JP2011138820A - Light-emitting element - Google Patents

Light-emitting element Download PDF

Info

Publication number
JP2011138820A
JP2011138820A JP2009296214A JP2009296214A JP2011138820A JP 2011138820 A JP2011138820 A JP 2011138820A JP 2009296214 A JP2009296214 A JP 2009296214A JP 2009296214 A JP2009296214 A JP 2009296214A JP 2011138820 A JP2011138820 A JP 2011138820A
Authority
JP
Japan
Prior art keywords
film
light
conductive
electrode
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009296214A
Other languages
Japanese (ja)
Other versions
JP5719110B2 (en
Inventor
Masahiko Sano
雅彦 佐野
Hisatsugu Kasai
久嗣 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2009296214A priority Critical patent/JP5719110B2/en
Publication of JP2011138820A publication Critical patent/JP2011138820A/en
Application granted granted Critical
Publication of JP5719110B2 publication Critical patent/JP5719110B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-output, reliable light-emitting element that has a relatively simple configuration and suppresses a decrease in electromigration of a metal atom included in a metal reflection film of a light reflection structure and a decrease in a reflection factor of the light reflection structure caused by the electromigration. <P>SOLUTION: The light-emitting element includes a semiconductor element structure, the light reflection structure that is provided at one portion on the semiconductor element structure and includes a light-transmitting and insulating first reflection film, a second reflection film made of metal, and an insulation film in this order, and an electrode film including a coating unit for sandwiching the light reflection structure with the semiconductor element structure for coating on the light reflection structure and a conduction unit on the semiconductor element structure exposed from the light reflection structure. The second reflection film includes an extension unit extending from at least one of the first reflection film and the insulation film to the conduction unit and abutting on the electrode film. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、発光素子に関し、より詳細には半導体素子構造上に光反射構造が設けられた発光素子に関する。   The present invention relates to a light emitting element, and more particularly to a light emitting element in which a light reflecting structure is provided on a semiconductor element structure.

発光ダイオード(Light Emitting Diode:LED)、レーザーダイオード(Laser Diode:LD)等の発光素子と、この発光素子より放出される一次光に励起されて一次光と異なる色相の二次光を放出できる波長変換部材と、を組み合わせることで、光の混色の原理により、多様な色彩の光を出射可能な発光装置が開発されている。特に近年では、このような発光装置は、白熱電球や蛍光灯に代わる、低消費電力で長寿命の照明として注目を集めており、高出力で信頼性の高い発光素子・装置が求められている。   Light emitting diodes (Light Emitting Diodes: LEDs), laser diodes (Laser Diodes: LDs), and other light emitting elements, and wavelengths that can be excited by primary light emitted from the light emitting elements to emit secondary light with a different hue from the primary light A light emitting device capable of emitting light of various colors has been developed by combining the conversion member and the principle of color mixing of light. Particularly in recent years, such light-emitting devices have attracted attention as low-power consumption and long-life lighting alternatives to incandescent bulbs and fluorescent lamps, and there is a demand for light-emitting elements and devices with high output and high reliability. .

例えば特許文献1には、透光性基板の上に積層された半導体層を有し、n電極とp電極とが透光性基板に対して半導体層側に形成され、半導体層の最上層であるコンタクト層上に形成された、光に対して透明な透明導電膜と、この透明導電膜上に形成された、屈折率の異なる誘電体から成る層が周期的に積層された多重反射膜と、更にこの多重反射膜上に形成された、光に対して高反射率を有する金属から成る反射膜と、透明導電膜の一部と接合するように形成された電極層と、を有し、発光した光を透光性基板側から放射するフリップチップ型の半導体発光素子が提案されている。   For example, Patent Document 1 includes a semiconductor layer stacked on a light-transmitting substrate, and an n-electrode and a p-electrode are formed on the semiconductor layer side with respect to the light-transmitting substrate. A transparent conductive film that is transparent to light, formed on a certain contact layer, and a multi-reflective film that is formed on the transparent conductive film and that is formed by periodically laminating layers made of dielectric materials having different refractive indexes; And a reflective film made of a metal having a high reflectance with respect to light and an electrode layer formed on the transparent conductive film so as to be bonded to a part of the transparent conductive film. There has been proposed a flip-chip type semiconductor light emitting element that emits emitted light from the side of a light transmitting substrate.

このような半導体発光素子によれば、多重反射膜の介在によって、銀やアルミニウムから成る反射膜とITOなどの透明導電膜との界面反応が抑制され、膜の変質、変色による透明導電膜の透過率および反射膜の反射率の低下を防止できることが記載されている。さらに、反射膜の側面と上面、或いは上面のみを絶縁性保護膜で覆うことで、反射膜の金属原子のエレクトロマイグレーションの発生を防止できることが記載されている。   According to such a semiconductor light emitting device, the interfacial reaction between the reflective film made of silver or aluminum and the transparent conductive film such as ITO is suppressed by the interposition of the multiple reflective film, and the transparent conductive film is transmitted by the alteration or discoloration of the film. It is described that it is possible to prevent a decrease in the reflectance and the reflectance of the reflective film. Further, it is described that the electromigration of metal atoms in the reflective film can be prevented by covering the side surface and the upper surface of the reflective film or only the upper surface with an insulating protective film.

特開2006−120913号公報JP 2006-120913 A 特開2006−108161号公報JP 2006-108161 A 特開2009−088299号公報JP 2009-088299 A 特開2009−164423号公報JP 2009-164423 A 特開2005−197289号公報JP 2005-197289 A 特開平11−340514号公報JP 11-340514 A

しかしながら、特許文献1に記載、図示された半導体発光素子において、金属反射膜は、一様な膜厚を有しており、またその下に介在する多重反射膜の側面を覆うように形成されていない。このような半導体発光素子において、金属反射膜の上面のみが絶縁性保護膜で覆われた場合、反射膜の面に平行な方向には電流が流れるため、反射膜の金属原子のエレクトロマイグレーションの発生によって、素子の信頼性が低下する問題がある。また金属反射膜が絶縁性保護膜と多重反射膜とで完全に覆われる場合には、エレクトロマイグレーションの発生は防止できても、電極層から半導体層へ流れる電流の経路がより制限されて順電圧が上昇したり、また金属反射膜や絶縁性保護膜の成膜工程が煩雑になり生産コストが高くなったりする虞がある。   However, in the semiconductor light emitting device described and illustrated in Patent Document 1, the metal reflection film has a uniform thickness and is formed so as to cover the side surface of the multiple reflection film interposed thereunder. Absent. In such a semiconductor light emitting device, when only the upper surface of the metal reflective film is covered with an insulating protective film, current flows in a direction parallel to the surface of the reflective film, and thus electromigration of metal atoms in the reflective film occurs. Therefore, there is a problem that the reliability of the element is lowered. In addition, when the metal reflective film is completely covered with the insulating protective film and the multiple reflective film, the path of the current flowing from the electrode layer to the semiconductor layer is more restricted even if the occurrence of electromigration can be prevented. May increase, and the film formation process of the metal reflective film and the insulating protective film may become complicated, resulting in an increase in production cost.

本発明は、上記課題に鑑みてなされたものであり、その目的は、比較的簡易な構成で、光反射構造の金属反射膜に含まれる金属原子のエレクトロマイグレーション及びそれによる光反射構造の反射率の低下を抑制し、高出力で信頼性の高い発光素子を提供することである。   The present invention has been made in view of the above problems, and its object is to provide a relatively simple configuration, electromigration of metal atoms contained in the metal reflective film of the light reflecting structure, and the reflectance of the light reflecting structure thereby. Is to provide a light-emitting element with high output and high reliability.

本発明に係る発光素子は、下記(1)〜(13)の手段により、上記課題を解決することができる。
(1)半導体素子構造と、前記半導体素子構造上の一部に設けられ、透光性で絶縁性の第1反射膜と、金属の第2反射膜と、絶縁膜と、をこの順に含む光反射構造と、前記光反射構造上で該光反射構造を前記半導体素子構造と挟んで被覆する被覆部と、前記光反射構造から露出される前記半導体素子構造上の導通部と、を有する電極膜と、を備え、前記第2反射膜は、前記第1反射膜及び前記絶縁膜の少なくとも一方から前記導通部に延出して前記電極膜に接する延出部を有する発光素子。
(2)前記第1反射膜は、前記被覆部側の該第1反射膜より連続し、前記延出部において該延出方向で前記半導体素子構造側に近づいて傾斜する傾斜部を有する上記(1)に記載の発光素子。
(3)前記延出部は、前記第1反射膜における前記導通部側の側面上に設けられている上記(1)に記載の発光素子。
(4)前記第1反射膜は、屈折率の異なる2種以上の誘電体膜が周期的に積層された誘電体多層膜を有する上記(2)又は(3)に記載の発光素子。
(5)前記延出部の膜厚は、該延出方向に小さくなる上記(1)〜(4)のいずれか1つに記載の発光素子。
(6)前記延出部において、前記第2反射膜と前記電極膜の間に空隙が設けられている上記(1)〜(5)のいずれか1つに記載の発光素子。
(7)前記半導体素子構造の表面の面内において、前記導通部を複数有し、少なくとも一つの前記導通部が前記被覆部に囲まれている上記(1)〜(6)のいずれか1つに記載の発光素子。
(8)前記半導体素子構造が、第1,2導電型半導体層を有し、該第1,2導電型半導体層の同一面側にそれぞれ前記電極膜と前記光反射構造を有し、前記第2導電型半導体層上の全ての導通部が、前記被覆部に囲まれた導通部である上記(7)に記載の発光素子。
(9)前記発光素子は、前記電極膜と前記光反射構造が互いに併設して延伸する延伸併設部を有する上記(1)〜(7)のいずれか1つに記載の発光素子。
(10)前記第1導電型半導体層上の導通部は、前記電極膜の外周部に設けられ、該第1導電型半導体層上の前記光反射構造は、前記外周部より内側にのみ設けられる上記(8)又は(9)に記載の発光素子。
(11)前記半導体素子構造と、前記導通部の電極膜及び前記光反射構造との間に、透光性導電膜を有する上記(1)〜(10)のいずれか1つに記載の発光素子。
(12)前記透光性導電膜と、前記半導体素子構造との間に、前記第1反射膜を有する第2の光反射構造を有する上記(11)に記載の発光素子。
(13)前記透光性導電膜の面内で、前記導通部が、前記第2の光反射構造内に配置されている上記(12)に記載の発光素子。
The light emitting device according to the present invention can solve the above problems by the following means (1) to (13).
(1) Light including a semiconductor element structure, a light-transmitting and insulating first reflective film, a metal second reflective film, and an insulating film provided in this order on a part of the semiconductor element structure. An electrode film having a reflection structure, a covering portion that covers the light reflection structure with the semiconductor element structure sandwiched on the light reflection structure, and a conductive portion on the semiconductor element structure that is exposed from the light reflection structure And the second reflective film has an extended portion that extends from at least one of the first reflective film and the insulating film to the conductive portion and contacts the electrode film.
(2) The first reflective film includes an inclined portion that is continuous from the first reflective film on the covering portion side and is inclined toward the semiconductor element structure side in the extending direction in the extending portion ( The light emitting element as described in 1).
(3) The light emitting element according to (1), wherein the extending portion is provided on a side surface of the first reflective film on the conductive portion side.
(4) The light emitting device according to (2) or (3), wherein the first reflective film includes a dielectric multilayer film in which two or more kinds of dielectric films having different refractive indexes are periodically stacked.
(5) The light-emitting element according to any one of (1) to (4), wherein the film thickness of the extension portion decreases in the extension direction.
(6) The light emitting element according to any one of (1) to (5), wherein a gap is provided between the second reflective film and the electrode film in the extending portion.
(7) Any one of the above (1) to (6), wherein the semiconductor element structure includes a plurality of the conductive portions, and at least one of the conductive portions is surrounded by the covering portion. The light emitting element as described in.
(8) The semiconductor element structure includes first and second conductive semiconductor layers, and the electrode film and the light reflecting structure are provided on the same surface side of the first and second conductive semiconductor layers, respectively. The light emitting element according to (7), wherein all the conductive portions on the two-conductivity type semiconductor layer are conductive portions surrounded by the covering portion.
(9) The light-emitting element according to any one of (1) to (7), wherein the light-emitting element includes an extending side portion in which the electrode film and the light reflecting structure extend side by side.
(10) The conducting portion on the first conductive type semiconductor layer is provided on an outer peripheral portion of the electrode film, and the light reflecting structure on the first conductive type semiconductor layer is provided only on the inner side of the outer peripheral portion. The light emitting element as described in said (8) or (9).
(11) The light-emitting element according to any one of (1) to (10), wherein a light-transmitting conductive film is provided between the semiconductor element structure, the electrode film of the conductive portion, and the light reflecting structure. .
(12) The light-emitting element according to (11), further including a second light reflection structure including the first reflection film between the light-transmitting conductive film and the semiconductor element structure.
(13) The light-emitting element according to (12), wherein the conductive portion is disposed in the second light reflecting structure within the surface of the translucent conductive film.

本発明によれば、半導体素子構造上の一部に設けられ電極膜に被覆される光反射構造において、まず、金属の第2反射膜が、透光性で絶縁性の第1反射膜と、絶縁膜と、により挟まれた積層構造体とすることによって、光反射構造上を被覆する電極膜の被覆部から第2反射膜に縦方向へ流れる電流を抑止することができる。そして更に、第2反射膜が、光反射構造から露出される半導体素子構造上に設けられる電極膜の導通部に、第1反射膜及び/又は絶縁膜から延出して電極膜に接する延出部を有することにより、第2反射膜に横方向へ電流が流れたとしても、電流密度の比較的高い導通部近傍の延出部における第2反射膜の金属原子を優先的にエレクトロマイグレーションさせることができる。これにより、第2反射膜に流れる電流を抑止しながら、また仮に電流が流れたとしても、主要な光反射膜として機能する被覆部側の第2反射膜の金属原子のエレクトロマイグレーションを抑制することができ、光反射構造の反射率の低下を防止して、高出力で信頼性の高い発光素子を提供することができる。   According to the present invention, in the light reflecting structure provided on a part of the semiconductor element structure and covered with the electrode film, first, the metal second reflecting film is formed of a translucent and insulating first reflecting film; By forming the laminated structure sandwiched between the insulating films, the current flowing in the vertical direction from the covering portion of the electrode film covering the light reflecting structure to the second reflecting film can be suppressed. Further, the second reflective film extends from the first reflective film and / or the insulating film to the conductive part of the electrode film provided on the semiconductor element structure exposed from the light reflecting structure, and extends to be in contact with the electrode film Even if a current flows laterally through the second reflective film, the metal atoms of the second reflective film in the extension part in the vicinity of the conductive part having a relatively high current density can be preferentially electromigrated. it can. This suppresses the electromigration of the metal atoms of the second reflective film on the side of the covering portion that functions as the main light reflective film even if the current flows while suppressing the current flowing in the second reflective film. Therefore, it is possible to provide a light emitting element with high output and high reliability by preventing a decrease in reflectance of the light reflecting structure.

本発明の一実施の形態に係る発光素子で、図1BのA−A断面における概略断面図である。It is a light emitting element concerning one embodiment of the present invention, and is a schematic sectional view in an AA section of Drawing 1B. 本発明の一実施の形態に係る発光素子の概略上面図である。1 is a schematic top view of a light emitting device according to an embodiment of the present invention. 本発明の一実施形態に係る発光素子の光反射構造の周辺を部分的に拡大した概略断面図である。It is the schematic sectional drawing which expanded the circumference of the light reflection structure of the light emitting element concerning one embodiment of the present invention partially. 本発明の一実施形態に係る発光素子の光反射構造の周辺を部分的に拡大した概略断面図である。It is the schematic sectional drawing which expanded the circumference of the light reflection structure of the light emitting element concerning one embodiment of the present invention partially. 本発明の一実施形態に係る発光素子の光反射構造の周辺を部分的に拡大した概略断面図である。It is the schematic sectional drawing which expanded the circumference of the light reflection structure of the light emitting element concerning one embodiment of the present invention partially. 本発明の一実施形態に係る発光素子の光反射構造の周辺を部分的に拡大した概略断面図である。It is the schematic sectional drawing which expanded the circumference of the light reflection structure of the light emitting element concerning one embodiment of the present invention partially.

以下、発明の実施の形態について適宜図面を参照して説明する。ただし、以下に説明する発光素子は、本発明の技術思想を具体化するためのものであって、本発明を以下のものに特定しない。特に、以下に記載されている構成部品の寸法、材質、形状、その相対的配置等は特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。また、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。さらに、以下に記載されている各実施の形態についても同様に、特に排除する記載が無い限りは各構成等を適宜組み合わせて適用できる。なお、本明細書において、層上などでいう「上」とは、必ずしも上面に接触して形成される場合に限られず、離間して上方に形成される場合も含んでおり、層と層の間に介在層が存在する場合も包含する意味で使用する。   Hereinafter, embodiments of the invention will be described with reference to the drawings as appropriate. However, the light emitting element described below is for embodying the technical idea of the present invention, and the present invention is not limited to the following. In particular, the dimensions, materials, shapes, relative arrangements, and the like of the components described below are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. In addition, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. Furthermore, each embodiment described below can also be applied by appropriately combining the components and the like unless otherwise specified. In the present specification, the term “upper” as used on the layer or the like is not necessarily limited to the case where the upper surface is formed in contact with the upper surface, but includes the case where the upper surface is formed apart from the upper surface. It is used to include the case where there is an intervening layer between them.

