitation elements are excited alternately by the excitation current having the same frequency and phase, and the detection voltage generated in the detection element during excitation of one and the other excitation element is synchronously detected by a reference signal having the same frequency as the excitation current, Two eddy current flaw detection signals are taken out, a sum signal or a difference signal of the two eddy current flaw detection signals is generated, and scratches are evaluated using the sum signal or difference signal, and at the same time, the two eddy current flaw detection signals are used. An eddy current flaw detection method characterized by evaluating scratches.
請求項に記載の渦電流探傷方法において、前記参照信号は、励磁電流と位相が同じ参照信号と励磁電流と位相が90度異なる参照信号からなり、前記2個の励磁素子の一方及び他方の励磁中に2つの参照信号により同期検波し、参照信号毎に2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号を用いてキズを評価することを特徴とする渦電流探傷方法。 4. The eddy current flaw detection method according to claim 3 , wherein the reference signal includes a reference signal having the same phase as the excitation current and a reference signal having a phase different from the excitation current by 90 degrees, and one of the two excitation elements and the other of the two excitation elements. An eddy current flaw detection method comprising performing synchronous detection with two reference signals during excitation, extracting two eddy current flaw detection signals for each reference signal, and evaluating scratches using the two eddy current flaw detection signals. 2個の励磁素子と1個の検出素子からなり、該励磁素子は導電板からなり、2個の導電板は、探傷面対向面が探傷面に平行で、探傷面対向面の励磁電流の方向は交差し走査方向中心線に対して±θとなるように配置してある、若しくは該励磁素子はコイルからなり、2個のコイルは、コイル軸が探傷面に平行で、コイル軸は交差し走査方向中心線に対して±θとなるように配置してある渦電流探傷プローブ、又は該渦電流探傷プローブにおいて、前記θは、45度である渦電流探傷プローブ、
2個の励磁素子に周波数及び位相が同じ励磁電流を交互に供給する励磁電源、励磁電流と同じ周波数の参照信号を供給する参照信号源、一方及び他方の励磁素子の励磁中に、検出素子に発生した検出電圧を参照信号により同期検波する同期検波器、同期検波器の出力から2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号の和信号又は差信号を発生する手段、その和信号又は差信号を用いてキズを評価する手段を備えていることを特徴とする渦電流探傷装置。
Consisting of two excitation elements and one detection element, the excitation elements are composed of conductive plates, and the two conductive plates are parallel to the flaw detection surface and the direction of the excitation current on the flaw detection surface opposite surface Are arranged so as to intersect and ± θ with respect to the center line in the scanning direction, or the excitation element is a coil, and the two coils have a coil axis parallel to the flaw detection surface and the coil axes intersect. In the eddy current flaw detection probe arranged so as to be ± θ with respect to the center line in the scanning direction, or in the eddy current flaw detection probe, the θ is an eddy current flaw detection probe of 45 degrees ,
An excitation power supply that alternately supplies excitation currents having the same frequency and phase to the two excitation elements, a reference signal source that supplies a reference signal having the same frequency as the excitation current, and a detection element during excitation of one and the other excitation elements A synchronous detector for synchronously detecting the generated detection voltage with a reference signal, means for taking out two eddy current flaw detection signals from the output of the synchronous detector and generating a sum signal or a difference signal of the two eddy current flaw detection signals, and the sum An eddy current flaw detector comprising a means for evaluating a scratch using a signal or a difference signal.
2個の励磁素子と1個の検出素子からなり、該励磁素子は導電板からなり、2個の導電板は、探傷面対向面が探傷面に平行で、探傷面対向面の励磁電流の方向は交差し走査方向中心線に対して±θとなるように配置してある、若しくは該励磁素子はコイルからなり、2個のコイルは、コイル軸が探傷面に平行で、コイル軸は交差し走査方向中心線に対して±θとなるように配置してある渦電流探傷プローブ、又は該渦電流探傷プローブにおいて、前記θは、45度である渦電流探傷プローブ、
2個の励磁素子に周波数及び位相が同じ励磁電流を交互に供給する励磁電源、励磁電流と同じ周波数の参照信号を供給する参照信号源、一方及び他方の励磁素子の励磁中に、検出素子に発生した検出電圧を参照信号により同期検波する同期検波器、同期検波器の出力から2つの渦電流探傷信号を取り出してその2つの渦電流探傷信号の和信号又は差信号を発生する手段、その和信号又は差信号を用いてキズを評価すると同時にその2つの渦電流探傷信号を用いてキズを評価する手段を備えていることを特徴とする渦電流探傷装置。
Consisting of two excitation elements and one detection element, the excitation elements are composed of conductive plates, and the two conductive plates are parallel to the flaw detection surface and the direction of the excitation current on the flaw detection surface opposite surface Are arranged so as to intersect and ± θ with respect to the center line in the scanning direction, or the excitation element is a coil, and the two coils have a coil axis parallel to the flaw detection surface and the coil axes intersect. In the eddy current flaw detection probe arranged so as to be ± θ with respect to the center line in the scanning direction, or in the eddy current flaw detection probe, the θ is an eddy current flaw detection probe of 45 degrees ,
An excitation power supply that alternately supplies excitation currents having the same frequency and phase to the two excitation elements, a reference signal source that supplies a reference signal having the same frequency as the excitation current, and a detection element during excitation of one and the other excitation elements A synchronous detector for synchronously detecting the generated detection voltage with a reference signal, means for taking out two eddy current flaw detection signals from the output of the synchronous detector and generating a sum signal or a difference signal of the two eddy current flaw detection signals, and the sum An eddy current flaw detector comprising a means for evaluating flaws using a signal or a difference signal and simultaneously evaluating flaws using the two eddy current flaw detection signals.
JP2010274130A 2010-12-08 2010-12-08 Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method Expired - Fee Related JP5750208B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010274130A JP5750208B2 (en) 2010-12-08 2010-12-08 Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010274130A JP5750208B2 (en) 2010-12-08 2010-12-08 Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method

