JP2013130452A - Nondestructive inspection method and nondestructive inspection device - Google Patents

Nondestructive inspection method and nondestructive inspection device Download PDF

Info

Publication number
JP2013130452A
JP2013130452A JP2011279566A JP2011279566A JP2013130452A JP 2013130452 A JP2013130452 A JP 2013130452A JP 2011279566 A JP2011279566 A JP 2011279566A JP 2011279566 A JP2011279566 A JP 2011279566A JP 2013130452 A JP2013130452 A JP 2013130452A
Authority
JP
Japan
Prior art keywords
reinforcing bar
concrete body
magnetic flux
magnet
reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011279566A
Other languages
Japanese (ja)
Other versions
JP5946638B2 (en
Inventor
Makoto Hirose
誠 廣瀬
Tatsuki Maeda
龍己 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shikoku Research Institute Inc
Original Assignee
Shikoku Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shikoku Research Institute Inc filed Critical Shikoku Research Institute Inc
Priority to JP2011279566A priority Critical patent/JP5946638B2/en
Publication of JP2013130452A publication Critical patent/JP2013130452A/en
Application granted granted Critical
Publication of JP5946638B2 publication Critical patent/JP5946638B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nondestructive inspection method and a nondestructive inspection device capable of detecting a break of a reinforcing-bar inside of concrete even if covering of concrete is superficial.SOLUTION: According to a nondestructive inspection method for detecting whether a reinforcing-bar 2 is broken or not by magnetizing the reinforcing-bar 2 in a concrete body 1 from a surface 1A by means of a magnet 5 and then measuring a magnetic flux density on the surface 1A of that concrete body 1, the magnet 5 is moved from right above the reinforcing-bar 2 along a length direction of the reinforcing-bar 2, the reinforcing-bar 2 is magnetized along the length direction and thereafter, the reinforcing-bar 2 is magnetized again along the length direction by moving the magnet 5 at a surface position of the concrete body 1 on a neighboring reinforcing-bar 2 along the length direction of the reinforcing bar 2A. A magnetic sensor is then moved along the length direction of the reinforcing-bar 2 on the surface of the concrete body 1, and a magnetic flux density on the surface 1A of the concrete body 1 is measured, thereby detecting whether or not the reinforcing-bar 2 is broken.

Description

この発明は、例えば橋脚などのコンクリート体内に設けられている鉄筋の破断の有無を検出する非破壊検査方法と非破壊検査装置とに関する。   The present invention relates to a nondestructive inspection method and a nondestructive inspection device for detecting the presence or absence of breakage of a reinforcing bar provided in a concrete body such as a pier.

従来から、コンクリート内の鉄筋の欠陥を検出する非破壊検査方法が知られている(特許文献1参照)。   Conventionally, a nondestructive inspection method for detecting defects of reinforcing bars in concrete has been known (see Patent Document 1).

かかる非破壊検査方法は、コンクリートに埋設された鉄筋の長手方向に沿ってコンクリートの表面を永久磁石を移動させることにより、鉄筋を長手方向に沿って磁化させ、コンクリートの表面から漏れる垂直方向の磁束密度成分の分布から鉄筋の破断の有無を判断するものである。   Such a non-destructive inspection method is a method in which a permanent magnet is moved along the surface of the concrete along the longitudinal direction of the reinforcing bar embedded in the concrete, thereby magnetizing the reinforcing bar along the longitudinal direction and leaking the vertical magnetic flux from the surface of the concrete. The presence / absence of breakage of the reinforcing bars is determined from the distribution of density components.

特許第3734822号Japanese Patent No. 3734822

しかしながら、このような非破壊検査方法にあっては、残留磁気の影響を受けないようにするために、飽和磁化に近い大きな磁化を鉄筋に与える必要があり、強力な磁力の永久磁石を用いている。このため、コンクリートの被りが浅い場合、永久磁石が鉄筋に近づき過ぎることになり、このような場合、永久磁石の影響により、所望の長手方向と逆方向の磁束まで大きくなってしまい、この結果、鉄筋内に長手方向に沿って一様な磁束が発生せず、破断の検出が困難になるという問題があった。   However, in such a non-destructive inspection method, in order not to be affected by residual magnetism, it is necessary to give the rebar a large magnetization close to the saturation magnetization, and use a permanent magnet with a strong magnetic force. Yes. For this reason, when the concrete cover is shallow, the permanent magnet will be too close to the reinforcing bar, and in such a case, the magnetic flux in the direction opposite to the desired longitudinal direction will increase due to the influence of the permanent magnet. There is a problem in that a uniform magnetic flux is not generated along the longitudinal direction in the reinforcing bar, and it is difficult to detect a break.

この発明の目的は、コンクリートの被りが浅い場合であっても、コンクリート内の鉄筋の破断を確実に検出することのできる非破壊検査方法と非破壊検査装置を提供することにある。   An object of the present invention is to provide a nondestructive inspection method and a nondestructive inspection apparatus capable of reliably detecting the breakage of reinforcing bars in concrete even when the concrete cover is shallow.

請求項1の発明は、 コンクリート体内に設けられた鉄筋を磁石によって磁化し、この後そのコンクリート体の表面上の磁束密度を測定することによって前記鉄筋の破断の有無を検出する非破壊検査方法であって、
前記磁石を前記鉄筋の長手方向に沿って前記コンクリート体の表面上を移動させて該鉄筋を長手方向に沿って磁化させ、
この後、鉄筋を磁化させた位置から一定距離離れた位置で前記磁石を鉄筋の長手方向に沿って移動させることにより該鉄筋を再度長手方向に沿って磁化させ、
この後、前記コンクリート体の表面の磁束密度を測定することにより前記鉄筋の破断の有無を検出することを特徴とする。
The invention of claim 1 is a nondestructive inspection method for detecting the presence or absence of breakage of the reinforcing bar by magnetizing a reinforcing bar provided in the concrete body with a magnet and then measuring the magnetic flux density on the surface of the concrete body. There,
Moving the magnet on the surface of the concrete body along the longitudinal direction of the reinforcing bar to magnetize the reinforcing bar along the longitudinal direction;
After that, the rebar is magnetized along the longitudinal direction again by moving the magnet along the longitudinal direction of the rebar at a position away from the position where the rebar is magnetized,
Thereafter, the presence or absence of breakage of the reinforcing bars is detected by measuring the magnetic flux density on the surface of the concrete body.

この発明によれば、コンクリートの被りが浅くても、コンクリート内の鉄筋の破断を確実に検出することができる。   According to this invention, even if the concrete cover is shallow, the breakage of the reinforcing bars in the concrete can be reliably detected.