<実施の形態1>
図1は、本発明の実施の形態1に係る発光素子の概略図であり、図1Aは概略上面図の図1BのA−Aにおける概略断面図であり、また図2はその発光素子の光反射構造の周辺を部分的に拡大した概略断面図である。尚、各図では、保護膜50、その開口部で、第1,2電極30,40の外部接続部34,44は、またその他の光反射構造、電極構造など一部省略、簡略化して表示しており、他の図についても同様である。図1,2に示す例の発光素子は、主として、半導体素子構造20、光反射構造17,18、及び電極膜32,42から構成されている。半導体素子構造20は、基板10上に、発光素子構造を構成する半導体層21〜23を有し、半導体層は下層側から第1導電型半導体層21、活性層22、第2導電型半導体層23をこの順に含んでいる。なお以下、主として第1導電型をn型、第2導電型をp型として説明するが、その逆であってもよい。光反射構造17,18は、下層側から透光性で絶縁性の第1反射膜1、金属の第2反射膜2、絶縁膜3、をこの順に含んでいる。また光反射構造は、半導体素子構造上の一部、より詳細には各導電型の半導体層上、露出部の非発光構造部26と発光構造部25の一部に設けられている。そして、各導電型の半導体層上において、この光反射構造17,18を覆って電極膜32,42が設けられており、電極膜は、光反射構造上を被覆し、半導体素子構造とで光反射構造を挟む被覆部36,46と、光反射構造から露出される半導体素子構造(半導体層)上にあって半導体層と導通する導通部35,45と、を連続して有している。このような発光素子は、通電されると、電極膜の導通部35,45から半導体素子構造20に電流が注入されて、素子構造内のキャリアが注入されて活性層22で発光し、そのうち電極膜形成面側に発光された光の一部は、光反射構造17,18により反射されて基板10側から取り出される。
<Embodiment 1>
1 is a schematic diagram of a light-emitting element according to Embodiment 1 of the present invention, FIG. 1A is a schematic cross-sectional view taken along line A-A in FIG. 1B of a schematic top view, and FIG. It is the schematic sectional drawing which expanded the circumference of a reflective structure partially. In each drawing, the protective film 50 and the external connection portions 34 and 44 of the first and second electrodes 30 and 40 at the openings are partially omitted, such as other light reflecting structures and electrode structures. The same applies to the other figures. The light emitting element of the example shown in FIGS. 1 and 2 mainly includes a semiconductor element structure 20, light reflecting structures 17 and 18, and electrode films 32 and 42. The semiconductor element structure 20 has semiconductor layers 21 to 23 constituting the light emitting element structure on the substrate 10, and the semiconductor layers are a first conductivity type semiconductor layer 21, an active layer 22, and a second conductivity type semiconductor layer from the lower layer side. 23 in this order. In the following description, the first conductivity type is mainly n-type and the second conductivity type is p-type. The light reflecting structures 17 and 18 include a light-transmitting and insulating first reflecting film 1, a metal second reflecting film 2, and an insulating film 3 in this order from the lower layer side. The light reflecting structure is provided on a part of the semiconductor element structure, more specifically on each conductive type semiconductor layer, on a part of the non-light emitting structure part 26 and the light emitting structure part 25 in the exposed part. On each conductive type semiconductor layer, electrode films 32 and 42 are provided so as to cover the light reflecting structures 17 and 18. The electrode films cover the light reflecting structure and light is transmitted between the semiconductor element structures. Covering portions 36 and 46 sandwiching the reflection structure and conductive portions 35 and 45 on the semiconductor element structure (semiconductor layer) exposed from the light reflection structure and electrically connected to the semiconductor layer are continuously provided. When such a light emitting element is energized, current is injected into the semiconductor element structure 20 from the conductive portions 35 and 45 of the electrode film, carriers in the element structure are injected, and light is emitted from the active layer 22. A part of the light emitted to the film forming surface side is reflected by the light reflecting structures 17 and 18 and extracted from the substrate 10 side.

本発明の発光素子における光反射構造17,18は、透光性で絶縁性の第1反射膜1上に設けられた金属の第2反射膜2を有しており、透光性の第1反射膜1で一部が反射され、一部が透過し、その透過した光は第2反射膜2により反射可能となっている。また、第2反射膜2は、その下に介在する第1反射膜1によって、透光性導電膜31,41と電気的に絶縁されており、また主に酸化物で構成される透光性導電膜との化学反応による酸化物の生成なども抑制される。さらに、第2反射膜2は、その上に介在する絶縁膜3によって、電極膜の被覆部36,46と電気的に絶縁される。このように、光反射構造17,18において主要な光反射膜として機能する被覆部側の第2反射膜2は、第1反射膜1と絶縁膜3とにより挟まれており、その外側で挟む電極膜32,42と半導体素子構造20、具体的には透光性導電膜を介して挟む半導体素子構造と電極膜、と絶縁され、従って該第2反射膜2に縦方向へ流れる電流が抑止されている。またさらに、被覆部36,46に覆われる光反射構造17,18の上面は絶縁膜3による電気的障壁のため高抵抗であり、電極膜32,42を流れる電流は、光反射構造上の被覆部において横方向へ流れる。他方導通部35,45においては、光反射構造17,18から露出され比較的低抵抗な半導体層20側つまり縦方向への流れが促進されるので、第2反射膜2に横方向に流れる電流を低減することができる。このように、光反射構造の第1反射膜1と絶縁膜3とは、第2反射膜2に対する電流の流れを制御する機能を果たしている。   The light reflecting structures 17 and 18 in the light emitting element of the present invention have the second reflective film 2 made of metal provided on the first reflective film 1 that is translucent and insulative. A part of the light is reflected by the reflective film 1 and part of the light is transmitted. The transmitted light can be reflected by the second reflective film 2. The second reflective film 2 is electrically insulated from the translucent conductive films 31 and 41 by the first reflective film 1 interposed thereunder, and is also translucent mainly composed of an oxide. Oxide generation due to a chemical reaction with the conductive film is also suppressed. Further, the second reflective film 2 is electrically insulated from the electrode film covering portions 36 and 46 by the insulating film 3 interposed thereon. In this way, the second reflective film 2 on the covering portion side that functions as a main light reflective film in the light reflective structures 17 and 18 is sandwiched between the first reflective film 1 and the insulating film 3 and sandwiched outside thereof. The electrode films 32 and 42 are insulated from the semiconductor element structure 20, specifically, the semiconductor element structure and the electrode film sandwiched through the light-transmitting conductive film, and thus the current flowing in the vertical direction in the second reflective film 2 is suppressed. Has been. Furthermore, the upper surfaces of the light reflecting structures 17 and 18 covered by the covering portions 36 and 46 have high resistance due to the electrical barrier by the insulating film 3, and the current flowing through the electrode films 32 and 42 is covered by the covering on the light reflecting structure. It flows in the horizontal direction at the part. On the other hand, in the conductive portions 35 and 45, the current flowing in the lateral direction in the second reflective film 2 is promoted because the flow in the semiconductor layer 20 side exposed in the light reflecting structures 17 and 18 and the relatively low resistance side, that is, the vertical direction is promoted. Can be reduced. As described above, the first reflective film 1 and the insulating film 3 having the light reflecting structure serve to control the flow of current to the second reflective film 2.

そして、第2反射膜2は、第1反射膜1及び絶縁膜3の少なくとも一方から導通部35,45に延出して電極膜に接する延出部17a,18aを有している。上述のように、光反射構造の第1反射膜1及び絶縁膜3によって、電極膜32,42と半導体層20との電気的な接続領域は導通部35,45に制限されるため、この導通部において電流が集中し電流密度が比較的高くなる。そして、この電流密度の比較的高い領域において電極膜に接触する第2反射膜2の延出部17a,18aは、被覆部側より、含有する金属原子のエレクトロマイグレーションが発生しやすくなっている。これにより、第2反射膜2に横方向へ電流が流れたとしても、延出部17a,18aにおける第2反射膜2の金属原子を優先的にエレクトロマイグレーションさせることができる。このように、第2反射膜2の延出部17a,18aをエレクトロマイグレーションによる犠牲領域として機能させることで、被覆部側の第2反射膜の金属原子のエレクトロマイグレーションを抑制し、光反射構造17,18の反射率の低下を抑制することができる。ひいては、第2反射膜2の延出部17a,18aの金属原子がマイグレーションすることにより、該延出部に空隙(ボイド)が形成される場合があるが、この空隙が電気的障壁として作用し、被覆部側の第2反射膜に横方向へ流れる電流をさらに抑止して、被覆部側の第2反射膜の金属原子のエレクトロマイグレーションをさらに抑制することができる。また延出部17a,18aにおいて、第2反射膜2の金属原子がマイグレーションして、第2反射膜2と電極膜32,42との間に空隙が形成されることにより、延出部の第2反射膜の断面積、体積が小さくなって、第2反射膜2への電流経路がより制限され、空隙周辺の第2反射膜2の電流密度がさらに高まり、エレクトロマイグレーションがより促進されて空隙の成長が促される。   The second reflective film 2 has extended portions 17a and 18a that extend from at least one of the first reflective film 1 and the insulating film 3 to the conductive portions 35 and 45 and are in contact with the electrode film. As described above, the electrical connection region between the electrode films 32 and 42 and the semiconductor layer 20 is limited to the conductive portions 35 and 45 by the first reflective film 1 and the insulating film 3 having the light reflecting structure. The current is concentrated in the portion, and the current density is relatively high. And in the region where the current density is relatively high, the extension portions 17a and 18a of the second reflective film 2 that are in contact with the electrode film are more likely to cause electromigration of contained metal atoms from the covering portion side. Thereby, even if an electric current flows into the 2nd reflective film 2 to the horizontal direction, the metal atom of the 2nd reflective film 2 in the extension parts 17a and 18a can be electromigration preferentially. In this way, by causing the extending portions 17a and 18a of the second reflective film 2 to function as a sacrificial region due to electromigration, electromigration of metal atoms of the second reflective film on the covering portion side is suppressed, and the light reflecting structure 17 , 18 can be prevented from decreasing in reflectance. Eventually, the metal atoms of the extending portions 17a and 18a of the second reflective film 2 may migrate to form voids in the extending portions, but these voids act as an electrical barrier. Further, it is possible to further suppress the electric current flowing in the lateral direction to the second reflective film on the covering portion side, and to further suppress the electromigration of the metal atoms of the second reflective film on the covering portion side. In addition, the metal atoms of the second reflective film 2 migrate in the extended portions 17a and 18a, and a gap is formed between the second reflective film 2 and the electrode films 32 and 42. 2 The cross-sectional area and volume of the reflection film are reduced, the current path to the second reflection film 2 is further restricted, the current density of the second reflection film 2 around the gap is further increased, and electromigration is further promoted to increase the gap. Is encouraged to grow.

また、本実施の形態の発光素子においては、図2に示すように、第1反射膜1が、被覆部側の該第1反射膜1より連続し、前記延出部17a,18aにおいて該延出方向で前記半導体素子構造側に近づいて傾斜する傾斜部を有する形態、すなわち第2反射膜2の延出部17a,18aは、第1反射膜1の傾斜部に設けられる形態が好ましい。これにより、被覆部36,46から導通部35,45へ、また導通部の上面側から下面側への電流密度変化を滑らかにでき、第2反射膜2の延出部17a,18aを、その断面積が縮小し電流密度が特に高くなる半導体層側の領域に配置できるため、上述した効果を奏しやすくできる。また第2反射膜2の延出部17a,18aが、導通部35,45を流れる電流の経路に沿うように延出して形成されていることにより、被覆部側の第2反射膜2に流れる電流を抑制しながら、第2反射膜2に電流が流れたとしても、第2反射膜2の延出部17a,18aの金属原子のエレクトロマイグレーションを優先的に発生させることができる。尚、図2では簡単のために、電極膜32,42から半導体への流れを示す矢印としているが、正負電極の負電極は矢印の方向に、正電極では逆方向に電子が流れることはいうまでもなく、図3,5も同様である。   In the light emitting device of the present embodiment, as shown in FIG. 2, the first reflective film 1 is continuous from the first reflective film 1 on the covering portion side, and the extended portions 17a and 18a extend the extended portion. A form having an inclined part that inclines toward the semiconductor element structure in the outgoing direction, that is, an extended part 17 a, 18 a of the second reflective film 2 is preferably provided in the inclined part of the first reflective film 1. Thereby, the current density change from the covering portions 36 and 46 to the conducting portions 35 and 45 and from the upper surface side to the lower surface side of the conducting portion can be made smooth, and the extending portions 17a and 18a of the second reflective film 2 can be Since the cross-sectional area can be reduced and the semiconductor layer can be disposed in a region where the current density is particularly high, the above-described effects can be easily achieved. Further, the extending portions 17a and 18a of the second reflecting film 2 are formed so as to extend along the path of the current flowing through the conducting portions 35 and 45, so that they flow to the second reflecting film 2 on the covering portion side. Even if the current flows through the second reflective film 2 while suppressing the current, the electromigration of the metal atoms in the extending portions 17a and 18a of the second reflective film 2 can be preferentially generated. In FIG. 2, for the sake of simplicity, arrows indicating the flow from the electrode films 32 and 42 to the semiconductor are shown. However, the negative electrode of the positive and negative electrodes flows in the direction of the arrow, and that the electrons flow in the reverse direction of the positive electrode. Needless to say, the same applies to FIGS.

具体的には、本実施の形態1の光反射構造17,18では、第1反射膜1は、透光性導電膜31,41の略平坦な表面に形成され、延出方向に、すなわち導通部35,45における半導体層との接触側に近づくほど、その膜厚が小さくなっており、光反射構造の中央部、すなわち被覆部36,46側における略平坦な表面から連続して、該表面から半導体素子構造20側に傾斜する傾斜面の表面を有している。第2反射膜2は、この第1反射膜1の略平坦な表面と、傾斜面の表面の一部と、を被覆するように形成されている。ここで、本発明では、光反射構造17,18の被覆部側の各膜は略平坦でなくとも、緩やかに湾曲した表面、凹凸を帯びた表面など、種々の形態でも良く、その被覆部側に比して大きく傾斜した延出部17a,18aが設けられれば良い。また第2反射膜2は、延出するに従って膜厚が小さくなって、その中央部の表面から連続して半導体素子構造側に傾斜する傾斜面の表面を有している。さらに絶縁膜3は、この第2反射膜2の被覆部の表面と、傾斜面の表面の一部と、を被覆するように形成され、同様に延出方向に膜厚が小さくなり、被覆部の表面から連続して半導体素子構造側に傾斜する傾斜面の表面を有している。よって、この光反射構造17,18の端部の表面は、各膜の表面の一部がその上に積層される膜に被覆され且つ一部が露出されてなり、その中央部の略平坦な表面から半導体素子構造側に傾斜する傾斜面となっている。このように、本実施の形態1における第2反射膜2の延出部17a,18aは、第1反射膜1の傾斜面の表面上に設けられており、絶縁膜3から導通部側に延出している。したがって、第2反射膜2の傾斜面の表面の一部を被覆する絶縁膜3が、被覆部側の第2反射膜2を側方からも覆っているため、電極膜の導通部35,45から第2反射膜2の中央部に直接的に横方向へ流れる電流を抑制することができると共に、第2反射膜2の延出部17a,18aと電極膜32,42との接触面積をより小さくし、第2反射膜2に電流が流れた場合に、第2反射膜の延出部の電流密度を高め、延出部の金属原子のエレクトロマイグレーションを優先的に発生させることができる。   Specifically, in the light reflecting structures 17 and 18 according to the first embodiment, the first reflecting film 1 is formed on the substantially flat surfaces of the translucent conductive films 31 and 41, and extends in the extending direction, that is, conductive. The closer to the contact side with the semiconductor layer in the portions 35 and 45, the smaller the film thickness. From the central portion of the light reflecting structure, that is, from the substantially flat surface on the covering portions 36 and 46 side, the surface To the semiconductor element structure 20 side. The second reflective film 2 is formed so as to cover the substantially flat surface of the first reflective film 1 and a part of the inclined surface. Here, in the present invention, each film on the covering portion side of the light reflecting structures 17 and 18 may be various forms such as a gently curved surface and an uneven surface, even if it is not substantially flat. It is only necessary to provide the extended portions 17a and 18a which are greatly inclined as compared with the above. Further, the second reflective film 2 has a surface with an inclined surface that becomes thinner as it extends, and that inclines continuously from the surface of the central portion toward the semiconductor element structure side. Further, the insulating film 3 is formed so as to cover the surface of the covering portion of the second reflecting film 2 and a part of the surface of the inclined surface, and similarly the film thickness is reduced in the extending direction. The surface of the inclined surface is continuously inclined from the surface to the semiconductor element structure side. Therefore, the surfaces of the end portions of the light reflecting structures 17 and 18 are partly covered with a film laminated on the surface of each film, and a part of the surface is exposed. The inclined surface is inclined from the surface to the semiconductor element structure side. As described above, the extending portions 17a and 18a of the second reflecting film 2 in the first embodiment are provided on the surface of the inclined surface of the first reflecting film 1, and extend from the insulating film 3 to the conducting portion side. I'm out. Therefore, since the insulating film 3 that covers a part of the surface of the inclined surface of the second reflective film 2 covers the second reflective film 2 on the coating part side from the side, the conductive parts 35 and 45 of the electrode film. Current flowing directly from the first to the center of the second reflective film 2 in the lateral direction can be suppressed, and the contact area between the extended portions 17a and 18a of the second reflective film 2 and the electrode films 32 and 42 can be further increased. When the current flows through the second reflective film 2, the current density at the extended portion of the second reflective film can be increased, and electromigration of metal atoms in the extended portion can be preferentially generated.

