TWI811725B - Light-emitting device - Google Patents

Light-emitting device Download PDF

Info

Publication number
TWI811725B
TWI811725B TW110124703A TW110124703A TWI811725B TW I811725 B TWI811725 B TW I811725B TW 110124703 A TW110124703 A TW 110124703A TW 110124703 A TW110124703 A TW 110124703A TW I811725 B TWI811725 B TW I811725B
Authority
TW
Taiwan
Prior art keywords
layer
work function
type semiconductor
light
conductive type
Prior art date
Application number
TW110124703A
Other languages
Chinese (zh)
Other versions
TW202304017A (en
Inventor
簡振偉
王志銘
劉珛玲
Original Assignee
晶元光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶元光電股份有限公司 filed Critical 晶元光電股份有限公司
Priority to TW110124703A priority Critical patent/TWI811725B/en
Publication of TW202304017A publication Critical patent/TW202304017A/en
Application granted granted Critical
Publication of TWI811725B publication Critical patent/TWI811725B/en

Links

Images

Landscapes

  • Led Devices (AREA)
  • Surgical Instruments (AREA)
  • Led Device Packages (AREA)

Abstract

A light-emitting device comprises sequentially in a stacking order a supporting substrate, a metal reflecting layer, a transparent conductive non-oxide layer, a transparent conductive oxide layer, a first conductivity-type semiconductor layer, a semiconductor active structure and a second conductivity-type semiconductor layer. The first conductivity-type semiconductor layer has a first work function. The metal reflecting layer has a second work function. The transparent conductive oxide layer has a third work function smaller than the first work function. The transparent conductive non-oxide layer has a fourth work function smaller than the first work function wherein a difference between the third work function and the fourth work function is smaller than 0.5 eV.

Description

發光元件Light emitting element

本發明係關於發光元件,特別是關於具有反射層之發光元件。The present invention relates to a light-emitting element, and in particular to a light-emitting element having a reflective layer.

發光元件之發光效率取決於內部量子效率(Internal Quantum Efficiency; IQE)以及光摘出效率(Light Extraction Efficiency; LEE)。發光元件通常包含金屬反射層以提高光摘出效率。本揭露提出一新穎之發光元件以改善金屬反射層在發光元件中之可靠度進而改善發光元件之可靠度。The luminous efficiency of the light-emitting element depends on the internal quantum efficiency (Internal Quantum Efficiency; IQE) and the light extraction efficiency (Light Extraction Efficiency; LEE). Light-emitting elements usually contain metal reflective layers to improve light extraction efficiency. The present disclosure proposes a novel light-emitting element to improve the reliability of the metal reflective layer in the light-emitting element and thereby improve the reliability of the light-emitting element.

本揭露在提供一種發光元件,包括一支撐基板、一金屬反射層、一透明非氧化物導電層、一透明氧化物導電層、一半導體疊層。所述之半導體疊層設置於所述之支撐基板上,包含一第一導電型半導體層、一第二導電型半導體層以及一半導體主動結構位於該第一導電型半導體層及該第二導電型半導體層之間用以發出一光線,其中所述之第一導電型半導體層具有一第一功函數。所述之金屬反射層設置於所述之第一導電型半導體層及所述之支撐基板之間,具有一第二功函數。所述之透明氧化物導電層設置於所述之第一導電型半導體層及所述之金屬反射層之間,具有一第三功函數小於所述之第一功函數。所述之透明非氧化物導電層設置於所述之透明氧化物導電層及所述之金屬反射層之間 ,具有一第四功函數小於所述之第一功函數,其中,所述之第三功函數及所述之第四功函數之差異小於0.5 eV。The present disclosure provides a light-emitting element, which includes a supporting substrate, a metal reflective layer, a transparent non-oxide conductive layer, a transparent oxide conductive layer, and a semiconductor stack. The semiconductor stack is disposed on the supporting substrate and includes a first conductive type semiconductor layer, a second conductive type semiconductor layer and a semiconductor active structure located on the first conductive type semiconductor layer and the second conductive type semiconductor layer. The semiconductor layers are used to emit light, wherein the first conductive type semiconductor layer has a first work function. The metal reflective layer is disposed between the first conductive semiconductor layer and the supporting substrate and has a second work function. The transparent oxide conductive layer is disposed between the first conductive type semiconductor layer and the metal reflective layer, and has a third work function smaller than the first work function. The transparent non-oxide conductive layer is disposed between the transparent oxide conductive layer and the metal reflective layer, and has a fourth work function smaller than the first work function, wherein the third work function is smaller than the first work function. The difference between the three work functions and the fourth work function is less than 0.5 eV.

以下之說明將參照圖式詳細地描述本發明之示例性實施例,以使本發明領域技術人員能夠充分地理解本發明之精神。本發明並不限於以下之實施例,而是可以以其他形式實施。The following description will describe exemplary embodiments of the present invention in detail with reference to the drawings, so that those skilled in the art can fully understand the spirit of the present invention. The present invention is not limited to the following embodiments, but can be implemented in other forms.

請參閱第一圖及第二圖,其中,第一圖為上視示意圖,顯示符合本揭露一實施例之發光元件10;第二圖為沿第一圖之剖面線A-A'之剖面示意圖。發光元件10包含支撐基板100、金屬反射層103、透明非氧化物導電層104、透明氧化物導電層105、圖案化電性絶緣層106、第一電極層108、以及絕緣保護層109。支撐基板100包含上表面100s,其中,水平方向X平行上表面100s以及垂直方向Y垂直上表面100s。半導體疊層107設置於支撐基板100之上表面100s上,包含第一導電型半導體層107a、第二導電型半導體層107c、半導體主動結構107b位於第一導電型半導體層107a及第二導電型半導體層107c之間用以發出一光線,其中,第一導電型半導體層107a較第二導電型半導體層107c更接近支撐基板100。於一實施例,第二導電型半導體層107c遠離半導體主動結構107b之表面係包含一粗化表面用以增加光取出效率,其中,所述之粗化表面包含規則之凹凸圖案或不規則或隨機分布之圖案。Please refer to the first and second figures. The first figure is a schematic top view showing a light-emitting element 10 according to an embodiment of the present disclosure; the second figure is a schematic cross-sectional view along the section line AA' of the first figure. . The light-emitting element 10 includes a support substrate 100, a metal reflective layer 103, a transparent non-oxide conductive layer 104, a transparent oxide conductive layer 105, a patterned electrical insulating layer 106, a first electrode layer 108, and an insulating protective layer 109. The support substrate 100 includes an upper surface 100s, in which a horizontal direction X is parallel to the upper surface 100s and a vertical direction Y is perpendicular to the upper surface 100s. The semiconductor stack 107 is disposed on the upper surface 100s of the supporting substrate 100 and includes a first conductive type semiconductor layer 107a, a second conductive type semiconductor layer 107c, and a semiconductor active structure 107b located on the first conductive type semiconductor layer 107a and the second conductive type semiconductor. The space between the layers 107c is used to emit a light, wherein the first conductive type semiconductor layer 107a is closer to the supporting substrate 100 than the second conductive type semiconductor layer 107c. In one embodiment, the surface of the second conductive semiconductor layer 107c away from the semiconductor active structure 107b includes a roughened surface to increase light extraction efficiency, wherein the roughened surface includes regular concave and convex patterns or irregular or random patterns. Distribution pattern.