この発明に係る非破壊検査装置の構成を示したブロック図である。It is the block diagram which showed the structure of the nondestructive inspection apparatus which concerns on this invention. コンクリート体に埋設されている鉄筋と、この鉄筋を真上から磁化させる磁石との位置関係を示した説明図である。It is explanatory drawing which showed the positional relationship of the reinforcing bar embed | buried in a concrete body, and the magnet which magnetizes this reinforcing bar from right above. 図2の平面図である。FIG. 3 is a plan view of FIG. 2. 鉄筋を真上から磁化させている途中の磁力線を示した説明図である。It is explanatory drawing which showed the magnetic force line in the middle of magnetizing a reinforcing bar from right above. 鉄筋を真上から磁化させた後の磁力線を示した説明図である。It is explanatory drawing which showed the magnetic field line after magnetizing a reinforcing bar from right above. 鉄筋に破断がある場合のコンクリート体の表面の垂直方向の磁束密度とその位置との関係を示したグラフである。It is the graph which showed the relationship between the magnetic flux density of the perpendicular direction of the surface of a concrete body, and the position when there is a fracture in a reinforcing bar. 鉄筋に破断がない場合のコンクリート体の表面の垂直方向の磁束密度とその位置との関係を示したグラフである。It is the graph which showed the relationship between the magnetic flux density of the perpendicular direction of the surface of a concrete body when there is no fracture in a reinforcing bar, and its position. 鉄筋を真上から磁化させ後、隣の鉄筋の真上の位置から検査する鉄筋を磁化させる状態を示す説明図である。It is explanatory drawing which shows the state which magnetizes the reinforcing bar examined from the position right above the adjacent reinforcing bar after magnetizing the reinforcing bar from right above. 図7の平面図である。FIG. 8 is a plan view of FIG. 7. 鉄筋に破断がある場合の図7に示す磁化の状態における磁力線を示した説明図である。It is explanatory drawing which showed the magnetic force line in the state of the magnetization shown in FIG. 7 when there exists a fracture | rupture in a reinforcing bar. 図9の平面図である。FIG. 10 is a plan view of FIG. 9. 鉄筋に破断がない場合の整磁を行わなかったときの磁力線を示した平面図である。It is the top view which showed the magnetic force line when not performing magnetizing when there is no fracture in a reinforcing bar. 鉄筋に破断がない場合の整磁を行ったときの磁力線を示した平面図である。It is the top view which showed the line of magnetic force when performing magnetism when there is no fracture in a reinforcing bar. 鉄筋の位置が分からない場合の鉄筋の磁化の方法を示した説明図である。It is explanatory drawing which showed the method of magnetization of the reinforcing bar when the position of the reinforcing bar is not known. 図13の平面図である。FIG. 14 is a plan view of FIG. 13. 鉄筋の位置が分からない場合の測定法を示した説明図である。It is explanatory drawing which showed the measuring method when the position of a reinforcing bar is not known. 磁気検知部を鉄筋の長手方向に走査して検査する方法を示した説明図である。It is explanatory drawing which showed the method to scan and inspect the magnetic detection part to the longitudinal direction of a reinforcing bar. 磁気検知部の他の走査方法を示した説明図である。It is explanatory drawing which showed the other scanning method of the magnetic detection part. 第2実施例の非破壊検査装置の構成を示したブロック図である。It is the block diagram which showed the structure of the nondestructive inspection apparatus of 2nd Example. 第3実施例の非破壊検査装置の構成を示したブロック図である。It is the block diagram which showed the structure of the nondestructive inspection apparatus of 3rd Example. 鉄筋の磁化の他の例の方法を示した説明図である。It is explanatory drawing which showed the method of the other example of the magnetization of a reinforcing bar. 図20の平面図である。It is a top view of FIG.

以下、この発明に係る非破壊検査方法と非破壊検査装置の実施の形態である実施例を図面に基づいて説明する。   Hereinafter, an embodiment as an embodiment of a nondestructive inspection method and a nondestructive inspection apparatus according to the present invention will be described with reference to the drawings.

[第1実施例]
図1において、1はコンクリート体であり、このコンクリート体1内には主鉄筋(鉄筋)2が複数並設されている。
[非破壊検査方法]
図2及び図3に示すように、検査対象である鉄筋2の真上のコンクリート体1の表面1A上の位置P1に磁石5を置く。磁石5は、例えばNd系のような希土類金属からなる永久磁石であるが電磁石であってもよい。また、磁石5の一端(図3において左端)がS極であり、他端(右端)がN極となっている。
[First embodiment]
In FIG. 1, 1 is a concrete body, and a plurality of main reinforcing bars (rebars) 2 are arranged in parallel in the concrete body 1.
[Non-destructive inspection method]
As shown in FIGS. 2 and 3, the magnet 5 is placed at a position P1 on the surface 1A of the concrete body 1 just above the reinforcing bar 2 to be inspected. The magnet 5 is a permanent magnet made of a rare earth metal such as Nd, but may be an electromagnet. Further, one end (left end in FIG. 3) of the magnet 5 is an S pole, and the other end (right end) is an N pole.

この磁石5を例えば図3に示す左側から右方向に鉄筋2に沿って移動させていき、鉄筋2を長手方向に沿って磁化させる。つまり、鉄筋2が破断する位置の前後で鉄筋2を長手方向に沿って磁化させる。この場合の磁極の向きは上記と逆であってもよい。   For example, the magnet 5 is moved from the left side to the right side in FIG. 3 along the rebar 2 to magnetize the rebar 2 along the longitudinal direction. That is, the reinforcing bar 2 is magnetized along the longitudinal direction before and after the position where the reinforcing bar 2 breaks. In this case, the direction of the magnetic pole may be opposite to the above.