また、このような光反射構造17,18において、第1反射膜1は、後述するような誘電体多層膜を有することが好ましい。第1反射膜1が誘電体多層膜を有することで、光反射構造の全体としての反射率を高めることができるが、誘電体多層膜は、その反射率が光の波長や入射角度に依存し、特に高角度の入射光に対しては意図する波長の光の反射率が低下しやすい。このため、被覆部側に比して、膜厚が変化して、表面が傾斜して、反射機能が低下する延出部17a,18aでは、金属の第2反射膜2が第1反射膜1の傾斜部の少なくとも一部を被覆することによって、外側に漏れる光、高角度の入射光を第2反射膜2により反射させ、光反射構造17,18の端部近傍における反射率の低下を抑制することができる。金属の第2反射膜2が、第1反射膜1の傾斜部の誘電体多層膜の表面の少なくとも一部を被覆することがより好ましく、傾斜部の誘電体多層膜の表面を完全に被覆することがより好ましい。   Moreover, in such light reflection structures 17 and 18, it is preferable that the 1st reflection film 1 has a dielectric multilayer film which is mentioned later. Since the first reflective film 1 has a dielectric multilayer film, the reflectivity of the light reflecting structure as a whole can be increased. However, the dielectric multilayer film has a reflectivity that depends on the wavelength and incident angle of light. In particular, the reflectance of light having an intended wavelength is likely to decrease with respect to incident light at a high angle. For this reason, the metal second reflective film 2 is the first reflective film 1 in the extended portions 17a and 18a where the film thickness is changed, the surface is inclined, and the reflective function is reduced as compared with the covering portion side. By covering at least a part of the inclined portion, light leaking to the outside and incident light at a high angle are reflected by the second reflecting film 2 to suppress a decrease in reflectance in the vicinity of the end portions of the light reflecting structures 17 and 18. can do. More preferably, the metal second reflective film 2 covers at least a part of the surface of the dielectric multilayer film in the inclined portion of the first reflective film 1 and completely covers the surface of the dielectric multilayer film in the inclined portion. It is more preferable.

第2反射膜2の膜厚は、被覆部側より延出部17a,18aのほうが小さくなっていることが好ましい。これにより、第2反射膜2に横方向へ電流が流れた場合、第2反射膜2の延出部17a,18aにおける電流密度が、被覆部側に比べて高くなるため、延出部の金属原子のエレクトロマイグレーションを優先的に発生させることができる。また、発光素子内で発生する金属原子のマイグレーションは、電極間の短絡や断線、発光効率の低下などの問題を引き起こす虞があるが、第2反射膜2の延出部17a,18aの膜厚が小さいことで、第2反射膜2の金属原子のマイグレーションによるこのような素子への影響を抑えられる。なお、ここでいう「膜厚」はその部位の平均膜厚で考えるものとする。さらには、延出部17a,18aの膜厚は、図示するように延出するにつれて小さくなっていることが好ましい。これにより、延出部17a,18aにおいて、被覆部側より導通部側の電流密度を延出方向で段階的に高め、導通部側の金属原子をより優先的にエレクトロマイグレーションさせることができる。したがって、被覆部側の第2反射膜2の金属原子のエレクトロマイグレーションの発生をさらに抑制し、光反射構造の反射率の低下をさらに抑えることができると共に、素子への影響をさらに軽減できる。   The film thickness of the second reflective film 2 is preferably smaller in the extending portions 17a and 18a than in the covering portion side. As a result, when a current flows through the second reflective film 2 in the lateral direction, the current density in the extended portions 17a and 18a of the second reflective film 2 is higher than that on the covering portion side, so that the metal in the extended portion Electromigration of atoms can be preferentially generated. Further, the migration of metal atoms generated in the light emitting element may cause problems such as short-circuiting or disconnection between electrodes and a decrease in light emission efficiency, but the film thicknesses of the extending portions 17a and 18a of the second reflective film 2 are not limited. Is small, the influence on the element due to migration of metal atoms in the second reflective film 2 can be suppressed. The “film thickness” here is considered to be the average film thickness of the part. Furthermore, it is preferable that the film thickness of the extension parts 17a and 18a becomes smaller as it extends as shown in the figure. Thereby, in the extension parts 17a and 18a, the current density on the conduction part side can be increased stepwise in the extension direction from the covering part side, and the metal atoms on the conduction part side can be electromigrationd more preferentially. Therefore, the occurrence of electromigration of metal atoms in the second reflective film 2 on the covering portion side can be further suppressed, the decrease in the reflectance of the light reflecting structure can be further suppressed, and the influence on the element can be further reduced.

また、図1及び図2に示す発光素子の例では、両導電型の電極膜32,42は半導体素子構造20の同一面側に各々設けられており、第1導電型の電極膜32の形成領域26として、第1導電型半導体層21の一部が露出されている。そして、第1導電型半導体層の露出面26上に、外部接続部33とそこから延伸する延伸部34を有する構造の第1電極40が設けられており、一方で各電極40の光反射構造17は単一の島状に設けられており、この光反射構造17の周囲に電極膜の導通部35が形成されている。他方、第2導電型半導体層23上の光反射構造18は格子状に設けられており、この光反射構造18の開口部に電極膜42の導通部45が形成されている。   Further, in the example of the light emitting element shown in FIGS. 1 and 2, both conductive type electrode films 32 and 42 are provided on the same surface side of the semiconductor element structure 20, respectively, and the first conductive type electrode film 32 is formed. As a region 26, a part of the first conductivity type semiconductor layer 21 is exposed. And the 1st electrode 40 of the structure which has the external connection part 33 and the extending | stretching part 34 extended | stretched from there is provided on the exposed surface 26 of a 1st conductivity type semiconductor layer, On the other hand, the light reflection structure of each electrode 40 17 is provided in a single island shape, and a conductive portion 35 of an electrode film is formed around the light reflecting structure 17. On the other hand, the light reflecting structure 18 on the second conductive type semiconductor layer 23 is provided in a lattice shape, and a conducting portion 45 of the electrode film 42 is formed in the opening of the light reflecting structure 18.

このように、本実施の形態の発光素子は、半導体素子構造20の表面の面内において、導通部35,45を複数有し、少なくとも一つの導通部が被覆部36,46に囲まれていることが好ましい。導通部35,45が被覆部36,46に囲まれていることにより、該導通部周囲の被覆部から電流を該導通部に集中させ、電流密度の高い領域を局所的に形成することができる。これにより、光反射構造17,18において、電流による第2反射膜2の金属原子のエレクトロマイグレーションが発生しやすい領域を限定的にし、その端部長さ、面積を小さくして、被覆部側の第2反射膜2の金属原子のエレクトロマイグレーションを抑制でき、その量を低減できる。全ての導通部35,45が被覆部36,46に囲まれる光反射構造としてもよく、この場合には半導体素子構造20の表面を光反射構造17,18により広範に被覆することができ、特に光反射性に優れた光反射構造を形成することができる。また、第2導電型層23上の第2電極40のように、大面積の電極膜の形成において、後述する延伸併設部を設けずに、開口部の導通部45だけで構成されることで、延伸方向のエレクトロマイグレーションの発生を防止できる。従って、第1,2導電型半導体層21,23の同一面側にそれぞれ電極膜32,42と光反射構造17,18を有する構造では、第2導電型半導体層23上に、上記被覆部46に囲まれた導通部45を複数有することが好ましい。このように、開口部の導通部45を第2導電型半導体層23上に分散させて複数配置することにより、電極膜42面内の電流拡散性を高めて、光反射構造18による反射機能を高めることができる。開口部45の形状は特に限定されないが、図示するように四角形状の他、多角形状、円形状などの島状、更にはストライプ状、格子状などがあり、その配置は、図示するように格子配置の他、規則的な配置、不規則的な配置とできる。好ましくは、図示するように、格子配置された島状である。   As described above, the light-emitting element of the present embodiment has a plurality of conducting portions 35 and 45 within the surface of the semiconductor element structure 20, and at least one conducting portion is surrounded by the covering portions 36 and 46. It is preferable. Since the conducting portions 35 and 45 are surrounded by the covering portions 36 and 46, a current can be concentrated on the conducting portion from the covering portion around the conducting portion, and a region having a high current density can be locally formed. . Thereby, in the light reflecting structures 17 and 18, the region where the electromigration of the metal atoms of the second reflecting film 2 due to the current is likely to occur is limited, the end length and the area are reduced, and the first portion on the covering portion side is reduced. 2 Electromigration of metal atoms in the reflective film 2 can be suppressed, and the amount thereof can be reduced. A light reflecting structure in which all the conducting portions 35 and 45 are surrounded by the covering portions 36 and 46 may be used. In this case, the surface of the semiconductor element structure 20 can be covered widely with the light reflecting structures 17 and 18. A light reflecting structure having excellent light reflectivity can be formed. Further, in the formation of a large-area electrode film like the second electrode 40 on the second conductivity type layer 23, it is configured by only the conductive portion 45 of the opening without providing an extension side portion to be described later. The occurrence of electromigration in the stretching direction can be prevented. Therefore, in the structure having the electrode films 32 and 42 and the light reflecting structures 17 and 18 on the same surface side of the first and second conductive semiconductor layers 21 and 23, the covering portion 46 is formed on the second conductive semiconductor layer 23. It is preferable to have a plurality of conducting portions 45 surrounded by the. In this way, by disposing a plurality of conductive portions 45 in the opening on the second conductive type semiconductor layer 23, the current diffusivity in the surface of the electrode film 42 is improved, and the reflection function by the light reflecting structure 18 is improved. Can be increased. The shape of the opening 45 is not particularly limited, but there are other shapes such as a quadrilateral shape, an island shape such as a polygonal shape and a circular shape, a stripe shape, and a lattice shape as shown in the figure. In addition to placement, regular placement and irregular placement are possible. Preferably, as shown in the figure, the islands are arranged in a grid pattern.

なお、実施の形態2、図2に観るように、光反射構造18は、半導体素子構造20の表面において、外周部と、該光反射構造の内側に複数の開口部45と、を有し、導通部は、第2導電型半導体層23の表面において、開口部に設けられる被覆部46に囲まれた第1の導通部と、外周部、またはその一辺、その一部に設けられる第2の導通部を有していてもよい。これにより、外周部の第2の導通部は比較的広範に連続して設けられ、端部長さが長くなるため、第1の導通部に比べて電流密度が低く延出部18aの金属原子のエレクトロマイグレーションが発生しにくい領域として形成することができ、またこの第2の導通部の存在により、各第1の導通部の電流密度を低減させ、第1の導通部においても延出部の金属原子のエレクトロマイグレーションの発生を抑制することができる。また、第2の導通部により素子外縁部においても発光が促進され、その光を素子側面から直接的に取り出すと共に、素子内部側で発光した光は、被覆部46に囲まれる(第1の)導通部45を有することで第2導電型半導体層23の表面の面内に広範に形成された光反射構造18により、効率良く反射させて取り出すことができる。一方で、その外周部では、電極部と光反射構造が互いに併設されて、延伸された延伸併設部となり、外周長の長い、すなわち延伸長の長い領域でその延伸併設部が形成されることから、延伸方向に流れる電流が発生し、それによるエレクトロマイグレーションの発生があるが、本発明の構造により、それを改善できるため、好ましい。以上の各形態は、第2導電型半導体層上の第2電極40について説明したが、第1電極に適用しても良い。   As shown in the second embodiment and FIG. 2, the light reflecting structure 18 has an outer peripheral portion on the surface of the semiconductor element structure 20 and a plurality of openings 45 inside the light reflecting structure. The conducting portion is formed on the surface of the second conductivity type semiconductor layer 23 by the first conducting portion surrounded by the covering portion 46 provided in the opening portion, and the outer peripheral portion or one side or a second portion thereof. You may have a conduction | electrical_connection part. As a result, the second conducting portion on the outer peripheral portion is provided relatively widely and continuously, and the end portion length becomes long. Therefore, the current density is lower than that of the first conducting portion, and the metal atoms of the extending portion 18a It can be formed as a region where electromigration is unlikely to occur, and the presence of the second conductive portion reduces the current density of each first conductive portion, and the metal in the extended portion also in the first conductive portion Generation of atomic electromigration can be suppressed. In addition, light emission is promoted also at the outer edge portion of the element by the second conductive portion, and the light is directly taken out from the side surface of the element, and the light emitted inside the element is surrounded by the covering portion 46 (first). By having the conduction part 45, the light reflection structure 18 formed extensively in the surface of the surface of the second conductivity type semiconductor layer 23 can be efficiently reflected and taken out. On the other hand, in the outer peripheral part, the electrode part and the light reflecting structure are arranged side by side to become an extended extension part, and the extension side part is formed in a region having a long outer peripheral length, that is, a long extension length. A current flowing in the stretching direction is generated, and electromigration is thereby generated, which is preferable because it can be improved by the structure of the present invention. Each of the above embodiments has been described for the second electrode 40 on the second conductivity type semiconductor layer, but may be applied to the first electrode.

一方で、第1導電型半導体層21上の導通部35は、本実施の形態に観るように、第2導電型半導体層23に対して広くに電流を拡散させ、またその電極形成領域を小さくする形態が好ましい。本実施の形態では導通部35が、断面において光反射構造17の端部にのみ導通部が設けられ、更に、導通部が断面において両端部に形成され、また光反射構造17の周囲を囲んで設けられ、加えて該導通部が第2導電型半導体層23の端面に対向するように設けられる。このことで、電極部30を小さく、細く形成でき、光反射構造17の機能を高め、電極30の各部位における電位をより均一にして、その導通部35に隣接する発光構造部25に対して効率良く電流を拡散できるので好ましい。一方で、細く長く形成され、図1Aの矢印示するように延伸されて形成される電極部30に、その端部の導通部35が設けられることで、上記併設延伸部が長くなり、その延伸方向へのエレクトロマイグレーションの発生が問題となるが、本発明の構造により、その発生を抑制し、その問題を低減できる。   On the other hand, the conductive part 35 on the first conductive type semiconductor layer 21 diffuses a current widely with respect to the second conductive type semiconductor layer 23 and reduces the electrode formation region as seen in the present embodiment. The form is preferred. In the present embodiment, the conducting part 35 is provided with a conducting part only at the end of the light reflecting structure 17 in the cross section, and further, the conducting part is formed at both ends in the cross section, and surrounds the periphery of the light reflecting structure 17. In addition, the conductive portion is provided so as to face the end surface of the second conductivity type semiconductor layer 23. As a result, the electrode portion 30 can be made small and thin, the function of the light reflecting structure 17 is enhanced, the potential at each part of the electrode 30 is made more uniform, and the light emitting structure portion 25 adjacent to the conducting portion 35 is made. This is preferable because the current can be diffused efficiently. On the other hand, the electrode portion 30 that is formed to be thin and long and stretched as shown by the arrow in FIG. The occurrence of electromigration in the direction becomes a problem, but the structure of the present invention can suppress the occurrence and reduce the problem.

また各半導体層の電極膜形成面上の略全域には透光性導電膜31,41が設けられており、光反射構造17,18はこの透光性導電膜に接して設けられている。このように、半導体素子構造20と、導通部35,45の電極膜及び光反射構造と、の間に透光性導電膜31,41を有することにより、被覆部36,46から導通部35,45を経て半導体層20へ流れる縦方向の電流を促進し、第2反射膜2に流れる電流を抑制することができる。また、導通部35,45の電流密度を高めて延出部17a,18aの金属原子のエレクトロマイグレーションを優先的に発生させることができる。透光性導電膜31,41が光反射構造17,18と半導体素子構造20との間に設けられて、導通部35,45から半導体層の光反射構造下へ電流を拡散させて光反射構造下で発光させ、その発光の一部は、透光性導電膜を透過させ、光反射構造により反射させて効率良く取り出すことができる。   In addition, translucent conductive films 31 and 41 are provided in substantially the entire region on the electrode film formation surface of each semiconductor layer, and the light reflecting structures 17 and 18 are provided in contact with the translucent conductive film. Thus, by providing the translucent conductive films 31 and 41 between the semiconductor element structure 20 and the electrode film and the light reflecting structure of the conductive portions 35 and 45, the conductive portions 35 and 45 are changed from the covering portions 36 and 46, respectively. The vertical current flowing to the semiconductor layer 20 via 45 can be promoted, and the current flowing to the second reflective film 2 can be suppressed. In addition, the current density of the conductive portions 35 and 45 can be increased, and electromigration of the metal atoms of the extending portions 17a and 18a can be preferentially generated. Translucent conductive films 31 and 41 are provided between the light reflecting structures 17 and 18 and the semiconductor element structure 20 to diffuse current from the conducting portions 35 and 45 to the light reflecting structure of the semiconductor layer, thereby reflecting the light. The light is emitted below, and a part of the light can be efficiently extracted by being transmitted through the light-transmitting conductive film and reflected by the light reflecting structure.

本実施の形態とは異なる本発明の別の実施の形態として、図3に示すように、第2の光反射構造18Aを、上記光反射構造18の下側、透光性導電膜41と半導体素子構造20との間に介在させ、更に、上記導通部45に対応して、すなわち導通部45に対向して透光性導電膜を介して、設ける構造とできる。これにより、光反射構造18の開口部を通過する光を第2の光反射構造18Aにより、反射して、素子の光取り出し効率を高めることができる。第1の窒化物半導体層21の露出部26側、発光構造部25側のいずれに設けても良く、特に大面積の発光構造部25側に設けることが好ましい。この第2の光反射構造18Aは、光反射構造18と同様に、各反射膜を有しても良く、少なくとも第1反射膜1を有することが好ましい。このように、光反射構造18より薄膜で形成されることで、適度な反射機能と、段差による上層側の光反射構造18への形状変化、反射機能への影響を低く抑えることができる。ここで、第2の反射構造18Aは、図示するように、断面で導通部45より幅広でそれを内包するように配置されることが好ましく、また透光性導電膜41の面内において、導通部45より大面積で、導通部45が内部に配置されるように、設けることがより好ましい。一方で、導通部45より小さく形成すること、更に光反射構造18と第2の光反射構造18Aを互いに離間することで、相互の影響を低くして各光反射構造を積層した構造とできる。また、図示するように、相互に重ね合わされることで、光反射構造18、その被覆部46の内側に段差が設けられると、上面側18cと段差部18dと底面側18eが設けられ、段差部により光反射構造18内の第2反射膜2の経路が狭められ、上述した内部を流れる電流を低減でき、延出部18aから上面側18cにまでエレクトロマイグレーションの影響が及んでも、それを抑制する方向に働き、その影響を低減し、また主要な光反射部となる底面側18eの反射機能を保持できる。また、第2の光反射構造18Aにおいても光反射構造18と同様に、それに隣接して導通部49を設けることができ、そこから半導体素子構造内へ電流を注入できる。一方で図示するように、第2の光反射構造18Aの形成領域は、非注入経路となって、発光構造部25上では非発光領域となるが、導通部45直下の発光を抑えて、光反射構造18より反射率の低い第2の光反射構造でもって、そこを抜ける光を反射させる構造とできる。その際、光反射構造間の領域、透光性導電膜41の領域を斜めに抜ける光があるが、透光性導電膜41は光反射構造より薄膜であり、図示するように、積層方向に互いに重なり合うようにすることで、その通過光を低減できる。また、非発光構造に合わせて、光反射構造18と異なる反射機能、例えば第1反射膜1の設定波長を高角度の入射光に対応するように、光反射構造18より長波長とすることができる。また、光反射構造18と同様に、第2の光反射構造18Aにおいてもその下に介在する透光性導電膜を設けて電流注入領域としても良い。   As another embodiment of the present invention different from the present embodiment, as shown in FIG. 3, the second light reflecting structure 18A is formed on the lower side of the light reflecting structure 18, the translucent conductive film 41 and the semiconductor. Further, it is possible to have a structure in which it is interposed between the element structure 20 and corresponding to the conductive portion 45, that is, through the translucent conductive film so as to face the conductive portion 45. Thereby, the light passing through the opening of the light reflecting structure 18 is reflected by the second light reflecting structure 18A, and the light extraction efficiency of the element can be increased. The first nitride semiconductor layer 21 may be provided on either the exposed portion 26 side or the light emitting structure portion 25 side, and particularly preferably provided on the large area light emitting structure portion 25 side. The second light reflecting structure 18 </ b> A may have each reflecting film similarly to the light reflecting structure 18, and preferably has at least the first reflecting film 1. Thus, by forming the light reflecting structure 18 in a thin film, it is possible to suppress an appropriate reflecting function, a shape change to the light reflecting structure 18 on the upper layer side due to a step, and an influence on the reflecting function. Here, as shown in the drawing, the second reflection structure 18A is preferably arranged so as to be wider than the conduction portion 45 and include the second reflection structure 18A, and within the plane of the translucent conductive film 41. It is more preferable to provide the conductive portion 45 so as to have a larger area than the portion 45 and to be disposed inside. On the other hand, by forming it smaller than the conductive portion 45, and further separating the light reflecting structure 18 and the second light reflecting structure 18A from each other, the mutual influence can be reduced and a structure in which the light reflecting structures are laminated can be obtained. Also, as shown in the figure, when a step is provided inside the light reflecting structure 18 and its covering portion 46 by overlapping each other, a top surface side 18c, a step portion 18d, and a bottom surface side 18e are provided. As a result, the path of the second reflective film 2 in the light reflecting structure 18 is narrowed, the current flowing through the inside can be reduced, and the influence of electromigration from the extending portion 18a to the upper surface side 18c is suppressed. It is possible to reduce the influence, and to maintain the reflection function of the bottom surface side 18e serving as a main light reflecting portion. Similarly to the light reflecting structure 18, the second light reflecting structure 18 </ b> A can be provided with a conducting portion 49 adjacent thereto, and current can be injected into the semiconductor element structure therefrom. On the other hand, as shown in the drawing, the formation region of the second light reflecting structure 18A becomes a non-injection path and becomes a non-light emitting region on the light emitting structure 25, but suppresses light emission just below the conducting portion 45, and reduces the light. A second light reflecting structure having a lower reflectance than the reflecting structure 18 can be used to reflect the light passing therethrough. At that time, there is light that obliquely passes through the region between the light reflecting structures and the region of the light transmitting conductive film 41. However, the light transmitting conductive film 41 is thinner than the light reflecting structure, and as illustrated, in the stacking direction. By letting them overlap each other, the passing light can be reduced. Further, in accordance with the non-light-emitting structure, the reflection function different from that of the light reflection structure 18, for example, the set wavelength of the first reflection film 1 may be longer than that of the light reflection structure 18 so as to correspond to incident light at a high angle. it can. Similarly to the light reflecting structure 18, the second light reflecting structure 18 </ b> A may be provided with a light-transmitting conductive film interposed thereunder to serve as a current injection region.

図4に示す電極膜32及び光反射構造17の構造は、本実施の形態とは異なる本発明の別の実施の形態に係り、上述した本実施の形態の第1電極30の場合とは逆に、電極の端部側に光反射構造17を、内側に導通部35を有する構造となっている。更に、外周部が光反射構造17で構成され、その内側に光反射構造の開口部、導通部35を備え、加えて透光性導電膜31の外側に光反射構造が延在し、さらに半導体層20に直接設けられている。このような構造とすることで、光反射構造の機能を高め、さらに本実施の形態のように導通部35が光反射構造17に囲まれた構造であることで、上述の効果を奏する。   The structure of the electrode film 32 and the light reflecting structure 17 shown in FIG. 4 relates to another embodiment of the present invention that is different from the present embodiment, and is opposite to the case of the first electrode 30 of the present embodiment described above. In addition, the light reflecting structure 17 is provided on the end side of the electrode, and the conducting part 35 is provided on the inner side. Further, the outer peripheral portion is constituted by the light reflecting structure 17, the light reflecting structure opening and the conducting portion 35 are provided inside thereof, and the light reflecting structure extends to the outside of the translucent conductive film 31, and further the semiconductor. It is provided directly on the layer 20. By having such a structure, the function of the light reflecting structure is enhanced, and the conductive section 35 is surrounded by the light reflecting structure 17 as in the present embodiment, and thus the above-described effects are achieved.

なお、光反射構造17,18を構成する各膜の膜厚、表面の傾斜などの形態は、スパッタ法、CVD法、蒸着法などにより1つの膜を成膜した後、エッチング、リフトオフなどによりその膜を部分的に除去して整形することにより実現することができる。但し、図2に示すような構造の光反射構造17,18においては、光反射構造のパターンを形成するための保護膜(レジスト、マスク)として、その上面から内側に向かって傾斜する傾斜面の側面を有するものを用いて、光反射構造を構成する各膜を順次成膜することで、比較的容易に形成することが可能である。具体的には、透光性導電膜上に上記形状の保護膜をパターン形成した後、第1反射膜を成膜すると、保護膜の開口部内に、断面が略台形状の第1反射膜が形成される。続いて、その上に第2反射膜を成膜すれば、第1反射膜の中央部の略平坦面上に加え、第1反射膜の端部の傾斜面上にも第2反射膜が成膜される。このとき、端部の傾斜面上の第2反射膜は、第1反射膜の傾斜面と保護膜の側面との隙間に回り込むように成膜されるため、その膜厚は中央部に比べ小さいものとなる。また、第1反射膜と保護膜との隙間は端部にいくほど小さくなるため、第2反射膜の膜厚もそれにつれて小さくなり、また部分的に第2反射膜が成膜されず第1反射膜の表面が露出される。さらに、この上に成膜される絶縁膜、またその間に介する介在層についても、その下層の中央部の略平坦面上と端部の傾斜面上とに同様に成膜される。この方法であれば、エッチング等による各膜のパターニング工程を伴わず、上記のような保護膜を用いて各膜を順次成膜するだけで、図2に示す例の光反射構造を形成することができ、生産性が良い。   It should be noted that the film thickness and surface inclination of each film constituting the light reflecting structures 17 and 18 can be determined by etching, lift-off, etc. after forming one film by sputtering, CVD, vapor deposition or the like. This can be realized by partially removing and shaping the film. However, in the light reflecting structures 17 and 18 having the structure as shown in FIG. 2, as a protective film (resist, mask) for forming the pattern of the light reflecting structure, an inclined surface inclined inward from the upper surface thereof is used. By using a film having a side surface and sequentially forming each film constituting the light reflecting structure, it can be formed relatively easily. Specifically, after patterning the protective film having the above shape on the translucent conductive film, the first reflective film is formed, and the first reflective film having a substantially trapezoidal cross section is formed in the opening of the protective film. It is formed. Subsequently, if a second reflective film is formed thereon, the second reflective film is formed not only on the substantially flat surface at the center of the first reflective film but also on the inclined surface at the end of the first reflective film. Be filmed. At this time, since the second reflective film on the inclined surface of the end portion is formed so as to go around the gap between the inclined surface of the first reflective film and the side surface of the protective film, the film thickness is smaller than the central portion. It will be a thing. In addition, since the gap between the first reflective film and the protective film decreases toward the end portion, the thickness of the second reflective film also decreases accordingly, and the second reflective film is not partially formed and the first reflective film is formed. The surface of the reflective film is exposed. Further, the insulating film formed thereon and the intervening layer interposed therebetween are similarly formed on the substantially flat surface at the center of the lower layer and the inclined surface at the end. With this method, the light reflection structure of the example shown in FIG. 2 can be formed only by sequentially forming each film using the protective film as described above without involving the patterning process of each film by etching or the like. And productivity is good.

次に、本発明の発光素子の各構成について、以下に詳述する。     Next, each structure of the light emitting element of this invention is explained in full detail below.

(発光素子)
発光素子は公知の半導体発光素子を利用でき、特に窒化物半導体であれば、蛍光物質を効率良く励起できる短波長の可視光や紫外光が発光可能であるため、好ましい。具体的な発光ピーク波長は240nm以上560nm以下、好ましくは380nm以上470nm以下である。なお、このほか、ZnSe系、InGaAs系、AlInGaP系半導体の発光素子でもよい。
(Light emitting element)
As the light-emitting element, a known semiconductor light-emitting element can be used. In particular, a nitride semiconductor is preferable because it can emit visible light and ultraviolet light having a short wavelength that can excite a fluorescent substance efficiently. A specific emission peak wavelength is 240 nm or more and 560 nm or less, preferably 380 nm or more and 470 nm or less. In addition, a light emitting element of ZnSe, InGaAs, or AlInGaP semiconductor may be used.

(半導体素子構造)
半導体層による半導体素子構造20は、少なくとも第1導電型(n型)層21と第2導電型(p型)層23とにより構成され、更にその間に活性層22を有する構造が出力、効率上好ましい。また、電極構造は、一方の主面側に第1導電型、第2導電型の両電極が設けられる同一面側電極構造が好ましいが、それに限定されず半導体層の各主面に対向して電極が各々設けられる対向電極構造、例えば成長基板除去構造において基板除去側に電極を設ける構造でも良い。発光素子の実装形態も、例えば上記同一面側電極構造では、電極膜形成面を実装面として、それに対向する基板側を主な光取り出し面とするフリップチップ実装が、半導体層と電極膜との間に光反射構造を有する構造上好ましい。この他、電極膜形成面側を主な光取り出し面とするフェイスアップ実装でもよい。
(Semiconductor element structure)
The semiconductor element structure 20 by the semiconductor layer is composed of at least a first conductivity type (n-type) layer 21 and a second conductivity type (p-type) layer 23, and further has a structure having an active layer 22 between them in terms of output and efficiency. preferable. In addition, the electrode structure is preferably the same surface side electrode structure in which both the first conductivity type electrode and the second conductivity type electrode are provided on one main surface side, but the electrode structure is not limited thereto and faces each main surface of the semiconductor layer. A counter electrode structure in which electrodes are provided, for example, a structure in which electrodes are provided on the substrate removal side in a growth substrate removal structure may be employed. As for the mounting form of the light-emitting element, for example, in the above-mentioned same-surface electrode structure, flip-chip mounting in which the electrode film forming surface is the mounting surface and the substrate side facing it is the main light extraction surface is formed between the semiconductor layer and the electrode film. It is preferable in terms of a structure having a light reflecting structure between them. In addition, face-up mounting may be used in which the electrode film forming surface side is the main light extraction surface.

(窒化物半導体発光素子)
発光素子の一例として、例えば図1に示す窒化物半導体の発光素子では、成長基板10であるサファイア基板の上に、第1の窒化物半導体層であるn型半導体層21、活性層である発光層22、第2の窒化物半導体層であるp型半導体層23を順にエピタキシャル成長されている。結晶成長方法としては、例えば、有機金属気相成長法(MOCVD:metal-organic chemical vapor deposition)、ハイドライド気相成長法(HVPE)、などの方法が利用できる。そして、発光層22およびp型半導体層23の一部が選択的にエッチングにより除去されて、n型半導体層21の一部が露出されて、その露出領域に第1電極30としてn型パッド電極32が形成される。また第1電極30と同一面側であって、p型半導体層のほぼ全面に第2電極40として、透光性導電膜41が形成され、その上にp型パッド電極42が形成される。さらに、保護膜50がn型、p型パッド電極32,42の表面を露出させ、各半導体層を被覆して設けられる。なお、第1電極30は、n型半導体層の露出領域に、透光性導電膜31を介して形成されてもよい。
(Nitride semiconductor light emitting device)
As an example of the light emitting device, for example, in the nitride semiconductor light emitting device shown in FIG. 1, the n-type semiconductor layer 21 that is the first nitride semiconductor layer and the light emission that is the active layer are formed on the sapphire substrate that is the growth substrate 10. The layer 22 and the p-type semiconductor layer 23 which is the second nitride semiconductor layer are epitaxially grown in this order. As the crystal growth method, for example, a metal-organic chemical vapor deposition (MOCVD) method, a hydride vapor deposition (HVPE) method, or the like can be used. Then, a part of the light emitting layer 22 and the p-type semiconductor layer 23 is selectively removed by etching, a part of the n-type semiconductor layer 21 is exposed, and an n-type pad electrode is formed as a first electrode 30 in the exposed region. 32 is formed. In addition, a translucent conductive film 41 is formed as the second electrode 40 on the same surface side as the first electrode 30 and on almost the entire surface of the p-type semiconductor layer, and a p-type pad electrode 42 is formed thereon. Further, a protective film 50 is provided to expose the surfaces of the n-type and p-type pad electrodes 32 and 42 and cover each semiconductor layer. Note that the first electrode 30 may be formed on the exposed region of the n-type semiconductor layer via the translucent conductive film 31.

