JP5745250B2 - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
JP5745250B2
JP5745250B2 JP2010234051A JP2010234051A JP5745250B2 JP 5745250 B2 JP5745250 B2 JP 5745250B2 JP 2010234051 A JP2010234051 A JP 2010234051A JP 2010234051 A JP2010234051 A JP 2010234051A JP 5745250 B2 JP5745250 B2 JP 5745250B2
Authority
JP
Japan
Prior art keywords
layer
light emitting
emitting device
film structure
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010234051A
Other languages
Japanese (ja)
Other versions
JP2011254061A (en
Inventor
李政憲
郭修▲い▼
Original Assignee
廣▲ジャー▼光電股▲ふん▼有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 廣▲ジャー▼光電股▲ふん▼有限公司 filed Critical 廣▲ジャー▼光電股▲ふん▼有限公司
Publication of JP2011254061A publication Critical patent/JP2011254061A/en
Application granted granted Critical
Publication of JP5745250B2 publication Critical patent/JP5745250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Description

本発明は、発光デバイスに関し、特に分布ブラッグ反射構造(Distributed Bragg Reflector、DBR)を有する発光デバイスに関する。 The present invention relates to a light emitting device, and more particularly to a light emitting device having a distributed Bragg reflector (DBR).

現在、発光ダイオードなどのような発光デバイスは、例えば、表示装置、交通信号装置、照明装置、医療装置および通信装置などに広く使われている。 Currently, light emitting devices such as light emitting diodes are widely used in, for example, display devices, traffic signal devices, lighting devices, medical devices, and communication devices.

図1の従来の発光デバイス10は、導光板11と、前記導光板11の上に形成される接着層13と、前記接着層13の上に形成される金属反射層15と、前記金属反射層15の上に形成される透明導電層17と、前記透明導電層17の上に形成される半導体積層19と、を含む。前記半導体積層19は、前記透明導電層17の上に形成されるP型窒化ガリウム層192と、前記P型窒化ガリウム層192の上に形成されるN型窒化ガリウム層196と、前記P型窒化ガリウム層192と前記N型窒化ガリウム層196との間に位置する活性層194と、を含む。 1 includes a light guide plate 11, an adhesive layer 13 formed on the light guide plate 11, a metal reflective layer 15 formed on the adhesive layer 13, and the metal reflective layer. 15, a transparent conductive layer 17 formed on the transparent conductive layer 17, and a semiconductor laminate 19 formed on the transparent conductive layer 17. The semiconductor stack 19 includes a P-type gallium nitride layer 192 formed on the transparent conductive layer 17, an N-type gallium nitride layer 196 formed on the P-type gallium nitride layer 192, and the P-type nitride. And an active layer 194 positioned between the gallium layer 192 and the N-type gallium nitride layer 196.

前記発光デバイス10において、前記透明導電層17は、直接に前記P型窒化ガリウム層192に接続されてオーム性接続機能を実現し、且つ前記透明導電層17の高透過特性を通して前記金属反射層15の高反射機能を実現することができる。 In the light emitting device 10, the transparent conductive layer 17 is directly connected to the P-type gallium nitride layer 192 to realize an ohmic connection function, and the metal reflective layer 15 is formed through the high transmission characteristics of the transparent conductive layer 17. High reflection function can be realized.

しかし、前記発光デバイス10の製造過程において加熱工程を実施する必要があるので、前記透明導電層17と前記金属反射層15との間にディフュージョン現象(Diffusion)が生じる可能性がある。即ち、前記発光デバイス10を製造する過程に前記金属反射層15の表面に霧化現象が生じる可能性がある。従って、前記金属反射層15の反射率が悪くなり、前記発光デバイス10の発光効率に影響を与える。   However, since it is necessary to perform a heating process in the manufacturing process of the light emitting device 10, a diffusion phenomenon may occur between the transparent conductive layer 17 and the metal reflective layer 15. That is, an atomization phenomenon may occur on the surface of the metal reflection layer 15 in the process of manufacturing the light emitting device 10. Therefore, the reflectance of the metal reflective layer 15 is deteriorated, which affects the light emission efficiency of the light emitting device 10.

