JP2015194420A - Flaw detection method, flaw detection system, and flaw detection probe used for the same - Google Patents

Flaw detection method, flaw detection system, and flaw detection probe used for the same Download PDF

Info

Publication number
JP2015194420A
JP2015194420A JP2014072787A JP2014072787A JP2015194420A JP 2015194420 A JP2015194420 A JP 2015194420A JP 2014072787 A JP2014072787 A JP 2014072787A JP 2014072787 A JP2014072787 A JP 2014072787A JP 2015194420 A JP2015194420 A JP 2015194420A
Authority
JP
Japan
Prior art keywords
detection
coil
flaw
flaw detection
inspection object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014072787A
Other languages
Japanese (ja)
Other versions
JP6209119B2 (en
JP2015194420A5 (en
Inventor
亮 西水
Akira Nishimizu
亮 西水
将史 成重
Masashi Narushige
将史 成重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi GE Nuclear Energy Ltd
Original Assignee
Hitachi GE Nuclear Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi GE Nuclear Energy Ltd filed Critical Hitachi GE Nuclear Energy Ltd
Priority to JP2014072787A priority Critical patent/JP6209119B2/en
Publication of JP2015194420A publication Critical patent/JP2015194420A/en
Publication of JP2015194420A5 publication Critical patent/JP2015194420A5/ja
Application granted granted Critical
Publication of JP6209119B2 publication Critical patent/JP6209119B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a flaw detection method, a flaw detection system, and a flaw detection probe capable of differentiating a flaw from other factors and evaluating the presence of the flaw and its direction when an inspection object is a magnetized object.SOLUTION: A flaw detection method uses a flaw detection probe 1 that includes a magnetizing device 2, an exciting coil 8, and a detection coils 9a, 9b. The flaw detection method runs a first flaw detection mode that applies a magnetic field only with the magnetizing device 2, a second flaw detection mode that applies a magnetic field only with the exciting coil 8, and a third flaw detection mode that applies a magnetic field with the magnetizing device 2 and the exciting coil 8. Then, the flaw detection method determines the presence of a detection signal of the detection coil 9a in the first flaw detection mode, whether a phase of a detection signal of the detection coil 9a is equal to that of the detection coil 9b in the second flaw detection mode, and whether an amplitude of a detection signal of the detection coil 9a in the third flaw detection mode is equal to or greater than that of the detection coil 9a in the second flaw detection mode. On the basis of results from these determinations, the law detection method evaluates the presence of a flaw and its direction.

Description

本発明は、磁性体を検査対象とする探傷方法、探傷システム、及び探傷プローブに関する。   The present invention relates to a flaw detection method, a flaw detection system, and a flaw detection probe that use a magnetic material as an inspection target.

電磁非破壊探傷法は、検査対象物に磁場を印加して、その応答を磁場検出素子等で捉えるものであり、金属材の検査に利用されている。   In the electromagnetic nondestructive flaw detection method, a magnetic field is applied to an inspection object, and the response is captured by a magnetic field detection element or the like, and is used for inspection of metal materials.

検査対象物が磁性体である場合は、一般的に、電磁非破壊探傷法の一つである漏洩磁束探傷法を利用する(例えば特許文献1参照)。漏洩磁束探傷法では、検査対象物に磁場を印加し、検査対象物のきずによって空間に漏洩した磁束を磁場検出素子で検出する。詳しく説明すると、電磁石又は永久磁石からなる磁化器を用いて、検査対象物に磁場を印加する。直流磁場であれば、磁場検出素子としてホール素子等を用い、交流磁場であれば、磁場検出素子としてコイル又はホール素子等を用いる。検査対象物にきずが存在する場合は、磁場の流れが妨げられ、その一部が空間に漏洩して、磁場検出素子で検出される。そして、健全部で得られる磁場検出素子の出力と比較することにより、きずの存在を確認することが可能である。   When the object to be inspected is a magnetic material, a leakage magnetic flux flaw detection method that is one of electromagnetic nondestructive flaw detection methods is generally used (see, for example, Patent Document 1). In the leakage magnetic flux flaw detection method, a magnetic field is applied to an inspection object, and a magnetic flux that has leaked into the space due to a flaw on the inspection object is detected by a magnetic field detection element. More specifically, a magnetic field is applied to the inspection object using a magnetizer made of an electromagnet or a permanent magnet. In the case of a DC magnetic field, a Hall element or the like is used as a magnetic field detection element. In the case of an AC magnetic field, a coil or a Hall element or the like is used as a magnetic field detection element. When a flaw exists in the inspection object, the flow of the magnetic field is hindered, a part of which leaks into the space and is detected by the magnetic field detection element. The presence of a flaw can be confirmed by comparing with the output of the magnetic field detection element obtained at the healthy part.

また、他の電磁非破壊探傷法として渦電流探傷法がある(例えば特許文献2参照)。相互誘導形標準比較方式の渦電流探傷法では、励磁コイルを用いて検査対象物に交流磁場を印加して、検査対象物に渦電流を発生させ、その渦電流の変化を検出コイルの検出信号として得る。そして、健全部で得られる検出コイルの検出信号と比較することにより、きずの存在を確認することが可能である。   As another electromagnetic nondestructive flaw detection method, there is an eddy current flaw detection method (see, for example, Patent Document 2). In the mutual induction type standard comparison eddy current flaw detection method, an alternating magnetic field is applied to an inspection object using an exciting coil to generate an eddy current in the inspection object, and the change in the eddy current is detected by a detection coil signal. Get as. The presence of a flaw can be confirmed by comparing with the detection signal of the detection coil obtained at the sound part.

検出信号の表示形態の一つとして、検出信号の振幅及び位相を表すリサージュ波形が知られている。詳細には、検出信号を基準信号の位相と同じ成分(X成分)Vxと90度異なる成分(Y成分)Vyに分解した後、それらX成分VxとY成分Vyを縦軸及び横軸にプロットすることで、検出信号の振幅|V|及び位相θを表現する(下記の式(1)及び式(2)参照)。
|V|=(Vx+Vy1/2 ・・・(1)
θ=tan−1(Vy/Vx) ・・・(2)
As one of the display forms of the detection signal, a Lissajous waveform representing the amplitude and phase of the detection signal is known. Specifically, after the detection signal is decomposed into a component (Y component) Vy that is 90 degrees different from the same component (X component) Vx as the phase of the reference signal, the X component Vx and the Y component Vy are plotted on the vertical axis and the horizontal axis. By doing so, the amplitude | V | and the phase θ of the detection signal are expressed (see the following formulas (1) and (2)).
| V | = (Vx 2 + Vy 2 ) 1/2 (1)
θ = tan −1 (Vy / Vx) (2)

励磁コイル及び検出コイルと検査対象物との間の距離の変化(リフトオフ)が生じても、検出信号が発生する。そこで、特許文献2では、励磁コイルに対して一方側に配置された検出コイルの検出信号の位相と、励磁コイルに対して他方側に配置された検出コイルの検出信号の位相の位相が、同相であれば(言い換えれば、位相の差分が閾値未満であれば)、検出信号の要因がリフトオフであると評価している。   Even if a change (lift-off) of the distance between the excitation coil and the detection coil and the inspection object occurs, a detection signal is generated. Therefore, in Patent Document 2, the phase of the detection signal of the detection coil arranged on one side with respect to the excitation coil and the phase of the detection signal of the detection coil arranged on the other side with respect to the excitation coil are in phase. If it is (in other words, if the phase difference is less than the threshold value), it is evaluated that the factor of the detection signal is lift-off.

特許第4742757号公報Japanese Patent No. 4742757 特許第4902448号公報Japanese Patent No. 4902448

検査対象物が磁性体であって、漏洩磁束探傷法又は渦電流探傷法のいずれかを採用した場合には、一長一短がある。漏洩磁束探傷法では、検査対象物に磁気特性分布のバラツキ(磁気ノイズ)があっても、信号が発生しない。しかし、磁化器及び磁場検出素子と検査対象物との間の距離の変化(リフトオフ)が生じると、信号が発生する。そのため、きずによる信号とリフトオフによる信号との識別が困難である。   There are advantages and disadvantages when the inspection target is a magnetic material and either the leakage magnetic flux inspection method or the eddy current inspection method is adopted. In the leakage magnetic flux flaw detection method, no signal is generated even if the inspection object has a variation in magnetic characteristic distribution (magnetic noise). However, when a change in the distance between the magnetizer and the magnetic field detection element and the inspection target (lift-off) occurs, a signal is generated. For this reason, it is difficult to distinguish between a signal due to a flaw and a signal due to lift-off.

一方、渦電流探傷法では、特許文献2に記載のように2つの検出コイルの信号の位相を比較し、同相であれば、リフトオフによる信号であると識別することが可能である。しかし、きずによる信号の位相が異相であり、磁気ノイズによる信号の位相も異相であって類似することから、それらの識別が困難である。   On the other hand, in the eddy current flaw detection method, as described in Patent Document 2, the phases of the signals of the two detection coils are compared, and if they are in phase, it can be identified as a lift-off signal. However, since the phases of signals due to flaws are out of phase and the phases of signals due to magnetic noise are also out of phase and similar, it is difficult to distinguish them.

本発明の目的は、検査対象物が磁性体である場合に、きずをその他の要因と識別でき、きずの有無及び方向を評価できる探傷方法、探傷システム、及びそれに用いる探傷プローブを提供することにある。   An object of the present invention is to provide a flaw detection method, a flaw detection system, and a flaw detection probe used for the flaw detection method capable of distinguishing flaws from other factors and evaluating the presence and direction of flaws when the inspection object is a magnetic material. is there.

上記目的を達成するために、本発明は、対の磁極が検査対象物の表面に沿って離間配置される磁化器、並びに前記磁化器の磁極間に前記検査対象物の表面に沿って配置される励磁コイル、第1検出コイル、及び第2検出コイルを備え、前記励磁コイルと前記第1検出コイルの並び方向に対して前記励磁コイルと前記第2検出コイルの並び方向が交差する、探傷プローブを用いる探傷方法であって、前記磁化器で前記検査対象物に磁場を印加し、且つ、前記励磁コイルで前記検査対象物に交流磁場を印加しない第1探傷モードを実施し、前記磁化器で前記検査対象物に磁場を印加せず、且つ、前記励磁コイルで前記検査対象物に交流磁場を印加する第2探傷モードを実施し、前記磁化器で前記検査対象物に磁場を印加し、且つ、前記励磁コイルで前記検査対象物に交流磁場を印加する第3探傷モードを実施し、前記第1探傷モードにおける前記第1検出コイル又は前記第2検出コイルの検出信号の有無を判定する第1判定を行い、前記第2探傷モードにおける前記第1検出コイルの検出信号の位相と前記第2検出コイルの検出信号の位相との差分が予め設定された閾値以上であるか否かを判定する第2判定を行い、前記第3探傷モードにおける前記第1検出コイル及び前記第2検出コイルのうちの一方の検出コイルの検出信号の振幅が前記第2探傷モードにおける前記一方の検出コイルの検出信号の振幅以上であるか否かを判定する第3判定を行い、前記第1判定の結果、前記第2判定の結果、及び前記第3判定の結果に基づき、きずの有無や方向を評価する。   In order to achieve the above object, the present invention provides a magnetizer having a pair of magnetic poles spaced apart along the surface of the object to be inspected and a surface of the object to be inspected between the magnetic poles of the magnetizer. The flaw detection probe includes an excitation coil, a first detection coil, and a second detection coil, and the alignment direction of the excitation coil and the second detection coil intersects the alignment direction of the excitation coil and the first detection coil. A first flaw detection mode in which a magnetic field is applied to the inspection object with the magnetizer, and an AC magnetic field is not applied to the inspection object with the excitation coil, and the magnetizer Performing a second flaw detection mode in which a magnetic field is not applied to the inspection object and an alternating magnetic field is applied to the inspection object by the excitation coil, a magnetic field is applied to the inspection object by the magnetizer, and The excitation coil Performing a third flaw detection mode in which an alternating magnetic field is applied to the inspection object, performing a first determination for determining the presence or absence of a detection signal of the first detection coil or the second detection coil in the first flaw detection mode, Performing a second determination to determine whether or not the difference between the phase of the detection signal of the first detection coil and the phase of the detection signal of the second detection coil in the second flaw detection mode is greater than or equal to a preset threshold; Whether the amplitude of the detection signal of one of the first detection coil and the second detection coil in the third flaw detection mode is greater than or equal to the amplitude of the detection signal of the one detection coil in the second flaw detection mode A third determination is performed to determine whether or not a flaw is present and the direction and presence of a flaw are evaluated based on the first determination result, the second determination result, and the third determination result.

また、上記目的を達成するために、本発明は、対の磁極が検査対象物の表面に沿って離間配置される磁化器、並びに前記磁化器の磁極間に前記検査対象物の表面に沿って配置される励磁コイル、第1検出コイル、及び第2検出コイルを備え、前記励磁コイルと前記第1検出コイルの並び方向に対して前記励磁コイルと前記第2検出コイルの並び方向が交差する、探傷プローブと、前記磁化器で前記検査対象物に磁場を印加し且つ前記励磁コイルで前記検査対象物に交流磁場を印加しない第1探傷モード、前記磁化器で前記検査対象物に磁場を印加せず且つ前記励磁コイルで前記検査対象物に交流磁場を印加する第2探傷モード、前記磁化器で前記検査対象物に磁場を印加し且つ前記励磁コイルで前記検査対象物に交流磁場を印加する第3探傷モードを実施する制御部と、前記第1探傷モードにおける前記第1検出コイル又は前記第2検出コイルの検出結果、前記第2探傷モードにおける前記第1検出コイル及び前記第2検出コイルの検出結果、並びに前記第3探傷モードにおける前記第1検出コイル及び前記第2検出コイルのうちの少なくとも一方の検出結果を表示する表示部とを備える。   In order to achieve the above object, according to the present invention, there is provided a magnetizer having a pair of magnetic poles spaced apart along the surface of the inspection object, and a surface of the inspection object between the magnetic poles of the magnetizer. An excitation coil disposed, a first detection coil, and a second detection coil, wherein the alignment direction of the excitation coil and the second detection coil intersects the alignment direction of the excitation coil and the first detection coil; A flaw detection probe and a first flaw detection mode in which a magnetic field is applied to the inspection object by the magnetizer and an AC magnetic field is not applied to the inspection object by the excitation coil, and a magnetic field is applied to the inspection object by the magnetizer. And a second flaw detection mode in which an alternating magnetic field is applied to the inspection object by the excitation coil, a magnetic field is applied to the inspection object by the magnetizer, and an alternating magnetic field is applied to the inspection object by the excitation coil. 3 flaw detection And a detection result of the first detection coil or the second detection coil in the first flaw detection mode, and a detection result of the first detection coil and the second detection coil in the second flaw detection mode. And a display unit that displays a detection result of at least one of the first detection coil and the second detection coil in the third flaw detection mode.

上記目的を達成するために、本発明の探傷プローブは、対の磁極が検査対象物の表面に沿って離間配置される磁化器と、前記磁化器の磁極間に前記検査対象物の表面に沿って配置される励磁コイル、第1検出コイル、及び第2検出コイルとを備え、前記励磁コイルと前記第1検出コイルの並び方向に対して前記励磁コイルと前記第2検出コイルの並び方向が交差する。   In order to achieve the above object, a flaw detection probe according to the present invention includes a magnetizer having a pair of magnetic poles spaced apart along the surface of the object to be inspected, and a surface of the object to be inspected between the magnetic poles of the magnetizer. An excitation coil, a first detection coil, and a second detection coil are arranged, and the alignment direction of the excitation coil and the second detection coil intersects the alignment direction of the excitation coil and the first detection coil. To do.

本発明によれば、検査対象物が磁性体である場合に、きずをその他の要因と識別でき、きずの有無及び方向を評価できる。   According to the present invention, when the inspection object is a magnetic material, the flaw can be distinguished from other factors, and the presence and direction of the flaw can be evaluated.

本発明の第1の実施形態における探傷システムの構成を表すブロック図である。It is a block diagram showing the structure of the flaw detection system in the 1st Embodiment of this invention. 本発明の第1の実施形態における探傷プローブの概略構造を表す側面図、及び探傷プローブのセンサ部の概略構造を表す平面図である。It is a side view showing the schematic structure of the flaw detection probe in the 1st Embodiment of this invention, and the top view showing the schematic structure of the sensor part of a flaw detection probe. 本発明の第1の実施形態における探傷方法の手順を表すフローチャートである。It is a flowchart showing the procedure of the flaw detection method in the 1st Embodiment of this invention. 本発明の第1の実施形態における評価パターンを表す図である。It is a figure showing the evaluation pattern in the 1st Embodiment of this invention. 本発明の第1の実施形態における第1探傷モードを説明するための平面図及びリサージュ図であり、検査対象物にきずAがある場合を示す。It is the top view and Lissajous figure for demonstrating the 1st flaw detection mode in the 1st Embodiment of this invention, and shows the case where the defect A exists in a test target object. 本発明の第1の実施形態における第1探傷モードを説明するための側面図であり、検査対象物にきずAがある場合を示す。It is a side view for demonstrating the 1st flaw detection mode in the 1st Embodiment of this invention, and shows the case where there exists a crack A in a test target object. 本発明の第1の実施形態における第1探傷モードを説明するための平面図及びリサージュ図であり、検査対象物にきずBがある場合を示す。It is a top view and a Lissajous figure for explaining the 1st flaw detection mode in a 1st embodiment of the present invention, and shows a case where a crack B exists in an inspection subject. 本発明の第1の実施形態における第1探傷モードを説明するための側面図であり、リフトオフが生じる場合を示す。It is a side view for demonstrating the 1st flaw detection mode in the 1st Embodiment of this invention, and shows the case where lift-off arises. 本発明の第1の実施形態における第2探傷モードを説明するための平面図及びリサージュ図であり、検査対象物にきずBがある場合を示す。It is a top view and a Lissajous figure for explaining the 2nd flaw detection mode in a 1st embodiment of the present invention, and shows a case where a crack B exists in an inspection subject. 本発明の第1の実施形態における第2探傷モードを説明するためのリサージュ図であり、リフトオフが生じる場合を示す。It is a Lissajous figure for demonstrating the 2nd flaw detection mode in the 1st Embodiment of this invention, and shows the case where lift-off arises. 本発明の第1の実施形態における第2探傷モードを説明するためのリサージュ図であり、磁気ノイズがある場合を示す。It is a Lissajous figure for demonstrating the 2nd flaw detection mode in the 1st Embodiment of this invention, and shows the case where there exists a magnetic noise. 本発明の第1の実施形態における第3探傷モードを説明するための図であり、磁界強度と検査対象物の内部の磁束密度の関係を表す。It is a figure for demonstrating the 3rd flaw detection mode in the 1st Embodiment of this invention, and represents the relationship between magnetic field intensity and the magnetic flux density inside a test object. 本発明の第1の実施形態における第3探傷モードを説明するための側面図であり、磁気ノイズがある場合を示す。It is a side view for demonstrating the 3rd flaw detection mode in the 1st Embodiment of this invention, and shows the case where there exists a magnetic noise. 本発明の第2の実施形態における探傷システムの構成を表すブロック図である。It is a block diagram showing the structure of the flaw detection system in the 2nd Embodiment of this invention. 本発明の第1の変形例における探傷プローブの概略構造を表す側面図である。It is a side view showing the schematic structure of the flaw detection probe in the 1st modification of this invention. 図15中断面矢視XVI−XVIによる断面図である。FIG. 16 is a cross-sectional view taken along section XVI-XVI in FIG. 15. 本発明の第2の変形例における探傷プローブの概略構造を表す側面図、及び探傷プローブのセンサ部の概略構造を表す平面配置図である。It is a side view showing the schematic structure of the flaw detection probe in the 2nd modification of this invention, and the plane arrangement | positioning figure showing the schematic structure of the sensor part of a flaw detection probe.

本発明の第1の実施形態を、図面を参照しつつ説明する。   A first embodiment of the present invention will be described with reference to the drawings.

図1は、本実施形態における探傷システムの構成を表すブロック図である。図2(a)は、本実施形態における探傷プローブの概略構造を表す側面図であり、図2(b)は、本実施形態における探傷プローブのセンサ部の概略構造を表す平面配置図である。   FIG. 1 is a block diagram showing the configuration of the flaw detection system in the present embodiment. FIG. 2A is a side view showing the schematic structure of the flaw detection probe in the present embodiment, and FIG. 2B is a plan layout view showing the schematic structure of the sensor portion of the flaw detection probe in the present embodiment.

本実施形態の探傷システムは、探傷プローブ1と、探傷プローブ1に接続された制御装置10と、制御装置10に接続された入力部20(詳細には、例えばキーボードやマウス等)と、制御装置10に接続された表示部21とを備えている。   The flaw detection system of this embodiment includes a flaw detection probe 1, a control device 10 connected to the flaw detection probe 1, an input unit 20 (specifically, for example, a keyboard and a mouse) connected to the control device 10, and a control device. 10 is connected to the display unit 21.

探傷プローブ1は、磁化器2を備えている。この磁化器2は、いわゆる電磁石であって、馬蹄形状(言い換えれば、コの字形状)の磁性材3と、この磁性材3に巻き付けられたコイル4とを有している。磁化器2の一端側の磁極5a及び他端側の磁極5bは、磁性体(例えばクロムモリブデンバナジウム鋼等)である検査対象物6の表面に沿って離間配置されるようになっている。   The flaw detection probe 1 includes a magnetizer 2. The magnetizer 2 is a so-called electromagnet, and includes a horseshoe-shaped (in other words, U-shaped) magnetic material 3 and a coil 4 wound around the magnetic material 3. The magnetic pole 5a on one end side and the magnetic pole 5b on the other end side of the magnetizer 2 are arranged apart from each other along the surface of the inspection object 6 which is a magnetic body (for example, chromium molybdenum vanadium steel).

磁化器2の磁極5aと磁極5bの間には、センサ部7が設けられている。このセンサ部7は、励磁コイル8及び検出コイル9a,9bを備えている。励磁コイル8及び検出コイル9a,9bは、検査対象物6の表面に沿って配置されるようになっている。また、励磁コイル8と検出コイル9aの並び方向Laに対して、励磁コイル8と検出コイル9bの並び方向Lbが所定の角度(本実施形態では90度程度)で交差している。また、励磁コイル8と検出コイル9aの間隔と、励磁コイル8と検出コイル9bの間隔が等しくなっている。また、励磁コイル8及び検出コイル9a,9bの軸方向(図2(a)中上下方向)が検査対象物6の表面に対してほぼ垂直となっている。   A sensor unit 7 is provided between the magnetic pole 5 a and the magnetic pole 5 b of the magnetizer 2. The sensor unit 7 includes an excitation coil 8 and detection coils 9a and 9b. The excitation coil 8 and the detection coils 9 a and 9 b are arranged along the surface of the inspection object 6. Further, the alignment direction Lb of the excitation coil 8 and the detection coil 9b intersects the alignment direction La of the excitation coil 8 and the detection coil 9a at a predetermined angle (about 90 degrees in the present embodiment). Further, the interval between the excitation coil 8 and the detection coil 9a is equal to the interval between the excitation coil 8 and the detection coil 9b. Further, the axial direction of the excitation coil 8 and the detection coils 9a and 9b (vertical direction in FIG. 2A) is substantially perpendicular to the surface of the inspection object 6.

なお、本実施形態では、磁化器2の磁極5a,5bの離間方向(言い換えれば、磁化器2の磁場方向)に対し、励磁コイル8と検出コイル9aの並び方向Laが同じとなるように配置しているが、これに限られない。すなわち、磁化器2の磁極5a,5bの離間方向に対し、励磁コイル8と検出コイル9aの並び方向La及び励磁コイル8と検出コイル9bの並び方向が異なるように配置してもよい。   In the present embodiment, the arrangement direction La of the excitation coil 8 and the detection coil 9a is the same with respect to the separation direction of the magnetic poles 5a and 5b of the magnetizer 2 (in other words, the magnetic field direction of the magnetizer 2). However, it is not limited to this. That is, the arrangement direction La of the excitation coil 8 and the detection coil 9a and the arrangement direction of the excitation coil 8 and the detection coil 9b may be different from the separation direction of the magnetic poles 5a and 5b of the magnetizer 2.

制御装置10は、機能的構成として、探傷モード制御部11、磁化器制御部12、励磁コイル制御部13、検出信号処理部14、バッファメモリ15、データ記憶部16,17,18、及び表示制御部19を備えている。   As a functional configuration, the control device 10 includes a flaw detection mode control unit 11, a magnetizer control unit 12, an excitation coil control unit 13, a detection signal processing unit 14, a buffer memory 15, data storage units 16, 17, 18, and display control. The unit 19 is provided.

探傷モード制御部11は、第1探傷モード、第2探傷モード、及び第3探傷モードのうちのいずれかを選択して、その指示信号を磁化器制御部12、励磁コイル制御部13、及びバッファメモリ15等に出力するようになっている。探傷モード制御部11からの第1探傷モードの指示信号に応じて、磁化器制御部12が磁化器2のコイル4に交流電流を流させ、励磁コイル制御部13が励磁コイル8に交流電流を流させない。これにより、磁化器2で検査対象物6に交流磁場を印加し、励磁コイル3で検査対象物6に交流磁場を印加しない。すなわち、漏洩磁束探傷法を行うようになっている。   The flaw detection mode control unit 11 selects any one of the first flaw detection mode, the second flaw detection mode, and the third flaw detection mode, and sends the instruction signal to the magnetizer control unit 12, the excitation coil control unit 13, and the buffer. The data is output to the memory 15 or the like. In response to the first flaw detection mode instruction signal from the flaw detection mode control unit 11, the magnetizer control unit 12 causes an alternating current to flow through the coil 4 of the magnetizer 2, and the excitation coil control unit 13 applies an alternating current to the excitation coil 8. Do not let it flow. Thereby, an alternating magnetic field is applied to the inspection object 6 by the magnetizer 2, and no alternating magnetic field is applied to the inspection object 6 by the exciting coil 3. That is, the leakage magnetic flux flaw detection method is performed.

探傷モード制御部11からの第2探傷モードの指示信号に応じて、磁化器制御部12が磁化器2のコイル4に交流電流を流させず、励磁コイル制御部13が励磁コイル8に交流電流を流させる。これにより、磁化器2で検査対象物6に交流磁場を印加せず、励磁コイル3で検査対象物6に交流磁場を印加する。すなわち、通常の渦電流探傷法を行うようになっている。   In response to the instruction signal of the second flaw detection mode from the flaw detection mode control unit 11, the magnetizer control unit 12 does not cause an alternating current to flow through the coil 4 of the magnetizer 2, and the excitation coil control unit 13 causes an AC current to flow through the excitation coil 8. Shed. Thereby, an alternating magnetic field is not applied to the inspection object 6 by the magnetizer 2 but an alternating magnetic field is applied to the inspection object 6 by the exciting coil 3. That is, a normal eddy current flaw detection method is performed.

探傷モード制御部11からの第3探傷モードの指示信号に応じて、磁化器制御部12が磁化器2のコイル4に交流電流を流させ、励磁コイル制御部13が励磁コイル8に交流電流を流させる。これにより、磁化器2で検査対象物6に交流磁場を印加し、励磁コイル3で検査対象物6に交流磁場を印加する。すなわち、特殊な渦電流探傷法を行うようになっている。   In response to the third flaw detection mode instruction signal from the flaw detection mode control unit 11, the magnetizer control unit 12 causes an alternating current to flow through the coil 4 of the magnetizer 2, and the excitation coil control unit 13 applies an AC current to the excitation coil 8. Let it flow. Thereby, an alternating magnetic field is applied to the inspection object 6 by the magnetizer 2, and an alternating magnetic field is applied to the inspection object 6 by the exciting coil 3. That is, a special eddy current flaw detection method is performed.

検出信号処理部14は、検出コイル9a,9bからの検出信号に対し所定の処理を行う。詳細には、例えば、基準信号の位相と同じ成分(X成分)と90度異なる成分(Y成分)に分解する。そして、処理後のデータをバッファメモリ15に一時的に記憶させる。   The detection signal processing unit 14 performs predetermined processing on the detection signals from the detection coils 9a and 9b. Specifically, for example, it is decomposed into a component (X component) that is the same as the phase of the reference signal and a component (Y component) that is 90 degrees different. Then, the processed data is temporarily stored in the buffer memory 15.

バッファメモリ15は、探傷モード制御部11からの第1探傷モードの指示信号に応じて、第1探傷モードのデータ記憶部16にデータを転送して記憶させる。また、探傷モード制御部11からの第2探傷モードの指示信号に応じて、第2探傷モードのデータ記憶部17にデータを転送して記憶させる。また、探傷モード制御部11からの第3探傷モードの指示信号に応じて、第3探傷モードのデータ記憶部18にデータを転送して記憶させる。なお、データ記憶部16,18に転送するデータは、検出コイル9a,9bのデータでもよいが、本実施形態では、予め選択された一方の検出コイル(例えば検出コイル9a)のみのデータとしている。   In response to the first flaw detection mode instruction signal from the flaw detection mode control unit 11, the buffer memory 15 transfers and stores data in the data storage unit 16 in the first flaw detection mode. Further, in response to the second flaw detection mode instruction signal from the flaw detection mode control unit 11, the data is transferred and stored in the data storage unit 17 in the second flaw detection mode. Further, in response to the third flaw detection mode instruction signal from the flaw detection mode control unit 11, the data is transferred and stored in the data storage unit 18 in the third flaw detection mode. The data to be transferred to the data storage units 16 and 18 may be data of the detection coils 9a and 9b. However, in this embodiment, only data of one detection coil (for example, the detection coil 9a) selected in advance is used.

表示制御部19は、第1探傷モードのデータ記憶部16から検出コイル9aのデータを読込み、例えばX成分及びY成分を横軸及び縦軸にプロットしてリサージュ波形を作成し、表示部21に表示させる。また、第2探傷モードのデータ記憶部17から検出コイル9a,9bのデータを読込み、例えばX成分及びY成分を横軸及び縦軸にプロットしてリサージュ波形を作成し、表示部21に表示させる。また、第3探傷モードのデータ記憶部18から検出コイル9aのデータを読込み、例えばX成分及びY成分を横軸及び縦軸にプロットしてリサージュ波形を作成し、表示部21に表示させる。なお、好ましくは、検出信号の位相や振幅をそれぞれ演算して(上記の式(1)及び(2)参照)、それらの数値も表示させる。   The display control unit 19 reads the data of the detection coil 9a from the data storage unit 16 in the first flaw detection mode, plots the X component and the Y component on the horizontal axis and the vertical axis, for example, creates a Lissajous waveform, and displays it on the display unit 21. Display. Further, the data of the detection coils 9a and 9b is read from the data storage unit 17 in the second flaw detection mode, and, for example, the X component and the Y component are plotted on the horizontal axis and the vertical axis, a Lissajous waveform is generated and displayed on the display unit 21. . Further, the data of the detection coil 9a is read from the data storage unit 18 in the third flaw detection mode, and for example, the L component is plotted on the horizontal axis and the vertical axis to create a Lissajous waveform and displayed on the display unit 21. Preferably, the phase and amplitude of the detection signal are respectively calculated (see the above equations (1) and (2)), and their numerical values are also displayed.

そして、検査者は、表示部21で表示された第1探傷モードの検出結果、第2探傷モードの検出結果、及び第3探傷モードの検出結果に基づき、きずの有無や方向を評価する。   Then, the inspector evaluates the presence / absence and direction of the flaw based on the detection result of the first flaw detection mode, the detection result of the second flaw detection mode, and the detection result of the third flaw detection mode displayed on the display unit 21.

次に、上述したきずの有無や方向を評価する方法を含め、本実施形態における探傷方法を説明する。図3は、本実施形態における探傷方法の手順を表すフローチャートである。図4は、本実施形態における評価パターンを表す図である。   Next, the flaw detection method in the present embodiment will be described, including the method for evaluating the presence / absence and direction of flaws described above. FIG. 3 is a flowchart showing the procedure of the flaw detection method in this embodiment. FIG. 4 is a diagram illustrating an evaluation pattern in the present embodiment.

ステップ100にて、制御装置10は、第1探傷モード(詳細には、磁化器2による磁場の印加)を実施する。これにより、第1探傷モードにおける検出コイル9aのデータをデータ記憶部16に記憶し、そのリサージュ波形を表示部21に表示する。ステップ110にて、制御装置10は、第2探傷モード(詳細には、励磁コイル8による磁場の印加)を実施する。これにより、第2探傷モードにおける検出コイル9a,9bのデータをデータ記憶部17に記憶し、そのリサージュ波形を表示部21に表示する。ステップ120にて、制御装置10は、第3探傷モード(詳細には、磁化器2及び励磁コイル8による磁場の印加)を実施する。これにより、第3探傷モードにおける検出コイル9aのデータをデータ記憶部18に記憶し、そのリサージュ波形を表示部21に表示する。なお、第1探傷モード、第2探傷モード、及び第3探傷モードの実施順は、これに限られない。   In step 100, the control device 10 performs a first flaw detection mode (specifically, application of a magnetic field by the magnetizer 2). Thus, the data of the detection coil 9a in the first flaw detection mode is stored in the data storage unit 16, and the Lissajous waveform is displayed on the display unit 21. In step 110, the control device 10 performs the second flaw detection mode (specifically, application of a magnetic field by the exciting coil 8). Thereby, the data of the detection coils 9a and 9b in the second flaw detection mode are stored in the data storage unit 17, and the Lissajous waveform is displayed on the display unit 21. In step 120, the control device 10 performs the third flaw detection mode (specifically, application of a magnetic field by the magnetizer 2 and the excitation coil 8). Thereby, the data of the detection coil 9a in the third flaw detection mode is stored in the data storage unit 18, and the Lissajous waveform is displayed on the display unit 21. Note that the order of execution of the first flaw detection mode, the second flaw detection mode, and the third flaw detection mode is not limited to this.

そして、ステップ130にて、検査者は、表示部21で表示された第1探傷モードのリサージュ波形に基づき、第1探傷モードの検出信号が有るかどうか(詳細には、X成分又はY成分が予め設定された閾値以上であるかどうか)を判定する。例えば第1探傷モードの検出信号が有る場合は、ステップ130の判定が満たされ、ステップ140に移る。ステップ140にて、検査者は、表示部21で表示された第2探傷モードのリサージュ波形に基づき、第2探傷モードにおける検出コイル9aの検出信号の位相θa2と検出コイル9bの検出信号の位相θabが異相であるかどうか(詳細には、位相θa2と位相θb2との差分が予め設定された閾値以上であるかどうか)を判定する。   In step 130, the inspector determines whether or not there is a detection signal for the first flaw detection mode based on the Lissajous waveform for the first flaw detection mode displayed on the display unit 21 (specifically, the X component or the Y component is Whether or not it is equal to or greater than a preset threshold value). For example, if there is a detection signal for the first flaw detection mode, the determination at step 130 is satisfied, and the routine proceeds to step 140. In step 140, based on the Lissajous waveform of the second flaw detection mode displayed on the display unit 21, the inspector checks the phase θa2 of the detection signal of the detection coil 9a and the phase θab of the detection signal of the detection coil 9b in the second flaw detection mode. Is in a different phase (specifically, whether or not the difference between the phase θa2 and the phase θb2 is greater than or equal to a preset threshold value).

例えば位相θa2と位相θb2が同相である場合は、ステップ140の判定が満たされず、ステップ150に進み、検査者は、検出信号の要因がリフトオフであると評価する。一方、例えば位相θa2と位相θb2が位相である場合は、ステップ160に進み、検査者は、検出信号の要因がきずA(詳細には、磁化器2の磁場方向に対して交差する方向に延在した、きず)であると評価する。   For example, when the phase θa2 and the phase θb2 are in phase, the determination in step 140 is not satisfied, the process proceeds to step 150, and the inspector evaluates that the factor of the detection signal is lift-off. On the other hand, for example, when the phase θa2 and the phase θb2 are phases, the process proceeds to step 160, and the inspector determines that the cause of the detection signal is not A (specifically, extends in a direction intersecting the magnetic field direction of the magnetizer 2). Evaluate it as a flaw.

また、ステップ130にて、例えば第1探傷モードの検出信号が無い場合は、その判定が満たされず、ステップ170に移る。ステップ170にて、検査者は、表示部21で表示された第3探傷モードのリサージュ波形及び第2探傷モードのリサージュ波形に基づき、第3探傷モードにおける検出コイル9aの検出信号の振幅|Va3|が第2探傷モードにおける検出コイル9aの検出信号の振幅|Vb3|以上であるかどうかを判定する。   If there is no detection signal in the first flaw detection mode at step 130, for example, the determination is not satisfied and the routine goes to step 170. In step 170, the inspector determines the amplitude | Va3 | of the detection signal of the detection coil 9a in the third flaw detection mode based on the Lissajous waveform in the third flaw detection mode and the Lissajous waveform in the second flaw detection mode displayed on the display unit 21. Is greater than or equal to the amplitude | Vb3 | of the detection signal of the detection coil 9a in the second flaw detection mode.

例えば振幅|Va3|が振幅|Va2|未満である場合は、ステップ170の判定が満たされず、ステップ180に進み、検査者は、検出信号の要因が磁気ノイズであると評価する。一方、例えば振幅|Va3|が振幅|Va2|以上である場合は、ステップ170の判定が満たされ、ステップ190に進み、検査者は、検出信号の要因がきずB(詳細には、磁化器2の磁場方向に対してほぼ平行方向に延在した、きず)であると評価する。   For example, if the amplitude | Va3 | is less than the amplitude | Va2 |, the determination in step 170 is not satisfied and the process proceeds to step 180, and the inspector evaluates that the cause of the detection signal is magnetic noise. On the other hand, for example, when the amplitude | Va3 | is equal to or larger than the amplitude | Va2 |, the determination in Step 170 is satisfied, and the process proceeds to Step 190. The inspector determines that the cause of the detection signal is B (specifically, the magnetizer 2 It is evaluated that the scratch extends in a direction substantially parallel to the magnetic field direction.

次に、上述した評価パターンについて説明するため、各探傷モードの検出信号を説明する。   Next, in order to describe the above-described evaluation pattern, detection signals in each flaw detection mode will be described.

(1)第1探傷モード(漏洩磁束探傷モード)
例えば図5(a)で示すように、検査対象物6にきずA(詳細には、磁化器2の磁場方向に対して交差する方向に延在した、きず)が存在する場合は、磁化器2で印加した磁場の流れ(図6中点線参照)が妨げられ、その一部が空間に漏洩して、センサ部7の検出コイル9a(又は9b)で検出される。そのため、例えば図5(b)で示すようなリサージュ波形30が得られる。
(1) First flaw detection mode (leakage magnetic flux flaw detection mode)
For example, as shown in FIG. 5A, when there is a flaw A (specifically, a flaw extending in a direction intersecting the magnetic field direction of the magnetizer 2) on the inspection object 6, the magnetizer The flow of the magnetic field applied at 2 (see the dotted line in FIG. 6) is obstructed, and a part of it leaks into the space and is detected by the detection coil 9a (or 9b) of the sensor unit 7. Therefore, for example, a Lissajous waveform 30 as shown in FIG. 5B is obtained.

一方、例えば図7(a)で示すように、検査対象物6にきずB(詳細には、磁化器2の磁場方向に対してほぼ平行方向に延在した、きず)が存在する場合は、磁化器2で印加した磁場の流れに影響がなく、その一部が空間に漏洩せず、センサ部7の検出コイル9a(又は9b)で検出されない。そのため、例えば図7(b)で示すようなリサージュ波形31が得られる。   On the other hand, for example, as shown in FIG. 7A, when a defect B (specifically, a defect extending in a direction substantially parallel to the magnetic field direction of the magnetizer 2) exists in the inspection object 6, There is no effect on the flow of the magnetic field applied by the magnetizer 2, a part of it does not leak into the space, and is not detected by the detection coil 9 a (or 9 b) of the sensor unit 7. Therefore, for example, a Lissajous waveform 31 as shown in FIG. 7B is obtained.

また、例えば図8に示すように、探傷プローブ1が検査対象物6から離れてしまい、探傷プローブ1と検査対象物6との間の距離が大きくなる場合(リフトオフ)、磁化器2の磁場(図8中点線参照)が、検査対象物6の内部を渡るよりも、磁極5a,5b間の空間を渡るほうが多くなり、センサ部7の検出コイル9a(又は9b)で検出される。また、例えば検査対象物6に磁気特性分布のバラツキ(磁気ノイズ)がある場合、磁化器2の磁場への作用が小さく、センサ部7の検出コイル9a(又は9b)で検出されない。   Further, for example, as shown in FIG. 8, when the flaw detection probe 1 moves away from the inspection object 6 and the distance between the flaw detection probe 1 and the inspection object 6 becomes large (lift-off), the magnetic field of the magnetizer 2 ( 8 (see the dotted line in FIG. 8) is more likely to cross the space between the magnetic poles 5a and 5b than to cross the inside of the inspection object 6, and is detected by the detection coil 9a (or 9b) of the sensor unit 7. Further, for example, when the inspection object 6 has a variation in magnetic characteristic distribution (magnetic noise), the action of the magnetizer 2 on the magnetic field is small and is not detected by the detection coil 9a (or 9b) of the sensor unit 7.

(2)第2探傷モード(通常の渦電流探傷モード)
例えば図9(a)で示すように、検査対象物6にきずB(人工スリット)が存在する場合は、渦電流の変化が検出コイル9a,9bで検出される。そのため、例えば図9(b)で示すように、検出コイル9aの検出信号のリサージュ波形32aと、検出コイル9bの検出信号のリサージュ波形32bが得られる。それらの位相は、異相となる。
(2) Second flaw detection mode (normal eddy current flaw detection mode)
For example, as shown in FIG. 9A, when a defect B (artificial slit) exists in the inspection object 6, a change in eddy current is detected by the detection coils 9a and 9b. Therefore, for example, as shown in FIG. 9B, a Lissajous waveform 32a of the detection signal of the detection coil 9a and a Lissajous waveform 32b of the detection signal of the detection coil 9b are obtained. Their phases are out of phase.

また、図示しないが、検査対象物6にきずAが存在する場合も、渦電流の乱れが検出コイル9a,9bで検出される。そのため、検出コイル9aの検出信号のリサージュ波形と、検出コイル9bの検出信号のリサージュ波形が得られる。それらの位相は、異相となる。   Although not shown, even when a defect A is present on the inspection object 6, eddy current disturbance is detected by the detection coils 9a and 9b. Therefore, a Lissajous waveform of the detection signal of the detection coil 9a and a Lissajous waveform of the detection signal of the detection coil 9b are obtained. Their phases are out of phase.

また、リフトオフが生じた場合には、例えば図10で示すように、検出コイル9aの検出信号のリサージュ波形33aと、検出コイル9bの検出信号のリサージュ波形33bが得られる。それらの位相は、同相となる。   When lift-off occurs, for example, as shown in FIG. 10, a Lissajous waveform 33a of the detection signal of the detection coil 9a and a Lissajous waveform 33b of the detection signal of the detection coil 9b are obtained. Their phases are in phase.

また、渦電流は、検査対象物6の透磁率や導電率で変化することから、検査対象物に磁気特性分布のバラツキ(磁気ノイズ)があっても変化する。すなわち、検査対象物6に磁気ノイズがある場合も、検出コイル9a,9bで検出される。そのため、例えば図11で示すように、検出コイル9aの検出信号のリサージュ波形34bと、検出コイル9bの検出信号のリサージュ波形34bが得られる。それらの位相は、異相となる。   Further, since the eddy current changes depending on the magnetic permeability and conductivity of the inspection object 6, it also changes even if the inspection object has a variation in magnetic characteristic distribution (magnetic noise). That is, even when the inspection object 6 has magnetic noise, it is detected by the detection coils 9a and 9b. Therefore, for example, as shown in FIG. 11, a Lissajous waveform 34b of the detection signal of the detection coil 9a and a Lissajous waveform 34b of the detection signal of the detection coil 9b are obtained. Their phases are out of phase.

(3)第3探傷モード(特殊な渦電流探傷モード)
例えば検査対象物6にきずが存在する場合は、きずの周辺領域が磁化されにくい一方で、他の領域が磁化される。ここで、図12は、磁界強度と検査対象物の内部の磁束密度の関係を表す図であり、図中の特性曲線の傾きが透磁率である。磁性体である検査対象物6は、磁界が作用すると透磁率が低くなる。飽和磁束密度に相当する強い磁界が印加されると、空気の透磁率と等しくなる。そのため、きずの周辺領域と他の領域は、透磁率が変化する。そして、第3探傷モードにおける検出コイル9a(又は9b)の検出信号(きず信号)の振幅は、透磁率の変化の影響が重複して、第2探傷モードにおける検出コイル9a(又は9b)の検出信号(きず信号)の振幅より大きくなる。
(3) Third flaw detection mode (special eddy current flaw detection mode)
For example, when a flaw exists in the inspection object 6, the peripheral area of the flaw is difficult to be magnetized, while the other area is magnetized. Here, FIG. 12 is a diagram showing the relationship between the magnetic field strength and the magnetic flux density inside the inspection object, and the slope of the characteristic curve in the figure is the magnetic permeability. The inspection object 6 which is a magnetic body has a low magnetic permeability when a magnetic field acts. When a strong magnetic field corresponding to the saturation magnetic flux density is applied, it becomes equal to the magnetic permeability of air. Therefore, the magnetic permeability changes in the peripheral area of the flaw and other areas. The amplitude of the detection signal (flaw signal) of the detection coil 9a (or 9b) in the third flaw detection mode overlaps with the influence of the change in magnetic permeability, and the detection of the detection coil 9a (or 9b) in the second flaw detection mode. It becomes larger than the amplitude of the signal (flaw signal).

一方、例えば図13で示すように、検査対象物6に磁気ノイズの領域40が存在する場合は、磁気ノイズの領域40及びその周辺領域を含む領域41が磁化される。そのため、きずが存在する場合のような透磁率の変化が生じないし、全体的に透磁率が低くなる。そして、第3探傷モードにおける検出コイル9a(又は9b)の検出信号(磁気ノイズ信号)の振幅は、第2探傷モードにおける検出コイル9a(又は9b)の検出信号(磁気ノイズ信号)の振幅より小さくなる。   On the other hand, as shown in FIG. 13, for example, when the magnetic noise region 40 is present on the inspection object 6, the magnetic noise region 40 and the region 41 including the peripheral region are magnetized. Therefore, the magnetic permeability does not change as in the case where flaws exist, and the magnetic permeability is lowered as a whole. The amplitude of the detection signal (magnetic noise signal) of the detection coil 9a (or 9b) in the third flaw detection mode is smaller than the amplitude of the detection signal (magnetic noise signal) of the detection coil 9a (or 9b) in the second flaw detection mode. Become.

以上のように、本実施形態では、上述した原理に基づき、きずをその他の要因と識別し、きずの有無及び方向を評価することができる。   As described above, in the present embodiment, based on the above-described principle, it is possible to identify a flaw from other factors and evaluate the presence and direction of the flaw.

本発明の第2の実施形態を、図14を用いて説明する。図14は、本実施形態における探傷システムの構成を表すブロック図である。なお、本実施形態において、上記第1の実施形態と同等の部分は同一の符号を付し、適宜、説明を省略する。   A second embodiment of the present invention will be described with reference to FIG. FIG. 14 is a block diagram showing the configuration of the flaw detection system in the present embodiment. Note that in this embodiment, the same parts as those in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.

本実施形態の制御装置10は、上記第1の実施形態と同様、探傷モード制御部11、磁化器制御部12、励磁コイル制御部13、検出信号処理部14、バッファメモリ15、データ記憶部16,17,18、及び表示制御部19を備えている。さらに、上述した図3のステップ140〜190の判定・評価を処理する判定・評価部22を備えている。そして、表示制御部19は、判定・評価部22の評価結果も表示部21に表示させるようになっている。   As in the first embodiment, the control device 10 of the present embodiment includes a flaw detection mode control unit 11, a magnetizer control unit 12, an excitation coil control unit 13, a detection signal processing unit 14, a buffer memory 15, and a data storage unit 16. , 17, 18 and a display control unit 19. Further, a determination / evaluation unit 22 for processing the determinations / evaluations in steps 140 to 190 of FIG. 3 described above is provided. The display control unit 19 also displays the evaluation result of the determination / evaluation unit 22 on the display unit 21.

このように構成された本実施形態においても、上記第1の実施形態と同様、きずをその他の要因と識別し、きずの有無及び方向を評価することができる。   Also in the present embodiment configured as described above, as in the first embodiment, it is possible to identify a flaw from other factors and evaluate the presence and direction of the flaw.

なお、上記第1及び第2の実施形態において、特に、説明しなかったが、探傷プローブ1は、検査対象物6の表面の形状が異なる場合に対応可能な構成としてもよい。すなわち、例えば図15及び図16で示す変形例のように、磁化器2の磁極にボルト等で着脱可能な磁性部材23a.23bを設け、これら磁性部材23a,23bが検査対象物6の表面に沿うような形状を有していてもよい。さらに、センサ部7を検査対象物6に押し当てる支持機構24を設けてもよい。支持機構24は、磁化器2の両側(図16中左右両側)にそれぞれ設けられた当金25と、センサ部7の両側にそれぞれ設けられた支持部材26とを有し、当金25の凸部27と支持部材26の長穴28が係合している。これにより、磁化器2に対してセンサ部7がスライド可能に支持されている。そして、磁化器2とセンサ部7との間に設けられたスプリング29によって、センサ部7を検査対象物6に押し当てるようになっている。   Although not particularly described in the first and second embodiments, the flaw detection probe 1 may have a configuration that can cope with a case where the surface shape of the inspection object 6 is different. That is, for example, as in the modification shown in FIGS. 15 and 16, the magnetic members 23 a. 23 b may be provided, and the magnetic members 23 a and 23 b may have a shape along the surface of the inspection object 6. Further, a support mechanism 24 that presses the sensor unit 7 against the inspection object 6 may be provided. The support mechanism 24 includes an abutment 25 provided on both sides of the magnetizer 2 (left and right sides in FIG. 16) and a support member 26 provided on each side of the sensor unit 7. The portion 27 and the elongated hole 28 of the support member 26 are engaged. Thereby, the sensor unit 7 is slidably supported with respect to the magnetizer 2. The sensor unit 7 is pressed against the inspection object 6 by a spring 29 provided between the magnetizer 2 and the sensor unit 7.

また、上記第1及び第2の実施形態において、探傷プローブ1のセンサ部7は、1組の励磁コイル8及び検出コイル9a,9b(すなわち、3つのコイル)を備えた場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、例えば図17で示す変形例のように、センサ部7Aは、2組以上の励磁コイル8及び検出コイル9a,9b(すなわち、6つ以上のコイル)を備えていてもよく、励磁コイル8及び検出コイル9a,9bの組合せを順次切替えるようにしてもよい。   In the first and second embodiments, the sensor unit 7 of the flaw detection probe 1 has been described by taking as an example the case where the sensor unit 7 includes a pair of excitation coils 8 and detection coils 9a and 9b (that is, three coils). However, the present invention is not limited to this, and modifications can be made without departing from the spirit and technical idea of the present invention. That is, for example, as in the modification shown in FIG. 17, the sensor unit 7A may include two or more sets of excitation coils 8 and detection coils 9a and 9b (that is, six or more coils). The combination of the detection coils 9a and 9b may be switched sequentially.

また、上記第1及び第2の実施形態において、探傷プローブ1の磁化器2は、電磁石で構成された場合を例にとって説明したが、これに限られず、本発明の趣旨及び技術思想を逸脱しない範囲内で変形が可能である。すなわち、例えば永久磁石で構成してもよい。そして、例えば、検査対象物6の表面にセンサ部7を配置したまま、検査対象物6の表面と永久磁石の間の距離を変化させる機構を設け、これによって検査対象物に磁場を印加するか否かを切替えるようにしてもよい。   In the first and second embodiments, the magnetizer 2 of the flaw detection probe 1 has been described as an example of an electromagnet. However, the present invention is not limited to this and does not depart from the spirit and technical idea of the present invention. Variations are possible within the range. That is, you may comprise with a permanent magnet, for example. For example, a mechanism for changing the distance between the surface of the inspection object 6 and the permanent magnet while the sensor unit 7 is disposed on the surface of the inspection object 6 is provided so that a magnetic field is applied to the inspection object. You may make it switch whether or not.

1 探傷プローブ
2 磁化器
5a,5b 磁極
6 検査対象物
7 センサ部
8 励磁コイル
9a,9b 検出コイル
10 制御装置
11 探傷モード制御部
12 磁化器制御部
13 励磁コイル制御部
21 表示部
22 判定・評価部
23a,23b 磁性部材
24 支持機構
DESCRIPTION OF SYMBOLS 1 Flaw detection probe 2 Magnetizer 5a, 5b Magnetic pole 6 Inspection object 7 Sensor part 8 Excitation coil 9a, 9b Detection coil 10 Control apparatus 11 Flaw detection mode control part 12 Magnetizer control part 13 Excitation coil control part 21 Display part 22 Determination and evaluation 23a, 23b Magnetic member 24 Support mechanism

Claims (6)

対の磁極が検査対象物の表面に沿って離間配置される磁化器、並びに前記磁化器の磁極間に前記検査対象物の表面に沿って配置される励磁コイル、第1検出コイル、及び第2検出コイルを備え、前記励磁コイルと前記第1検出コイルの並び方向に対して前記励磁コイルと前記第2検出コイルの並び方向が交差する、探傷プローブを用いる探傷方法であって、
前記磁化器で前記検査対象物に磁場を印加し、且つ、前記励磁コイルで前記検査対象物に交流磁場を印加しない第1探傷モードを実施し、
前記磁化器で前記検査対象物に磁場を印加せず、且つ、前記励磁コイルで前記検査対象物に交流磁場を印加する第2探傷モードを実施し、
前記磁化器で前記検査対象物に磁場を印加し、且つ、前記励磁コイルで前記検査対象物に交流磁場を印加する第3探傷モードを実施し、
前記第1探傷モードにおける前記第1検出コイル又は前記第2検出コイルの検出信号の有無を判定する第1判定を行い、
前記第2探傷モードにおける前記第1検出コイルの検出信号の位相と前記第2検出コイルの検出信号の位相との差分が予め設定された閾値以上であるか否かを判定する第2判定を行い、
前記第3探傷モードにおける前記第1検出コイル及び前記第2検出コイルのうちの一方の検出コイルの検出信号の振幅が前記第2探傷モードにおける前記一方の検出コイルの検出信号の振幅以上であるか否かを判定する第3判定を行い、
前記第1判定の結果、前記第2判定の結果、及び前記第3判定の結果に基づき、きずの有無や方向を評価することを特徴とする探傷方法。
A magnetizer having a pair of magnetic poles spaced apart along the surface of the inspection object, and an excitation coil, a first detection coil, and a second electrode disposed along the surface of the inspection object between the magnetic poles of the magnetizer A flaw detection method using a flaw detection probe comprising a detection coil, wherein the alignment direction of the excitation coil and the second detection coil intersects the alignment direction of the excitation coil and the first detection coil,
A first flaw detection mode in which a magnetic field is applied to the inspection object with the magnetizer and an alternating magnetic field is not applied to the inspection object with the excitation coil,
A second flaw detection mode in which a magnetic field is not applied to the inspection object with the magnetizer and an alternating magnetic field is applied to the inspection object with the excitation coil,
Performing a third flaw detection mode in which a magnetic field is applied to the inspection object with the magnetizer, and an alternating magnetic field is applied to the inspection object with the excitation coil;
Performing a first determination for determining the presence or absence of a detection signal of the first detection coil or the second detection coil in the first flaw detection mode;
A second determination is made to determine whether or not the difference between the phase of the detection signal of the first detection coil and the phase of the detection signal of the second detection coil in the second flaw detection mode is greater than or equal to a preset threshold value. ,
Whether the amplitude of the detection signal of one of the first detection coil and the second detection coil in the third flaw detection mode is greater than or equal to the amplitude of the detection signal of the one detection coil in the second flaw detection mode Perform a third determination to determine whether or not
A flaw detection method characterized by evaluating the presence and direction of a flaw based on the result of the first determination, the result of the second determination, and the result of the third determination.
請求項1記載の探傷方法において、
前記第1探傷モードにおける前記第1検出コイル又は前記第2検出コイルの検出信号が有ると判定し、且つ、前記第2探傷モードにおける前記第1検出コイルの検出信号の位相と前記第2検出コイルの検出信号の位相との差分が前記閾値未満であると判定した場合に、前記検出信号の要因がリフトオフであると評価し、
前記第1探傷モードにおける前記第1検出コイル又は前記第2検出コイルの検出信号が有ると判定し、且つ、前記第2探傷モードにおける前記第1検出コイルの検出信号の位相と前記第2検出コイルの検出信号の位相との差分が前記閾値以上であると判定した場合に、前記検出信号の要因が前記磁化器の磁場方向と交差する方向のきずであると評価し、
前記第1探傷モードにおける前記第1検出コイル又は前記第2検出コイルの検出信号が無いと判定し、且つ、前記第3探傷モードにおける前記一方の検出コイルの検出信号の振幅が前記第2探傷モードにおける前記一方の検出コイルの検出信号の振幅未満であると判定した場合に、前記検出信号の要因が前記検査対象物の磁気特性分布による磁気ノイズであると評価し、
前記第1探傷モードにおける前記第1検出コイル又は前記第2検出コイルの検出信号が無いと判定し、且つ、前記第3探傷モードにおける前記一方の検出コイルの検出信号の振幅が前記第2探傷モードにおける前記一方の検出コイルの検出信号の振幅以上であると判定した場合に、前記検出信号の要因が前記磁化器の磁場方向とほぼ平行な方向のきずであると評価することを特徴とする探傷方法。
The flaw detection method according to claim 1,
It is determined that there is a detection signal of the first detection coil or the second detection coil in the first flaw detection mode, and the phase of the detection signal of the first detection coil in the second flaw detection mode and the second detection coil When it is determined that the difference from the phase of the detection signal is less than the threshold, the factor of the detection signal is evaluated as lift-off,
It is determined that there is a detection signal of the first detection coil or the second detection coil in the first flaw detection mode, and the phase of the detection signal of the first detection coil in the second flaw detection mode and the second detection coil When it is determined that the difference between the phase of the detection signal is equal to or greater than the threshold, the factor of the detection signal is evaluated as a flaw in a direction crossing the magnetic field direction of the magnetizer,
It is determined that there is no detection signal of the first detection coil or the second detection coil in the first flaw detection mode, and the amplitude of the detection signal of the one detection coil in the third flaw detection mode is the second flaw detection mode. When it is determined that the amplitude of the detection signal of the one detection coil in is less than the amplitude of the detection signal, the factor of the detection signal is evaluated as magnetic noise due to the magnetic property distribution of the inspection object,
It is determined that there is no detection signal of the first detection coil or the second detection coil in the first flaw detection mode, and the amplitude of the detection signal of the one detection coil in the third flaw detection mode is the second flaw detection mode. When it is determined that the amplitude of the detection signal of the one detection coil is equal to or greater than the detection signal, the detection signal is evaluated as a defect in a direction substantially parallel to the magnetic field direction of the magnetizer. Method.
対の磁極が検査対象物の表面に沿って離間配置される磁化器、並びに前記磁化器の磁極間に前記検査対象物の表面に沿って配置される励磁コイル、第1検出コイル、及び第2検出コイルを備え、前記励磁コイルと前記第1検出コイルの並び方向に対して前記励磁コイルと前記第2検出コイルの並び方向が交差する、探傷プローブと、
前記磁化器で前記検査対象物に磁場を印加し且つ前記励磁コイルで前記検査対象物に交流磁場を印加しない第1探傷モード、前記磁化器で前記検査対象物に磁場を印加せず且つ前記励磁コイルで前記検査対象物に交流磁場を印加する第2探傷モード、前記磁化器で前記検査対象物に磁場を印加し且つ前記励磁コイルで前記検査対象物に交流磁場を印加する第3探傷モードを実施する制御部と、
前記第1探傷モードにおける前記第1検出コイル又は前記第2検出コイルの検出結果、前記第2探傷モードにおける前記第1検出コイル及び前記第2検出コイルの検出結果、並びに前記第3探傷モードにおける前記第1検出コイル及び前記第2検出コイルのうちの少なくとも一方の検出結果を表示する表示部とを備えたことを特徴とする探傷システム。
A magnetizer having a pair of magnetic poles spaced apart along the surface of the inspection object, and an excitation coil, a first detection coil, and a second electrode disposed along the surface of the inspection object between the magnetic poles of the magnetizer A flaw detection probe comprising a detection coil, wherein an alignment direction of the excitation coil and the second detection coil intersects an alignment direction of the excitation coil and the first detection coil;
A first flaw detection mode in which a magnetic field is applied to the inspection object by the magnetizer and an AC magnetic field is not applied to the inspection object by the excitation coil, and a magnetic field is not applied to the inspection object by the magnetizer and the excitation A second flaw detection mode in which an AC magnetic field is applied to the inspection object with a coil, and a third flaw detection mode in which a magnetic field is applied to the inspection object with the magnetizer and an AC magnetic field is applied to the inspection object with the excitation coil. A control unit to implement;
The detection result of the first detection coil or the second detection coil in the first flaw detection mode, the detection result of the first detection coil and the second detection coil in the second flaw detection mode, and the detection result in the third flaw detection mode A flaw detection system comprising: a display unit that displays a detection result of at least one of the first detection coil and the second detection coil.
請求項3記載の探傷システムにおいて、
前記第1探傷モードにおける前記第1検出コイル又は前記第2検出コイルの検出信号の有無を判定する第1判定、前記第2探傷モードにおける前記第1検出コイルの検出信号の位相と前記第2検出コイルの検出信号の位相との差分が予め設定された閾値以上であるか否かを判定する第2判定、並びに前記第3探傷モードにおける前記第1検出コイル及び前記第2検出コイルのうちの一方の検出コイルの検出信号の振幅が前記第2探傷モードにおける前記一方の検出コイルの検出信号の振幅以上であるか否かを判定する第3判定を行い、前記第1判定の結果、前記第2判定の結果、及び前記第3判定の結果に基づき、きずの有無や方向を評価する判定・評価部をさらに備え、
前記表示部は、前記判定・評価部の評価結果を表示することを特徴とする探傷システム。
The flaw detection system according to claim 3,
A first determination for determining the presence or absence of a detection signal of the first detection coil or the second detection coil in the first flaw detection mode, a phase of the detection signal of the first detection coil and the second detection in the second flaw detection mode A second determination for determining whether or not a difference between the phase of the detection signal of the coil is equal to or greater than a preset threshold value, and one of the first detection coil and the second detection coil in the third flaw detection mode; A third determination is made to determine whether the amplitude of the detection signal of the detection coil is equal to or greater than the amplitude of the detection signal of the one detection coil in the second flaw detection mode. As a result of the first determination, the second Based on the result of the determination and the result of the third determination, further includes a determination / evaluation unit that evaluates the presence or absence and direction of flaws,
The flaw detection system, wherein the display unit displays an evaluation result of the determination / evaluation unit.
対の磁極が検査対象物の表面に沿って離間配置される磁化器と、
前記磁化器の磁極間に前記検査対象物の表面に沿って配置される励磁コイル、第1検出コイル、及び第2検出コイルとを備え、
前記励磁コイルと前記第1検出コイルの並び方向に対して前記励磁コイルと前記第2検出コイルの並び方向が交差することを特徴とする探傷プローブ。
A magnetizer in which pairs of magnetic poles are spaced apart along the surface of the object to be inspected;
An excitation coil, a first detection coil, and a second detection coil arranged along the surface of the inspection object between the magnetic poles of the magnetizer;
The flaw detection probe according to claim 1, wherein the alignment direction of the excitation coil and the second detection coil intersects the alignment direction of the excitation coil and the first detection coil.
請求項5記載の探傷プローブにおいて、
前記検査対象物の表面に沿うような形状を有し、前記磁化器の磁極に着脱可能な磁性部材と、
前記励磁コイル、前記第1検出コイル、及び前記第2検出コイルで構成されたセンサ部を前記検査対象物に押し当てる支持機構とを備えたことを特徴とする探傷プローブ。
The flaw detection probe according to claim 5,
A magnetic member having a shape along the surface of the inspection object, and removable from the magnetic pole of the magnetizer;
A flaw detection probe comprising: a support mechanism that presses a sensor unit configured by the excitation coil, the first detection coil, and the second detection coil against the inspection object.
JP2014072787A 2014-03-31 2014-03-31 Flaw detection method and flaw detection system Active JP6209119B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072787A JP6209119B2 (en) 2014-03-31 2014-03-31 Flaw detection method and flaw detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072787A JP6209119B2 (en) 2014-03-31 2014-03-31 Flaw detection method and flaw detection system

Publications (3)

Publication Number Publication Date
JP2015194420A true JP2015194420A (en) 2015-11-05
JP2015194420A5 JP2015194420A5 (en) 2016-09-23
JP6209119B2 JP6209119B2 (en) 2017-10-04

Family

ID=54433578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072787A Active JP6209119B2 (en) 2014-03-31 2014-03-31 Flaw detection method and flaw detection system

Country Status (1)

Country Link
JP (1) JP6209119B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353397A (en) * 2016-09-06 2017-01-25 中国铁道科学研究院 Vehicular magnetic flux leakage detecting equipment and system for steel rail surface damage
JP2018066671A (en) * 2016-10-20 2018-04-26 日立Geニュークリア・エナジー株式会社 Eddy current flaw detection system and eddy current flaw detection method
JP2018071983A (en) * 2016-10-24 2018-05-10 国立大学法人 岡山大学 Magnetic nondestructive inspection method and magnetic nondestructive inspection device
CN108469514A (en) * 2018-06-07 2018-08-31 青岛理工大学 Monitoring equipment and method for corrosion behavior of steel bar in concrete

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144456A (en) * 1981-03-02 1982-09-07 Hitachi Ltd Non-destructive inspecting device
JPH06294776A (en) * 1993-04-08 1994-10-21 Railway Technical Res Inst Detecting device for break of strand of stranded wire
JPH11237368A (en) * 1998-02-24 1999-08-31 Toshiba Corp Magnetization device, ultraviolet irradiation device, detecting-liquid spraying device, and magnetic particle detecting and inspection apparatus
JP2005156184A (en) * 2003-11-20 2005-06-16 Toshiba Corp Eddy current flaw detector for bent pipe, and eddy current flaw detecting method
JP2009019909A (en) * 2007-07-10 2009-01-29 Hitachi Ltd Method and device for discriminating defect
US20120306483A1 (en) * 2009-11-16 2012-12-06 Innospection Group Limited Electromagnet inspection apparatus and method
JP2013170910A (en) * 2012-02-20 2013-09-02 Toa Nondestructive Inspection Co Ltd Carburization depth measuring method and device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57144456A (en) * 1981-03-02 1982-09-07 Hitachi Ltd Non-destructive inspecting device
JPH06294776A (en) * 1993-04-08 1994-10-21 Railway Technical Res Inst Detecting device for break of strand of stranded wire
JPH11237368A (en) * 1998-02-24 1999-08-31 Toshiba Corp Magnetization device, ultraviolet irradiation device, detecting-liquid spraying device, and magnetic particle detecting and inspection apparatus
JP2005156184A (en) * 2003-11-20 2005-06-16 Toshiba Corp Eddy current flaw detector for bent pipe, and eddy current flaw detecting method
JP2009019909A (en) * 2007-07-10 2009-01-29 Hitachi Ltd Method and device for discriminating defect
US20120306483A1 (en) * 2009-11-16 2012-12-06 Innospection Group Limited Electromagnet inspection apparatus and method
JP2013170910A (en) * 2012-02-20 2013-09-02 Toa Nondestructive Inspection Co Ltd Carburization depth measuring method and device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106353397A (en) * 2016-09-06 2017-01-25 中国铁道科学研究院 Vehicular magnetic flux leakage detecting equipment and system for steel rail surface damage
CN106353397B (en) * 2016-09-06 2023-12-01 中国铁道科学研究院集团有限公司 Device and system for detecting magnetic leakage of damage on top surface of vehicle-mounted steel rail
JP2018066671A (en) * 2016-10-20 2018-04-26 日立Geニュークリア・エナジー株式会社 Eddy current flaw detection system and eddy current flaw detection method
JP2018071983A (en) * 2016-10-24 2018-05-10 国立大学法人 岡山大学 Magnetic nondestructive inspection method and magnetic nondestructive inspection device
CN108469514A (en) * 2018-06-07 2018-08-31 青岛理工大学 Monitoring equipment and method for corrosion behavior of steel bar in concrete

Also Published As

Publication number Publication date
JP6209119B2 (en) 2017-10-04

Similar Documents

Publication Publication Date Title
JP6060278B2 (en) Apparatus and method for detecting internal defects in steel sheet
JP5269564B2 (en) Tubular Defect Evaluation Method and Tubular Defect Evaluation Apparatus
JP6209119B2 (en) Flaw detection method and flaw detection system
CN102759567A (en) Eddy current testing recognition and evaluation method for defects of inner wall and outer wall of steel pipe under direct current magnetization
JP2006177952A (en) Eddy current probe, inspecting system and inspecting method
Li et al. Weld cracks nondestructive testing based on magneto-optical imaging under alternating magnetic field excitation
JP2013205024A (en) Detector for non-destructive examination employing alternating field
JP5851783B2 (en) Eddy current testing probe
Aguila-Muñoz et al. A magnetic perturbation GMR-based probe for the nondestructive evaluation of surface cracks in ferromagnetic steels
JP2011047736A (en) Method of inspecting austenite-based stainless steel welding section
Cheng Nondestructive testing of back-side local wall-thinning by means of low strength magnetization and highly sensitive magneto-impedance sensors
JP2012093095A (en) Nondestructive inspection system, and nondestructive inspection method
JP2014202483A (en) Inspection equipment and inspection method
JP2013130452A (en) Nondestructive inspection method and nondestructive inspection device
JP6334267B2 (en) Eddy current flaw detection apparatus and method
CN105874329B (en) Detect the device and method of the defect of steel plate
JP6550873B2 (en) Eddy current flaw detection method
JP2017009549A (en) Non destructive testing device
JP2016161562A (en) Eddy current inspection device and eddy current inspection method
KR102283396B1 (en) Sensor Probe tesing System for Eddy Current Nondestructive Testing
Blanco et al. Simulation for magnetic flux leakage signal interpretation: A FE-approach to support in-line magnetic pipeline pigging
JP5611863B2 (en) Eddy current flaw detector, method, and program
JP2014066688A (en) Eddy current flaw detection probe, and eddy current flaw detection device
Göktepe Investigation of Bx and By components of the magnetic flux leakage in ferromagnetic laminated sample
JP6170005B2 (en) Eddy current flaw detection method and eddy current flaw detection apparatus

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160727

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170908

R150 Certificate of patent or registration of utility model

Ref document number: 6209119

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150