於垂直方向Y上,如第二圖所示,金屬反射層103設置於第一導電型半導體層107a及支撐基板100之間;透明氧化物導電層105設置於第一導電型半導體層107a及金屬反射層103之間;透明非氧化物導電層104設置於透明氧化物導電層105及金屬反射層103之間。其中,第一導電型半導體層107a具有第一功函數WF1,金屬反射層103具有第二功函數WF2;透明氧化物導電層105具有第三功函數WF3,透明非氧化物導電層104具有第四功函數WF4,並且第三功函數WF3小於第一功函數WF1,第四功函數WF4小於第一功函數WF1。於一實施例,第三功函數WF3及第四功函數WF4之差異小於0.5 eV,例如第三功函數WF3及第四功函數WF4之差異小於0.2 eV,使得透明氧化物導電層105以及透明非氧化物導電層104形成良好之電性接觸介面。於一實施例,第二功函數WF2及第四功函數WF4之差異小於0.5 eV,例如第二功函數WF2及第四功函數WF4之差異小於0.2 eV,使得金屬反射層103以及透明非氧化物導電層104形成良好之電性接觸介面。透過上述之結構,可使發光元件10無須經過高溫合金製程即可得到穏定的電性特性,可降低發光元件10於製造過程所需的熱預算(thermal budget) ,增進半導體疊層107的磊晶品質。In the vertical direction Y, as shown in the second figure, the metal reflective layer 103 is disposed between the first conductive type semiconductor layer 107a and the supporting substrate 100; the transparent oxide conductive layer 105 is disposed between the first conductive type semiconductor layer 107a and the metal between the reflective layers 103; the transparent non-oxide conductive layer 104 is disposed between the transparent oxide conductive layer 105 and the metal reflective layer 103. Among them, the first conductive semiconductor layer 107a has a first work function WF1, the metal reflective layer 103 has a second work function WF2; the transparent oxide conductive layer 105 has a third work function WF3, and the transparent non-oxide conductive layer 104 has a fourth work function WF3. The work function WF4 is, the third work function WF3 is smaller than the first work function WF1, and the fourth work function WF4 is smaller than the first work function WF1. In one embodiment, the difference between the third work function WF3 and the fourth work function WF4 is less than 0.5 eV. For example, the difference between the third work function WF3 and the fourth work function WF4 is less than 0.2 eV, so that the transparent oxide conductive layer 105 and the transparent non-conductive layer 105 The oxide conductive layer 104 forms a good electrical contact interface. In one embodiment, the difference between the second work function WF2 and the fourth work function WF4 is less than 0.5 eV. For example, the difference between the second work function WF2 and the fourth work function WF4 is less than 0.2 eV, so that the metal reflective layer 103 and the transparent non-oxide The conductive layer 104 forms a good electrical contact interface. Through the above structure, the light-emitting element 10 can obtain stable electrical properties without going through a high-temperature alloy process, which can reduce the thermal budget required for the manufacturing process of the light-emitting element 10 and improve the performance of the semiconductor stack 107 . crystal quality.

於一實施例,於垂直方向Y上,如第二圖所示,透明氧化物導電層105直接連接透明非氧化物導電層104且透明非氧化物導電層104直接連接金屬反射層103。其中,第一導電型半導體層107a直接連接透明氧化物導電層105。其中,透明非氧化物導電層104完全隔開透明氧化物導電層105與金屬反射層103以避免金屬反射層103之組成元素與透明氧化物導電層105之組成元素例如氧形成反應而降低金屬反射層103之反射率及/或導電特性。於一實施例,透明氧化物導電層105並未覆蓋至發光元件10之邊界並且與發光元件10之邊界相隔一間隙,因此,透明非氧化物導電層104完全覆蓋透明氧化物導電層105之下表面以及側邊並且與發光元件10之邊界相隔一間隙。於一實施例,金屬反射層103完全覆蓋透明非氧化物導電層104之下表面以及側邊。於一實施例,透明非氧化物導電層104之外邊界對齊金屬反射層103之外邊界。相對半導體主動結構107b發出之光線,透明氧化物導電層105及透明非氧化物導電層104具有例如大於70%之光穿透率。透明非氧化物導電層104之厚度例如介於10 埃到100 埃。於一實施例中,如前述藉由選擇適合透明氧化物導電層105、透明非氧化物導電層104、及金屬反射層103之功函數材料使得其介面形成良好之電性接觸介面。於一實施例,藉由選擇適合的透明非氧化物導電層104之厚度,使得透明氧化物導電層105與透明非氧化物導電層104之間,及/或透明非氧化物導電層104與金屬反射層103之間藉由穿隧效應形成良好之電性接觸介面。透明非氧化物導電層104之厚度若太厚,例如大於100 埃可能造成所述之光穿透率下降而影響發光效率,並且不利於導通時電子於透明非氧化物導電層104之穿隧效應進而影響發光元件10之導電性。透明氧化物導電層105具有一折射率小於第一導電型半導體層107a之折射率,透明非氧化物導電層104具有一折射率小於透明氧化物導電層 105之折射率,使得第一導電型半導體層107a、透明氧化物導電層 105以及透明非氧化物導電層104形成一漸變折射率結構,有利於提高半導體主動結構107b向下發出之光線之摘出效率。相對半導體主動結構107b發出之光線,金屬反射層103具有例如大於90%之反射率。In one embodiment, in the vertical direction Y, as shown in the second figure, the transparent oxide conductive layer 105 is directly connected to the transparent non-oxide conductive layer 104 and the transparent non-oxide conductive layer 104 is directly connected to the metal reflective layer 103 . Among them, the first conductive type semiconductor layer 107a is directly connected to the transparent oxide conductive layer 105. Among them, the transparent non-oxide conductive layer 104 completely separates the transparent oxide conductive layer 105 and the metal reflective layer 103 to avoid the formation reaction between the constituent elements of the metal reflective layer 103 and the constituent elements of the transparent oxide conductive layer 105, such as oxygen, thereby reducing the metal reflection. The reflectivity and/or conductive properties of layer 103. In one embodiment, the transparent oxide conductive layer 105 does not cover the boundary of the light-emitting element 10 and is separated from the boundary of the light-emitting element 10 by a gap. Therefore, the transparent non-oxide conductive layer 104 completely covers under the transparent oxide conductive layer 105 The surface and sides are separated from the boundary of the light-emitting element 10 by a gap. In one embodiment, the metal reflective layer 103 completely covers the lower surface and sides of the transparent non-oxide conductive layer 104 . In one embodiment, the outer boundary of the transparent non-oxide conductive layer 104 is aligned with the outer boundary of the metal reflective layer 103 . Relative to the light emitted by the semiconductor active structure 107b, the transparent oxide conductive layer 105 and the transparent non-oxide conductive layer 104 have a light transmittance greater than 70%, for example. The thickness of the transparent non-oxide conductive layer 104 ranges from 10 angstroms to 100 angstroms, for example. In one embodiment, as described above, by selecting suitable work function materials for the transparent oxide conductive layer 105, the transparent non-oxide conductive layer 104, and the metal reflective layer 103, a good electrical contact interface is formed at their interfaces. In one embodiment, by selecting a suitable thickness of the transparent non-oxide conductive layer 104, there is a gap between the transparent oxide conductive layer 105 and the transparent non-oxide conductive layer 104, and/or between the transparent non-oxide conductive layer 104 and the metal. A good electrical contact interface is formed between the reflective layers 103 through the tunneling effect. If the thickness of the transparent non-oxide conductive layer 104 is too thick, for example, greater than 100 Angstroms, it may cause the light transmittance to decrease and affect the luminous efficiency, and it is not conducive to the tunneling effect of electrons in the transparent non-oxide conductive layer 104 during conduction. This further affects the conductivity of the light-emitting element 10 . The transparent oxide conductive layer 105 has a refractive index smaller than the refractive index of the first conductive type semiconductor layer 107a, and the transparent non-oxide conductive layer 104 has a refractive index smaller than the refractive index of the transparent oxide conductive layer 105, so that the first conductive type semiconductor The layer 107a, the transparent oxide conductive layer 105 and the transparent non-oxide conductive layer 104 form a gradient refractive index structure, which is beneficial to improving the extraction efficiency of light emitted downwardly by the semiconductor active structure 107b. Relative to the light emitted by the semiconductor active structure 107b, the metal reflective layer 103 has a reflectivity of, for example, greater than 90%.