Publications (2)

Publication Number Publication Date
JP2012122859A JP2012122859A (en) 2012-06-28
JP5750208B2 true JP5750208B2 (en) 2015-07-15

Family

ID=46504441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010274130A Expired - Fee Related JP5750208B2 (en) 2010-12-08 2010-12-08 Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method

Country Status (1)

Country Link
JP (1) JP5750208B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101757589B1 (en) * 2016-04-20 2017-07-12 한국수력원자력 주식회사 An Eddy Current Probe with Multi-Array Coil and Switching Devic
CN107024534A (en) * 2017-04-11 2017-08-08 北京工业大学 The omni-directional vortex self-adapting scanning system of carbon fibre reinforced composite uniformity defect
CN108872368A (en) * 2018-07-24 2018-11-23 爱德森(厦门)电子有限公司 A kind of non-directional orthogonal eddy current testing device of modified
JP6853441B2 (en) * 2019-04-24 2021-03-31 健二 飯島 Magnetic sensor element, magnetic detector, motor with magnetic sensor element and device with magnetic detector
CN113466332B (en) * 2021-07-02 2023-02-28 西安交通大学 Flexible array eddy current probe and method for detecting cracks of blade gas film hole edge

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE368871B (en) * 1971-07-15 1974-07-22 Asea Ab
JP2575425Y2 (en) * 1991-11-11 1998-06-25 三菱重工業株式会社 Eddy current flaw detector
JP4651801B2 (en) * 2000-10-26 2011-03-16 学校法人日本大学 Welding line, probe for detecting position / direction of welding butt, detecting device, and detecting method
JP5153274B2 (en) * 2007-09-18 2013-02-27 北斗電子工業株式会社 Inspection equipment for inspection objects
JP2009287981A (en) * 2008-05-27 2009-12-10 Marktec Corp Eddy-current flaw detector and eddy-current flaw detecting method

Also Published As

Publication number Publication date
JP2012122859A (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP5750208B2 (en) Eddy current flaw detection probe, eddy current flaw detection apparatus, and eddy current flaw detection method
JP5922633B2 (en) Eddy current flaw detection probe and eddy current flaw detection method
JP6681069B2 (en) Magnetic nondestructive inspection method and magnetic nondestructive inspection apparatus
KR20100137770A (en) Magnetostrictive transducer, apparatus of monitoring structural health having the same and method of monitoring structural health
JP5851783B2 (en) Eddy current testing probe
CN103837606A (en) Electromagnetic ultrasonic transducer in multiphase structure and ultrasonic high-efficient excitation method
JPWO2003091657A1 (en) Magnetic probe
JP6871185B2 (en) Eddy current flaw detector and eddy current flaw detector method
JP6551885B2 (en) Nondestructive inspection device and nondestructive inspection method
JP2014066654A (en) Electromagnetic acoustic transducer and electromagnetic acoustic flaw detector
JP2015194420A (en) Flaw detection method, flaw detection system, and flaw detection probe used for the same
JP2011069623A (en) Eddy current flaw detection method
JP5140214B2 (en) Rotating eddy current flaw detection probe
JP2004205212A (en) Eddy current flaw detecting probe for magnetic material and eddy current flaw detector
JP6062158B2 (en) Eddy current flaw detection apparatus and method
Angani et al. Non-destructive testing of inclusions in cold-rolled strip steels using hall and giant magnetoresistance sensor arrays
JP3979606B2 (en) Eddy current flaw detection probe and eddy current flaw detection device using the probe
JP3942165B2 (en) Eddy current testing probe
JP2011033510A (en) Eddy current flaw detection probe
JP4774690B2 (en) Magnetic sensor
JP2006220630A (en) Probe for eddy current flaw detection
JPH09274018A (en) Method and apparatus for detecting flaw of magnetic metal element
JP2003149209A (en) Probe for eddy current flaw detection and eddy current flaw detecting apparatus using the same
JP2011027603A (en) Eddy current flaw detection probe
JP2014044151A (en) Defect detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131008

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150512

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150517

R150 Certificate of patent or registration of utility model

Ref document number: 5750208

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees