TWI449210B - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
TWI449210B
TWI449210B TW099117667A TW99117667A TWI449210B TW I449210 B TWI449210 B TW I449210B TW 099117667 A TW099117667 A TW 099117667A TW 99117667 A TW99117667 A TW 99117667A TW I449210 B TWI449210 B TW I449210B
Authority
TW
Taiwan
Prior art keywords
layer
light
emitting element
film structure
multilayer film
Prior art date
Application number
TW099117667A
Other languages
Chinese (zh)
Other versions
TW201145561A (en
Inventor
Cheng Hsien Li
Shiou Yi Kuo
Original Assignee
Huga Optotech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huga Optotech Inc filed Critical Huga Optotech Inc
Priority to TW099117667A priority Critical patent/TWI449210B/en
Priority to JP2010234051A priority patent/JP5745250B2/en
Publication of TW201145561A publication Critical patent/TW201145561A/en
Application granted granted Critical
Publication of TWI449210B publication Critical patent/TWI449210B/en

Links

Landscapes

  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Description

發光元件Light-emitting element

本發明是有關於一種發光元件,尤其是一種具有分散式布拉格反射結構的發光元件。The present invention relates to a light-emitting element, and more particularly to a light-emitting element having a distributed Bragg reflection structure.

目前發光元件(例如發光二極體)的應用領域已十分廣泛。例如在顯示裝置、交通訊號裝置、照明裝置、醫療裝置以及通訊裝置等領域之產品,皆可見到發光元件之應用。At present, the field of application of light-emitting elements (such as light-emitting diodes) has been extensive. For example, in the fields of display devices, communication devices, lighting devices, medical devices, and communication devices, the application of the light-emitting elements can be seen.

請參閱圖1,所示為一種習知的發光元件10,其包括導電基板11、黏結層13、金屬反射層15、透明導電層17以及半導體疊層19。其中,黏結層13位於導電基板11上,金屬反射層15位於黏結層13上,透明導電層17位於金屬反射層15上,而半導體疊層19位於透明導電層17上。半導體疊層19包括與透明導電層17相連的p型氮化鎵層192、位於p型氮化鎵層192上方的n型氮化鎵層196以及位於p型氮化鎵層192與n型氮化鎵層196之間的活性層194。Referring to FIG. 1, a conventional light emitting device 10 is shown, which includes a conductive substrate 11, a bonding layer 13, a metal reflective layer 15, a transparent conductive layer 17, and a semiconductor laminate 19. The adhesive layer 13 is located on the conductive substrate 11, the metal reflective layer 15 is on the adhesive layer 13, the transparent conductive layer 17 is on the metal reflective layer 15, and the semiconductor laminate 19 is on the transparent conductive layer 17. The semiconductor stack 19 includes a p-type gallium nitride layer 192 connected to the transparent conductive layer 17, an n-type gallium nitride layer 196 over the p-type gallium nitride layer 192, and a p-type gallium nitride layer 192 and n-type nitrogen. The active layer 194 between the gallium layers 196.

在發光元件10中,透明導電層17是直接接觸p型氮化鎵層192而達成歐姆接觸功能,透明導電層17的高穿透率特性可使金屬反射層15發揮高反射功能。In the light-emitting element 10, the transparent conductive layer 17 directly contacts the p-type gallium nitride layer 192 to achieve an ohmic contact function, and the high transmittance characteristic of the transparent conductive layer 17 allows the metal reflective layer 15 to exhibit a high reflection function.

然而,由於在發光元件10的製造過程中,需進行熱處理,而熱處理時容易造成透明導電層17與金屬反射層15之間發生相互擴散(Diffusion),因此在發光元件10的製造過程中導致金屬反射層15霧化,進而會降低金屬反射層15反射率,使得發光元件10的發光效率受到影響。However, since heat treatment is required in the manufacturing process of the light-emitting element 10, and mutual diffusion between the transparent conductive layer 17 and the metal reflective layer 15 is easily caused during heat treatment, metal is caused in the manufacturing process of the light-emitting element 10. The reflection layer 15 is atomized, which in turn reduces the reflectance of the metal reflective layer 15, so that the luminous efficiency of the light-emitting element 10 is affected.

因此,如何避免發光元件在製造過程中反射結構的反射率被降低,以提高發光元件的發光效率實為相關領域之人員所重視的議題之一。Therefore, how to prevent the reflectance of the reflective structure of the light-emitting element from being lowered during the manufacturing process to improve the light-emitting efficiency of the light-emitting element is one of the issues that people in the related art pay attention to.

有鑑於此,本發明提供一種發光元件,其可提高發光效率。In view of this, the present invention provides a light-emitting element which can improve luminous efficiency.

本發明提出一種發光元件,其包括導電基板、金屬反射層、具有兩種或兩種以上折射率相異材質交互堆疊之多層膜結構、透明導電層與半導體疊層。金屬反射層配置於導電基板上。交互堆疊之多層膜結構配置於金屬反射層上,上述之交互堆疊之多層膜結構係至少具有一絕緣層,且具有至少一導孔結構貫穿交互堆疊之多層膜結構,而透明導電層配置於交互堆疊之多層膜結構上,且半導體疊層配置於透明導電層上。The invention provides a light-emitting element comprising a conductive substrate, a metal reflective layer, a multilayer film structure having two or more refractive index dissimilar materials alternately stacked, a transparent conductive layer and a semiconductor laminate. The metal reflective layer is disposed on the conductive substrate. The multi-layer film structure of the alternating stack is disposed on the metal reflective layer, and the multi-layer film structure of the above-mentioned alternately stacked has at least one insulating layer, and has at least one via structure through the multi-layer film structure of the alternating stack, and the transparent conductive layer is disposed in the interaction The stacked multilayer film structure is disposed on the transparent conductive layer.

本發明還提出一種發光元件,其包括導電基板、金屬反射層、具有兩種或兩種以上折射率相異材質交互堆疊之多層膜結構、透明導電層與半導體疊層。其中,金屬反射層配置於導電基板上。交互堆疊之多層膜結構配置於金屬反射層上,且上述之交互堆疊之多層膜結構係由導電性材質製成,此導電性材質至少包含有具有摻雜的TiO2 。透明導電層配置於交互堆疊之多層膜結構上。半導體疊層配置於透明導電層上。The invention also provides a light-emitting element comprising a conductive substrate, a metal reflective layer, a multilayer film structure having two or more refractive index dissimilar materials alternately stacked, a transparent conductive layer and a semiconductor laminate. The metal reflective layer is disposed on the conductive substrate. The multi-layer film structure of the alternating stack is disposed on the metal reflective layer, and the multi-layer film structure of the above-mentioned alternately stacked is made of a conductive material, and the conductive material includes at least TiO 2 having doping. The transparent conductive layer is disposed on the multilayer film structure of the alternate stack. The semiconductor stack is disposed on the transparent conductive layer.

本發明之發光元件採用交互堆疊之多層膜結構具有兩種或兩種以上折射率相異材質交互堆疊之多層膜結構來反射光,交互堆疊之多層膜結構能避免金屬反射層與透明導電層之間因熱作用而導致的物質相互擴散問題、反射率降低之問題,從而有利於提高發光元件的發光效率。The light-emitting element of the present invention adopts a multi-layer film structure which is alternately stacked, and has a multilayer film structure in which two or more kinds of refractive index different materials are alternately stacked to reflect light, and the multi-layer film structure which is alternately stacked can avoid the metal reflective layer and the transparent conductive layer. The problem of mutual diffusion of substances due to thermal action and a decrease in reflectance are beneficial to improve the luminous efficiency of the light-emitting element.

為讓本發明之上述和其他目的、特徵和優點能更明顯易懂,下文特舉較佳實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features and advantages of the present invention will become more <RTIgt;

圖2繪示為本發明實施例之一的發光元件的示意圖。請參閱圖2,本發明實施例之一的發光元件30包括導電基板31、金屬反射層33、具有兩種或兩種以上折射率相異材質交互堆疊之多層膜結構35、透明導電層37、半導體疊層39、導孔結構352以及一電極41。2 is a schematic view of a light emitting device according to an embodiment of the present invention. Referring to FIG. 2, a light-emitting element 30 according to an embodiment of the present invention includes a conductive substrate 31, a metal reflective layer 33, a multilayer film structure 35 having two or more refractive index dissimilar materials, and a transparent conductive layer 37, A semiconductor stack 39, a via structure 352, and an electrode 41.

如圖2所示,發光元件30為一垂直式的發光二極體;其中,金屬反射層33位於導電基板31上,交互堆疊之多層膜結構35位於金屬反射層33上,透明導電層37位於交互堆疊之多層膜結構35上,而半導體疊層39位於透明導電層37上,此外,上述的電極41位於半導體疊層39上。其中,上述之相互堆疊之多層膜結構35中至少具有一絕緣層,其中絕緣層材質可以是Ta2 O5 、SiNx 、TiO2 或SiO2 ,且上述之交互堆疊之多層膜結構35具有至少一導孔結構352貫穿其中,且導孔結構352用於使金屬反射層33與透明導電層37之間形成電性連接。在圖2實施例中,雖然僅繪示一導孔結構352,但本發明並不以導孔結構352的數量為限,在其他實施例中,導孔結構352數量還可為多個。不僅如此,上述導孔結構352之材質是由高光反射性金屬或熱穩性金屬材料填充於其中,利用高光反射性金屬,諸如銀、鋁、金及其合金等材料,藉此提高發光元件30之光反射率,而熱穩性金屬材料則可以是鈦、鋁、鉻等金屬或上述金屬所構成之合金,用以提高導孔結構352之緻密性。As shown in FIG. 2, the light-emitting element 30 is a vertical light-emitting diode; wherein the metal reflective layer 33 is located on the conductive substrate 31, and the stacked multilayer film structure 35 is located on the metal reflective layer 33, and the transparent conductive layer 37 is located. The stacked multilayer multilayer film structure 35 is disposed on the transparent conductive layer 37. Further, the electrode 41 is disposed on the semiconductor laminate 39. Wherein, the above-mentioned stacked multilayer film structure 35 has at least one insulating layer, wherein the insulating layer material may be Ta 2 O 5 , SiN x , TiO 2 or SiO 2 , and the above-mentioned alternately stacked multilayer film structure 35 has at least A via structure 352 is penetrated therethrough, and the via structure 352 is used to form an electrical connection between the metal reflective layer 33 and the transparent conductive layer 37. In the embodiment of FIG. 2, although only one via structure 352 is illustrated, the present invention is not limited to the number of via structures 352. In other embodiments, the number of via structures 352 may be plural. Moreover, the material of the above-mentioned via structure 352 is filled with a high-light reflective metal or a thermo-stable metal material, and a high-light reflective metal such as silver, aluminum, gold, or an alloy thereof is used, thereby improving the light-emitting element 30. The light reflectivity, and the thermally stable metal material may be a metal such as titanium, aluminum, or chromium or an alloy of the above metals to improve the compactness of the via structure 352.

此外,交互堆疊之多層膜結構35亦可以是由不同的絕緣材質交互堆疊而成,上述的絕緣材質可以是Ta2 O5 、SiNx 、TiO2 或SiO2 ;於本實施例中,交互堆疊之多層膜結構35係TiO2 與SiO2 兩種絕緣材質交互堆疊而成的。In addition, the interaction of the stacked multilayer film structure 35 also may be a stack of an insulating material different from the interaction, the aforementioned insulating material may be Ta 2 O 5, SiN x, TiO 2 or SiO 2; in the present embodiment, stacked one The multilayer film structure 35 is formed by alternately stacking two insulating materials of TiO 2 and SiO 2 .

承上述,所謂的具有兩種或兩種以上折射率相異材質交互堆疊之多層膜結構35,通常是將折射率相異的兩種材質交互堆疊而成,在本實施例中,交互堆疊之多層膜結構35係為一分散式布拉格反射(Distributed Bragg Reflector,DBR)結構,其中每層的厚度係為λ/4,其中λ為發光元件30之主波長(dominant wavelength)。According to the above, the so-called multi-layer film structure 35 having two or more refractive index dissimilar materials alternately stacked is generally formed by stacking two materials having different refractive indexes. In this embodiment, the stack is alternately stacked. The multilayer film structure 35 is a Distributed Bragg Reflector (DBR) structure in which the thickness of each layer is λ/4, where λ is the dominant wavelength of the light-emitting element 30.

再者,半導體疊層39之材質可選自氮化鋁銦鎵系列材料或磷化鋁銦鎵系列材料,且可包括第一導電型半導體層392、活性層394以及第二導電型半導體層396。其中,第一導電型半導體層392位於透明導電層37上,活性層394位於第一導電型半導體層392上,而第二導電型半導體層396位於活性層394上。Furthermore, the material of the semiconductor stack 39 may be selected from an aluminum indium gallium nitride series material or an aluminum indium gallium phosphide series material, and may include a first conductive type semiconductor layer 392, an active layer 394, and a second conductive type semiconductor layer 396. . The first conductive semiconductor layer 392 is located on the transparent conductive layer 37, the active layer 394 is located on the first conductive semiconductor layer 392, and the second conductive semiconductor layer 396 is disposed on the active layer 394.

詳細來說,活性層394可為多重量子井(multi-quantum well,MQW)結構,而第一導電型半導體層392與第二導電型半導體層396可分別為p型半導體層與n型半導體層。更詳細地,第一導電型半導體層392與第二導電型半導體層396可分別為p型氮化鎵層與n型氮化鎵層。In detail, the active layer 394 may be a multi-quantum well (MQW) structure, and the first conductive semiconductor layer 392 and the second conductive semiconductor layer 396 may be a p-type semiconductor layer and an n-type semiconductor layer, respectively. . In more detail, the first conductive semiconductor layer 392 and the second conductive semiconductor layer 396 may be a p-type gallium nitride layer and an n-type gallium nitride layer, respectively.

不僅如此,上述半導體疊層39之表面可以是一粗化結構,以減少光線由活性層產生後因為半導體疊層39與外界間之折射率差異而形成全反射的情況,進而增加發光元件30之出光摘出效率。Moreover, the surface of the semiconductor stack 39 may be a roughened structure to reduce the occurrence of total reflection after the light is generated by the active layer due to the difference in refractive index between the semiconductor layer 39 and the outside, thereby increasing the light-emitting element 30. Light extraction efficiency.

此外,透明導電層37之材質可以是透明金屬氧化材料,諸如ITO、CTO、ZnO、In2 O3 、SnO2 、CuAlO2 、CuGaO2 、SrCu2 O2 ,在本實施例中,透明導電層37之材質系為ITO。In addition, the material of the transparent conductive layer 37 may be a transparent metal oxide material such as ITO, CTO, ZnO, In 2 O 3 , SnO 2 , CuAlO 2 , CuGaO 2 , SrCu 2 O 2 , in this embodiment, a transparent conductive layer The material of 37 is ITO.

不僅如此,上述導電基板31之材質可以是氧化鋅、矽或金屬。此外,更可以在導電基板31之下表面形成一背電極(Back Electrode)312。Moreover, the material of the conductive substrate 31 may be zinc oxide, tantalum or metal. Further, a back electrode 312 may be formed on the lower surface of the conductive substrate 31.

此外,上述的金屬反射層33可以同時具有黏結層之功能,用以接合導電基板31與交互堆疊之多層膜結構35。在本實施例中,金屬反射層33可以選用具有高光反射性之金屬,諸如銀、鋁、金及其合金等材料,並且利用金屬共晶鑑合(Eutectic bonding)技術形成,使得金屬反射層33同時具有黏結層之功能。但需要指出的是,本發明並不以金屬反射層33同時具有黏結作用為限。In addition, the metal reflective layer 33 described above may have the function of a bonding layer for bonding the conductive substrate 31 and the multilayer film structure 35 which are alternately stacked. In the present embodiment, the metal reflective layer 33 may be selected from a metal having high light reflectivity such as silver, aluminum, gold, and alloys thereof, and formed by a metal eutectic bonding technique such that the metal reflective layer 33 is formed. At the same time, it has the function of bonding layer. It should be noted, however, that the present invention is not limited to the fact that the metal reflective layer 33 has a bonding effect at the same time.

圖3為本發明另一實施例,如圖3所示,金屬反射層33與導電基板31還具有一黏結層34,而黏結層34的作用主要是提高金屬反射層33與導電基板31間的黏結力,上述黏結層34之材質可以是金屬材料或具有導電粒子的有機材料。FIG. 3 shows another embodiment of the present invention. As shown in FIG. 3, the metal reflective layer 33 and the conductive substrate 31 further have a bonding layer 34, and the bonding layer 34 mainly functions to improve the metal reflective layer 33 and the conductive substrate 31. For the bonding force, the material of the bonding layer 34 may be a metal material or an organic material having conductive particles.

綜上所述,本發明之發光元件採用兩種或兩種以上折射率相異材質交互堆疊之多層膜結構來分隔金屬反射層與透明導電層,用以減少金屬反射層與透明導電層之間因熱作用擴散問題而導致金屬反射層霧化之問題,藉此提高發光元件的發光效率。In summary, the light-emitting element of the present invention uses a multilayer film structure in which two or more refractive index dissimilar materials are alternately stacked to separate the metal reflective layer from the transparent conductive layer to reduce the between the metal reflective layer and the transparent conductive layer. The problem of atomization of the metal reflective layer due to the thermal diffusion problem, thereby improving the luminous efficiency of the light-emitting element.

由於交互堆疊之多層膜結構35與介於金屬反射層33與透明導電層37之間,使得金屬反射層33與透明導電層37之交界面不存在因為熱作用而導致的相互擴散而導致金屬反射層33霧化之問題,因此可避免金屬反射層33的反射率受到影響,從而有利於提高發光元件30的發光效率。再者,利用交互堆疊之多層膜結構35搭配金屬反射層33形成一全方向性之反射鏡,因此還有利於發光元件30之結構設計。Since the multi-layer film structure 35 of the alternating stack is interposed between the metal reflective layer 33 and the transparent conductive layer 37, the interface between the metal reflective layer 33 and the transparent conductive layer 37 does not exist due to mutual diffusion caused by heat, thereby causing metal reflection. The problem of atomization of the layer 33 makes it possible to prevent the reflectance of the metal reflective layer 33 from being affected, thereby contributing to an improvement in the luminous efficiency of the light-emitting element 30. Furthermore, the omnidirectional mirror is formed by the interactively stacked multilayer film structure 35 and the metal reflective layer 33, thereby facilitating the structural design of the light-emitting element 30.

圖4為本發明另一實施例的發光元件50。發光元件50與發光元件30相似,其不同點在於:交互堆疊之多層膜結構55係由導電性材質製成,其材質可以選自ITO、CTO、ZnO、In2 O3 、SnO2 、CuAlO2 、CuGaO2 或SrCu2 O2 。由於交互堆疊之多層膜結構55係由導電材質所製成,因此金屬反射層33與透明導電層37間可直接藉由交互堆疊之多層膜結構55產生電性連接。4 is a light emitting device 50 according to another embodiment of the present invention. The light-emitting element 50 is similar to the light-emitting element 30, except that the multi-layer film structure 55 which is alternately stacked is made of a conductive material, and the material thereof may be selected from the group consisting of ITO, CTO, ZnO, In 2 O 3 , SnO 2 , CuAlO 2 . , CuGaO 2 or SrCu 2 O 2 . Since the interactively stacked multilayer film structure 55 is made of a conductive material, the metal reflective layer 33 and the transparent conductive layer 37 can be electrically connected directly by the multilayer film structure 55 which is alternately stacked.

於本實施例中,交互堆疊之多層膜結構55至少包含有具有摻雜的TiO2 之材料,其中上述TiO2 的摻雜物可以是元素週期表中VB族元素;在本實施例中,具有摻雜的TiO2 材料可以是Tix Ta1-x O2 或Tix Nb1-x O2 ;更進一步地來說,本實施例中交互堆疊之多層膜結構55係由Tix Ta1-x O2 與ITO交互堆疊而成的。In this embodiment, the alternately stacked multilayer film structure 55 comprises at least a material having doped TiO 2 , wherein the dopant of the TiO 2 may be a VB group element of the periodic table; in this embodiment, The doped TiO 2 material may be Ti x Ta 1-x O 2 or Ti x Nb 1-x O 2 ; further, the multi-layer film structure 55 alternately stacked in this embodiment is Ti x Ta 1- x O 2 is stacked with ITO.

除此之外,發光元件50亦可以包含至少一貫穿交互堆疊之多層膜結構55之導孔結構(圖未示),用以改善金屬反射層33與透明導電層37之電性連接,且上述導孔結構之材質是由高光反射性金屬或熱穩性金屬材料填充於其中,利用高光反射性金屬,諸如銀、鋁、金及其合金等材料,藉此提高發光元件50之光反射率,而熱穩性金屬材料則可以是鈦、鋁、鉻等金屬或上述金屬所構成之合金,用以提高導孔結構之緻密性。In addition, the light-emitting element 50 may also include at least one via structure (not shown) extending through the multi-layered film structure 55 for alternately stacking to improve the electrical connection between the metal reflective layer 33 and the transparent conductive layer 37, and the above The material of the via structure is filled with a high-light reflective metal or a thermo-stable metal material, and a high-light reflective metal such as silver, aluminum, gold, or an alloy thereof is used, thereby improving the light reflectance of the light-emitting element 50, The thermally stable metal material may be a metal such as titanium, aluminum or chromium or an alloy of the above metals to improve the compactness of the via structure.

圖5為本發明又一實施例,如圖5所示,金屬反射層33與導電基板31還具有一黏結層54,而黏結層54的作用主要是提高金屬反射層33與導電基板31間的黏結力,上述黏結層54之材質可以是金屬材料或具有導電粒子的有機材料。FIG. 5 shows a further embodiment of the present invention. As shown in FIG. 5, the metal reflective layer 33 and the conductive substrate 31 further have a bonding layer 54. The function of the bonding layer 54 is mainly to improve the relationship between the metal reflective layer 33 and the conductive substrate 31. The bonding force, the material of the bonding layer 54 may be a metal material or an organic material having conductive particles.

綜上所述,本發明之發光元件採用兩種或兩種以上折射率相異材質交互堆疊之多層膜結構來分隔金屬反射層與透明導電層,用以減少金屬反射層與透明導電層之間因熱作用擴散問題而導致金屬反射層霧化之問題,因此可避免金屬反射層33的反射率受到影響,藉此提高發光元件的發光效率。再者,利用交互堆疊之多層膜結構搭配金屬反射層形成一全方向性之反射鏡,因此還有利於發光元件之結構設計。In summary, the light-emitting element of the present invention uses a multilayer film structure in which two or more refractive index dissimilar materials are alternately stacked to separate the metal reflective layer from the transparent conductive layer to reduce the between the metal reflective layer and the transparent conductive layer. The problem of atomization of the metal reflective layer due to the thermal diffusion problem can prevent the reflectance of the metal reflective layer 33 from being affected, thereby improving the luminous efficiency of the light-emitting element. Furthermore, the multi-layer film structure of the interactive stacking is combined with the metal reflective layer to form an omnidirectional mirror, thereby also facilitating the structural design of the light-emitting element.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。While the present invention has been described in its preferred embodiments, the present invention is not intended to limit the invention, and the present invention may be modified and modified without departing from the spirit and scope of the invention. The scope of protection is subject to the definition of the scope of the patent application.

30、50...發光元件30, 50. . . Light-emitting element

31...導電基板31. . . Conductive substrate

312...背電極312. . . Back electrode

33...金屬反射層33. . . Metal reflective layer

34、54...黏結層34, 54. . . Bonding layer

35、55...交互堆疊之多層膜結構35, 55. . . Interactively stacked multilayer film structure

352...導孔結構352. . . Guide hole structure

37...透明導電層37. . . Transparent conductive layer

39...半導體疊層39. . . Semiconductor stack

392...第一導電型半導體層392. . . First conductive semiconductor layer

394...活性層394. . . Active layer

396...第二導電型半導體層396. . . Second conductive semiconductor layer

41...電極41. . . electrode

圖1繪示為一種習知的發光元件的示意圖。FIG. 1 is a schematic view of a conventional light-emitting element.

圖2繪示為本發明實施例之一的發光元件的示意圖。2 is a schematic view of a light emitting device according to an embodiment of the present invention.

圖3繪示為本發明另一實施例的發光元件的示意圖。3 is a schematic view of a light emitting device according to another embodiment of the present invention.

圖4繪示為本發明再一實施例的發光元件的示意圖。4 is a schematic view of a light emitting device according to still another embodiment of the present invention.

圖5繪示為本發明又一實施例的發光元件的示意圖。FIG. 5 is a schematic diagram of a light emitting device according to still another embodiment of the present invention.

30...發光元件30. . . Light-emitting element

31...導電基板31. . . Conductive substrate

312...背電極312. . . Back electrode

33...金屬反射層33. . . Metal reflective layer

35...交互堆疊之多層膜結構35. . . Interactively stacked multilayer film structure

352...導孔結構352. . . Guide hole structure

37...透明導電層37. . . Transparent conductive layer

39...半導體疊層39. . . Semiconductor stack

392...第一導電型半導體層392. . . First conductive semiconductor layer

394...活性層394. . . Active layer

396...第二導電型半導體層396. . . Second conductive semiconductor layer

41...電極41. . . electrode

Claims (20)

一種發光元件,其包括:一金屬反射層;一包含絕緣層或金屬氧化材料之多層膜結構位於該金屬反射層上;一包含透明金屬氧化材料之透明導電層,位於該多層膜結構上;一半導體疊層,位於該透明導電層上;以及一導孔結構位於該金屬反射層與該透明導電層之間並貫穿該多層膜結構。 A light-emitting element comprising: a metal reflective layer; a multilayer film structure comprising an insulating layer or a metal oxide material on the metal reflective layer; a transparent conductive layer comprising a transparent metal oxide material on the multilayer film structure; a semiconductor stack on the transparent conductive layer; and a via structure between the metal reflective layer and the transparent conductive layer and extending through the multilayer film structure. 如申請專利範圍第1項所述之發光元件,其中該交互堆疊之多層膜結構包含一種或二種以上之金屬氧化材料。 The light-emitting element of claim 1, wherein the alternately stacked multilayer film structure comprises one or more metal oxide materials. 如申請專利範圍第1項所述之發光元件,其中該多層膜結構為分散式布拉格反射結構。 The light-emitting element of claim 1, wherein the multilayer film structure is a dispersed Bragg reflection structure. 如申請專利範圍第1項所述之發光元件,其中該金屬反射層可以是一黏結層。 The light-emitting element of claim 1, wherein the metal reflective layer is a bonding layer. 如申請專利範圍第1項所述之發光元件,更包含一黏結層連接該反射層,並且該黏結層包含金屬或具導電粒子的有機黏著物質。 The light-emitting element of claim 1, further comprising a bonding layer connecting the reflective layer, and the bonding layer comprises a metal or an organic adhesive substance having conductive particles. 如申請專利範圍第1項所述之光電元件,其中該透明金屬氧化材料包含一元素週期表中VB族元素。 The photovoltaic element according to claim 1, wherein the transparent metal oxide material comprises a group VB element of the periodic table. 如申請專利範圍第1項所述之發光元件,其中該半導體疊層包括:一第一導電型半導體層,與該透明導電層相連;一活性層,位於該第一導電型半導體層上,以及一第二導電型半導體層,位於該活性層上。 The illuminating device of claim 1, wherein the semiconductor laminate comprises: a first conductive semiconductor layer connected to the transparent conductive layer; an active layer on the first conductive semiconductor layer; A second conductive semiconductor layer is disposed on the active layer. 如申請專利範圍第7項所述之發光元件,其中該活性層為多重量子井結構。 The light-emitting element of claim 7, wherein the active layer is a multiple quantum well structure. 如申請專利範圍第1項所述之發光元件,其中該半導體疊層包含氮化鋁銦鎵系列材料或磷化鋁銦鎵系列材料。 The light-emitting element according to claim 1, wherein the semiconductor laminate comprises an aluminum indium gallium nitride series material or an aluminum indium gallium phosphide series material. 如申請專利範圍第1項所述之發光元件,其中該導孔結構包含銀、金、鈦、鋁、鉻或其合金。 The light-emitting element of claim 1, wherein the via structure comprises silver, gold, titanium, aluminum, chromium or an alloy thereof. 一種發光元件,其包括:一金屬反射層;一包含絕緣層或金屬氧化材料之多層膜結構,位於該金屬反射層上;一包含透明金屬氧化材料之透明導電層,位於該多層膜結構上;一半導體疊層,位於該透明導電層上;以及一導孔結構貫穿該多層膜結構,並且不包含該金屬氧化材料。 A light-emitting element comprising: a metal reflective layer; a multilayer film structure comprising an insulating layer or a metal oxide material on the metal reflective layer; and a transparent conductive layer comprising a transparent metal oxide material on the multilayer film structure; a semiconductor stack on the transparent conductive layer; and a via structure extending through the multilayer film structure and not including the metal oxide material. 如申請專利範圍第11項所述之發光元件,其中該多 層膜結構之材質包含一種或二種以上之金屬氧化材料。 The illuminating element according to claim 11, wherein the The material of the film structure comprises one or more metal oxide materials. 如申請專利範圍第11項所述之發光元件,其中該多層膜結構為分散式布拉格反射結構。 The light-emitting element of claim 11, wherein the multilayer film structure is a distributed Bragg reflection structure. 如申請專利範圍第11項所述之發光元件,其中該金屬反射層可以是一黏結層。 The light-emitting element of claim 11, wherein the metal reflective layer is a bonding layer. 如申請專利範圍第11項所述之發光元件,更包含一黏結層連接該反射層,並且該黏結層包含金屬或具有導電粒子的有機黏著物質。 The light-emitting element according to claim 11, further comprising a bonding layer connecting the reflective layer, and the bonding layer comprises a metal or an organic adhesive substance having conductive particles. 如申請專利範圍第11項所述之發光元件,其中該半導體疊層包括:一第一導電型半導體層,與該透明導電層相連;一活性層,位於該第一導電型半導體層上,以及一第二導電型半導體層,位於該活性層上。 The illuminating device of claim 11, wherein the semiconductor laminate comprises: a first conductive semiconductor layer connected to the transparent conductive layer; an active layer on the first conductive semiconductor layer, and A second conductive semiconductor layer is disposed on the active layer. 如申請專利範圍第16項所述之發光元件,其中該活性層為多重量子井結構。 The light-emitting element of claim 16, wherein the active layer is a multiple quantum well structure. 如申請專利範圍第11項所述之發光元件,其中該半導體疊層包含氮化鋁銦鎵系列材料或磷化鋁銦鎵系列材料。 The light-emitting element according to claim 11, wherein the semiconductor laminate comprises an aluminum indium gallium nitride series material or an aluminum indium gallium phosphide series material. 如申請專利範圍第11項所述之發光元件,其中該導孔結構包含金、銀、鈦、鋁、鉻或其合金。 The light-emitting element of claim 11, wherein the via structure comprises gold, silver, titanium, aluminum, chromium or an alloy thereof. 如申請專利範圍第11項所述之發光元件,其中該透明金屬氧化材料包含一元素週期表中VB族元素。The light-emitting element according to claim 11, wherein the transparent metal oxide material comprises a group VB element of the periodic table.
TW099117667A 2010-06-01 2010-06-01 Light emitting device TWI449210B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW099117667A TWI449210B (en) 2010-06-01 2010-06-01 Light emitting device
JP2010234051A JP5745250B2 (en) 2010-06-01 2010-10-18 Light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW099117667A TWI449210B (en) 2010-06-01 2010-06-01 Light emitting device

Publications (2)

Publication Number Publication Date
TW201145561A TW201145561A (en) 2011-12-16
TWI449210B true TWI449210B (en) 2014-08-11

Family

ID=45417726

Family Applications (1)

Application Number Title Priority Date Filing Date
TW099117667A TWI449210B (en) 2010-06-01 2010-06-01 Light emitting device

Country Status (2)

Country Link
JP (1) JP5745250B2 (en)
TW (1) TWI449210B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104112805B (en) * 2014-07-16 2017-09-26 厦门乾照光电股份有限公司 A kind of light emitting diode and its manufacture method with nonproliferation layer
TWI811725B (en) * 2021-07-06 2023-08-11 晶元光電股份有限公司 Light-emitting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200834969A (en) * 2007-02-13 2008-08-16 Epistar Corp Light-emitting diode and method for manufacturing the same
TW200921932A (en) * 2007-11-01 2009-05-16 Epistar Corp Light-emitting element

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101901858B (en) * 2004-04-28 2014-01-29 沃提科尔公司 Vertical structure semiconductor devices
JP4825003B2 (en) * 2005-12-28 2011-11-30 ローム株式会社 Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP2007258277A (en) * 2006-03-20 2007-10-04 Matsushita Electric Works Ltd Semiconductor light emitting device
JP5326383B2 (en) * 2007-07-10 2013-10-30 豊田合成株式会社 Light emitting device
JP2009164423A (en) * 2008-01-08 2009-07-23 Nichia Corp Light-emitting element
JP5057398B2 (en) * 2008-08-05 2012-10-24 シャープ株式会社 Nitride semiconductor light emitting device and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200834969A (en) * 2007-02-13 2008-08-16 Epistar Corp Light-emitting diode and method for manufacturing the same
TW200921932A (en) * 2007-11-01 2009-05-16 Epistar Corp Light-emitting element

Also Published As

Publication number Publication date
JP2011254061A (en) 2011-12-15
TW201145561A (en) 2011-12-16
JP5745250B2 (en) 2015-07-08

Similar Documents

Publication Publication Date Title
JP5582054B2 (en) Semiconductor light emitting device
JP5915504B2 (en) Semiconductor light emitting device
US7622746B1 (en) Highly reflective mounting arrangement for LEDs
JP5637210B2 (en) Semiconductor light emitting device
US10230019B2 (en) Light-emitting device and manufacturing method thereof
WO2011071100A1 (en) Semiconductor light emitting element, light emitting device using semiconductor light emitting element, and electronic apparatus
TWI572054B (en) High brightness light emitting diode structure and the manufacturing method thereof
US8487334B2 (en) Semiconductor light emitting diode chip and light emitting device using the same
TW202121704A (en) Light emitting diode chip
TWI601312B (en) Optoelectronic semiconductor chip
JP2014067894A (en) Semiconductor light-emitting element and manufacturing method of the same
TWI750893B (en) Light-emitting diode structure and flip-chip light emitting diode structure
CN105609612A (en) Semiconductor light-emitting element and flip-chip package element
TW201637240A (en) Semiconductor light emitting element and method of manufacturing the same
CN103035812A (en) Base plate
CN102315345A (en) Luminous element
JP5708285B2 (en) Semiconductor light emitting device and semiconductor light emitting device
JP5378131B2 (en) Nitride semiconductor light emitting diode device
TWI449210B (en) Light emitting device
JP2014053593A (en) Semiconductor light-emitting element and method of manufacturing the same
CN114068786A (en) Light emitting diode and light emitting device
TWI785383B (en) Semiconductor light-emitting device having distributed bragg reflector
CN117525244A (en) Light emitting diode and light emitting device
JP6759783B2 (en) Light reflecting film and light emitting element
TW202310453A (en) Semiconductor light-emitting device having distributed bragg reflector