いま、例えば図4に示すように、鉄筋2の途中に磁石5が位置しているとき、この磁石5と鉄筋2との離間距離が小さい場合、鉄筋2内には磁石5に近い位置(図4において右側)では左方向に向かう磁束E1が発生するとともに、磁石5から遠くなる位置(図4において左側)では、磁力の強力な磁石5の影響を受けて磁束E1の向きと反対方向である右方向の磁束E2(|E1|>|E2|)が発生する。このため、着磁後(磁石5の撤去後)には、図5に示すように、鉄筋2の右側部分では左向きの磁束E1′が発生するが左側部分では磁束E1′より小さい左向きの磁束E3が発生する。   For example, as shown in FIG. 4, when the magnet 5 is positioned in the middle of the reinforcing bar 2, if the separation distance between the magnet 5 and the reinforcing bar 2 is small, a position close to the magnet 5 in the reinforcing bar 2 (see FIG. 4). 4 on the right side), a magnetic flux E1 is generated in the left direction, and at a position far from the magnet 5 (on the left side in FIG. 4), the direction is opposite to the direction of the magnetic flux E1 due to the influence of the magnet 5 having a strong magnetic force. A magnetic flux E2 (| E1 |> | E2 |) in the right direction is generated. For this reason, after magnetization (after removal of the magnet 5), as shown in FIG. 5, a leftward magnetic flux E1 'is generated in the right portion of the reinforcing bar 2, but a leftward magnetic flux E3 smaller than the magnetic flux E1' in the left portion. Occurs.

この状態で、コンクリート体1の表面1Aの垂直方向の磁束密度を測定すると、図6及び図6Aに示すグラフG1,G2となる。このグラフG1は鉄筋2に破断Hがある場合のグラフであり、グラフG2は鉄筋2に破断Hがない場合のグラフである。なお、グラフG1,G2とも鉄筋2を覆うコンクリート体1の被りの厚さが100mmの場合を示す。   When the magnetic flux density in the vertical direction of the surface 1A of the concrete body 1 is measured in this state, graphs G1 and G2 shown in FIGS. 6 and 6A are obtained. This graph G1 is a graph when the reinforcing bar 2 has a fracture H, and the graph G2 is a graph when the reinforcing bar 2 does not have a fracture H. In addition, both graph G1, G2 shows the case where the thickness of the covering of the concrete body 1 covering the reinforcing bar 2 is 100 mm.

図6のグラフG1から分かるように、破断Hを挟む両側にピークPa1,Pa2が発生するが、鉄筋2に破断Hがない場合でも、図6AのグラフG2に示すようにピークPb1,Pb2らしきものが発生する。このため、鉄筋2の破断Hの有無を明確に判断できない場合がある。これは、磁石5によって鉄筋2を磁化する際に磁束E2(図4参照)が発生するためである。   As can be seen from the graph G1 in FIG. 6, peaks Pa1 and Pa2 occur on both sides of the fracture H, but even when the reinforcing bar 2 does not have the fracture H, the peaks Pb1 and Pb2 are likely to appear as shown in the graph G2 in FIG. 6A. Occurs. For this reason, the presence or absence of the fracture H of the reinforcing bar 2 may not be clearly determined. This is because magnetic flux E <b> 2 (see FIG. 4) is generated when the reinforcing bar 2 is magnetized by the magnet 5.

この磁束E2の発生を解消するために、図7及び図8に示すように、検査対象の鉄筋2の隣りに並設された鉄筋2Aの真上のコンクリート体1の表面1A上の位置P2に磁石5を置く。そして、この磁石5を図8に示す左側位置から右方向へ移動させていき、鉄筋2を長手方向に沿って再度磁化(整磁)させる。この場合、磁石5の磁極の向きは図3の場合と同じにする。   In order to eliminate the generation of the magnetic flux E2, as shown in FIG. 7 and FIG. 8, at a position P2 on the surface 1A of the concrete body 1 just above the reinforcing bar 2A arranged next to the reinforcing bar 2 to be inspected. Place the magnet 5. Then, the magnet 5 is moved in the right direction from the left position shown in FIG. 8, and the rebar 2 is magnetized (magnetized) again along the longitudinal direction. In this case, the direction of the magnetic pole of the magnet 5 is the same as that in FIG.

鉄筋2Aの途中に磁石5が位置しているとき、この磁石5と鉄筋2との離間距離が大きいので、図9に示すように、鉄筋2内には同方向の磁束E4,E5(E1>E4,E5)が発生する。すなわち、鉄筋2のコンクリート体1の被りが浅くても鉄筋2の長手方向にほぼ一様な大きさの磁束を発生させることができる。   When the magnet 5 is located in the middle of the reinforcing bar 2A, the separation distance between the magnet 5 and the reinforcing bar 2 is large, so that magnetic fluxes E4 and E5 (E1> in the same direction are placed in the reinforcing bar 2 as shown in FIG. E4, E5) occurs. That is, even if the covering of the concrete body 1 of the reinforcing bar 2 is shallow, a magnetic flux having a substantially uniform size can be generated in the longitudinal direction of the reinforcing bar 2.

このため、鉄筋2Aの着磁後(磁石5を取り除いた後)、鉄筋2には、破断Hがない場合、図12に示すように等間隔の磁界が発生する。なお、整磁を行わなかった場合には、図11に示すような磁力線が発生する。   For this reason, after the rebar 2A is magnetized (after the magnet 5 is removed), if there is no break H in the rebar 2, a magnetic field at equal intervals is generated as shown in FIG. 12. In addition, when the magnetic field is not performed, the lines of magnetic force as shown in FIG. 11 are generated.

鉄筋2に破断Hがある場合、図10に示すように、破断Hを囲む磁界の閉曲線Jが形成される。この状態で、コンクリート体1の表面1Aの垂直方向の磁束密度を測定すると、図6に示すグラフG3となる。   When the reinforcing bar 2 has a fracture H, a closed curve J of a magnetic field surrounding the fracture H is formed as shown in FIG. When the magnetic flux density in the vertical direction of the surface 1A of the concrete body 1 is measured in this state, a graph G3 shown in FIG. 6 is obtained.

このグラフG3から分かるように、破断Hの部分でグラフG3の傾きがプラスに大きく傾くことになる。   As can be seen from this graph G3, the slope of the graph G3 is greatly increased in the portion of the break H.

鉄筋2に破断Hがない場合、図2及び図3に示すように鉄筋2を磁化させた後に図7及び図8に示すように鉄筋2を再度磁化させたときの磁束密度のグラフG4を図6Aに示す。   When there is no break H in the reinforcing bar 2, a magnetic flux density graph G4 when the reinforcing bar 2 is magnetized again as shown in FIGS. 7 and 8 after the reinforcing bar 2 is magnetized as shown in FIGS. Shown in 6A.

上述のように、図6Aに示すように鉄筋2に破断Hがない場合、グラフG4の傾きはほぼ一定となり、明らかに、破断Hがある場合の図6のグラフG3と異なる。このため、コンクリートの被りが浅くても、コンクリート体1内の鉄筋2の破断Hを確実に検出することが可能となる。   As described above, when the reinforcing bar 2 has no break H as shown in FIG. 6A, the slope of the graph G4 is substantially constant, and clearly differs from the graph G3 of FIG. For this reason, even if the concrete cover is shallow, it is possible to reliably detect the fracture H of the reinforcing bar 2 in the concrete body 1.