第一電極層108位於第二導電型半導體層107c上使得第二導電性半導體層107c位於半導體主動結構107b及第一電極層108之間。如第一圖所示,第一電極層108包含第一基部108a以及第一延伸部108b自第一基部108a向遠離第一基部108a的方向延伸,其中,第一延伸部108b之寬度小於第一基部108a之寬度。第一基部108a例如作為一焊接墊用以透過封裝導線連接至外部元件,例如封裝載體或電路板;第一延伸部108b例如包含複數個延伸電極用以勻勻分散電流至發光元件10。於一實施例,如第一圖所示,發光元件10具有第一邊L1以及第二邊L2相對第一邊L1,第一電極層108之第一基部108a位於第一邊L1,第一延伸部108b包含第一延伸電極108b1自第一基部108a向外沿著發光元件10之四個邊界連續地延伸;第一延伸部108b更包含第二延伸電極108b2自第一基部108a向第二邊L2延伸,其中,第二延伸電極108b2交會第一延伸電極108b1於第二邊L2且第二延伸電極108b2被第一延伸電極108b1所圍繞。於一實施例,第一基部108a與第一延伸部108b為一體成形並包含相同之材料。於一實施例,第一延伸電極108b1與第二延伸電極108b2為一體成形並包含相同之材料。於一實施例,第一延伸電極108b1與第二延伸電極108b2具有相同之寛度,例如為1~10 微米。The first electrode layer 108 is located on the second conductive semiconductor layer 107c such that the second conductive semiconductor layer 107c is located between the semiconductor active structure 107b and the first electrode layer 108. As shown in the first figure, the first electrode layer 108 includes a first base portion 108a and a first extension portion 108b extending from the first base portion 108a in a direction away from the first base portion 108a, wherein the width of the first extension portion 108b is smaller than the first extension portion 108b. The width of base 108a. The first base portion 108a serves, for example, as a soldering pad for connecting to external components, such as a packaging carrier or a circuit board, through package wires; the first extension portion 108b, for example, includes a plurality of extended electrodes for evenly distributing current to the light-emitting element 10 . In one embodiment, as shown in the first figure, the light-emitting element 10 has a first side L1 and a second side L2 opposite the first side L1, the first base 108a of the first electrode layer 108 is located on the first side L1, and the first extension The portion 108b includes a first extension electrode 108b1 that extends continuously from the first base portion 108a outward along the four boundaries of the light-emitting element 10; the first extension portion 108b further includes a second extension electrode 108b2 that extends from the first base portion 108a toward the second side L2. Extend, wherein the second extended electrode 108b2 intersects the first extended electrode 108b1 at the second side L2 and the second extended electrode 108b2 is surrounded by the first extended electrode 108b1. In one embodiment, the first base portion 108a and the first extension portion 108b are integrally formed and include the same material. In one embodiment, the first extended electrode 108b1 and the second extended electrode 108b2 are integrally formed and include the same material. In one embodiment, the first extended electrode 108b1 and the second extended electrode 108b2 have the same width, for example, 1 to 10 microns.