(窒化物半導体層)
窒化物半導体としては、一般式がInxAlyGa1-x-yN(0≦x、0≦y、x+y≦1)であって、BやP、Asを混晶してもよい。また、n型半導体層21、p型半導体層23は、単層、多層を特に限定しない。活性層22は単一量子井戸構造(SQW)又は多重量子井戸構造(MQW)が好ましい。青色発光の素子構造の例としては、サファイア基板のC面上に、バッファ層などの窒化物半導体の下地層、例えばGaNの低温成長薄膜層とGaNの高温成長層を介して、n型窒化物半導体層として、例えばSiドープGaNのn型コンタクト層とGaN/InGaNのn型多層膜層が積層され、続いてInGaN/GaNのMQWの活性層、さらにp型窒化物半導体層として、例えばMgドープのInGaN/AlGaNのp型多層膜層とMgドープGaNのp型コンタクト層が積層された構造がある。
(Nitride semiconductor layer)
As the nitride semiconductor, the general formula In x Al y Ga 1-xy N (0 ≦ x, 0 ≦ y, x + y ≦ 1) A, B and P, may be mixed with As. Further, the n-type semiconductor layer 21 and the p-type semiconductor layer 23 are not particularly limited to a single layer or a multilayer. The active layer 22 preferably has a single quantum well structure (SQW) or a multiple quantum well structure (MQW). As an example of a blue light emitting device structure, an n-type nitride is formed on a C surface of a sapphire substrate via a nitride semiconductor underlayer such as a buffer layer, for example, a low-temperature growth thin film layer of GaN and a high-temperature growth layer of GaN. As the semiconductor layer, for example, an Si-doped GaN n-type contact layer and a GaN / InGaN n-type multilayer film layer are stacked, followed by an InGaN / GaN MQW active layer, and further as a p-type nitride semiconductor layer, for example, Mg-doped InGaN / AlGaN p-type multilayer film and Mg-doped GaN p-type contact layer are stacked.

(成長基板)
成長基板10は、半導体層をエピタキシャル成長させることができる基板で、基板の大きさや厚さ等は特に限定されない。窒化物半導体における基板としては、C面、R面、及びA面のいずれかを主面とするサファイアやスピネル(MgAl24)のような絶縁性基板、また炭化珪素(6H、4H、3C)、シリコン、ZnS、ZnO、Si、GaAs、ダイヤモンド、及び窒化物半導体と格子接合するニオブ酸リチウム、ガリウム酸ネオジウム等の酸化物基板、GaNやAlN等の窒化物半導体基板があり、そのオフアングルした基板(例えば、サファイアC面で0.01°〜3.0°)も用いることができる。成長基板10が一方の導電型の半導体層の一部を担っても良い。なお、成長基板10は、半導体素子構造を構成しない場合には除去してもよく、成長基板10が除去された半導体層に、支持基板、例えば導電性基板または別の透光性の部材・基板を接着した構造とすることもできる。その他、ガラス、樹脂などの透光性部材(蛍光物質を含有する波長変換部材でもよい)により半導体層が接着・被覆されて、支持された構造の素子でも良い。成長用基板10の除去は、例えば装置又はサブマウントのチップ載置部に保持して、研磨、LLO(Laser Lift Off)で実施できる。また、透光性の異種基板であっても、基板除去することで、光取り出し効率、出力を向上させることができる。
(Growth substrate)
The growth substrate 10 is a substrate on which a semiconductor layer can be epitaxially grown, and the size and thickness of the substrate are not particularly limited. As a substrate in a nitride semiconductor, an insulating substrate such as sapphire or spinel (MgAl 2 O 4 ) whose main surface is any of C-plane, R-plane, and A-plane, and silicon carbide (6H, 4H, 3C). ), Silicon, ZnS, ZnO, Si, GaAs, diamond, and nitride semiconductors, and oxide semiconductor substrates such as lithium niobate and neodymium gallate, and nitride semiconductor substrates such as GaN and AlN. A substrate (for example, 0.01 ° to 3.0 ° on the sapphire C surface) can also be used. The growth substrate 10 may serve as a part of one conductivity type semiconductor layer. The growth substrate 10 may be removed when the semiconductor element structure is not formed, and a support substrate such as a conductive substrate or another light-transmitting member / substrate is formed on the semiconductor layer from which the growth substrate 10 has been removed. It can also be set as the structure which adhered. In addition, an element having a structure in which a semiconductor layer is bonded and covered with a light-transmitting member such as glass or resin (or a wavelength conversion member containing a fluorescent substance) may be used. The removal of the growth substrate 10 can be carried out by polishing or LLO (Laser Lift Off) while being held on the chip mounting portion of the apparatus or submount, for example. Moreover, even if it is a translucent dissimilar board | substrate, light extraction efficiency and an output can be improved by removing a board | substrate.

(透光性導電膜)
半導体層のほぼ全面に導電膜31,41が形成されることにより、電流をその半導体層全体に均一に広げることができ、また該導電膜が透光性を備えることで、その上に光反射構造17,18を設けることができる。透光性導電膜31,41は、透明電極など数々の種類があるが、好ましくはZn、In、Snよりなる群から選択された少なくとも一種の元素を含む酸化物とする。具体的には、ITO、ZnO、In23、SnO2等、Zn、In、Snの酸化物を含むものが好ましく、より好ましくはITOを使用する。あるいはNi等の金属を30Å等の薄膜の金属膜、その他の金属の酸化物、窒化物、それらの化合物、窓部の開口部を有する金属膜のような光透過構造、以上の複合物でもよい。また、透光性導電膜31,41の厚さは、その層の光吸収性と電気抵抗・シート抵抗、また光反射構造17,18と電流の広がりを考慮した厚さとし、例えば1μm以下、具体的には10nmから500nmとする。また、活性層22から放出される光の波長λに対してλ/4のおよそ整数倍とすることで、光取り出し効率を高めることができる。なお、この透光性導電膜31,41は省略することもでき、その場合には光反射構造17,18が各導電型の半導体層に接して設けられてもよい。
(Translucent conductive film)
Since the conductive films 31 and 41 are formed on almost the entire surface of the semiconductor layer, the current can be spread uniformly over the entire semiconductor layer, and the conductive film has translucency so that light is reflected thereon. Structures 17 and 18 can be provided. The translucent conductive films 31 and 41 include various types such as a transparent electrode, but are preferably oxides containing at least one element selected from the group consisting of Zn, In, and Sn. Specifically, those containing oxides of Zn, In, Sn such as ITO, ZnO, In 2 O 3 , SnO 2 are preferable, and ITO is more preferably used. Alternatively, a metal such as Ni may be a thin metal film such as 30 mm, other metal oxides, nitrides, compounds thereof, a light transmission structure such as a metal film having a window opening, or a composite of the above. . Further, the thickness of the translucent conductive films 31 and 41 is set in consideration of the light absorption and electric resistance / sheet resistance of the layer, and the light reflection structures 17 and 18 and the spread of current, for example, 1 μm or less. Specifically, the thickness is 10 nm to 500 nm. In addition, the light extraction efficiency can be increased by setting the wavelength λ of light emitted from the active layer 22 to be approximately an integral multiple of λ / 4. The translucent conductive films 31 and 41 can be omitted. In that case, the light reflecting structures 17 and 18 may be provided in contact with the semiconductor layers of the respective conductivity types.

(光反射構造)
本発明の発光素子において、半導体素子構造20の互いに対向する2つの主面の一方を光取り出し側、他方を光反射側とすると、この光反射側に光反射構造17,18が設けられ、特に活性層22などの発光構造を有する領域25に設けられる。光反射構造17,18は、電極構造の一部、電極構造との重畳構造、電極構造との面内分離構造、などとして設けられ、好ましくは発光構造に対応して発光面積が大きくなるように、また電荷注入効率が高くなるように重畳構造とする。具体的には、半導体層又はその上の透光性導電膜と、素子外部と接続されるパッド電極との間に、光反射構造が設けられる。これにより、電気的な導通経路と光反射領域とが面内に分離して配置された構造となる。この面内分離の光反射構造は、分離領域に導通構造を有しているため、絶縁性で構成することができる。
(Light reflection structure)
In the light emitting device of the present invention, when one of the two main surfaces facing each other of the semiconductor device structure 20 is a light extraction side and the other is a light reflection side, light reflection structures 17 and 18 are provided on the light reflection side. The active layer 22 is provided in a region 25 having a light emitting structure. The light reflecting structures 17 and 18 are provided as a part of the electrode structure, an overlapping structure with the electrode structure, an in-plane separation structure with the electrode structure, and the like, and preferably the light emitting area increases corresponding to the light emitting structure. In addition, a superposition structure is employed so that the charge injection efficiency is increased. Specifically, a light reflecting structure is provided between a semiconductor layer or a light-transmitting conductive film thereover and a pad electrode connected to the outside of the element. As a result, the electrical conduction path and the light reflection region are separated from each other in the plane. This in-plane separation light reflecting structure has a conduction structure in the separation region, and thus can be configured to be insulative.

以下、本発明の光反射構造17,18を構成する第1反射膜1、第2反射膜2、絶縁膜3の各膜について説明する。   Hereinafter, each film of the first reflecting film 1, the second reflecting film 2, and the insulating film 3 constituting the light reflecting structures 17 and 18 of the present invention will be described.

(第1反射膜)
第1反射膜1は、絶縁体により構成される。絶縁性膜の単層でもよいが、誘電体多層膜との組み合わせにより構成されることで、光反射構造の光反射性を更に高めることができる。具体的には、高い入射角の光は絶縁性膜で好適に反射され、低い入射角の光は誘電体多層膜のDBRで好適に反射され、そのため、どちらか一方よりも両者を組み合わせた複合的な反射構造とすることが好ましい。絶縁性膜と誘電体多層膜の配置は、特に限定されないが、好適には半導体層側から順に絶縁性膜、誘電体多層膜を設けると、絶縁性膜による屈折率差の反射と、誘電体多層膜による波長、方向依存の反射と、を機能分離して各機能を高めることでき好ましい。なお第1反射膜1は、絶縁性膜を含まず、誘電体多層膜だけで構成されてもよい。
(First reflective film)
The first reflective film 1 is made of an insulator. Although a single layer of an insulating film may be used, the light reflectivity of the light reflecting structure can be further enhanced by being configured in combination with a dielectric multilayer film. Specifically, light with a high incident angle is favorably reflected by the insulating film, and light with a low incident angle is favorably reflected by the DBR of the dielectric multilayer film. Therefore, a composite in which both are combined rather than either one It is preferable to use a reflective structure. The arrangement of the insulating film and the dielectric multilayer film is not particularly limited. However, when an insulating film and a dielectric multilayer film are preferably provided in this order from the semiconductor layer side, reflection of the refractive index difference by the insulating film and the dielectric Each function can be enhanced by separating the wavelength and direction-dependent reflection by the multilayer film, which is preferable. Note that the first reflective film 1 may include only a dielectric multilayer film without including an insulating film.

(絶縁性膜)
絶縁性膜は、発光素子からの光を効率よく反射させ、またその一部の光を誘電体多層膜に透過させるように透光性を有する。そのため絶縁性膜は、好ましくは酸化物とし、さらに好ましくはSi、Alよりなる群から選択された少なくとも一種の元素の酸化物とする。具体的には、SiO2、Al23等とし、好ましくはSiO2を使用する。絶縁性膜の厚さは、10nm〜2μm程度の厚さで形成可能であり、200nm以上500nm以下とすることが好ましい。
(Insulating film)
The insulating film has a light-transmitting property so that light from the light emitting element is efficiently reflected and a part of the light is transmitted through the dielectric multilayer film. Therefore, the insulating film is preferably an oxide, more preferably an oxide of at least one element selected from the group consisting of Si and Al. Specifically, SiO 2 , Al 2 O 3 or the like is used, and preferably SiO 2 is used. The insulating film can be formed to a thickness of about 10 nm to 2 μm, and is preferably 200 nm to 500 nm.

(誘電体多層膜)
誘電体多層膜は、屈折率の異なる2種以上の誘電体膜が周期的に積層された多層構造である。より詳細には、誘電体多層膜は、屈折率の異なる膜が1/4波長の厚みで交互に積層された分布ブラッグ反射器(Distributed Bragg Reflector:DBR)を構成し、所定の波長を高効率に反射することができる。誘電体多層膜の例としては、Si、Ti、Zr、Nb、Ta、Alからなる群より選択された少なくとも一種の酸化物または窒化物から選択された少なくとも2つを繰り返し積層したものが好ましい。さらに好ましくは非金属元素からなる材質、あるいは酸化物の積層構造とし、例えば(Nb25/SiO2)n(ただしnは自然数)の積層構造等で構成される。
(Dielectric multilayer film)
The dielectric multilayer film has a multilayer structure in which two or more kinds of dielectric films having different refractive indexes are periodically stacked. More specifically, the dielectric multilayer film constitutes a distributed Bragg reflector (DBR) in which films having different refractive indexes are alternately laminated with a thickness of ¼ wavelength, and a predetermined wavelength is highly efficient. Can be reflected. An example of the dielectric multilayer film is preferably a laminate in which at least two selected from at least one oxide or nitride selected from the group consisting of Si, Ti, Zr, Nb, Ta, and Al are repeatedly stacked. More preferably, it is made of a material composed of a non-metallic element or a laminated structure of oxides, for example, (Nb 2 O 5 / SiO 2 ) n (where n is a natural number).

(第2反射膜)
第2反射膜2は、少なくともAl、Ag、W、Pt、Zn、Ni、Pd、Rh、Ru、Os、Ir、Ti、Zr、Hf、V、Nb、Ta、Co、Fe、Mn、Mo、Cr、La、Cu、Yよりなる群から選択された少なくとも一種の元素を含む金属または合金またはそれらの酸化物を含む層を有する単層、又は多層構造で設けられる。半導体層と電極膜との間に設けられる第2反射膜2は、活性層から出射される光の波長に対して、電極膜を構成する金属に比べ反射率が高く吸収係数が小さい金属より成ることが好ましく、特にAlもしくはAgを使用することが好ましい。これにより、該第2反射膜2で活性層から発光される光を反射させ、電極膜の光吸収による光損失を低減して光の取り出し効率を高めることができる。
(Second reflection film)
The second reflective film 2 includes at least Al, Ag, W, Pt, Zn, Ni, Pd, Rh, Ru, Os, Ir, Ti, Zr, Hf, V, Nb, Ta, Co, Fe, Mn, Mo, A single layer or a multilayer structure having a layer containing a metal or an alloy containing at least one element selected from the group consisting of Cr, La, Cu, and Y or an oxide thereof is provided. The second reflective film 2 provided between the semiconductor layer and the electrode film is made of a metal having a higher reflectance and a smaller absorption coefficient than the metal constituting the electrode film with respect to the wavelength of light emitted from the active layer. It is preferable to use Al or Ag. As a result, the light emitted from the active layer can be reflected by the second reflective film 2, and light loss due to light absorption of the electrode film can be reduced to increase the light extraction efficiency.

なかでも、Alは電流によりエレクトロマイグレーションが発生しやすいが、Agに次ぐ高い反射率を有している。このため、本発明において、第2反射膜2は特にAl又はその合金であることが好ましく、主要な光反射領域となるAl含有膜の中央部に電極膜から電流が流れることを抑制できる構造の光反射構造とすることで、Al原子のエレクトロマイグレーションの発生を抑制し、光反射構造の反射率の低下を抑止して、信頼性が高い発光素子とすることができる。さらに、第2反射膜2は、Tiを介して絶縁膜と接合されていることで、両膜の密着性を高めることができ、これにより上述した本発明の作用効果を高めることができる。このTi膜は、フォトリソグラフィの現像工程において第2反射膜2を保護するバリア層としても機能させることができる。この密着層、バリア層として、Tiの他に、Ti−W合金、W、Ta、Hf、またこれらの窒化物などを用いることができる。Al合金としては、AlにCu(Al−Cu)、又はSi及びCuを含有する(Al−Si−Cu)合金などを用いることができ、そのCu含有率は例えば2wt%以上、更には3wt%以上であることが好ましくCu,Siの含有率の上限としては、例えば10wt%以下程度、更には5wt%以下とする。Ag合金としては、Pt、Co、Au、Pd、Ti、Mn、V、Cr、Zr、Rh、Cu、Al、Mg、Bi、Sn、Ir、Ga、Nd及びReからなる群から選択される1種又は2種以上の合金が挙げられる。この場合、銀の割合としては、90質量%程度以上、好ましくは94質量%程度以上、95質量%程度以上、さらに好ましくは96質量%程度以上含有されていることが好ましい。   Among these, Al tends to cause electromigration due to electric current, but has the second highest reflectance after Ag. For this reason, in the present invention, the second reflective film 2 is particularly preferably Al or an alloy thereof, and has a structure capable of suppressing the current from flowing from the electrode film to the central portion of the Al-containing film serving as a main light reflecting region. With the light reflection structure, it is possible to suppress the occurrence of electromigration of Al atoms and suppress the decrease in the reflectance of the light reflection structure, so that a highly reliable light-emitting element can be obtained. Furthermore, since the second reflective film 2 is bonded to the insulating film through Ti, the adhesion between the two films can be enhanced, and thereby the above-described effects of the present invention can be enhanced. This Ti film can also function as a barrier layer for protecting the second reflective film 2 in the photolithography development process. As the adhesion layer and the barrier layer, Ti—W alloy, W, Ta, Hf, and nitrides thereof can be used in addition to Ti. As the Al alloy, Cu (Al—Cu) in Al or an alloy containing Si and Cu (Al—Si—Cu) can be used. The Cu content is, for example, 2 wt% or more, and further 3 wt%. Preferably, the upper limit of the Cu and Si content is, for example, about 10 wt% or less, and further 5 wt% or less. The Ag alloy is selected from the group consisting of Pt, Co, Au, Pd, Ti, Mn, V, Cr, Zr, Rh, Cu, Al, Mg, Bi, Sn, Ir, Ga, Nd, and Re. A seed | species or 2 or more types of alloy is mentioned. In this case, the ratio of silver is preferably about 90% by mass or more, preferably about 94% by mass or more, about 95% by mass or more, and more preferably about 96% by mass or more.

(絶縁膜)
絶縁膜3は、電極膜と第2反射膜2とを電気的に絶縁させる機能を有する。このような絶縁膜3は、第1反射膜1の絶縁性膜と同様に、好ましくは酸化物とし、さらに好ましくはSi、Alよりなる群から選択された少なくとも一種の元素の酸化物とする。具体的には、SiO2、Al23等とし、好ましくはSiO2を使用する。絶縁膜3の厚さは特に限定するものではなく、10nm〜2μm程度の厚さで形成可能であり、100nm以上500nm以下とすることが好ましい。
(Insulating film)
The insulating film 3 has a function of electrically insulating the electrode film and the second reflective film 2. The insulating film 3 is preferably an oxide, more preferably an oxide of at least one element selected from the group consisting of Si and Al, like the insulating film of the first reflective film 1. Specifically, SiO 2 , Al 2 O 3 or the like is used, and preferably SiO 2 is used. The thickness of the insulating film 3 is not particularly limited, and the insulating film 3 can be formed with a thickness of about 10 nm to 2 μm, preferably 100 nm to 500 nm.

(光反射構造の形成パターン)
光反射構造17,18のパターン(平面視形状)は、任意のパターンを使用できる。好ましい開口部の形状としては、線状、縞状、格子状、島状とする。図1の例では、光反射構造18の開口部45が島状にパターニングされている。光反射構造が開口部を備えることで、半導体素子構造20(又は透光性導電膜)の露出領域が形成される。このように部分的に半導体素子構造20が露出され電極膜と電気的に接続されるような構造とすることで、この領域が導通経路となり、接触抵抗を実質的に低減して順方向電圧を低下させることができる。なお、光反射構造17,18の形成パターンは上記の例に限られず、例えば開口部の形状を円形、楕円形、矩形状、多角形状などとしたり、また光反射構造17,18を島状、例えば矩形状のパターンに形成し、その矩形状のパターンの縦横幅を適宜変更したり、その島状の形状を三角形状や円形、半円形、多角形状としたり、これらの配置を千鳥状としたり、種々の形成部・開口部の形状、配置としても良い。また全体に均一に配置する例に限られず、領域ごとに大きさや密度を適宜変更したり、上記のパターンを組み合わせたりすることもできる。
(Light reflection structure formation pattern)
Any pattern can be used as the pattern (planar shape) of the light reflecting structures 17 and 18. A preferable shape of the opening is a line, stripe, lattice, or island. In the example of FIG. 1, the opening 45 of the light reflecting structure 18 is patterned in an island shape. Since the light reflecting structure includes the opening, an exposed region of the semiconductor element structure 20 (or the translucent conductive film) is formed. In this way, by partially exposing the semiconductor element structure 20 and being electrically connected to the electrode film, this region becomes a conduction path, and the contact resistance is substantially reduced and the forward voltage is reduced. Can be reduced. The formation pattern of the light reflecting structures 17 and 18 is not limited to the above example. For example, the shape of the opening is circular, elliptical, rectangular, polygonal, or the like, and the light reflecting structures 17 and 18 are island-shaped, For example, it is formed in a rectangular pattern, the vertical and horizontal widths of the rectangular pattern are changed as appropriate, the island shape is triangular, circular, semicircular, polygonal, or the arrangement is staggered The shapes and arrangements of various forming portions and openings may be used. Moreover, it is not restricted to the example arrange | positioned uniformly to the whole, A magnitude | size and density can be changed suitably for every area | region, or said pattern can also be combined.

さらに、光反射構造は、p型半導体層上のみに設けられるなど、いずれか一方の導電型の半導体層上に設けられてもよいし、両方の導電型の半導体層上に設けられてもよい。例えば窒化物半導体発光素子では、基板上にn型半導体層、p型半導体層の順に積層されることが多く、加えて同一面側に各導電型の電極が形成される場合には、発光領域の面積を大きくするために、n側電極、及びn型半導体層の露出部は小さく又は細く形成され、p側電極に比べn側電極において電流密度が高くなるため、本発明の光反射構造は特にそのようなn型半導体層上に設けられることで、より効果が発揮される。   Further, the light reflecting structure may be provided on one of the conductive semiconductor layers, such as provided only on the p-type semiconductor layer, or may be provided on both conductive semiconductor layers. . For example, in a nitride semiconductor light emitting device, an n-type semiconductor layer and a p-type semiconductor layer are often stacked in this order on a substrate, and in addition, when each conductivity type electrode is formed on the same surface side, a light emitting region In order to increase the area of the n-side electrode, the n-side electrode and the exposed portion of the n-type semiconductor layer are formed small or narrow, and the current density is higher in the n-side electrode than in the p-side electrode. In particular, it is more effective when provided on such an n-type semiconductor layer.

また、光反射構造17,18が、第1電極30及び第2電極40の両方に形成されれば、両領域に進行した光を選択的に反射して、光の損失を効率的に低減できる。また、実施の形態1の発光素子では、両電極30,40が同一面側に配置されているため、両方の電極に光反射構造を形成すれば、発光素子の主面のほぼ全体に光反射領域を備えることとなり、光取り出し効率を高めることができる。また、図1の発光素子において、両方の電極30,40に各々形成される光反射構造17,18の光学的特性は略同じとする。両電極に設けられる光反射構造が略同じであると、該発光素子の発光色のムラを低減できる他、両方の光反射構造を同時に形成することにより製造工程の簡略化が図れる。一方、各電極30,40に設けられる各々の光反射構造17,18は、その光学的特性に差を設けても良い。例えば、電極の部位による光の入射角度や、該発光素子上に設けられる波長変換部材との離間距離などを考慮して、第1及び第2反射膜1,2を構成する各層の膜厚を決定することができる。   Further, if the light reflecting structures 17 and 18 are formed on both the first electrode 30 and the second electrode 40, the light that has traveled to both regions can be selectively reflected to effectively reduce the light loss. . Further, in the light emitting element of Embodiment 1, since both electrodes 30 and 40 are arranged on the same surface side, if a light reflecting structure is formed on both electrodes, light is reflected on almost the entire main surface of the light emitting element. A region is provided, and the light extraction efficiency can be increased. In the light emitting element of FIG. 1, the optical characteristics of the light reflecting structures 17 and 18 formed on both electrodes 30 and 40 are substantially the same. If the light reflecting structures provided on both electrodes are substantially the same, unevenness in the emission color of the light emitting element can be reduced, and the manufacturing process can be simplified by forming both light reflecting structures simultaneously. On the other hand, the light reflecting structures 17 and 18 provided on the electrodes 30 and 40 may have a difference in optical characteristics. For example, the thickness of each layer constituting the first and second reflective films 1 and 2 is determined in consideration of the incident angle of light by the electrode part, the distance from the wavelength conversion member provided on the light emitting element, and the like. Can be determined.

(電極膜)
半導体素子構造20上に光反射構造17,18が形成された後、半導体素子構造20に電気的に接続される電極膜32,42が形成される。電極膜32,42は、n型半導体層及びp型半導体層、適宜設けられた透光性導電膜、並びに光反射構造17,18に接して、第1電極30及び第2電極40としてそれぞれ形成される。電極膜32,42は、発光素子と外部電極とを電気的に接続させ、パッド電極として機能する。例えば、電極膜表面にAuバンプのような導電部材を配置し、導電部材を介して、発光素子の電極と、これに対向して配置された外部電極との電気的接続させる。電極膜32,42には既存の構成が適宜採用でき、例えばAu、Pt、Pd、Rh、Ni、W、Mo、Cr、Tiのいずれかの金属またはこれらの合金やそれらの組み合わせから成る。電極膜32,42の一例として、下層側からTi/Pt/Au、もしくはTi/Rh/Auの積層構造が採用できる。本実施の形態において、電極膜32,42は透光性導電膜31,41の少なくとも一部に接して形成されているが、電極膜の一部が、透光性導電膜に設けた貫通孔内に延在させて、あるいは透光性導電膜より外側にて、半導体層に直接接触する接触部として設けられてもよい。電極膜の一部にこのような接触部が設けられることによって、電極膜と半導体素子構造との密着性を高めることができる。また、各導電型の半導体層に形成される電極膜は、用いる金属の種類や膜厚を同じ構成とし、同時に形成することで、別々に形成する場合と比較して、電極膜の形成の工程を簡略化することができる。別々に設ける場合のn側電極は、例えば、半導体層側から順に積層させたW/Pt/Au電極(その膜厚として、例えばそれぞれ20nm/200nm/500nm)や、さらにNiを積層させたW/Pt/Au/Ni、あるいはTi/Rh/Pt/Au電極等が利用できる。
(Electrode film)
After the light reflecting structures 17 and 18 are formed on the semiconductor element structure 20, electrode films 32 and 42 that are electrically connected to the semiconductor element structure 20 are formed. The electrode films 32 and 42 are formed as the first electrode 30 and the second electrode 40 in contact with the n-type semiconductor layer and the p-type semiconductor layer, the appropriately provided translucent conductive film, and the light reflecting structures 17 and 18, respectively. Is done. The electrode films 32 and 42 electrically connect the light emitting element and the external electrode and function as a pad electrode. For example, a conductive member such as an Au bump is disposed on the surface of the electrode film, and the electrode of the light emitting element is electrically connected to the external electrode disposed opposite to the conductive member via the conductive member. For the electrode films 32 and 42, an existing configuration can be adopted as appropriate, and for example, the electrode films 32 and 42 are made of any metal of Au, Pt, Pd, Rh, Ni, W, Mo, Cr, Ti, alloys thereof, or combinations thereof. As an example of the electrode films 32 and 42, a laminated structure of Ti / Pt / Au or Ti / Rh / Au can be adopted from the lower layer side. In the present embodiment, the electrode films 32 and 42 are formed in contact with at least a part of the translucent conductive films 31 and 41, but a part of the electrode film is a through hole provided in the translucent conductive film. It may be provided as a contact portion that extends inward or directly contacts the semiconductor layer outside the translucent conductive film. By providing such a contact portion in part of the electrode film, the adhesion between the electrode film and the semiconductor element structure can be improved. In addition, the electrode film formed on the semiconductor layer of each conductivity type has the same configuration and the same type of metal to be used, and is formed at the same time. Can be simplified. The n-side electrode when separately provided is, for example, a W / Pt / Au electrode laminated in order from the semiconductor layer side (the film thickness is, for example, 20 nm / 200 nm / 500 nm, respectively) or a W / P laminated with Ni. Pt / Au / Ni or Ti / Rh / Pt / Au electrodes can be used.

(保護膜)
電極膜を形成した後、外部の電極や端子等との接続領域を除いて半導体発光素子のほぼ全面に絶縁性の保護膜50を形成できる。したがって、n側電極部分及びp側電極部分を被覆する保護膜50に、開口部33,43が各々形成される。保護膜50にはSiO2、TiO2、Al23、ポリイミド等が利用できる。なお、絶縁膜3と保護膜50とを同一部材で併用させてもよく、すなわち保護膜と絶縁膜とを同一工程、同一膜として形成することで工程簡略化でき好ましい。
(Protective film)
After forming the electrode film, the insulating protective film 50 can be formed on almost the entire surface of the semiconductor light emitting element except for the connection region with external electrodes and terminals. Therefore, the openings 33 and 43 are formed in the protective film 50 covering the n-side electrode portion and the p-side electrode portion, respectively. The protective film 50 is SiO 2, TiO 2, Al 2 O 3, available polyimide and the like. Note that the insulating film 3 and the protective film 50 may be used together in the same member, that is, it is preferable that the protective film and the insulating film are formed as the same process and the same film because the process can be simplified.

なお、以上の例ではp側電極およびn側電極が同一面側に存在する発光素子をフリップチップ実装する例を説明したが、本発明は対向電極構造の発光素子にも採用できる。対向電極構造の発光素子では、少なくとも、発光素子を載置する配線基板側の電極に、光反射構造を設けることで、該光反射構造へと進行した光を、対向する光取り出し表面側へ反射することができる。また、光取り出し表面側に形成された電極に光反射構造を形成して、電極への光吸収を抑制し、これにより外部量子効率を高めてもよく、両主面に光反射構造を設けることもできる。またフェイスアップ実装の発光素子において、光取り出し側の電極に本発明の光反射構造を設けてもよい。さらに、半導体層の側面若しくは発光構造の側面、又は素子表面の領域に、光反射構造を設けること、例えば保護膜に対応して重畳的に設けることができる。   In the above example, the example in which the light-emitting element having the p-side electrode and the n-side electrode on the same surface is flip-chip mounted has been described. However, the present invention can also be applied to a light-emitting element having a counter electrode structure. In a light emitting element with a counter electrode structure, a light reflecting structure is provided at least on the electrode on the wiring board side on which the light emitting element is placed, so that light traveling to the light reflecting structure is reflected to the opposite light extraction surface side. can do. Also, a light reflecting structure may be formed on the electrode formed on the light extraction surface side to suppress light absorption to the electrode, thereby increasing the external quantum efficiency, and providing a light reflecting structure on both main surfaces. You can also. In the light-emitting element mounted face-up, the light reflecting structure of the present invention may be provided on the light extraction side electrode. Further, a light reflecting structure can be provided on the side surface of the semiconductor layer, the side surface of the light emitting structure, or the region of the element surface, for example, in a superimposed manner corresponding to the protective film.

<実施の形態2>
図5は、実施の形態2に係る発光素子の光反射構造の周辺を部分的に拡大した概略断面図である。図5に示す例の発光素子において、上述の実施の形態1と実質上同様の構成については、同一の符号を付して適宜説明を省略する。
<Embodiment 2>
FIG. 5 is a schematic cross-sectional view in which the periphery of the light reflecting structure of the light emitting element according to Embodiment 2 is partially enlarged. In the light emitting element of the example shown in FIG. 5, the same reference numerals are given to substantially the same configurations as those in the first embodiment, and description thereof will be omitted as appropriate.

本実施の形態2の光反射構造17,18では、第1反射膜1は、透光性導電膜31,41の略平坦な表面に形成され、その上面である被覆部36,46下の略平坦な表面から連続して、その表面から内側に傾斜する傾斜面の側面を有しており、すなわち、半導体層20側に対面する傾斜面であり、導通部35,45側に近づくほど膜厚が小さくなっている。また第2反射膜2は、第1反射膜上に形成され、さらに絶縁膜3は、第2反射膜上に形成され、同様に各膜の被覆部側の上面から連続して内側に傾斜する側面を有しており、導通部側に近づくほど膜厚が小さくなっている。このように、この光反射構造17,18の側面は、その上面である略平坦な表面から中央部側に傾斜する傾斜面となっている。したがって、本実施の形態2における光反射構造17,18は、その端部に実施の形態1の光反射構造とは逆方向に傾斜する傾斜部を有しており、第2反射膜2の延出部17a,18aは、第1反射膜1から導通部35,45に延出している。このように、第1反射膜1が導通部35,45に面する側面を有し、延出部17a,18aは第1反射膜1の側面上に設けられてもよい。   In the light reflecting structures 17 and 18 of the second embodiment, the first reflecting film 1 is formed on a substantially flat surface of the translucent conductive films 31 and 41, and is substantially below the covering portions 36 and 46 that are upper surfaces thereof. Continuing from the flat surface, it has a side surface of an inclined surface inclined inward from the surface, that is, an inclined surface facing the semiconductor layer 20 side, and the film thickness becomes closer to the conductive portions 35 and 45 side. Is getting smaller. The second reflective film 2 is formed on the first reflective film, and the insulating film 3 is formed on the second reflective film, and similarly inclines inward from the upper surface on the coating portion side of each film. It has a side surface, and the film thickness decreases as it approaches the conduction portion side. As described above, the side surfaces of the light reflecting structures 17 and 18 are inclined surfaces that are inclined from the substantially flat surface, which is the upper surface thereof, toward the central portion. Therefore, the light reflecting structures 17 and 18 in the second embodiment have an inclined portion inclined in the opposite direction to the light reflecting structure in the first embodiment at the end thereof, and the second reflecting film 2 extends. The projecting portions 17 a and 18 a extend from the first reflective film 1 to the conducting portions 35 and 45. As described above, the first reflective film 1 may have side surfaces facing the conductive portions 35 and 45, and the extending portions 17 a and 18 a may be provided on the side surfaces of the first reflective film 1.

このような形態の光反射構造17,18では、導通部35,45において、縦方向に流れる電子は横方向に拡散しながら半導体層へ流れていくが、第2反射膜の延出部17a,18aが絶縁膜3より中央部側に設けられていることにより、絶縁膜3が第2反射膜2より導通部側に突出した突出部が導通部内の電子の流れを狭窄する作用を奏し、第2反射膜2に対する電極膜32,42からの電子の衝突確率が減少すると考えられ、第2反射膜の金属原子のエレクトロマイグレーションの発生を抑制することができる。   In the light reflection structures 17 and 18 having such a form, electrons flowing in the vertical direction flow to the semiconductor layer while diffusing in the horizontal direction in the conductive portions 35 and 45, but the second reflection film extending portions 17a and 18 By providing 18a closer to the center side than the insulating film 3, the protruding portion in which the insulating film 3 protrudes toward the conducting portion from the second reflective film 2 has the effect of constricting the flow of electrons in the conducting portion. 2 It is considered that the collision probability of electrons from the electrode films 32 and 42 to the reflective film 2 is reduced, and the occurrence of electromigration of metal atoms in the second reflective film can be suppressed.

なお、このような形態の光反射構造17,18は、その上面から外側に向かって傾斜した傾斜面の側面を有する保護膜を用いて、光反射構造を構成する各膜を順次成膜することで、実施の形態1と同様に生産性良く形成することができる。具体的には、透光性導電膜上に上記形状の保護膜をパターン形成した後、第1反射膜を成膜すると、保護膜の開口部内に、断面が略逆台形状の第1反射膜が形成される。続いて、その上に第2反射膜を成膜すれば、第1反射膜の上面の略平坦面上に、第1反射膜の上面よりも幅広な上面を有する、断面が略逆台形状の第2反射膜が形成される。さらに、この上に成膜される絶縁膜、またその間に介する介在層についても、順次成膜すれば、その下層の上面より幅広な上面を有する、断面が略逆台形状の膜が形成される。このとき、実施の形態1のように、第2反射膜やその上に形成される層は、その下層の傾斜する傾斜面の側面と保護膜の側面との隙間に回り込んで成膜され、その下層の側面の一部を被覆するように該下層の側面上に形成され、ここに第2反射膜の延出部が形成されてもよい。   The light reflecting structures 17 and 18 having such a form are formed by sequentially forming each film constituting the light reflecting structure using a protective film having a side surface of an inclined surface inclined outward from the upper surface thereof. Thus, it can be formed with high productivity as in the first embodiment. Specifically, after the protective film having the above shape is formed on the translucent conductive film and then the first reflective film is formed, the first reflective film having a substantially inverted trapezoidal cross section is formed in the opening of the protective film. Is formed. Subsequently, when the second reflective film is formed thereon, the cross section having a substantially inverted trapezoidal shape with an upper surface wider than the upper surface of the first reflective film on the substantially flat surface of the upper surface of the first reflective film. A second reflective film is formed. Furthermore, if the insulating film formed thereon and the intervening layer interposed therebetween are sequentially formed, a film having a substantially inverted trapezoidal cross section having an upper surface wider than the upper surface of the lower layer is formed. . At this time, as in the first embodiment, the second reflective film and the layer formed on the second reflective film are formed around the gap between the inclined side surface of the lower layer and the side surface of the protective film, It may be formed on the side surface of the lower layer so as to cover a part of the side surface of the lower layer, and the extended portion of the second reflective film may be formed here.

さらに、このような実施の形態2の光反射構造17,18においては、電極膜の成膜工程において、光反射構造17,18と電極膜32,42との間、特に光反射構造の側面の下部(第1反射膜1の側面近傍)に空隙19が設けられる可能性がある。しかしながら、この空隙19により部分的に光反射構造と電極膜とが空間的に分離され、空隙19が電気的障壁として好適に作用し、電極膜から第2反射膜2に横方向へ電流が流れることを抑制することができる。   Further, in the light reflecting structures 17 and 18 of the second embodiment, in the electrode film forming process, between the light reflecting structures 17 and 18 and the electrode films 32 and 42, particularly on the side surfaces of the light reflecting structure. There is a possibility that the air gap 19 is provided in the lower part (near the side surface of the first reflective film 1). However, the light reflection structure and the electrode film are partially separated by the gap 19, and the gap 19 preferably acts as an electrical barrier so that a current flows laterally from the electrode film to the second reflection film 2. This can be suppressed.

(発光装置)
本発明の発光素子は、配線基板、パッケージ基体、リードフレーム等の実装基体上に実装して発光装置としてもよく、それに発光素子を封止する樹脂やレンズ等の透光性部材を付加してもよい。また発光素子には、該発光素子の光により励起される蛍光体を含有する波長変換部材を、接合又は接着する、若しくは上記透光性部材中に混在させる、などして付加することができる。本発明の発光素子は、金属の第2反射膜を含む光反射構造としているため、広範囲の波長の光に対して高い反射率を有しており、発光素子の周囲に配置される蛍光体から出射される波長変換光についても効率良く反射することができる。また、信頼性の高い光反射構造であるため、長時間・高電流駆動においても、輝度・色ムラの発生を抑制し、安定した発光が得られる発光素子、発光装置とすることができる。
(Light emitting device)
The light-emitting element of the present invention may be mounted on a mounting substrate such as a wiring board, a package substrate, or a lead frame to form a light-emitting device, and a light-transmitting member such as a resin or a lens for sealing the light-emitting element is added thereto. Also good. In addition, a wavelength conversion member containing a phosphor excited by light of the light emitting element can be added to the light emitting element by bonding, bonding, or mixing in the light transmissive member. Since the light emitting device of the present invention has a light reflecting structure including the second metal reflection film, the light emitting device has a high reflectivity with respect to light of a wide range of wavelengths, and from a phosphor disposed around the light emitting device. The emitted wavelength converted light can also be efficiently reflected. In addition, since the light reflecting structure has high reliability, it is possible to provide a light-emitting element and a light-emitting device that can suppress generation of luminance and color unevenness and can stably emit light even when driven for a long time and at a high current.

以下、本発明に係る実施例について詳述する。なお、本発明は以下に示す実施例のみに限定されないことは言うまでもない。   Examples according to the present invention will be described in detail below. Needless to say, the present invention is not limited to the following examples.

<実施例1>
実施例1の発光素子として、図1に示す構成のLEDチップを作製する。まず、MOVPE反応装置を用い、2インチφのサファイア基板1の上にGaNよりなるバッファ層を20nm、Siドープn型GaNよりなるn型コンタクト層21を4μm、ノンドープIn0.2Ga0.8Nよりなる単一量子井戸構造の活性層22を3nm、Mgドープp型Al0.1Ga0.9Nよりなるp型クラッド層(23)を0.2μm、Mgドープp型GaNよりなるp型コンタクト層(23)を0.5μmの膜厚で順に成長させる。
<Example 1>
As the light emitting element of Example 1, an LED chip having the configuration shown in FIG. 1 is manufactured. First, using a MOVPE reactor, on a 2 inch φ sapphire substrate 1, a buffer layer made of GaN is 20 nm, an n-type contact layer 21 made of Si-doped n-type GaN is 4 μm, and a single layer made of non-doped In 0.2 Ga 0.8 N. The active layer 22 having a single quantum well structure is 3 nm, the p-type cladding layer (23) made of Mg-doped p-type Al 0.1 Ga 0.9 N is 0.2 μm, and the p-type contact layer (23) made of Mg-doped p-type GaN is 0 Growing sequentially with a film thickness of 5 μm.

さらにウエハを反応容器内において、窒素雰囲気とし温度600℃でアニーリングして、p型窒化物半導体層23をさらに低抵抗化する。アニーリング後、ウエハを反応容器から取り出し、最上層のp型GaNの表面に所定の形状のマスクを形成し、エッチング装置でマスクの上からエッチングを行い、図1に示すようにn型コンタクト層21の一部を露出させる。   Further, the wafer is annealed in a reaction vessel under a nitrogen atmosphere at a temperature of 600 ° C. to further reduce the resistance of the p-type nitride semiconductor layer 23. After annealing, the wafer is taken out of the reaction vessel, a mask having a predetermined shape is formed on the surface of the uppermost p-type GaN, and etching is performed from above the mask with an etching apparatus. As shown in FIG. To expose a part of

次に、p型窒化物半導体層の上のマスクを除去し、最上層のp型GaN(23)のほぼ全面並びに露出されたn型コンタクト層21上に透光性導電層41,31としてITOを800nmの膜厚でスパッタする。   Next, the mask on the p-type nitride semiconductor layer is removed, and ITO is formed as the translucent conductive layers 41 and 31 on the almost entire surface of the uppermost p-type GaN (23) and the exposed n-type contact layer 21. Is sputtered with a film thickness of 800 nm.

次に、上面から内側に向かって傾斜した傾斜面の側面を有するマスクを、p型及びn型コンタクト層上に各々成膜されたITO上に各々形成する。このとき、p型コンタクト層上には、一辺10μmの正方形のマスクが格子状の格子点(間隔は30μm)に配列されるようにパターン形成する。他方、n型コンタクト層上には、直径100μmの半円形状の1つの開口部を有するマスクを形成する。   Next, masks having inclined side surfaces inclined inward from the upper surface are formed on the ITO formed on the p-type and n-type contact layers, respectively. At this time, a pattern is formed on the p-type contact layer so that a square mask having a side of 10 μm is arranged at a lattice point (interval is 30 μm). On the other hand, a mask having one semicircular opening with a diameter of 100 μm is formed on the n-type contact layer.

そして、この上にスパッタにより、第1反射膜1の透光性絶縁膜としてSiO2を500nmの膜厚で成膜し、さらに第1反射膜1の誘電体多層膜としてNb25/SiO2(膜厚55nm/90nm)を3ペア積層する。さらに続けて第2反射膜2としてAl(Cu含有)を200nmの膜厚で成膜し、続いて、密着層としてTiを100nmの膜厚で成膜する。さらに、その上に絶縁膜3として膜厚200nmのSiO2を成膜した後、マスクを除去して、光反射構造17,18を得る。 Then, a SiO 2 film having a thickness of 500 nm is formed as a light-transmitting insulating film of the first reflective film 1 by sputtering, and Nb 2 O 5 / SiO is formed as a dielectric multilayer film of the first reflective film 1. 2 Three pairs (film thickness 55 nm / 90 nm) are stacked. Subsequently, Al (Cu-containing) is formed to a thickness of 200 nm as the second reflective film 2, and subsequently, Ti is formed to a thickness of 100 nm as the adhesion layer. Further, a 200 nm-thick SiO 2 film is formed thereon as the insulating film 3, and then the mask is removed to obtain the light reflecting structures 17 and 18.

このような光反射構造17,18を介して、p型コンタクト層の上のほぼ全面並びに露出されたn型コンタクト層上に、スパッタによりTi/Pt/Au(膜厚1.5nm/200nm/500nm)の積層構造のパッド電極42,32を各々成膜する。これにより、電極膜は光反射構造の表面と半導体層の露出面とを被覆して被覆部36,46と導通部35,45とを有し、光反射構造の第2反射膜には、第1反射膜の傾斜部上に絶縁膜から延出して電極膜に接する延出部17a,18aが形成される。   Ti / Pt / Au (thickness: 1.5 nm / 200 nm / 500 nm) is formed on almost the entire surface of the p-type contact layer and the exposed n-type contact layer through the light reflecting structures 17 and 18 by sputtering. The pad electrodes 42 and 32 having a laminated structure are formed. Thus, the electrode film covers the surface of the light reflecting structure and the exposed surface of the semiconductor layer, and has the covering portions 36 and 46 and the conducting portions 35 and 45. The second reflecting film of the light reflecting structure includes the first reflecting film. Extending portions 17a and 18a extending from the insulating film and in contact with the electrode film are formed on the inclined portion of one reflective film.

以上のようにして、n型コンタクト層とp型コンタクト層とに電極膜を形成したウエハを、1mm角のチップ状に切断してLEDチップを得る。   As described above, the wafer in which the electrode film is formed on the n-type contact layer and the p-type contact layer is cut into 1 mm square chips to obtain LED chips.

<比較例1,2>
比較例1の発光素子として、実施例1における絶縁膜3のみを除いて光反射構造17,18を形成する以外は、実施例1と同様に作製する。また比較例2の発光素子として、実施例1における第2反射膜2と絶縁膜3を除いて光反射構造17,18を形成する以外は、実施例1と同様に作製する。
<Comparative Examples 1 and 2>
The light emitting device of Comparative Example 1 is manufactured in the same manner as in Example 1 except that the light reflection structures 17 and 18 are formed except for the insulating film 3 in Example 1. The light emitting device of Comparative Example 2 is manufactured in the same manner as in Example 1 except that the light reflecting structures 17 and 18 are formed except for the second reflective film 2 and the insulating film 3 in Example 1.

実施例1及び比較例1の発光素子を、温度85℃、電流値1600mAで1000時間駆動させると、比較例1の発光素子では、Alのエレクトロマイグレーションの発生によってn側パッド電極の一部に変色が観測されるが、実施例1の発光素子では外観に異常は見られない。また実施例1及び比較例2の発光素子を、室温、電流値350mAで駆動させると、比較例2の発光素子は順電圧3.14V、光出力568mWで発光するが、実施例1の発光素子は順電圧3.14V、光出力598mWで発光し、光出力が比較例2の発光素子より5%以上高い。   When the light emitting elements of Example 1 and Comparative Example 1 were driven at a temperature of 85 ° C. and a current value of 1600 mA for 1000 hours, the light emitting element of Comparative Example 1 was discolored to a part of the n-side pad electrode due to the occurrence of Al electromigration. However, no abnormality is observed in the appearance of the light-emitting element of Example 1. When the light-emitting elements of Example 1 and Comparative Example 2 are driven at room temperature and a current value of 350 mA, the light-emitting element of Comparative Example 2 emits light with a forward voltage of 3.14 V and an optical output of 568 mW. Emits light at a forward voltage of 3.14 V and an optical output of 598 mW, and the optical output is 5% or more higher than that of the light emitting device of Comparative Example 2.

本発明の発光素子及び該発光素子が搭載された発光装置は、照明用光源、LEDディスプレイ、液晶表示装置などのバックライト光源、信号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用することができる。   The light-emitting element of the present invention and the light-emitting device equipped with the light-emitting element are suitably used for illumination light sources, backlight sources such as LED displays and liquid crystal display devices, traffic lights, illumination switches, various sensors, and various indicators. be able to.

17,18…光反射構造(第1電極側17、第2電極側18)(1…第1反射膜、2…第2反射膜、3…絶縁膜)、17a,18a…延出部、19…空隙
10…基板(11…凹凸構造)、
20…半導体素子構造(21…第1導電型層(n型層)、22…活性層(発光層)、23…第2導電型層(p型層)、25…発光構造部、26…非発光構造部(電極形成部)、
30…第1電極(31…第1層[透光性導電膜]、32…第2層[電極膜]、33…外部接続部[保護膜の開口部]、34…延伸部、35…導通部[光反射構造の開口部])、36…被覆部
40…第2電極(41…第1層、42…第2層、43…外部接続部[保護膜の開口部]、45…導通部[光反射構造の開口部])、46…被覆部
50…保護膜
17, 18 ... Light reflection structure (first electrode side 17, second electrode side 18) (1 ... first reflection film, 2 ... second reflection film, 3 ... insulating film), 17a, 18a ... extension part, 19 ... Gap 10 ... Substrate (11 ... Uneven structure),
DESCRIPTION OF SYMBOLS 20 ... Semiconductor element structure (21 ... 1st conductivity type layer (n-type layer), 22 ... Active layer (light emitting layer), 23 ... 2nd conductivity type layer (p-type layer), 25 ... Light emission structure part, 26 ... Non Light emitting structure (electrode forming part),
DESCRIPTION OF SYMBOLS 30 ... 1st electrode (31 ... 1st layer [translucent conductive film], 32 ... 2nd layer [electrode film], 33 ... External connection part [opening part of protective film], 34 ... Extension | extension part, 35 ... Conduction Part [opening part of light reflection structure], 36 ... covering part 40 ... second electrode (41 ... first layer, 42 ... second layer, 43 ... external connection part [opening part of protective film], 45 ... conduction part [Opening part of light reflecting structure]), 46 ... covering part 50 ... protective film

Claims (13)