発光デバイス10の製造過程に反射構造の反射率が低くなる問題は、解決すべき問題になっている。 The problem that the reflectance of the reflecting structure is lowered during the manufacturing process of the light emitting device 10 is a problem to be solved.

本発明の主な目的は、発光効率を向上させることができる発光デバイスを提供することにある。 A main object of the present invention is to provide a light emitting device capable of improving luminous efficiency.

上記課題を解決するために本発明では、導電基板と、金属反射層と、異なる屈折率を有する二種或いは二種以上の材料が順に積層して形成される積層膜構造と、透明導電層と、半導体積層と、を含む発光デバイスを提供する。前記金属反射層は、前記導電基板の上に形成されている。前記積層膜構造は、前記金属反射層の上に形成されている。前記積層膜構造は、絶縁層と、積層膜構造を貫通して形成される少なくとも1つの穴構造とを含む。前記透明導電層は、前記前記積層膜構造の上に形成され、前記半導体積層は、前記積層膜構造の上に形成されている。 In order to solve the above problems, in the present invention, a conductive substrate, a metal reflective layer, a laminated film structure formed by sequentially laminating two or more materials having different refractive indexes, a transparent conductive layer, And a semiconductor stack. The metal reflective layer is formed on the conductive substrate. The laminated film structure is formed on the metal reflective layer. The laminated film structure includes an insulating layer and at least one hole structure formed through the laminated film structure. The transparent conductive layer is formed on the stacked film structure, and the semiconductor stack is formed on the stacked film structure.

上記課題を解決するために本発明では、導電基板と、金属反射層と、異なる屈折率を有する二種或いは二種以上の材料が順に積層して形成される積層膜構造と、透明導電層と、半導体積層とを含む発光デバイスを提供する。前記積層膜構造は、前記金属反射層の上に形成され、少なくともTiO2が混入されている導電材料で製造する。前記透明導電層は、前記積層膜構造の上に形成され、前記半導体積層は、前記透明導電層の上に形成されている。 In order to solve the above problems, in the present invention, a conductive substrate, a metal reflective layer, a laminated film structure formed by sequentially laminating two or more materials having different refractive indexes, a transparent conductive layer, A light emitting device including a semiconductor stack is provided. The laminated film structure is made of a conductive material formed on the metal reflective layer and mixed with at least TiO2. The transparent conductive layer is formed on the stacked film structure, and the semiconductor stack is formed on the transparent conductive layer.

上述したように、本発明の発光デバイスは、異なる屈折率を有する二種或いは二種以上の材料が順に積層される積層膜構造を通して光線を反射する。前記積層膜構造は、金属反射層と透明導電層を分離させるので、加熱工程により両者の間にディフュージョン現象(Diffusion)が生じ、金属反射層の表面に霧化現象が生じることを防ぐことができる。即ち、金属反射層の表面が霧化されることを防げるために、前記金属反射層の反射率が悪くなることを防ぎ、前記発光デバイスの発光効率を向上させることができる。 As described above, the light-emitting device of the present invention reflects light rays through a laminated film structure in which two or more materials having different refractive indexes are sequentially laminated. Since the laminated film structure separates the metal reflective layer and the transparent conductive layer, it is possible to prevent a diffusion phenomenon (Diffusion) between the two due to the heating process and an atomization phenomenon to occur on the surface of the metal reflective layer. . That is, since the surface of the metal reflection layer can be prevented from being atomized, the reflectance of the metal reflection layer can be prevented from being deteriorated, and the light emission efficiency of the light emitting device can be improved.

従来の発光デバイスを示す。1 shows a conventional light emitting device. 本発明の第一実施形態に係る発光デバイスを示す。1 shows a light emitting device according to a first embodiment of the present invention. 本発明の第二実施形態に係る発光デバイスを示す。The light emitting device which concerns on 2nd embodiment of this invention is shown. 本発明の第三実施形態に係る発光デバイスを示す。4 shows a light emitting device according to a third embodiment of the present invention. 本発明の第四実施形態に係る発光デバイスを示す。6 shows a light emitting device according to a fourth embodiment of the present invention.

図2は、本発明の第一実施形態に係る発光デバイスを示す。図2の発光デバイス30は、導電基板31と、金属反射層33と、異なる屈折率を有する二種或いは二種以上の材料が順に積層して形成される積層膜構造35と、透明導電層37と、半導体積層39と、穴構造352と、電極41と、を含む。 FIG. 2 shows a light emitting device according to the first embodiment of the present invention. The light emitting device 30 of FIG. 2 includes a conductive substrate 31, a metal reflective layer 33, a laminated film structure 35 formed by sequentially laminating two or more materials having different refractive indexes, and a transparent conductive layer 37. A semiconductor stack 39, a hole structure 352, and an electrode 41.

図2に示すように、前記発光デバイス30は、垂直式発光ダイオードである。前記金属反射層33は、前記導電基板31の上に形成され、前記積層膜構造35は、前記金属反射層33の上に形成され、前記透明導電層37は、前記積層膜構造35の上に形成され、前記半導体積層39は、前記透明導電層37の上に形成され、前記電極41は、前記半導体積層39の上に形成されている。前記積層膜構造35は、Ta2O5、SiNx、TiO2或いはSiO2から構成される少なくとも1つの絶縁層を含む。前記積層膜構造35には、前記金属反射層33と前記透明導電層37との間の電気接続を実現するための穴構造352が形成されている。前記穴構造352は、積層膜構造35を貫通して形成される穴構である。 As shown in FIG. 2, the light emitting device 30 is a vertical light emitting diode. The metal reflective layer 33 is formed on the conductive substrate 31, the laminated film structure 35 is formed on the metal reflective layer 33, and the transparent conductive layer 37 is formed on the laminated film structure 35. The semiconductor stack 39 is formed on the transparent conductive layer 37, and the electrode 41 is formed on the semiconductor stack 39. The laminated film structure 35 includes at least one insulating layer made of Ta 2 O 5 , SiNx, TiO 2, or SiO 2 . The laminated film structure 35 is provided with a hole structure 352 for realizing electrical connection between the metal reflective layer 33 and the transparent conductive layer 37. The hole structure 352 is a hole structure formed through the laminated film structure 35.

図2の実施形態において1つの穴構造352が形成されているが、他の実施形態で需要に従って複数の穴構造を形成してもよい。または、前記穴構造352を形成する材料として銀、アルミニウム、金或いはその合金などの高光反射材料を使って発光デバイス30の光反射率を高くするか、チタン、アルミニウム、クロミウム或いはその合金などの高光反射材料を使って発光デバイス30の強度を高くすることもできる。 Although one hole structure 352 is formed in the embodiment of FIG. 2, other hole structures may be formed according to demand in other embodiments. Alternatively, a high light reflection material such as silver, aluminum, gold, or an alloy thereof is used as a material for forming the hole structure 352, and the light reflectance of the light emitting device 30 is increased, or high light such as titanium, aluminum, chromium, or an alloy thereof is used. The intensity of the light emitting device 30 can be increased by using a reflective material.

前記積層膜構造35は、Ta2O5、SiNx、TiO2或いはSiO2などから構成される複数な絶縁材料を積層させて製造することができる。本発明では、TiO2とSiO2を積層させて積層膜構造35を製造する。 The laminated film structure 35 can be manufactured by laminating a plurality of insulating materials composed of Ta 2 O 5 , SiNx, TiO 2 or SiO 2 . In the present invention, the laminated film structure 35 is manufactured by laminating TiO 2 and SiO 2 .

異なる屈折率を有する二種或いは二種以上の材料を順に積層させて得る積層膜構造35は、通常異なる屈折率を有する二種の材料を順に積層させて得る積層膜構造35を言う。本発明の積層膜構造35は、一層厚がλ/4である分布ブラッグ反射構造(Distributed Bragg Reflector、DBR)である。前記λは、前記発光デバイス30の主波長(dominant wavelength)である。 A laminated film structure 35 obtained by sequentially laminating two or more materials having different refractive indexes refers to a laminated film structure 35 obtained by sequentially laminating two kinds of materials having different refractive indexes. The laminated film structure 35 of the present invention is a distributed Bragg reflector (DBR) having a thickness of λ / 4. The λ is a dominant wavelength of the light emitting device 30.

前記半導体積層39の材料として、窒化アルミニウムインジウムガリウム(AlInGaN)類或いはアルミニウムガリウムインジウムリン(AlGaInP)を使うことができる。前記半導体積層39は、第一導電型半導体積層392と、活性層394と、第二導電型半導体積層396と、を含む。前記第一導電型半導体積層392は、前記透明導電層37の上に形成され、前記活性層394は、前記第一導電型半導体積層392の上に形成され、前記第二導電型半導体積層396は、前記活性層394の上に形成されている。 As a material for the semiconductor stack 39, aluminum indium gallium nitride (AlInGaN) or aluminum gallium indium phosphide (AlGaInP) can be used. The semiconductor stack 39 includes a first conductive semiconductor stack 392, an active layer 394, and a second conductive semiconductor stack 396. The first conductive semiconductor stack 392 is formed on the transparent conductive layer 37, the active layer 394 is formed on the first conductive semiconductor stack 392, and the second conductive semiconductor stack 396 is , Formed on the active layer 394.

前記活性層394は、歪多重量子井戸(multi-quantum well、MQW)構造に形成されている。前記第一導電型半導体積層392は、P型半導体層構造に形成され、前記第二導電型半導体積層396は、N型半導体層構造に形成されている。即ち、前記第一導電型半導体積層392は、P型窒化アルミニウムインジウムガリウム層に形成され、前記第二導電型半導体積層396は、N型窒化アルミニウムインジウムガリウム層に形成されている The active layer 394 is formed in a strained multi-quantum well (MQW) structure. The first conductive semiconductor stack 392 is formed in a P-type semiconductor layer structure, and the second conductive semiconductor stack 396 is formed in an N-type semiconductor layer structure. That is, the first conductive semiconductor stack 392 is formed on a P-type aluminum indium gallium nitride layer, and the second conductive semiconductor stack 396 is formed on an N-type aluminum indium gallium nitride layer.

前記半導体積層39の表面は、粗い面に形成されている。これにより前記活性層で生じる光線が半導体層39と外部環境の屈折率の差異によって生じる全反射の現象を減らし、発光デバイス30の出光率を高くすることができる。 The surface of the semiconductor laminate 39 is formed on a rough surface. Thereby, the phenomenon of total reflection caused by the difference in refractive index between the semiconductor layer 39 and the external environment caused by the light rays generated in the active layer can be reduced, and the light emission rate of the light emitting device 30 can be increased.

前記透明導電層37の材料として、透明な酸化金属材料を使うことができる。例えば、ITO、CTO、ZnO、In2O3、SnO2、CuAlO2、CuGaO2、SrCu2O2などを使うことができる。本実施形態では、ITOを選んで使う。 A transparent metal oxide material can be used as the material of the transparent conductive layer 37. For example, ITO, CTO, ZnO, In 2 O 3 , SnO 2 , CuAlO 2 , CuGaO 2 , SrCu 2 O 2 and the like can be used. In this embodiment, ITO is selected and used.

前記導電基板31の材料として、酸化亜鉛、シリコン或いは金属などを使うことができる。前記導電基板31の下表面に裏面電極(Back Electrode)312を形成してもよい。 As the material of the conductive substrate 31, zinc oxide, silicon, metal, or the like can be used. A back electrode 312 may be formed on the lower surface of the conductive substrate 31.

前記金属反射層33の表面を接着層に形成して、前記導電基板31と積層膜構造35を金属反射層33の両面に接着させることができる。前記金属反射層33は、高光反射性を有する金属で製造する。例えば、銀、アルミニウム、金或いはその合金などの材料を使うことができる。且つ、金属共晶接合(Eutectic bonding)技術により金属反射層33に接着層を形成することもできる。 The surface of the metal reflection layer 33 can be formed as an adhesive layer, and the conductive substrate 31 and the laminated film structure 35 can be bonded to both surfaces of the metal reflection layer 33. The metal reflective layer 33 is made of a metal having high light reflectivity. For example, a material such as silver, aluminum, gold, or an alloy thereof can be used. In addition, an adhesive layer can be formed on the metal reflective layer 33 by a metal eutectic bonding technique.

図3は、本発明の第二実施形態に係る発光デバイスの図である。図3の実施形態において、金属反射層33と導電基板31との間に接着層34がさらに形成されている。前記接着層34は、金属反射層33と導電基板31との間の接着力を高くする。前記接着層34の材料として、金属或いは導電粒子を含む有機材料を使うことができる。 FIG. 3 is a diagram of a light emitting device according to the second embodiment of the present invention. In the embodiment of FIG. 3, an adhesive layer 34 is further formed between the metal reflective layer 33 and the conductive substrate 31. The adhesive layer 34 increases the adhesive force between the metal reflective layer 33 and the conductive substrate 31. As the material of the adhesive layer 34, an organic material containing metal or conductive particles can be used.

上述したように、本発明の発光デバイスは、異なる屈折率を有する二種或いは二種以上の材料が順に積層される積層膜構造を通して金属反射層と透明導電層を分離させる。従って、透明導電層と金属反射層との間に加熱工程によりディフュージョン現象(Diffusion)が生じ、金属反射層の表面に霧化現象が生じることを防ぐことができる。従って、前記発光デバイスの発光効率を改善することができる。 As described above, the light emitting device of the present invention separates the metal reflective layer and the transparent conductive layer through the laminated film structure in which two or more materials having different refractive indexes are sequentially laminated. Therefore, it is possible to prevent a diffusion phenomenon (Diffusion) from occurring between the transparent conductive layer and the metal reflective layer due to the heating process, and an atomization phenomenon to occur on the surface of the metal reflective layer. Accordingly, the light emission efficiency of the light emitting device can be improved.

前記積層膜構造35が前記金属反射層33と前記透明導電層37との間に形成されているので、透明導電層37と金属反射層33との間に加熱工程によりディフュージョン現象が生じ、金属反射層33の表面が霧化されることを防ぐことができる。従って、前記金属反射層33の反射率に影響を与えることなく、発光デバイス30の発光効率を改善することができる。また、積層膜構造35と金属反射層33により所定方向性の反射鏡を形成することができるので、発光デバイス30の設計を容易にすることができる。 Since the laminated film structure 35 is formed between the metal reflective layer 33 and the transparent conductive layer 37, a diffusion phenomenon occurs between the transparent conductive layer 37 and the metal reflective layer 33 due to a heating process, and the metal reflection It is possible to prevent the surface of the layer 33 from being atomized. Therefore, the luminous efficiency of the light emitting device 30 can be improved without affecting the reflectance of the metal reflective layer 33. Moreover, since the reflecting mirror having a predetermined direction can be formed by the laminated film structure 35 and the metal reflecting layer 33, the design of the light emitting device 30 can be facilitated.

図4は、本発明の第三実施形態に係る発光デバイス50を示す図である。前記発光デバイス50と上述した発光デバイス30が異なる所は、積層膜構造55を導電性材料で製造したことである。前記積層膜構造55を製造する導電性材料として、ITO、CTO、ZnO、In2O3、SnO2、CuAlO2、CuGaO2或いはSrCu2O2などを使うことができる。前記積層膜構造55を導電材料で製造したので、前記積層膜構造55により金属反射層33と透明導電層37を導電接続させることができる。 FIG. 4 is a diagram showing a light emitting device 50 according to the third embodiment of the present invention. The difference between the light emitting device 50 and the light emitting device 30 described above is that the laminated film structure 55 is made of a conductive material. ITO, CTO, ZnO, In 2 O 3 , SnO 2 , CuAlO 2 , CuGaO 2, SrCu 2 O 2 or the like can be used as the conductive material for manufacturing the laminated film structure 55. Since the laminated film structure 55 is made of a conductive material, the metal reflective layer 33 and the transparent conductive layer 37 can be conductively connected by the laminated film structure 55.

本実施形態の積層膜構造55は、少なくともTiO2が混入される材料を含んでいる本実施形態のTiO2が混入されている材料は、TixTa1-xO2或いはTixNb1-xO2である。即ち、本実施形態の積層膜構造55は、Ti x Ta 1-x O 2 或いはTi x Nb 1-x O 2 と、ITOとが順に積層して形成されるものである。 The laminated film structure 55 of this embodiment includes at least a material mixed with TiO 2 . The material mixed with TiO 2 of this embodiment is Ti x Ta 1-x O 2 or Ti x Nb 1-x O 2 . That is, the laminated film structure 55 of the present embodiment is formed by sequentially laminating Ti x Ta 1-x O 2 or Ti x Nb 1-x O 2 and ITO.

本実施形態の発光デバイス50は、積層膜構造55を貫通して形成されて金属反射層33と透明導電層37との間の電気接続状態を向上させる少なくとも1つの穴構造(図に示しない)を含むことができる。且つ、前記穴構造を形成する材料として銀、アルミニウム、金或いはその合金などの高光反射材料を使って発光デバイス50の光反射率を高くするか、チタン、アルミニウム、クロミウム或いはその合金などの高光反射材料を使って穴構造の強度を高くすることもできる。   The light emitting device 50 of the present embodiment is formed through the laminated film structure 55 and has at least one hole structure (not shown) that improves the electrical connection between the metal reflective layer 33 and the transparent conductive layer 37. Can be included. In addition, a high light reflection material such as silver, aluminum, gold, or an alloy thereof is used as a material for forming the hole structure to increase the light reflectance of the light emitting device 50, or a high light reflection such as titanium, aluminum, chromium, or an alloy thereof. It is also possible to increase the strength of the hole structure using materials.

図5は、本発明の第四実施形態に係る発光デバイス50を示す図である。図3の実施形態において、金属反射層33と導電基板31との間に接着層54がさらに形成されている。前記接着層54は、金属反射層33と導電基板31との間の接着力を高くする。前記接着層54の材料として、金属材料或いは導電粒子を含む有機材料を使うことができる。   FIG. 5 is a diagram showing a light emitting device 50 according to the fourth embodiment of the present invention. In the embodiment of FIG. 3, an adhesive layer 54 is further formed between the metal reflective layer 33 and the conductive substrate 31. The adhesive layer 54 increases the adhesive force between the metal reflective layer 33 and the conductive substrate 31. As the material of the adhesive layer 54, a metal material or an organic material containing conductive particles can be used.

上述したように、本発明の発光デバイスは、異なる屈折率を有する二種或いは二種以上の材料が順に積層される積層膜構造を介して金属反射層と透明導電層を分離させる。従って、加熱工程により透明導電層と金属反射層との間にディフュージョン現象(Diffusion)が生じ、金属反射層の表面に霧化現象が生じることを防ぐことができる。金属反射層の表面が霧化されることを防げるために、前記金属反射層33の反射率が悪くなることを防ぎ、前記発光デバイスの発光効率を向上させることができる。また、積層膜構造と金属反射層により所定方向性の反射鏡を形成することができるので、発光デバイスの設計を容易にすることができる。 As described above, the light-emitting device of the present invention separates the metal reflective layer and the transparent conductive layer through the laminated film structure in which two or more materials having different refractive indexes are sequentially laminated. Therefore, it is possible to prevent a diffusion phenomenon (Diffusion) from occurring between the transparent conductive layer and the metal reflective layer due to the heating process, and an atomization phenomenon to occur on the surface of the metal reflective layer. In order to prevent the surface of the metal reflection layer from being atomized, the reflectance of the metal reflection layer 33 can be prevented from being deteriorated, and the light emission efficiency of the light emitting device can be improved. In addition, since the reflecting mirror having a predetermined direction can be formed by the laminated film structure and the metal reflecting layer, the design of the light emitting device can be facilitated.

30、50 発光デバイス
31 導電基板
312 裏面電極
33 金属反射層
34、54 接着層
35、55 積層膜構造
352 穴構造
37 透明導電層
39 半導体積層
392 第一導電型半導体積層
394 活性層
396 第二導電型半導体積層
41 電極
30, 50 Light emitting device 31 Conductive substrate 312 Back electrode 33 Metal reflective layer 34, 54 Adhesive layer 35, 55 Laminated film structure 352 Hole structure 37 Transparent conductive layer 39 Semiconductor laminated layer 392 First conductive type semiconductor laminated layer 394 Active layer 396 Second conductive layer Type semiconductor laminate 41 electrode

Claims (6)

導電基板と、
前記導電基板の上に形成される金属反射層と、
異なる屈折率を有する材料が前記金属反射層の上に順に積層されて形成される積層膜構造であって、Ti x Ta 1-x O 2 或いはTi x Nb 1-x O 2 と、ITOが順に積層されて構成される積層膜構造と、
前記積層膜構造の上に形成され、ITOを含む透明導電層と、
前記透明導電層の上に形成される半導体積層と、を含むことを特徴とする発光デバイス。
A conductive substrate;
A metal reflective layer formed on the conductive substrate;
A multilayer film structure material having a different refractive index Ru is formed by laminating in this order on the metal reflective layer, a Ti x Ta 1-x O 2 or Ti x Nb 1-x O 2 , ITO is sequentially A laminated film structure constituted by being laminated;
A transparent conductive layer formed on the laminated film structure and containing ITO;
A light emitting device comprising: a semiconductor laminate formed on the transparent conductive layer.
前記積層膜構造は、分布ブラッグ反射構造(Distributed Bragg Reflector、DBR)であることを特徴とする請求項1に記載の発光デバイス。   The light emitting device according to claim 1, wherein the stacked film structure is a distributed Bragg reflector (DBR). 前記半導体積層は、前記透明導電層に接続される第一導電型半導体積層と、前記第一導電型半導体積層の上に形成される活性層と、前記活性層の上に形成される第二導電型半導体積層と、を含むことを特徴とする請求項1に記載の発光デバイス。   The semiconductor stack includes a first conductive type semiconductor stack connected to the transparent conductive layer, an active layer formed on the first conductive type semiconductor stack, and a second conductive formed on the active layer. The light emitting device according to claim 1, further comprising: a type semiconductor stack. 前記金属反射層と前記導電基板との間に接着層をさらに含むことを特徴とする請求項1に記載の発光デバイス。   The light emitting device of claim 1, further comprising an adhesive layer between the metal reflective layer and the conductive substrate. 前記接着層の材料は、金属材料或いは導電粒子を含む有機材料を含むことを特徴とする請求項に記載の発光デバイス。 The light emitting device according to claim 4 , wherein the material of the adhesive layer includes a metal material or an organic material including conductive particles. 前記導電基板の材料は、酸化亜鉛、シリコン或いは金属を含むことを特徴とする請求項1に記載の発光デバイス。   The light emitting device according to claim 1, wherein the material of the conductive substrate includes zinc oxide, silicon, or metal.
JP2010234051A 2010-06-01 2010-10-18 Light emitting device Active JP5745250B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW099117667 2010-06-01
TW099117667A TWI449210B (en) 2010-06-01 2010-06-01 Light emitting device