圖案化電性絶緣層106形成於第一導電型半導體層107a與透明氧化物導電層105之間;相對半導體主動結構107b發出之光線,圖案化電性絶緣層106具有例如大於70%之光穿透率以及一折射率小於第一導電型半導體層107a之折射率。於垂直方向Y上,如第二圖所示,圖案化電性絶緣層106與第一電極層108分別位於半導體疊層107相對之二側,其中,圖案化電性絶緣層106較第一電極層108鄰近第一導電型半導體層107a;第一電極層108較圖案化電性絶緣層106鄰近第二導電型半導體層107c。如第一圖所示,圖案化電性絶緣層106與第一電極層108具有大致相同之圖案輪廓,並於垂直方向Y上大致互相重疊。圖案化電性絶緣層106包含第二基部106a以及第二延伸部106b自第二基部106a向遠離第二基部106a的方向延伸,其中,第二延伸部106b之寬度小於第二基部106a之寬度。於垂直方向Y上,如第二圖所示,圖案化電性絶緣層106係作為電流阻擋層並對應位於第一電極層108之正下方以減少電流流經第一電極層108正下方之半導體主動結構107b,避免第一電極層108正下方之半導體主動結構107b發出之光線被第一電極層108吸收而降低發光效率。於一實施例,如第一圖所示,圖案化電性絶緣層106之第二基部106a對應於第一電極層108之第一基部108a,位於第一邊L1以及第一基部108a之正下方。於一實施例,如第一圖及第二圖所示,第二基部106a於垂直方向Y上完全位於第一基部108a之區域之內,第二基部106a之寬度小於第一基部108a之寬度。於一實施例,第一基部108a於垂直方向Y上完全位於第二基部106a之區域之內,第一基部108a之寬度小於第二基部106a之寬度。第二延伸部106b包含第一次延伸部106b1自第二基部106a向外沿著發光元件10之四個邊界連續地延伸;第二延伸部106b更包含第二次延伸部106b2自第二基部106a向第二邊L2延伸,其中,第二次延伸部106b2交會第一次延伸部106b1於第二邊L2且第二次延伸部106b2被第一次延伸部106b1所圍繞。於一實施例,第二基部106a與第二延伸部106b為一體成形並包含相同之材料。於一實施例,第一次延伸部106b1與第二次延伸部106b2為一體成形並包含相同之材料。於一實施例,第一次延伸部106b1之寛度大於第二次延伸部106b2之寛度,例如第一次延伸部106b1之寛度為30~45 微米;第二次延伸部106b2之寛度為2~17微米。於一實施例,第一次延伸部106b1之寬度大於第一延伸電極108b1之寬度;第二次延伸部106b2之寬度大於第二延伸電極108b2之寬度。於一實施例,第一次延伸部106b1之寬度大於第一延伸電極108b1之寬度;第二次延伸部106b2之寬度小於第二延伸電極108b2之寬度。具體而言,如第一圖及第二圖所示,第一基部108a包含第一區域R1與第二基部106a重疊以及第二區域R2與第二基部106a不重疊,其中,第一區域R1大於第二區域R2;第二區域R2環繞第一區域R1。於發光元件10之一剖面,如第二圖所示,第一區域R1之寬度大於第二區域R2之寬度。第一延伸電極108b1包含第三區域R3與第一次延伸部106b1重疊以及第四區域R4與第一次延伸部106b1不重疊,其中第三區域R3大於第四區域R4;第三區域R3環繞第四區域R4;第三區域R3之寬度大於第四區域R4之寬度。第一次延伸部106b1包含第五區域R5與第一導電型半導體層107a重疊以及第六區域R6與第一導電型半導體層107a不重疊,第六區域R6環繞第五區域R5。第五區域R5與第六區域R6兩者之間的相對大小關係可依產品光電特性需求而調整。於一實施例,第五區域R5小於第六區域R6,藉由降低第五區域R5面積,來減少第一次延伸部106b1覆蓋第一導電型半導體層107a的面積,進而增加透明氧化物導電層105與第一導電型半導體層107a的接觸面積,使垂直傳導的電流增加以改善發光元件10的正向電壓。於一實施例,第五區域R5大於第六區域R6,進而增加相對第一次延伸部106b1下方覆蓋第一導電型半導體層107a的面積,提高電流侷限效應,減少垂直傳導的電流,增加水平傳導的電流,進而提升發光元件10的亮度。The patterned electrically insulating layer 106 is formed between the first conductive type semiconductor layer 107a and the transparent oxide conductive layer 105; relative to the light emitted by the semiconductor active structure 107b, the patterned electrically insulating layer 106 has, for example, greater than 70% of light penetration. The transmittance and the refractive index are smaller than the refractive index of the first conductive type semiconductor layer 107a. In the vertical direction Y, as shown in the second figure, the patterned electrical insulating layer 106 and the first electrode layer 108 are respectively located on two opposite sides of the semiconductor stack 107, wherein the patterned electrical insulating layer 106 is larger than the first electrode. The layer 108 is adjacent to the first conductive type semiconductor layer 107a; the first electrode layer 108 is adjacent to the second conductive type semiconductor layer 107c than the patterned electrical insulating layer 106. As shown in the first figure, the patterned electrical insulation layer 106 and the first electrode layer 108 have substantially the same pattern outline and substantially overlap each other in the vertical direction Y. The patterned electrical insulation layer 106 includes a second base portion 106a and a second extension portion 106b extending from the second base portion 106a in a direction away from the second base portion 106a, wherein the width of the second extension portion 106b is smaller than the width of the second base portion 106a. In the vertical direction Y, as shown in the second figure, the patterned electrical insulating layer 106 serves as a current blocking layer and is located directly below the first electrode layer 108 to reduce current flow through the semiconductor directly below the first electrode layer 108 The active structure 107b prevents the light emitted by the semiconductor active structure 107b directly below the first electrode layer 108 from being absorbed by the first electrode layer 108 to reduce the luminous efficiency. In one embodiment, as shown in the first figure, the second base 106a of the patterned electrical insulation layer 106 corresponds to the first base 108a of the first electrode layer 108 and is located directly below the first side L1 and the first base 108a. . In one embodiment, as shown in the first and second figures, the second base 106a is completely located within the area of the first base 108a in the vertical direction Y, and the width of the second base 106a is smaller than the width of the first base 108a. In one embodiment, the first base 108a is completely located within the area of the second base 106a in the vertical direction Y, and the width of the first base 108a is smaller than the width of the second base 106a. The second extension part 106b includes a first extension part 106b1 extending continuously from the second base part 106a outward along the four boundaries of the light-emitting element 10; the second extension part 106b further includes a second extension part 106b2 from the second base part 106a. Extending toward the second side L2, the second extension part 106b2 intersects the first extension part 106b1 at the second side L2 and the second extension part 106b2 is surrounded by the first extension part 106b1. In one embodiment, the second base portion 106a and the second extension portion 106b are integrally formed and include the same material. In one embodiment, the first extension part 106b1 and the second extension part 106b2 are integrally formed and contain the same material. In one embodiment, the width of the first extension part 106b1 is larger than the width of the second extension part 106b2. For example, the width of the first extension part 106b1 is 30~45 microns; the width of the second extension part 106b2 is is 2~17 microns. In one embodiment, the width of the first extended portion 106b1 is greater than the width of the first extended electrode 108b1; the width of the second extended portion 106b2 is greater than the width of the second extended electrode 108b2. In one embodiment, the width of the first extending portion 106b1 is greater than the width of the first extending electrode 108b1; the width of the second extending portion 106b2 is less than the width of the second extending electrode 108b2. Specifically, as shown in the first and second figures, the first base 108a includes a first region R1 overlapping the second base 106a and a second region R2 not overlapping the second base 106a, wherein the first region R1 is larger than The second area R2; the second area R2 surrounds the first area R1. In a cross-section of the light-emitting element 10, as shown in the second figure, the width of the first region R1 is greater than the width of the second region R2. The first extended electrode 108b1 includes a third region R3 overlapping the first extending portion 106b1 and a fourth region R4 not overlapping the first extending portion 106b1, wherein the third region R3 is larger than the fourth region R4; the third region R3 surrounds the first extending portion 106b1. Four regions R4; the width of the third region R3 is greater than the width of the fourth region R4. The first extension part 106b1 includes a fifth region R5 overlapping the first conductive type semiconductor layer 107a and a sixth region R6 not overlapping the first conductive type semiconductor layer 107a. The sixth region R6 surrounds the fifth region R5. The relative size relationship between the fifth region R5 and the sixth region R6 can be adjusted according to the requirements of the photoelectric characteristics of the product. In one embodiment, the fifth region R5 is smaller than the sixth region R6. By reducing the area of the fifth region R5, the area of the first extension 106b1 covering the first conductive type semiconductor layer 107a is reduced, thereby increasing the transparent oxide conductive layer. The contact area between 105 and the first conductive type semiconductor layer 107a increases the vertically conducted current to improve the forward voltage of the light-emitting element 10. In one embodiment, the fifth region R5 is larger than the sixth region R6, thereby increasing the area covering the first conductive type semiconductor layer 107a below the first extension 106b1, improving the current localization effect, reducing vertical conduction current, and increasing horizontal conduction. current, thereby increasing the brightness of the light-emitting element 10.

絕緣保護層109位於第二導電型半導體層107c上使得第二導電性半導體層107c位於半導體主動結構107b及絕緣保護層109之間,其中,絕緣保護層109更延伸覆蓋至半導體疊層107之側面並與圖案化電性絶緣層106直接接觸。圖案化電性絶緣層106之材料可包含一絶緣氧化物、氮化物、矽氧化合物、氧化鈦、氧化鋁、氟化鎂或氮化矽。絕緣保護層109之材料可包含氮化矽或氧化矽。圖案化電性絶緣層106之材料可不同於絕緣保護層109之材料。於一實施例,圖案化電性絶緣層106之材料可為二氧化鈦(TiO 2),絕緣保護層109之材料可為二氧化矽(SiO 2)或氮化矽(SiN x或Si 3N 4),由於二氧化鈦具有較佳的抗蝕刻性,故以二氧化鈦為材料的圖案化電性絶緣層106可做為後續切割製程中蝕刻半導體疊層107時的蝕刻停止層,而二氧化矽或氮化矽具有較佳的光穿透性,故以二氧化矽或氮化矽為材料的絕緣保護層109較不易吸光。於一實施例,發光元件10之半導體主動結構107b所發出的光主要係朝向絕緣保護層109發出,即發光元件10之主要出光面為絕緣保護層109之上表面。於一實施例,第一電極層108的第一基部108a及/或第一延伸部108b覆蓋絕緣保護層109之一部分。於一實施例,第一電極層108的第一基部108a及/或第一延伸部108b不覆蓋絕緣保護層109。於一實施例,絕緣保護層109可順應覆蓋第二導電型半導體層107c遠離半導體主動結構107b之粗化表面,故絕緣保護層109之上表面可包含凹凸圖案。 The insulating protective layer 109 is located on the second conductive type semiconductor layer 107c such that the second conductive semiconductor layer 107c is located between the semiconductor active structure 107b and the insulating protective layer 109, wherein the insulating protective layer 109 further extends to cover the side of the semiconductor stack 107 And in direct contact with the patterned electrical insulation layer 106 . The material of the patterned electrically insulating layer 106 may include an insulating oxide, nitride, silicon oxide, titanium oxide, aluminum oxide, magnesium fluoride or silicon nitride. The material of the insulating protective layer 109 may include silicon nitride or silicon oxide. The material of the patterned electrically insulating layer 106 may be different from the material of the insulating protective layer 109 . In one embodiment, the material of the patterned electrical insulating layer 106 can be titanium dioxide (TiO 2 ), and the material of the insulating protective layer 109 can be silicon dioxide (SiO 2 ) or silicon nitride (SiN x or Si 3 N 4 ). , since titanium dioxide has better etching resistance, the patterned electrical insulating layer 106 made of titanium dioxide can be used as an etching stop layer when etching the semiconductor stack 107 in the subsequent cutting process, while silicon dioxide or silicon nitride It has better light penetration, so the insulating protective layer 109 made of silicon dioxide or silicon nitride is less likely to absorb light. In one embodiment, the light emitted by the semiconductor active structure 107b of the light-emitting element 10 is mainly emitted toward the insulating protective layer 109, that is, the main light-emitting surface of the light-emitting element 10 is the upper surface of the insulating protective layer 109. In one embodiment, the first base portion 108a and/or the first extension portion 108b of the first electrode layer 108 cover a part of the insulating protective layer 109. In one embodiment, the first base portion 108a and/or the first extension portion 108b of the first electrode layer 108 do not cover the insulating protective layer 109. In one embodiment, the insulating protective layer 109 can conformally cover the roughened surface of the second conductive type semiconductor layer 107c away from the semiconductor active structure 107b, so the upper surface of the insulating protective layer 109 can include a concave and convex pattern.

發光元件10更包含導電接合層101設置於金屬反射層103及支撐基板100之間。於一實施例,支撐基板100係為一接合基板,可不受限於成長半導體疊層107之磊晶條件(例如晶格常數)的要求,並可依實際用途而選擇適當材料。具體而言,半導體疊層107係先以磊晶成長的方式成長於一成長基板(圖未示),再形成導電接合層101於半導體疊層107及/或支撐基板100上,並於導電接合層101將半導體疊層107連接於支撐基板100之後移除成長基板。The light-emitting element 10 further includes a conductive bonding layer 101 disposed between the metal reflective layer 103 and the supporting substrate 100 . In one embodiment, the support substrate 100 is a bonding substrate, which is not limited to the requirements of epitaxial conditions (such as lattice constants) for growing the semiconductor stack 107, and appropriate materials can be selected according to actual uses. Specifically, the semiconductor stack 107 is first grown on a growth substrate (not shown) by epitaxial growth, and then the conductive bonding layer 101 is formed on the semiconductor stack 107 and/or the support substrate 100, and is conductively bonded. Layer 101 connects semiconductor stack 107 to support substrate 100 before the growth substrate is removed.

發光元件10更包含擴散阻障層102設置於金屬反射層103及導電接合層101之間,用以避免導電接合層101之材料擴散至金屬反射層103並與金屬反射層103反應生成化合物或形成合金而影響金屬反射層103之反射率及導電特性。為使金屬反射層103具有更佳的保護結構,金屬反射層103並未覆蓋至發光元件10之邊界並且與發光元件之邊界相隔一間隙,因此,擴散阻障層102覆蓋金屬反射層103下表面以及側邊並延伸覆蓋至發光元件10之邊界。於一實施例,擴散阻障層102同時覆蓋透明非氧化物導電層104之側邊以及金屬反射層103之側邊,並且擴散阻障層102同時與透明非氧化物導電層104之側邊及金屬反射層103之側邊直接接觸以獲取更佳的擴散阻障效果。於一實施例,透明氧化物導電層105、非氧化物導電層104以及金屬反射層103均未覆蓋至發光元件10之邊界並且與發光元件10之邊界相隔一間隙而露出圖案化電性絶緣層106,使得擴散阻障層102直接連接圖案化電性絶緣層106於發光元件之邊緣。The light-emitting element 10 further includes a diffusion barrier layer 102 disposed between the metal reflective layer 103 and the conductive joint layer 101 to prevent the material of the conductive joint layer 101 from diffusing to the metal reflective layer 103 and reacting with the metal reflective layer 103 to generate compounds or form The alloy affects the reflectivity and conductive properties of the metal reflective layer 103. In order to provide a better protective structure for the metal reflective layer 103, the metal reflective layer 103 does not cover the boundary of the light-emitting element 10 and is separated from the boundary of the light-emitting element by a gap. Therefore, the diffusion barrier layer 102 covers the lower surface of the metal reflective layer 103. and the sides and extends to cover the boundary of the light-emitting element 10 . In one embodiment, the diffusion barrier layer 102 covers both the sides of the transparent non-oxide conductive layer 104 and the side of the metal reflective layer 103, and the diffusion barrier layer 102 simultaneously covers the sides of the transparent non-oxide conductive layer 104 and the side of the metal reflective layer 103. The sides of the metal reflective layer 103 are in direct contact to obtain a better diffusion barrier effect. In one embodiment, the transparent oxide conductive layer 105 , the non-oxide conductive layer 104 and the metal reflective layer 103 do not cover the boundary of the light-emitting element 10 and are separated from the boundary of the light-emitting element 10 by a gap to expose the patterned electrical insulating layer. 106, so that the diffusion barrier layer 102 directly connects the patterned electrical insulation layer 106 to the edge of the light-emitting element.

發光元件10更包含第二電極層110 設置於支撐基板100之下表面用以透過封裝導線連接至外部元件,例如封裝載體或電路板。The light-emitting element 10 further includes a second electrode layer 110 disposed on the lower surface of the supporting substrate 100 for connecting to external components, such as a packaging carrier or a circuit board, through packaging wires.

請參閱第一圖及第三圖,其中,第三圖為沿第一圖之剖面線B-B'之剖面示意圖。透明氧化物導電層105更包含複數個開孔105a,複數個開孔105a之底部露出第二次延伸部106b2之表面,透明非氧化物導電層104填入複數個開孔105a並與第二次延伸部106b2接觸。於一實施例,如第一圖所示,各開孔105a之寬度例如為2~15微米;各開孔105a之圖案例如為圓形。於一實施例,透明非氧化物導電層104可覆蓋開孔105a。於一實施例,透明非氧化物導電層104可具有開口對應開孔105a,使金屬反射層103填入複數個開孔105a進而與第二次延伸部106b2接觸以增加黏著度。 於一實施例,透明氧化物導電層105可不具有開孔105a。可藉由選擇適合材料的透明非氧化物導電層104,例如氮化鈦,同時具有粘著層的功效,以增加金屬反射層103與透明氧化物導電層105之間的黏著力。Please refer to the first and third figures. The third figure is a schematic cross-sectional view along the section line BB' in the first figure. The transparent oxide conductive layer 105 further includes a plurality of openings 105a. The bottoms of the plurality of openings 105a expose the surface of the second extension part 106b2. The transparent non-oxide conductive layer 104 fills the plurality of openings 105a and communicates with the second extension part 106b2. The extension portion 106b2 is in contact. In one embodiment, as shown in the first figure, the width of each opening 105a is, for example, 2-15 microns; the pattern of each opening 105a is, for example, circular. In one embodiment, the transparent non-oxide conductive layer 104 may cover the opening 105a. In one embodiment, the transparent non-oxide conductive layer 104 may have openings corresponding to the openings 105a, so that the metal reflective layer 103 fills the plurality of openings 105a and then contacts the second extension 106b2 to increase adhesion. In one embodiment, the transparent oxide conductive layer 105 may not have openings 105a. The adhesion between the metal reflective layer 103 and the transparent oxide conductive layer 105 can be increased by selecting a suitable material for the transparent non-oxide conductive layer 104, such as titanium nitride, which also functions as an adhesive layer.

於一實施例,第一導電型半導體層107a具有第一導電型並且第二導電型半導體層107c具有第二導電型相反於第一導電型,以分別提供電子及電洞至半導體主動結構107b。藉此,電子及電洞可於半導體主動結構107b結合以發出特定波長之光線。於一實施例,第一導電型例如為p型,第二導電型例如為n型。於另一實施例,第一導電型例如為n型,第二導電型例如為p型。第一導電型半導體層107a、半導體主動結構107b、第二導電型半導體層107c均包含相同系列之III-V族化合物半導體材料,例如AlInGaAs系列、AlGaInP系列、InGaAsP系列或AlInGaN系列。其中,AlInGaAs系列可表示為(Al x1In (1-x1)) 1-x2Ga x2As,AlInGaP系列可表示為(Al x1In (1-x1)) 1-x2Ga x2P,AlInGaN 系列可表示為(Al x1In (1-x1)) 1-x2Ga x2N,InGaAsP系列可表示In x1Ga 1-x1As x2P 1-x2,其中,0≦x1≦1,0≦x2≦1。發光元件10例如為一發光二極體,其所發出之光線的波長取決於半導體主動結構107b之材料組成。具體來說,半導體主動結構107b之材料可包含AlInGaAs、InGaAsP、AlGaInP、InGaN或AlGaN。發光元件10例如可發出峰值波長(peak wavelength)介於700 nm及1700 nm 之間的紅外光、峰值波長介於610 nm及700 nm之間的紅光、峰值波長介於530 nm及570 nm之間的黃光、峰值波長介於400 nm及490 nm之間的藍光或深藍光、峰值波長介於490 nm及550 nm之間的綠光、或是峰值波長介於250 nm及400 nm之間的紫外光。於一實施例中,半導體主動結構107b可以是單異質結構(single heterostructure; SH)、雙異質結構(double heterostructure; DH)、雙面雙異質結構(double-side double heterostructure; DDH)、多重量子井(multi-quantum well; MQW)。半導體主動結構107b之材料可以是i型、p型或n型半導體。 In one embodiment, the first conductive type semiconductor layer 107a has a first conductivity type and the second conductive type semiconductor layer 107c has a second conductivity type opposite to the first conductivity type to respectively provide electrons and holes to the semiconductor active structure 107b. Thereby, electrons and holes can be combined in the semiconductor active structure 107b to emit light of a specific wavelength. In one embodiment, the first conductivity type is, for example, p-type, and the second conductivity type, for example, is n-type. In another embodiment, the first conductivity type is, for example, n-type, and the second conductivity type, for example, is p-type. The first conductive type semiconductor layer 107a, the semiconductor active structure 107b, and the second conductive type semiconductor layer 107c all include the same series of III-V compound semiconductor materials, such as AlInGaAs series, AlGaInP series, InGaAsP series or AlInGaN series. Among them, the AlInGaAs series can be expressed as (Al x1 In (1-x1) ) 1-x2 Ga x2 As, the AlInGaP series can be expressed as (Al x1 In (1-x1) ) 1-x2 Ga x2 P, and the AlInGaN series can be expressed as is (Al x1 In (1-x1) ) 1-x2 Ga x2 N, the InGaAsP series can represent In x1 Ga 1-x1 As x2 P 1-x2 , where 0≦x1≦1, 0≦x2≦1. The light-emitting element 10 is, for example, a light-emitting diode, and the wavelength of the light it emits depends on the material composition of the semiconductor active structure 107b. Specifically, the material of the semiconductor active structure 107b may include AlInGaAs, InGaAsP, AlGaInP, InGaN or AlGaN. For example, the light-emitting element 10 can emit infrared light with a peak wavelength between 700 nm and 1700 nm, red light with a peak wavelength between 610 nm and 700 nm, and a peak wavelength between 530 nm and 570 nm. Yellow light between 400 nm and 490 nm, blue or deep blue light with a peak wavelength between 400 nm and 490 nm, green light with a peak wavelength between 490 nm and 550 nm, or between 250 nm and 400 nm of ultraviolet light. In one embodiment, the semiconductor active structure 107b may be a single heterostructure (SH), a double heterostructure (DH), a double-side double heterostructure (DDH), or multiple quantum wells. (multi-quantum well; MQW). The material of the semiconductor active structure 107b may be i-type, p-type or n-type semiconductor.

於一實施例,支撐基板100包含導電材料,所述之導電材料例如包含砷化鎵(GaAs)、磷化銦(InP)、碳化矽(SiC)、磷化鎵(GaP)、氧化鋅(ZnO)、氮化鎵(GaN)、氮化鋁(AlN)、銅(Cu)、鎢(W)、鍺(Ge) 、或矽(Si) 、或上述材料之合金或疊層。導電接合層101可包含金屬材料例如銅(Cu)、鋁(Al)、錫(Sn)、金(Au)、銀(Ag)、鉛(Pb)、鈦(Ti)、鎳(Ni)、鉑(Pt)、鎢(W) 、或上述材料之合金或疊層。擴散阻障層102之材料包含鉻(Cr)、鉑(Pt)、鈦(Ti)、鎢(W)、鋅(Zn) 或上述材料之合金或疊層。於一實施例中,當擴散阻障層102為金屬疊層時,擴散阻障層102係包含由兩層或兩層以上的金屬交替堆疊而形成,例如Cr/Pt、Cr/Ti、Cr/TiW、Cr/W、Cr/Zn、Ti/Pt、Ti/W、Ti/TiW、Ti/Zn、Pt/TiW、Pt/W、Pt/Zn、TiW/W、TiW/Zn、或W/Zn等。金屬反射層103之材料包含銀(Ag)、金(Au)、鋁(Al)、鈦(Ti)、鉻(Cr)、銅(Cu)、鎳(Ni)、鉑(Pt)、釕(Ru)或上述材料之合金或疊層。透明非氧化物導電層104之材料包含導電金屬氮化物,其中,所述之導電金屬氮化物例如包含過渡金屬氮化物,例如氮化鈦。透明氧化物導電層105之材料包含銦錫氧化物(ITO)、氧化鋁鋅(AZO)、氧化鎵鋅(GZO)、氧化鋅(ZnO)或銦鋅氧化物(IZO)等材料。圖案化電性絶緣層106以及絕緣保護層109之材料包含介電材料,所述之介電材料例如包含氧化鉭(TaO x)、氧化鋁(AlO x)、二氧化矽(SiO x)、氧化鈦(TiO x)、氮化矽(SiN x)或旋塗玻璃(SOG)。於本實施例中,圖案化電性絶緣層106之材料包含二氧化鈦(TiOx);絕緣保護層109之材料包含二氧化矽(SiOx)或氮化矽(SiNx)。 In one embodiment, the support substrate 100 includes conductive materials, such as gallium arsenide (GaAs), indium phosphide (InP), silicon carbide (SiC), gallium phosphide (GaP), and zinc oxide (ZnO). ), gallium nitride (GaN), aluminum nitride (AlN), copper (Cu), tungsten (W), germanium (Ge), or silicon (Si), or alloys or laminates of the above materials. The conductive bonding layer 101 may include metal materials such as copper (Cu), aluminum (Al), tin (Sn), gold (Au), silver (Ag), lead (Pb), titanium (Ti), nickel (Ni), platinum (Pt), tungsten (W), or alloys or laminates of the above materials. The material of the diffusion barrier layer 102 includes chromium (Cr), platinum (Pt), titanium (Ti), tungsten (W), zinc (Zn) or alloys or laminates of the above materials. In one embodiment, when the diffusion barrier layer 102 is a metal stack, the diffusion barrier layer 102 is formed by alternately stacking two or more layers of metal, such as Cr/Pt, Cr/Ti, Cr/ TiW, Cr/W, Cr/Zn, Ti/Pt, Ti/W, Ti/TiW, Ti/Zn, Pt/TiW, Pt/W, Pt/Zn, TiW/W, TiW/Zn, or W/Zn wait. The materials of the metal reflective layer 103 include silver (Ag), gold (Au), aluminum (Al), titanium (Ti), chromium (Cr), copper (Cu), nickel (Ni), platinum (Pt), ruthenium (Ru). ) or alloys or laminates of the above materials. The material of the transparent non-oxide conductive layer 104 includes conductive metal nitride, wherein the conductive metal nitride includes, for example, a transition metal nitride, such as titanium nitride. The material of the transparent oxide conductive layer 105 includes indium tin oxide (ITO), aluminum zinc oxide (AZO), gallium zinc oxide (GZO), zinc oxide (ZnO) or indium zinc oxide (IZO). The materials of the patterned electrical insulating layer 106 and the insulating protective layer 109 include dielectric materials, such as tantalum oxide (TaO x ), aluminum oxide (AlO x ), silicon dioxide (SiO x ), oxide Titanium (TiO x ), silicon nitride (SiN x ) or spin-on glass (SOG). In this embodiment, the material of the patterned electrical insulation layer 106 includes titanium dioxide (TiOx); the material of the insulating protective layer 109 includes silicon dioxide (SiOx) or silicon nitride (SiNx).

於一實施例,第一電極層108及第二電極層110係分別包含單層或多層結構。第一電極層108及第二電極層110包含至少一材料選自於鎳(Ni)、鈦(Ti)、鉑(Pt)、鈀(Pd)、銀(Ag)、金 (Au)、鋁(Al)、錫(Sn)及銅(Cu)所組成之群組。In one embodiment, the first electrode layer 108 and the second electrode layer 110 respectively include a single layer or a multi-layer structure. The first electrode layer 108 and the second electrode layer 110 include at least one material selected from nickel (Ni), titanium (Ti), platinum (Pt), palladium (Pd), silver (Ag), gold (Au), aluminum ( A group consisting of Al), tin (Sn) and copper (Cu).

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the patentable scope of the present invention shall fall within the scope of the present invention.

10:發光元件 100:支撐基板 100s:上表面 101:導電接合層 102:擴散阻障層 103:金屬反射層 104:透明非氧化物導電層 105:透明氧化物導電層 105a:開孔 106:圖案化電性絶緣層 106a:第二基部 106b:第二延伸部 106b1:第一次延伸部 106b2:第二次延伸部 107:半導體疊層 107a:第一導電型半導體層 107b:半導體主動結構 107c:第二導電型半導體層 108:第一電極層 108a:第一基部 108b:第一延伸部 108b1:第一延伸電極 108b2:第二延伸電極 109:絕緣保護層 110:第二電極層 L1:第一邊 L2:第二邊 R1:第一區域 R2:第二區域 R3:第三區域 R4:第四區域 R5:第五區域 R6:第六區域 X:水平方向 Y:垂直方向 10:Light-emitting components 100:Support base plate 100s: upper surface 101: Conductive bonding layer 102: Diffusion barrier layer 103: Metal reflective layer 104: Transparent non-oxide conductive layer 105:Transparent oxide conductive layer 105a:Opening 106: Patterned electrical insulation layer 106a: Second base 106b: Second extension 106b1: First extension 106b2: Second extension 107: Semiconductor stack 107a: First conductivity type semiconductor layer 107b: Semiconductor active structures 107c: Second conductivity type semiconductor layer 108: First electrode layer 108a: first base 108b: First extension 108b1: First extension electrode 108b2: Second extension electrode 109: Insulating protective layer 110: Second electrode layer L1: first side L2: Second side R1: first area R2: Second area R3: The third area R4: The fourth area R5: The fifth area R6: The sixth area X: horizontal direction Y: vertical direction

第一圖為上視示意圖,顯示符合本揭露之發光元件之一實施例。The first figure is a schematic top view showing an embodiment of a light-emitting element according to the present disclosure.

第二圖為沿第一圖之剖面線A-A’之一剖面示意圖。The second figure is a schematic cross-sectional view along the section line A-A’ in the first figure.

第三圖為沿第一圖之剖面線B-B’之一剖面示意圖。The third figure is a schematic cross-sectional view along the section line B-B' of the first figure.

10:發光元件 10:Light-emitting components

100:支撐基板 100:Support base plate

100s:上表面 100s: upper surface

101:導電接合層 101: Conductive bonding layer

102:擴散阻障層 102:Diffusion barrier layer

103:金屬反射層 103: Metal reflective layer

104:透明非氧化物導電層 104: Transparent non-oxide conductive layer

105:透明氧化物導電層 105:Transparent oxide conductive layer

106:圖案化電性絶緣層 106: Patterned electrical insulation layer

106a:第二基部 106a: Second base

106b:第二延伸部 106b: Second extension

106b1:第一次延伸部 106b1: First extension

106b2:第二次延伸部 106b2: Second extension

107:半導體疊層 107: Semiconductor stack

107a:第一導電型半導體層 107a: First conductivity type semiconductor layer

107b:半導體主動結構 107b: Semiconductor active structures

107c:第二導電型半導體層 107c: Second conductivity type semiconductor layer

108:第一電極層 108: First electrode layer

108a:第一基部 108a: first base

108b:第一延伸部 108b: First extension

108b1:第一延伸電極 108b1: First extension electrode

108b2:第二延伸電極 108b2: Second extension electrode

109:絕緣保護層 109: Insulating protective layer

110:第二電極層 110: Second electrode layer

L1:第一邊 L1: first side

L2:第二邊 L2: Second side

R1:第一區域 R1: first area

Claims (9)

一種發光元件,包括:一支撐基板包含一表面;一半導體疊層設置於該支撐基板之該表面上,包含一第一導電型半導體層、一第二導電型半導體層、一半導體主動結構位於該第一導電型半導體層及該第二導電型半導體層之間用以發出一光線,其中該第一導電型半導體層具有一第一功函數;一金屬反射層設置於該第一導電型半導體層及該支撐基板之間,其中該金屬反射層具有一第二功函數;一透明氧化物導電層設置於該第一導電型半導體層及該金屬反射層之間,具有一第三功函數小於該第一功函數;以及一透明非氧化物導電層設置於該透明氧化物導電層及該金屬反射層之間,具有一第四功函數小於該第一功函數,其中該第三功函數及該第四功函數之差異小於0.5eV;其中該透明氧化物導電層直接連接該透明非氧化物導電層且該透明非氧化物導電層直接連接該金屬反射層。 A light-emitting element includes: a support substrate including a surface; a semiconductor stack is disposed on the surface of the support substrate, including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and a semiconductor active structure located on the A light is emitted between the first conductive type semiconductor layer and the second conductive type semiconductor layer, wherein the first conductive type semiconductor layer has a first work function; a metal reflective layer is disposed on the first conductive type semiconductor layer and the support substrate, wherein the metal reflective layer has a second work function; a transparent oxide conductive layer is disposed between the first conductive type semiconductor layer and the metal reflective layer and has a third work function smaller than the a first work function; and a transparent non-oxide conductive layer disposed between the transparent oxide conductive layer and the metal reflective layer, having a fourth work function smaller than the first work function, wherein the third work function and the The difference in the fourth work function is less than 0.5 eV; wherein the transparent oxide conductive layer is directly connected to the transparent non-oxide conductive layer and the transparent non-oxide conductive layer is directly connected to the metal reflective layer. 一種發光元件,包括:一支撐基板包含一表面;一半導體疊層設置於該支撐基板之該表面上,包含一第一導電型半導體層、一第二導電型半導體層、一半導體主動結構位於該第一導電型半導體層及該第二導電型半導體層之間用以發出一光線,其中該第一導電型半導體層具有一第一功函數; 一金屬反射層設置於該第一導電型半導體層及該支撐基板之間,其中該金屬反射層具有一第二功函數;一透明氧化物導電層設置於該第一導電型半導體層及該金屬反射層之間,具有一第三功函數小於該第一功函數;以及一透明非氧化物導電層設置於該透明氧化物導電層及該金屬反射層之間,具有一第四功函數小於該第一功函數,其中該第三功函數及該第四功函數之差異小於0.5eV;其中該透明非氧化物導電層完全隔開該透明氧化物導電層與該金屬反射層以避免該透明氧化物導電層接觸該金屬反射層。 A light-emitting element includes: a support substrate including a surface; a semiconductor stack is disposed on the surface of the support substrate, including a first conductive type semiconductor layer, a second conductive type semiconductor layer, and a semiconductor active structure located on the The space between the first conductive type semiconductor layer and the second conductive type semiconductor layer is used to emit a light, wherein the first conductive type semiconductor layer has a first work function; A metal reflective layer is disposed between the first conductive type semiconductor layer and the support substrate, wherein the metal reflective layer has a second work function; a transparent oxide conductive layer is disposed between the first conductive type semiconductor layer and the metal between the reflective layers, a third work function is smaller than the first work function; and a transparent non-oxide conductive layer is disposed between the transparent oxide conductive layer and the metal reflective layer, having a fourth work function smaller than the first work function; A first work function, wherein the difference between the third work function and the fourth work function is less than 0.5eV; wherein the transparent non-oxide conductive layer completely separates the transparent oxide conductive layer and the metal reflective layer to avoid the transparent oxidation The physical conductive layer contacts the metal reflective layer. 如請求項1或2所述之發光元件,其中,該第二功函數及該第四功函數之差異小於0.5eV。 The light-emitting element according to claim 1 or 2, wherein the difference between the second work function and the fourth work function is less than 0.5 eV. 如請求項1或2所述之發光元件,其中,該透明氧化物導電層具有一折射率小於該第一導電型半導體層之折射率,該透明非氧化物導電層具有一折射率小於該透明氧化物導電層之折射率。 The light-emitting element of claim 1 or 2, wherein the transparent oxide conductive layer has a refractive index smaller than that of the first conductive type semiconductor layer, and the transparent non-oxide conductive layer has a refractive index smaller than the transparent The refractive index of the oxide conductive layer. 如請求項1或2所述之發光元件,更包含一圖案化電性絶緣層形成於該第一導電型半導體層與該透明氧化物導電層之間,該圖案化電性絶緣層具有一折射率小於該第一導電型半導體層之折射率。 The light-emitting element of claim 1 or 2, further comprising a patterned electrical insulating layer formed between the first conductive type semiconductor layer and the transparent oxide conductive layer, the patterned electrical insulating layer having a refractive index The refractive index is smaller than the refractive index of the first conductive type semiconductor layer. 如請求項5所述的發光元件,更包括一電極層位於該第二導電型半導體層上使得該第二導電型半導體層位於該半導體主動結構及該電極層之間,其中,該電極層包含一第一基部位於該半導體疊層之一第一側,該圖案化電性絶緣層包含一第二基部位於該半導體疊層與該第一側相對之一第二側並對應該第一基部。 The light-emitting element of claim 5, further comprising an electrode layer located on the second conductive type semiconductor layer such that the second conductive type semiconductor layer is located between the semiconductor active structure and the electrode layer, wherein the electrode layer includes A first base is located on a first side of the semiconductor stack, and the patterned electrically insulating layer includes a second base located on a second side of the semiconductor stack opposite to the first side and corresponding to the first base. 如請求項5所述的發光元件,更包含一絕緣保護層位於該第二導電型半導體層上使得該第二導電型半導體層位於該半導體主動結構及該絕緣保護層之間,其中該絕緣保護層更延伸覆蓋至該半導體疊層之側面並與該圖案化電性絶緣層直接接觸。 The light-emitting element of claim 5, further comprising an insulating protective layer located on the second conductive type semiconductor layer such that the second conductive type semiconductor layer is located between the semiconductor active structure and the insulating protective layer, wherein the insulating protective layer The layer further extends to cover the side of the semiconductor stack and is in direct contact with the patterned electrically insulating layer. 如請求項5所述的發光元件,其中,該透明氧化物導電層包含一開孔,該開孔之底部露出該圖案化電性絶緣層之表面。 The light-emitting element of claim 5, wherein the transparent oxide conductive layer includes an opening, and the bottom of the opening exposes the surface of the patterned electrical insulating layer. 如請求項8所述的發光元件,其中,該透明非氧化物導電層填入該開孔。The light-emitting element of claim 8, wherein the transparent non-oxide conductive layer fills the opening.
TW110124703A 2021-07-06 2021-07-06 Light-emitting device TWI811725B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110124703A TWI811725B (en) 2021-07-06 2021-07-06 Light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110124703A TWI811725B (en) 2021-07-06 2021-07-06 Light-emitting device

Publications (2)

Publication Number Publication Date
TW202304017A TW202304017A (en) 2023-01-16
TWI811725B true TWI811725B (en) 2023-08-11

Family

ID=86657982

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110124703A TWI811725B (en) 2021-07-06 2021-07-06 Light-emitting device

Country Status (1)

Country Link
TW (1) TWI811725B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200723558A (en) * 2005-12-12 2007-06-16 San-Bao Lin Light emitting device capable of enhancing reflection efficiency
TW201145561A (en) * 2010-06-01 2011-12-16 Huga Optotech Inc Light emitting device
US20180026162A1 (en) * 2016-07-19 2018-01-25 Korea University Research And Business Foundation Light-Emitting Diode With Transparent Conductive Electrodes For Improvement in Light Extraction Efficiency

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200723558A (en) * 2005-12-12 2007-06-16 San-Bao Lin Light emitting device capable of enhancing reflection efficiency
TW201145561A (en) * 2010-06-01 2011-12-16 Huga Optotech Inc Light emitting device
US20180026162A1 (en) * 2016-07-19 2018-01-25 Korea University Research And Business Foundation Light-Emitting Diode With Transparent Conductive Electrodes For Improvement in Light Extraction Efficiency

Also Published As

Publication number Publication date
TW202304017A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
US10950758B2 (en) Light-emitting device with reflective layer
US9859466B2 (en) Light-emitting diode module having light-emitting diode joined through solder paste and light-emitting diode
US6914268B2 (en) LED device, flip-chip LED package and light reflecting structure
US9978910B2 (en) Light-emitting diode with improved light extraction efficiency
JP5949294B2 (en) Semiconductor light emitting device
KR102135624B1 (en) Light emitting diode and led module having the same
US8552447B2 (en) Semiconductor light-emitting element
KR100887139B1 (en) Nitride semiconductor light emitting device and method of manufacturing the same
US10811568B2 (en) Semiconductor light emitting device and semiconductor light emitting device package using the same
JP2005277372A (en) Semiconductor light emitting device and its manufacturing method
KR20130120615A (en) Light emitting device and light emitting device package
TWI702738B (en) Light-emitting diode device
US10396248B2 (en) Semiconductor light emitting diode
JP2011238744A (en) Semiconductor light-emitting element and light-emitting device
TWI811725B (en) Light-emitting device
US20210336090A1 (en) Light-emitting device and manufacturing method thereof
US8049241B2 (en) Light emitting device fabrication method thereof, and light emitting apparatus
CN113380932B (en) Structure of flip-chip light emitting diode and manufacturing method thereof
TWI816191B (en) Light emitting device
US20240030387A1 (en) Light-emitting device and method for manufacturing the same
KR102149911B1 (en) Light emitting diode and led module having the same
CN116093231A (en) Vertical light emitting diode and light emitting device
TW202141814A (en) Light-emitting device and manufacturing method thereof
TW202345419A (en) Light-emitting device
CN117855358A (en) Light emitting diode and light emitting device