図1に示す20は主鉄筋2の破断Hを検出する非破壊検査装置である。
[非破壊検査装置]
非破壊検査装置20は、Z方向(コンクリート体1の表面1Aと直交する方向)の磁気を検出する磁気センサ10を有する磁気検知部11と、磁気センサ10が検出する検出信号からコンクリート体1の表面1Aに垂直方向の磁束密度を演算して求めるとともに、この求めた磁束密度のグラフを生成する演算部21と、この演算部21が生成した磁束密度のグラフを表示する表示部22と、磁気検知部11の移動距離を求める距離センサ30と、演算部21が求めた磁束密度と距離センサ30が求めた距離とを記憶するメモリ23とを備えている。距離センサ30は磁気検知部11に組み込まれている。
Reference numeral 20 shown in FIG. 1 is a nondestructive inspection device that detects a break H of the main reinforcing bar 2.
[Non-destructive inspection equipment]
The nondestructive inspection device 20 includes a magnetic detection unit 11 having a magnetic sensor 10 that detects magnetism in the Z direction (a direction orthogonal to the surface 1A of the concrete body 1), and a detection signal detected by the magnetic sensor 10 to detect the concrete body 1. The magnetic flux density in the direction perpendicular to the surface 1A is calculated and calculated, the calculation unit 21 generates a graph of the calculated magnetic flux density, the display unit 22 displays the magnetic flux density graph generated by the calculation unit 21, and the magnetic A distance sensor 30 for obtaining the moving distance of the detection unit 11 and a memory 23 for storing the magnetic flux density obtained by the calculation unit 21 and the distance obtained by the distance sensor 30 are provided. The distance sensor 30 is incorporated in the magnetic detection unit 11.

磁気センサ10は、高感度の例えばMIセンサまたはフラックスゲート型センサまたはホール素子や超伝導量子干渉素子などである。
[測定方法]
次に、非破壊検査装置20を用いて鉄筋の破断を検査する検査方法について説明する。
The magnetic sensor 10 is a highly sensitive, for example, MI sensor, fluxgate sensor, Hall element, superconducting quantum interference element, or the like.
[Measuring method]
Next, an inspection method for inspecting the breakage of the reinforcing bars using the nondestructive inspection apparatus 20 will be described.

鉄筋2の位置が分かっている場合には、先ず、図2及び図3に示すように、検査を行う鉄筋2の真上のコンクリート体1の上面位置P1に磁石5を置き、この磁石5を鉄筋2の長手方向に沿って移動させていき、鉄筋2を長手方向に沿って飽和磁化に近い状態で磁化させる。この飽和磁化に近い状態の磁化により、検査前の鉄筋2の残留磁場の影響をなくすものである。   When the position of the reinforcing bar 2 is known, first, as shown in FIGS. 2 and 3, the magnet 5 is placed on the upper surface position P1 of the concrete body 1 just above the reinforcing bar 2 to be inspected. The rebar 2 is moved along the longitudinal direction, and the rebar 2 is magnetized in a state close to saturation magnetization along the longitudinal direction. This magnetization close to the saturation magnetization eliminates the influence of the residual magnetic field of the rebar 2 before the inspection.

次に、図7及び図8に示すように、検査を行う鉄筋2の隣の鉄筋2Aの真上のコンクリート体1の上面位置P2に磁石5を置き、上記と同様にしてこの磁石5を鉄筋2Aの長手方向に沿って移動させていき、鉄筋2を長手方向に沿って磁化(整磁)させる。   Next, as shown in FIGS. 7 and 8, a magnet 5 is placed on the upper surface position P2 of the concrete body 1 immediately above the reinforcing bar 2A adjacent to the reinforcing bar 2 to be inspected, and the magnet 5 is placed in the same manner as described above. The rebar 2 is moved along the longitudinal direction of 2A, and the rebar 2 is magnetized (magnetized) along the longitudinal direction.

この磁化の後、図1に示すように、非破壊検査装置20の磁気検知部11を鉄筋2に沿ってコンクリート体1の表面1A上を移動させていく。   After this magnetization, as shown in FIG. 1, the magnetic detection unit 11 of the nondestructive inspection apparatus 20 is moved along the rebar 2 on the surface 1 </ b> A of the concrete body 1.

この磁気検知部11の移動によって、距離センサ30によりコンクリート体1の表面1AのX方向の移動位置が求められていく。また、磁気センサ10が検出する磁気により各位置における磁束密度(表面1Aと直交する磁束密度:Z方向の磁束密度)が演算部21によって求められていく。   By the movement of the magnetic detection unit 11, the movement position in the X direction of the surface 1 </ b> A of the concrete body 1 is obtained by the distance sensor 30. Further, the magnetic flux detected at each position (magnetic flux density orthogonal to the surface 1A: magnetic flux density in the Z direction) is obtained by the calculation unit 21 by the magnetism detected by the magnetic sensor 10.

メモリ23には、距離センサ30が求めた移動位置と、この移動位置に対応して演算部21が求めた磁束密度が記憶されていく。   The memory 23 stores the movement position obtained by the distance sensor 30 and the magnetic flux density obtained by the calculation unit 21 corresponding to the movement position.

表示部22には、メモリ23に記憶された磁束密度と移動位置とに基づいて図6に示すグラフG3または図6Aに示すグラフG4が表示される。   The display unit 22 displays the graph G3 shown in FIG. 6 or the graph G4 shown in FIG. 6A based on the magnetic flux density and the movement position stored in the memory 23.

このグラフは、メモリ23に記憶されたデータに基づいて演算部21が生成し、表示部22に表示させるものである。演算部21は、演算した磁束密度と距離センサ30が求めた移動位置とからグラフを生成するグラフ生成手段の機能を有する。   This graph is generated by the calculation unit 21 based on the data stored in the memory 23 and displayed on the display unit 22. The calculation unit 21 has a function of a graph generation unit that generates a graph from the calculated magnetic flux density and the movement position obtained by the distance sensor 30.

表示部22に図6に示されるグラフG3が表示されれば、鉄筋2に破断Hが有りと判断することができ、図6AのグラフG4が表示されれば、鉄筋2に破断Hがなしと判断することができる。   If the graph G3 shown in FIG. 6 is displayed on the display unit 22, it can be determined that the reinforcing bar 2 has a fracture H, and if the graph G4 in FIG. 6A is displayed, the reinforcing bar 2 has no fracture H. Judgment can be made.

上記実施例では、鉄筋2を長手方向に沿って磁化させた後、鉄筋2の隣の鉄筋2Aの真上のコンクリート体1の上面位置P2に磁石5を置き、この磁石5を鉄筋2Aの長手方向に沿って移動させて鉄筋2を長手方向に沿って磁化させるが、例えば、鉄筋2を長手方向に沿って磁化させた後、図20に示すように、鉄筋2の真上のコンクリート体1の上面位置P1から上方へ所定距離だけ離れた位置に置き、この位置から図21に示す鉄筋2の長手方向に沿って移動させて、鉄筋2を再度長手方向に磁化させてもよい。   In the above embodiment, after magnetizing the reinforcing bar 2 along the longitudinal direction, the magnet 5 is placed on the upper surface position P2 of the concrete body 1 immediately above the reinforcing bar 2A adjacent to the reinforcing bar 2, and this magnet 5 is placed in the longitudinal direction of the reinforcing bar 2A. The reinforcing bar 2 is magnetized along the longitudinal direction by moving it along the direction. For example, after the reinforcing bar 2 is magnetized along the longitudinal direction, the concrete body 1 directly above the reinforcing bar 2 as shown in FIG. It may be placed at a position away from the upper surface position P1 by a predetermined distance and moved from this position along the longitudinal direction of the reinforcing bar 2 shown in FIG. 21 to magnetize the reinforcing bar 2 in the longitudinal direction again.

つまり、鉄筋2の2回目の磁化の際には、鉄筋2から所定距離離間させて鉄筋2を飽和磁化させない位置から長手方向に沿って磁化させることができれば、どのような位置であってもよい。すなわち、上面位置P1から所定距離離間した位置であればよい。
[鉄筋の位置が分からない場合の測定方法]
次に、鉄筋2の位置が分からない場合の測定方法について説明する。
That is, when the rebar 2 is magnetized for the second time, any position may be used as long as the rebar 2 can be magnetized along the longitudinal direction from a position where the rebar 2 is separated from the rebar 2 by a predetermined distance and does not cause saturation magnetization. . That is, the position may be a position separated from the upper surface position P1 by a predetermined distance.
[Measurement method when the position of the reinforcing bar is unknown]
Next, a measurement method when the position of the reinforcing bar 2 is not known will be described.

図13及び図14に示すように、検査範囲の端部となるコンクリート体1の表面1Aの位置(実線の位置)に磁石5を置き、この磁石5を鉄筋2の長手方向に沿って移動させて鉄筋2を長手方向に沿って磁化させる。次に、実線の位置から所定距離離した位置(二点鎖線位置)に磁石5を置き、同様にして磁石5を鉄筋2の長手方向に沿って移動させて鉄筋2を長手方向に沿って磁化させる。これらの着磁作業を繰り返し行うことにより、磁石5が鉄筋2の真上近傍に位置(一点鎖線位置)した場合、鉄筋2を飽和磁化に近い状態で磁化させることができ、磁石5が破線の位置に位置した場合、鉄筋2を図7に示すように磁化(整磁)させることがでることになる。   As shown in FIGS. 13 and 14, a magnet 5 is placed at the position (solid line position) of the surface 1 </ b> A of the concrete body 1 that is the end of the inspection range, and the magnet 5 is moved along the longitudinal direction of the reinforcing bar 2. The rebar 2 is magnetized along the longitudinal direction. Next, the magnet 5 is placed at a position (two-dot chain line position) that is a predetermined distance away from the position of the solid line, and similarly, the magnet 5 is moved along the longitudinal direction of the reinforcing bar 2 to magnetize the reinforcing bar 2 along the longitudinal direction. Let By repeatedly performing these magnetizing operations, when the magnet 5 is positioned in the vicinity of the reinforcing bar 2 (dash-dotted line position), the reinforcing bar 2 can be magnetized in a state close to saturation magnetization. When positioned, the rebar 2 can be magnetized (magnetized) as shown in FIG.

そして、非破壊検査装置20の磁気検知部11を図15に示すように検査範囲の端部に置き、この磁気検知部11を鉄筋2の長手方向に沿って移動させて磁束密度を測定していく。この後、磁気検知部11を図15の鎖線位置に位置させるとともに鉄筋2の長手方向に沿って移動させて磁束密度を測定していく。   Then, the magnetic detection unit 11 of the nondestructive inspection apparatus 20 is placed at the end of the inspection range as shown in FIG. 15, and the magnetic detection unit 11 is moved along the longitudinal direction of the reinforcing bar 2 to measure the magnetic flux density. Go. Thereafter, the magnetic detector 11 is positioned at the chain line position in FIG. 15 and is moved along the longitudinal direction of the reinforcing bar 2 to measure the magnetic flux density.

これらの測定を繰り返し行う毎に磁気検知部11の位置を図15の右方向にずらしていくことにより、鉄筋2の真上の近傍に磁気検知部11を位置させることができ、図6及び図6AのグラフG3,G4に示すように磁束密度を測定することができる。このため、コンクリート1の被りが浅くても鉄筋2の破断Hを確実に検出することができる。   By shifting the position of the magnetic detection unit 11 to the right in FIG. 15 each time these measurements are repeated, the magnetic detection unit 11 can be positioned in the vicinity of the reinforcing bar 2. The magnetic flux density can be measured as shown in graphs G3 and G4 of 6A. For this reason, even if the covering of the concrete 1 is shallow, the fracture H of the reinforcing bar 2 can be reliably detected.

上記実施例は、いずれも磁気検知部11を鉄筋2の長手方向に移動させて磁束密度を測定しているが、図16に示すように、鉄筋2と直交する方向に上または下から磁気検知部11を走査して各位置における磁束密度を測定し、この各位置の測定結果から鉄筋2の長手方向に沿った磁束密度のグラフG3,G4(図6,6A参照)を求めて、鉄筋2の破断Hを検出するようにしてもよい。   In any of the above-described embodiments, the magnetic detection unit 11 is moved in the longitudinal direction of the reinforcing bar 2 to measure the magnetic flux density. However, as shown in FIG. The magnetic flux density at each position is measured by scanning the section 11, and graphs G3 and G4 (see FIGS. 6 and 6A) of the magnetic flux density along the longitudinal direction of the reinforcing bar 2 are obtained from the measurement results at the respective positions. The break H may be detected.

また、磁気検知部11の走査は、図17に示す矢印方向に走査してもよい。
[第2実施例]
図18は第2実施例の非破壊検査装置200の構成を示す。この非破壊検査装置200は、メモリ23に記憶されたグラフを微分する微分回路201と、この微分回路201が求めた微分値からグラフの傾きを予め設定した閾値以上であるから否かを判定して鉄筋2の破断Hを検出する傾き判定回路202と、この傾き判定回路202の判定結果とメモリ23に記憶されたグラフを表示する表示部203とを備えている。
[動 作]
次に、非破壊検査装置200の動作について説明する。
Further, the magnetic detection unit 11 may scan in the arrow direction shown in FIG.
[Second Embodiment]
FIG. 18 shows a configuration of a nondestructive inspection apparatus 200 according to the second embodiment. The nondestructive inspection apparatus 200 determines whether or not the gradient of the graph is greater than or equal to a preset threshold value from the differentiation circuit 201 for differentiating the graph stored in the memory 23 and the differential value obtained by the differentiation circuit 201. In addition, an inclination determination circuit 202 that detects a break H of the reinforcing bar 2 and a display unit 203 that displays a determination result of the inclination determination circuit 202 and a graph stored in the memory 23 are provided.
[Operation]
Next, the operation of the nondestructive inspection apparatus 200 will be described.

鉄筋2の位置が分かっている場合には、第1実施例と同様にして、図2及び図3に示すように検査を行う鉄筋2の真上の位置P1に磁石5を置き、この磁石5により鉄筋2を長手方向に沿って磁化させ、この後、図7及び図8に示すように、鉄筋2Aの真上のコンクリート体1の上面位置P2に磁石5を置き、鉄筋2を磁化させる。   When the position of the reinforcing bar 2 is known, the magnet 5 is placed at a position P1 directly above the reinforcing bar 2 to be inspected as shown in FIGS. Then, the reinforcing bar 2 is magnetized along the longitudinal direction, and thereafter, as shown in FIGS. 7 and 8, the magnet 5 is placed on the upper surface position P2 of the concrete body 1 just above the reinforcing bar 2A, and the reinforcing bar 2 is magnetized.

次に、非破壊検査装置200の磁気検知部11を鉄筋2に沿ってコンクリート体1の表面1A上を移動させていく。この移動により、第1実施例と同様にしてメモリ23には、距離センサ30が求めた移動位置と、この移動位置に対応して演算部21が求めた磁束密度が記憶されていく。また、演算部21は、メモリ23に記憶されたデータに基づいて図11または図12に示すグラフを作成するとともにメモリ23に記憶させる。   Next, the magnetic detection unit 11 of the nondestructive inspection apparatus 200 is moved on the surface 1 </ b> A of the concrete body 1 along the reinforcing bar 2. As a result of this movement, the memory 23 stores the movement position obtained by the distance sensor 30 and the magnetic flux density obtained by the calculation unit 21 corresponding to this movement position, as in the first embodiment. Further, the calculation unit 21 creates the graph shown in FIG. 11 or 12 based on the data stored in the memory 23 and stores it in the memory 23.

微分回路201はメモリ23に記憶されたグラフを微分し、この微分回路201が求めた微分値から各位置におけるグラフの傾きを求めていく。鉄筋2に破断Hがない場合、図6AのグラフG4に示すように傾きはほぼ一定となるが、鉄筋2に破断Hがある場合、図6のグラフG3に示すように、破断Hの付近(0mmの位置)でグラフG3の傾きがプラス方向に大きく傾く。   The differentiation circuit 201 differentiates the graph stored in the memory 23 and obtains the slope of the graph at each position from the differentiation value obtained by the differentiation circuit 201. When there is no break H in the reinforcing bar 2, the inclination is almost constant as shown in the graph G4 in FIG. 6A. However, when the reinforcing bar 2 has the break H, as shown in the graph G3 in FIG. The inclination of the graph G3 greatly increases in the plus direction at the 0 mm position).

傾き判定回路202は、閾値と比較してこのプラス方向の傾きを検出し、プラス方向の所定以上の傾きを検出した場合、破断Hがあると判定して表示部203に表示する。   The inclination determination circuit 202 detects the inclination in the positive direction as compared with the threshold value, and when detecting an inclination greater than a predetermined value in the positive direction, determines that there is a break H and displays it on the display unit 203.

鉄筋2の位置が分かっていない場合には、図13及び図14に示すように、鉄筋2を磁化させ、磁気検知部11を図15に示すように移動させて磁束密度を測定する。   When the position of the reinforcing bar 2 is not known, as shown in FIGS. 13 and 14, the reinforcing bar 2 is magnetized, and the magnetic detection unit 11 is moved as shown in FIG. 15 to measure the magnetic flux density.

また、磁気検知部11を図16または図17に示すように走査して各位置の磁束密度を求め、鉄筋2の長手方向に対する磁束密度のグラフG3,G4を求め、このグラフG3,G4から磁束密度の変化の傾きを求めて鉄筋2の破断Hの有無を判定してもよい。鉄筋2の位置が分かっている場合も同様にして鉄筋2の破断Hの有無を判定してもよい。
[第3実施例]
図19は第3実施例の非破壊検査装置300の構成を示す。この非破壊検査装置300は、互いにΔxだけ離間した一対の磁気センサ10A,10Bを有する磁気検知部310と、一対の磁気センサ10A,10Bが検出する磁束密度の差ΔBzを求める差分回路301と、差分回路301が求めた差ΔBzが閾値以上であるか否かを判定する傾き判定回路302と、求めた差ΔBzが閾値以上であるとき鉄筋2に破断Hがあることを表示する表示部22とを備えている。
Also, the magnetic detection unit 11 is scanned as shown in FIG. 16 or 17 to obtain the magnetic flux density at each position, and graphs G3 and G4 of the magnetic flux density with respect to the longitudinal direction of the reinforcing bar 2 are obtained. You may determine the presence or absence of the fracture | rupture H of the reinforcing bar 2 by calculating | requiring the inclination of a density change. Even when the position of the reinforcing bar 2 is known, the presence or absence of the fracture H of the reinforcing bar 2 may be similarly determined.
[Third embodiment]
FIG. 19 shows a configuration of a nondestructive inspection apparatus 300 according to the third embodiment. The nondestructive inspection apparatus 300 includes a magnetic detection unit 310 having a pair of magnetic sensors 10A and 10B spaced apart from each other by Δx, a difference circuit 301 for determining a difference ΔBz in magnetic flux density detected by the pair of magnetic sensors 10A and 10B, An inclination determination circuit 302 that determines whether or not the difference ΔBz obtained by the difference circuit 301 is equal to or greater than a threshold value, and a display unit 22 that displays that the reinforcing bar 2 has a fracture H when the obtained difference ΔBz is equal to or greater than the threshold value. It has.