Publications (2)

Publication Number Publication Date
JP2011254061A JP2011254061A (en) 2011-12-15
JP5745250B2 true JP5745250B2 (en) 2015-07-08

Family

ID=45417726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234051A Active JP5745250B2 (en) 2010-06-01 2010-10-18 Light emitting device

Country Status (2)

Country Link
JP (1) JP5745250B2 (en)
TW (1) TWI449210B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112805B (en) * 2014-07-16 2017-09-26 厦门乾照光电股份有限公司 A kind of light emitting diode and its manufacture method with nonproliferation layer
TWI811725B (en) * 2021-07-06 2023-08-11 晶元光電股份有限公司 Light-emitting device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101254539B1 (en) * 2004-04-28 2013-04-19 버티클 인코퍼레이티드 Vertical structure semiconductor devices
JP4825003B2 (en) * 2005-12-28 2011-11-30 ローム株式会社 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP2007258277A (en) * 2006-03-20 2007-10-04 Matsushita Electric Works Ltd Semiconductor light emitting device
TW200834969A (en) * 2007-02-13 2008-08-16 Epistar Corp Light-emitting diode and method for manufacturing the same
JP5326383B2 (en) * 2007-07-10 2013-10-30 豊田合成株式会社 Light emitting device
TWI418056B (en) * 2007-11-01 2013-12-01 Epistar Corp Light-emitting element
JP2009164423A (en) * 2008-01-08 2009-07-23 Nichia Corp Light-emitting element
JP5057398B2 (en) * 2008-08-05 2012-10-24 シャープ株式会社 Nitride semiconductor light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
TW201145561A (en) 2011-12-16
TWI449210B (en) 2014-08-11
JP2011254061A (en) 2011-12-15

Similar Documents

Publication Publication Date Title
KR101627010B1 (en) Semiconductor light emitting device including metal reflecting layer
JP5637210B2 (en) Semiconductor light emitting device
TWI819258B (en) Light emitting diode chip
EP2656402B1 (en) Light emitting diode chip and method of fabricating the same
JP5582054B2 (en) Semiconductor light emitting device
JP6056150B2 (en) Semiconductor light emitting device
WO2009119640A1 (en) Semiconductor light emitting element and illuminating apparatus using the same
JP2009164423A (en) Light-emitting element
JP5929714B2 (en) Semiconductor light emitting device
JP5237854B2 (en) Light emitting device
JP2011138820A (en) Light-emitting element
JP2005183911A (en) Nitride semiconductor light-emitting element and method of manufacturing the same
US8487334B2 (en) Semiconductor light emitting diode chip and light emitting device using the same
JP2007258276A (en) Semiconductor light emitting device
KR20080017180A (en) Semiconductor light emitting device
US20130240937A1 (en) Semiconductor light-emitting diode chip, light-emitting device, and manufacturing method thereof
JP2013045846A (en) Nitride semiconductor light-emitting element, nitride semiconductor light-emitting device and nitride semiconductor light-emitting element manufacturing method
CN103035812A (en) Base plate
US20240088327A1 (en) Light emitting device
KR101562375B1 (en) Light emitting diode chip and light emitting diode package each having distributed bragg reflector
WO2013011674A1 (en) Semiconductor light emitting element
JP5378131B2 (en) Nitride semiconductor light emitting diode device
JP5745250B2 (en) Light emitting device
JP2014053593A (en) Semiconductor light-emitting element and method of manufacturing the same
CN114068786A (en) Light emitting diode and light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130611

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130614

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130710

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140306

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140410

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150501

R150 Certificate of patent or registration of utility model

Ref document number: 5745250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250