一対の磁気センサ10A,10Bは、一定距離であるΔxだけ離間しているので、磁気センサ10A,10Bが検出する磁束密度Bz1,Bz2の差が鉄筋2の長手方向に対する磁束密度の変化の傾きを示すことになる。   Since the pair of magnetic sensors 10A and 10B are separated by a certain distance Δx, the difference between the magnetic flux densities Bz1 and Bz2 detected by the magnetic sensors 10A and 10B indicates the inclination of the change in the magnetic flux density with respect to the longitudinal direction of the reinforcing bar 2. Will show.

測定方法は、先ず、第1実施例と同様にして鉄筋2を磁化させる。この後、磁気センサ10A,10Bが鉄筋2の長手方向に沿って並ぶようにして、磁気検知部310をコンクリート体1の表面を移動させていく。   In the measurement method, first, the reinforcing bar 2 is magnetized in the same manner as in the first embodiment. Thereafter, the magnetic sensor 10 </ b> A, 10 </ b> B is moved along the longitudinal direction of the reinforcing bar 2 to move the magnetic detection unit 310 on the surface of the concrete body 1.

磁気検知部310の移動により、コンクリート体1の表面の各位置の磁束密度の変化が測定されることになり、その変化が閾値以上となると、鉄筋2に破断Hがあることが表示部22に表示される。   Changes in the magnetic flux density at each position on the surface of the concrete body 1 are measured by the movement of the magnetic detection unit 310. When the change exceeds a threshold value, it is indicated on the display unit 22 that the rebar 2 has a fracture H. Is displayed.

この第3実施例の非破壊検査装置300によれば、磁気センサ10A,10Bを鉄筋2の長手方向に沿って並んでいれば、磁気検知部310は鉄筋2の長手方向や直交する方向以外に斜め方向や円を描くように移動させてもよいので、破断の検査は大変し易いものとなる。   According to the nondestructive inspection apparatus 300 of the third embodiment, if the magnetic sensors 10A and 10B are arranged along the longitudinal direction of the reinforcing bar 2, the magnetic detection unit 310 can be used in a direction other than the longitudinal direction of the reinforcing bar 2 or a direction orthogonal thereto. Since it may be moved so as to draw an oblique direction or a circle, the inspection of breakage becomes very easy.

上記実施例はいずれも直線状に延びた鉄筋2の破断を検出する方法について説明したが、コンクリート体の角部で屈曲する鉄筋の屈曲部の破断を検出する場合にも、上記の整磁方法を適用することができる(屈曲部の破断検出方法は、特願2008−330287号に記載されているので、ここでは省略する)。   In the above embodiments, the method for detecting the breakage of the rebar 2 extending in a straight line has been described. However, the above-described magnetic shunting method can also be used for detecting the breakage of the bent portion of the rebar that bends at the corner of the concrete body. (The method for detecting the breakage of the bent portion is described in Japanese Patent Application No. 2008-330287, and is omitted here).

例えば、コンクリート体の角部の一方の表面と他方の表面から磁石によって鉄筋を磁化させ、この後、各面で上記のようにして整磁を行えばよい。   For example, the reinforcing bars may be magnetized by magnets from one surface and the other surface of the corners of the concrete body, and thereafter, magnetizing may be performed on each surface as described above.

この発明は、上記実施例に限られるものではなく、特許請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。   The present invention is not limited to the above-described embodiments, and design changes and additions are permitted without departing from the spirit of the invention according to each claim of the claims.

1 コンクリート体
1A 表面
2 鉄筋(診断対象の鉄筋)
2A 鉄筋(診断対象の隣りの鉄筋)
5 磁石
1 Concrete body 1A Surface 2 Reinforcing bar (reinforcing object)
2A Reinforcing bar (reinforcing bar next to the diagnosis object)
5 Magnet

Claims (3)

コンクリート体内に設けられた鉄筋を磁石によって磁化し、この後そのコンクリート体の表面上の磁束密度を測定することによって前記鉄筋の破断の有無を検出する非破壊検査方法であって、
前記磁石を前記鉄筋の長手方向に沿って前記コンクリート体の表面上を移動させて該鉄筋を長手方向に沿って磁化させ、
この後、鉄筋を磁化させた位置から一定距離離れた位置で前記磁石を鉄筋の長手方向に沿って移動させることにより該鉄筋を再度長手方向に沿って磁化させ、
この後、前記コンクリート体の表面の磁束密度を測定することにより前記鉄筋の破断の有無を検出することを特徴とする非破壊検査方法。
A non-destructive inspection method for detecting the presence or absence of breakage of the reinforcing bar by magnetizing a reinforcing bar provided in the concrete body with a magnet and then measuring the magnetic flux density on the surface of the concrete body,
Moving the magnet on the surface of the concrete body along the longitudinal direction of the reinforcing bar to magnetize the reinforcing bar along the longitudinal direction;
After that, the rebar is magnetized along the longitudinal direction again by moving the magnet along the longitudinal direction of the rebar at a position away from the position where the rebar is magnetized,
Then, the presence or absence of the fracture | rupture of the said reinforcing bar is detected by measuring the magnetic flux density of the surface of the said concrete body, The nondestructive inspection method characterized by the above-mentioned.
最初の鉄筋の磁化は、鉄筋の真上の位置から行い、
この後の磁化は、その鉄筋の隣りに並設された鉄筋の真上の位置から行うことを特徴とする請求項1に記載の非破壊検査方法。
The first rebar is magnetized from directly above the rebar,
The nondestructive inspection method according to claim 1, wherein the subsequent magnetization is performed from a position directly above a reinforcing bar arranged next to the reinforcing bar.
請求項1または請求項2に記載の方法で鉄筋を磁化させた後、前記コンクリート体の表面上を移動させる磁気センサと、
この磁気センサが検出する検出信号からコンクリート体の表面の垂直方向の磁束密度を求めていく演算手段と、
この演算手段が求めた磁束密度から前記鉄筋の長手方向に対する磁束密度の変化を求め、この変化の度合いに基づいて前記鉄筋の破断の有無を判定する破断判定手段とを備えたことを特徴とする非破壊検査装置。
A magnetic sensor that moves on the surface of the concrete body after magnetizing the reinforcing bar by the method according to claim 1 or 2,
An arithmetic means for obtaining the magnetic flux density in the vertical direction of the surface of the concrete body from the detection signal detected by the magnetic sensor;
A break determination means for obtaining a change in the magnetic flux density in the longitudinal direction of the reinforcing bar from the magnetic flux density obtained by the calculating means, and determining whether or not the reinforcing bar is broken based on the degree of the change; Nondestructive inspection equipment.
JP2011279566A 2011-12-21 2011-12-21 Nondestructive inspection method Active JP5946638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011279566A JP5946638B2 (en) 2011-12-21 2011-12-21 Nondestructive inspection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011279566A JP5946638B2 (en) 2011-12-21 2011-12-21 Nondestructive inspection method

Publications (2)

Publication Number Publication Date
JP2013130452A true JP2013130452A (en) 2013-07-04
JP5946638B2 JP5946638B2 (en) 2016-07-06

Family

ID=48908124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011279566A Active JP5946638B2 (en) 2011-12-21 2011-12-21 Nondestructive inspection method

Country Status (1)

Country Link
JP (1) JP5946638B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042975A (en) * 2013-07-23 2015-03-05 株式会社四国総合研究所 Nondestructive inspection method and nondestructive inspection device
JP2016024099A (en) * 2014-07-22 2016-02-08 株式会社四国総合研究所 Nondestructive inspection method
KR20160037602A (en) * 2014-09-29 2016-04-06 한국전력공사 Dignosis method and apparatus of steel bar cracking
JP2020012851A (en) * 2019-10-24 2020-01-23 株式会社島津製作所 Non-destructive inspection method
WO2020027043A1 (en) * 2018-08-01 2020-02-06 コニカミノルタ株式会社 Non-destructive inspection method, non-destructive inspection system, and non-destructive inspection program
JPWO2021039880A1 (en) * 2019-08-28 2021-03-04

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142453A (en) * 1980-04-09 1981-11-06 Nec Corp Magnetic single crystal defect inspecting method
JP2006177747A (en) * 2004-12-22 2006-07-06 Shikoku Res Inst Inc Nondestructive inspection method
JP2009026354A (en) * 2007-07-17 2009-02-05 Institute Of Physical & Chemical Research Magnetization state control device and magnetic information recording device
JP2010151626A (en) * 2008-12-25 2010-07-08 Shikoku Res Inst Inc Nondestructive inspection method and nondestructive inspection device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56142453A (en) * 1980-04-09 1981-11-06 Nec Corp Magnetic single crystal defect inspecting method
JP2006177747A (en) * 2004-12-22 2006-07-06 Shikoku Res Inst Inc Nondestructive inspection method
JP2009026354A (en) * 2007-07-17 2009-02-05 Institute Of Physical & Chemical Research Magnetization state control device and magnetic information recording device
JP2010151626A (en) * 2008-12-25 2010-07-08 Shikoku Res Inst Inc Nondestructive inspection method and nondestructive inspection device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6015035605; 寺澤広基他: '磁気法片面診断における鉄筋破断の新たな判断指標について' コンクリート工学年次論文集 Vol.33, No.1, 20110615, 1775-1780 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015042975A (en) * 2013-07-23 2015-03-05 株式会社四国総合研究所 Nondestructive inspection method and nondestructive inspection device
JP2016024099A (en) * 2014-07-22 2016-02-08 株式会社四国総合研究所 Nondestructive inspection method
KR20160037602A (en) * 2014-09-29 2016-04-06 한국전력공사 Dignosis method and apparatus of steel bar cracking
KR102302566B1 (en) * 2014-09-29 2021-09-16 한국전력공사 Dignosis method and apparatus of steel bar cracking
WO2020027043A1 (en) * 2018-08-01 2020-02-06 コニカミノルタ株式会社 Non-destructive inspection method, non-destructive inspection system, and non-destructive inspection program
JPWO2020027043A1 (en) * 2018-08-01 2021-08-02 コニカミノルタ株式会社 Non-destructive inspection method, non-destructive inspection system and non-destructive inspection program
JP7160098B2 (en) 2018-08-01 2022-10-25 コニカミノルタ株式会社 Nondestructive inspection method, nondestructive inspection system and nondestructive inspection program
JPWO2021039880A1 (en) * 2019-08-28 2021-03-04
WO2021039880A1 (en) * 2019-08-28 2021-03-04 コニカミノルタ株式会社 Information processing system for nondestructive inspection and nondestructive inspection method
JP7351341B2 (en) 2019-08-28 2023-09-27 コニカミノルタ株式会社 Non-destructive testing information processing system and non-destructive testing method
JP2020012851A (en) * 2019-10-24 2020-01-23 株式会社島津製作所 Non-destructive inspection method

Also Published As

Publication number Publication date
JP5946638B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
JP5946638B2 (en) Nondestructive inspection method
US20120253696A1 (en) Methods and apparatus for the inspection of plates and pipe walls
JP7160098B2 (en) Nondestructive inspection method, nondestructive inspection system and nondestructive inspection program
EP1965206A1 (en) Corrosion evaluation device, and corrosion evaluation method
CN107850570B (en) Defect measuring method, defect measuring device, and inspection probe
JP6305860B2 (en) Nondestructive inspection method and nondestructive inspection device
JP4860987B2 (en) Nondestructive inspection method
JP3734822B1 (en) Nondestructive inspection method
JP6296851B2 (en) Defect depth estimation method and defect depth estimation apparatus
JP6305847B2 (en) Nondestructive inspection method and nondestructive inspection device
JP6209119B2 (en) Flaw detection method and flaw detection system
JP5222714B2 (en) Nondestructive inspection method and nondestructive inspection equipment
JP2018151168A (en) Nondestructive inspection method and nondestructive inspection device
EP3081932B1 (en) Apparatus and method of inspecting defect of steel plate
JP2016008960A5 (en)
JP2005127963A (en) Nondestructive inspection method and its apparatus
JP6550873B2 (en) Eddy current flaw detection method
JP7351341B2 (en) Non-destructive testing information processing system and non-destructive testing method
JP6305859B2 (en) Nondestructive inspection method
JP4304121B2 (en) Reinforcing bar breakage detection method for concrete structures
WO2020027028A1 (en) Non-destructive inspection device, non-destructive inspection system, and non-destructive inspection method
JP5531124B2 (en) Nondestructive inspection method
JP6211311B2 (en) Nondestructive inspection method
WO2024057869A1 (en) Non-destructive testing method, program, and non-destructive testing system
JP2016080596A (en) Eddy current flaw detection probe

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150908

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160530

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160601

R150 Certificate of patent or registration of utility model

Ref document number: 5946638

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250