半導体素子構造と、
前記半導体素子構造上の一部に設けられ、透光性で絶縁性の第1反射膜と、金属の第2反射膜と、絶縁膜と、をこの順に含む光反射構造と、
前記光反射構造上で該光反射構造を前記半導体素子構造と挟んで被覆する被覆部と、前記光反射構造から露出される前記半導体素子構造上の導通部と、を有する電極膜と、を備え、
前記第2反射膜は、前記第1反射膜及び前記絶縁膜の少なくとも一方から前記導通部に延出して前記電極膜に接する延出部を有する発光素子。
A semiconductor device structure;
A light reflecting structure provided in a part on the semiconductor element structure and including a light-transmitting and insulating first reflecting film, a metal second reflecting film, and an insulating film in this order;
An electrode film having a covering portion for covering the light reflecting structure with the semiconductor element structure sandwiched on the light reflecting structure; and a conductive portion on the semiconductor element structure exposed from the light reflecting structure. ,
The second reflective film is a light emitting device having an extended portion that extends from at least one of the first reflective film and the insulating film to the conductive portion and contacts the electrode film.
前記第1反射膜は、前記被覆部側の該第1反射膜より連続し、前記延出部において該延出方向で前記半導体素子構造側に近づいて傾斜する傾斜部を有する請求項1に記載の発光素子。   2. The first reflective film has an inclined portion that is continuous from the first reflective film on the covering portion side and has an inclined portion that inclines toward the semiconductor element structure side in the extending direction in the extending portion. Light emitting element. 前記延出部は、前記第1反射膜における前記導通部側の側面上に設けられている請求項1に記載の発光素子。   The light emitting element according to claim 1, wherein the extending portion is provided on a side surface of the first reflective film on the conductive portion side. 前記第1反射膜は、屈折率の異なる2種以上の誘電体膜が周期的に積層された誘電体多層膜を有する請求項2又は3に記載の発光素子。   4. The light emitting device according to claim 2, wherein the first reflective film has a dielectric multilayer film in which two or more kinds of dielectric films having different refractive indexes are periodically stacked. 5. 前記延出部の膜厚は、該延出方向に小さくなる請求項1乃至4のいずれか1項に記載の発光素子。   5. The light-emitting element according to claim 1, wherein a film thickness of the extending portion decreases in the extending direction. 前記延出部において、前記第2反射膜と前記電極膜の間に空隙が設けられている請求項1乃至5のいずれか1項に記載の発光素子。   6. The light emitting device according to claim 1, wherein a gap is provided between the second reflective film and the electrode film in the extending portion. 前記半導体素子構造の表面の面内において、前記導通部を複数有し、少なくとも一つの前記導通部が前記被覆部に囲まれている請求項1乃至6のいずれか1項に記載の発光素子。   7. The light emitting device according to claim 1, wherein a plurality of the conductive portions are provided within a surface of the surface of the semiconductor element structure, and at least one of the conductive portions is surrounded by the covering portion. 前記半導体素子構造が、第1,2導電型半導体層を有し、該第1,2導電型半導体層の同一面側にそれぞれ前記電極膜と前記光反射構造を有し、
前記第2導電型半導体層上の全ての導通部が、前記被覆部に囲まれた導通部である請求項7に記載の発光素子。
The semiconductor element structure has first and second conductivity type semiconductor layers, and has the electrode film and the light reflection structure on the same surface side of the first and second conductivity type semiconductor layers,
The light emitting device according to claim 7, wherein all conductive portions on the second conductive type semiconductor layer are conductive portions surrounded by the covering portion.
前記発光素子は、前記電極膜と前記光反射構造が互いに併設して延伸する延伸併設部を有する請求項1乃至7のいずれか1項に記載の発光素子。   The light emitting device according to any one of claims 1 to 7, wherein the light emitting device has an extending side portion in which the electrode film and the light reflecting structure extend side by side. 前記第1導電型半導体層上の導通部は、前記電極膜の外周部に設けられ、該第1導電型半導体層上の前記光反射構造は、前記外周部より内側にのみ設けられる請求項8又は9に記載の発光素子。   9. The conductive portion on the first conductive type semiconductor layer is provided on an outer peripheral portion of the electrode film, and the light reflecting structure on the first conductive type semiconductor layer is provided only on the inner side of the outer peripheral portion. Or 9. 前記半導体素子構造と、前記導通部の電極膜及び前記光反射構造との間に、透光性導電膜を有する請求項1乃至10のいずれか1項に記載の発光素子。   The light emitting element of any one of Claims 1 thru | or 10 which has a translucent electrically conductive film between the said semiconductor element structure, the electrode film of the said conduction | electrical_connection part, and the said light reflection structure. 前記透光性導電膜と、前記半導体素子構造との間に、前記第1反射膜を有する第2の光反射構造を有する請求項11に記載の発光素子。   The light emitting device according to claim 11, further comprising a second light reflecting structure having the first reflecting film between the light transmitting conductive film and the semiconductor element structure. 前記透光性導電膜の面内で、前記導通部が、前記第2の光反射構造内に配置されている請求項12に記載の発光素子。   The light emitting element according to claim 12, wherein the conductive portion is disposed in the second light reflecting structure within the surface of the light transmissive conductive film.
JP2009296214A 2009-12-25 2009-12-25 Light emitting element Active JP5719110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009296214A JP5719110B2 (en) 2009-12-25 2009-12-25 Light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009296214A JP5719110B2 (en) 2009-12-25 2009-12-25 Light emitting element

Publications (2)

Publication Number Publication Date
JP2011138820A true JP2011138820A (en) 2011-07-14
JP5719110B2 JP5719110B2 (en) 2015-05-13

Family

ID=44349989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009296214A Active JP5719110B2 (en) 2009-12-25 2009-12-25 Light emitting element

Country Status (1)

Country Link
JP (1) JP5719110B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030634A (en) * 2011-07-28 2013-02-07 Showa Denko Kk Semiconductor light-emitting element
JP2013105917A (en) * 2011-11-14 2013-05-30 Dowa Electronics Materials Co Ltd Semiconductor light-emitting element and manufacturing method of the same
KR101300263B1 (en) * 2011-12-21 2013-08-23 주식회사 세미콘라이트 Semiconductor light emitting device
JP2013243254A (en) * 2012-05-21 2013-12-05 Nichia Chem Ind Ltd Semiconductor light-emitting element
KR101373765B1 (en) * 2011-12-21 2014-03-13 주식회사 세미콘라이트 Semiconductor light emitting device
WO2014058069A1 (en) * 2012-10-12 2014-04-17 エルシード株式会社 Semiconductor light-emitting element and method for producing same
CN103975451A (en) * 2012-07-18 2014-08-06 世迈克琉明有限公司 Method for manufacturing semiconductor light-emitting element
CN103988322A (en) * 2012-07-18 2014-08-13 世迈克琉明有限公司 Semiconductor light-emitting element
US20140291714A1 (en) * 2012-07-18 2014-10-02 Semicon Light Co., Ltd. Semiconductor Light Emitting Device
US9123864B2 (en) 2012-11-06 2015-09-01 Nichia Corporation Semiconductor light-emitting element
KR20160057163A (en) * 2014-11-13 2016-05-23 삼성전자주식회사 Light emitting diode
JP2016149476A (en) * 2015-02-13 2016-08-18 日亜化学工業株式会社 Light-emitting element
JP2017059752A (en) * 2015-09-18 2017-03-23 豊田合成株式会社 Light-emitting device and manufacturing method thereof
KR101740531B1 (en) * 2012-07-02 2017-06-08 서울바이오시스 주식회사 Light Emitting Diode Module for Surface Mount Technology and Method of manufacturing the same
KR20170074239A (en) * 2014-10-29 2017-06-29 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic semiconductor chip
JP2017135348A (en) * 2016-01-29 2017-08-03 日亜化学工業株式会社 Light-emitting element and method for manufacturing the same
US9793441B2 (en) 2012-07-02 2017-10-17 Seoul Viosys Co., Ltd. Light emitting diode module for surface mount technology and method of manufacturing the same
US9941446B2 (en) 2015-12-24 2018-04-10 Nichia Corporation Light-emitting element with first and second light transmissive electrodes and method of manufacturing the same
KR101843512B1 (en) * 2017-05-22 2018-05-14 서울바이오시스 주식회사 Light Emitting Diode Module for Surface Mount Technology and Method of manufacturing the same
CN108075021A (en) * 2016-11-16 2018-05-25 三星电子株式会社 Include the semiconductor light-emitting apparatus of reflector layer with multi-layer structure
JP2019501533A (en) * 2016-01-07 2019-01-17 エルジー イノテック カンパニー リミテッド Light emitting element
US10263158B2 (en) 2015-12-25 2019-04-16 Nichia Corporation Light emitting element
KR20190067576A (en) * 2017-12-07 2019-06-17 엘지이노텍 주식회사 Light emitting device
JP2019102634A (en) * 2017-12-01 2019-06-24 キヤノン株式会社 Light emitting element array, exposure head using the same, and image forming apparatus
KR20190088562A (en) * 2016-12-06 2019-07-26 엘지이노텍 주식회사 Light emitting element
JP2021072376A (en) * 2019-10-31 2021-05-06 日機装株式会社 Semiconductor light-emitting element, and manufacturing method for semiconductor light-emitting element
US11094847B2 (en) 2018-06-08 2021-08-17 Nichia Corporation Light-emitting device having gap portion between portion of insulating film and side surface of light-emitting layer
JP2022044493A (en) * 2020-09-07 2022-03-17 日亜化学工業株式会社 Light emitting element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102486391B1 (en) 2017-11-09 2023-01-09 삼성전자주식회사 High resolution display device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043422A1 (en) * 2004-10-19 2006-04-27 Nichia Corporation Semiconductor element
JP2006120913A (en) * 2004-10-22 2006-05-11 Toyoda Gosei Co Ltd Semiconductor light emitting element
JP2008282930A (en) * 2007-05-09 2008-11-20 Toyoda Gosei Co Ltd Light-emitting device
JP2009088299A (en) * 2007-09-29 2009-04-23 Nichia Corp Light-emitting element and light-emitting device provided with the element
JP2009537982A (en) * 2006-05-19 2009-10-29 ブリッジラックス インコーポレイテッド Low optical loss electrode structure for LED

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006043422A1 (en) * 2004-10-19 2006-04-27 Nichia Corporation Semiconductor element
JP2006120913A (en) * 2004-10-22 2006-05-11 Toyoda Gosei Co Ltd Semiconductor light emitting element
JP2009537982A (en) * 2006-05-19 2009-10-29 ブリッジラックス インコーポレイテッド Low optical loss electrode structure for LED
JP2008282930A (en) * 2007-05-09 2008-11-20 Toyoda Gosei Co Ltd Light-emitting device
JP2009088299A (en) * 2007-09-29 2009-04-23 Nichia Corp Light-emitting element and light-emitting device provided with the element

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030634A (en) * 2011-07-28 2013-02-07 Showa Denko Kk Semiconductor light-emitting element
JP2013105917A (en) * 2011-11-14 2013-05-30 Dowa Electronics Materials Co Ltd Semiconductor light-emitting element and manufacturing method of the same
KR101300263B1 (en) * 2011-12-21 2013-08-23 주식회사 세미콘라이트 Semiconductor light emitting device
KR101373765B1 (en) * 2011-12-21 2014-03-13 주식회사 세미콘라이트 Semiconductor light emitting device
JP2013243254A (en) * 2012-05-21 2013-12-05 Nichia Chem Ind Ltd Semiconductor light-emitting element
US10516083B2 (en) 2012-07-02 2019-12-24 Seoul Viosys Co., Ltd. Light emitting diode module for surface mount technology and method of manufacturing the same
US9793441B2 (en) 2012-07-02 2017-10-17 Seoul Viosys Co., Ltd. Light emitting diode module for surface mount technology and method of manufacturing the same
US9831401B2 (en) 2012-07-02 2017-11-28 Seoul Viosys Co., Ltd. Light emitting diode module for surface mount technology and method of manufacturing the same
KR101740531B1 (en) * 2012-07-02 2017-06-08 서울바이오시스 주식회사 Light Emitting Diode Module for Surface Mount Technology and Method of manufacturing the same
US10217912B2 (en) 2012-07-02 2019-02-26 Seoul Viosys Co., Ltd. Light emitting diode module for surface mount technology and method of manufacturing the same
CN103988322B (en) * 2012-07-18 2016-10-12 世迈克琉明有限公司 Light emitting semiconductor device
EP2782149A4 (en) * 2012-07-18 2015-08-05 Semicon Light Co Ltd Semiconductor light-emitting element
US10535798B2 (en) * 2012-07-18 2020-01-14 Semicon Light Co., Ltd. Semiconductor light emitting device comprising finger electrodes
EP2782148A4 (en) * 2012-07-18 2015-08-05 Semicon Light Co Ltd Semiconductor light-emitting element
EP2782147A4 (en) * 2012-07-18 2015-08-05 Semicon Light Co Ltd Method for manufacturing semiconductor light-emitting element
US9530941B2 (en) 2012-07-18 2016-12-27 Semicon Light Co., Ltd. Semiconductor light emitting device
US20140291714A1 (en) * 2012-07-18 2014-10-02 Semicon Light Co., Ltd. Semiconductor Light Emitting Device
CN103988322A (en) * 2012-07-18 2014-08-13 世迈克琉明有限公司 Semiconductor light-emitting element
CN108550672A (en) * 2012-07-18 2018-09-18 世迈克琉明有限公司 Light emitting semiconductor device
CN108493308A (en) * 2012-07-18 2018-09-04 世迈克琉明有限公司 Light emitting semiconductor device
CN103975451A (en) * 2012-07-18 2014-08-06 世迈克琉明有限公司 Method for manufacturing semiconductor light-emitting element
WO2014058069A1 (en) * 2012-10-12 2014-04-17 エルシード株式会社 Semiconductor light-emitting element and method for producing same
US9123864B2 (en) 2012-11-06 2015-09-01 Nichia Corporation Semiconductor light-emitting element
JP2017533591A (en) * 2014-10-29 2017-11-09 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Optoelectronic semiconductor chip
US10079329B2 (en) 2014-10-29 2018-09-18 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
KR20170074239A (en) * 2014-10-29 2017-06-29 오스람 옵토 세미컨덕터스 게엠베하 Optoelectronic semiconductor chip
KR102455387B1 (en) * 2014-10-29 2022-10-14 에이엠에스-오스람 인터내셔널 게엠베하 Optoelectronic semiconductor chip
KR102255214B1 (en) * 2014-11-13 2021-05-24 삼성전자주식회사 Light emitting diode
KR20160057163A (en) * 2014-11-13 2016-05-23 삼성전자주식회사 Light emitting diode
JP2016149476A (en) * 2015-02-13 2016-08-18 日亜化学工業株式会社 Light-emitting element
US9761761B2 (en) 2015-02-13 2017-09-12 Nichia Corporation Light-emitting element
JP2017059752A (en) * 2015-09-18 2017-03-23 豊田合成株式会社 Light-emitting device and manufacturing method thereof
US9941446B2 (en) 2015-12-24 2018-04-10 Nichia Corporation Light-emitting element with first and second light transmissive electrodes and method of manufacturing the same
US10263158B2 (en) 2015-12-25 2019-04-16 Nichia Corporation Light emitting element
JP2019501533A (en) * 2016-01-07 2019-01-17 エルジー イノテック カンパニー リミテッド Light emitting element
JP2017135348A (en) * 2016-01-29 2017-08-03 日亜化学工業株式会社 Light-emitting element and method for manufacturing the same
US11289626B2 (en) 2016-11-16 2022-03-29 Samsung Electronics Co., Ltd. Semiconductor light-emitting device including a reflector layer having a multi-layered structure
CN108075021A (en) * 2016-11-16 2018-05-25 三星电子株式会社 Include the semiconductor light-emitting apparatus of reflector layer with multi-layer structure
US11908977B2 (en) 2016-11-16 2024-02-20 Samsung Electronics Co., Ltd. Semiconductor light-emitting device including a reflector layer having a multi-layered structure
KR20190088562A (en) * 2016-12-06 2019-07-26 엘지이노텍 주식회사 Light emitting element
KR102532743B1 (en) 2016-12-06 2023-05-16 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 light emitting element
KR101843512B1 (en) * 2017-05-22 2018-05-14 서울바이오시스 주식회사 Light Emitting Diode Module for Surface Mount Technology and Method of manufacturing the same
JP2019102634A (en) * 2017-12-01 2019-06-24 キヤノン株式会社 Light emitting element array, exposure head using the same, and image forming apparatus
JP7094694B2 (en) 2017-12-01 2022-07-04 キヤノン株式会社 Light emitting element array and exposure head and image forming device using this
KR20190067576A (en) * 2017-12-07 2019-06-17 엘지이노텍 주식회사 Light emitting device
KR102507447B1 (en) * 2017-12-07 2023-03-08 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 Light emitting device
US11094847B2 (en) 2018-06-08 2021-08-17 Nichia Corporation Light-emitting device having gap portion between portion of insulating film and side surface of light-emitting layer
JP2021072376A (en) * 2019-10-31 2021-05-06 日機装株式会社 Semiconductor light-emitting element, and manufacturing method for semiconductor light-emitting element
JP7307662B2 (en) 2019-10-31 2023-07-12 日機装株式会社 Semiconductor light emitting device and method for manufacturing semiconductor light emitting device
JP2022044493A (en) * 2020-09-07 2022-03-17 日亜化学工業株式会社 Light emitting element

Also Published As

Publication number Publication date
JP5719110B2 (en) 2015-05-13

Similar Documents

Publication Publication Date Title
JP5719110B2 (en) Light emitting element
KR101627010B1 (en) Semiconductor light emitting device including metal reflecting layer
TWI596801B (en) Light emitting diode enhanced in light extraction effciency
JP4882792B2 (en) Semiconductor light emitting device
JP6056150B2 (en) Semiconductor light emitting device
JP5276959B2 (en) LIGHT EMITTING DIODE, ITS MANUFACTURING METHOD, AND LAMP
KR20170007117A (en) Light emitting diode, method of fabricating the same, and light emitting device module having the same
JP2009164423A (en) Light-emitting element
JP2012069909A (en) Light-emitting element
JP2008192710A (en) Semiconductor light-emitting element
JP2015008324A (en) Light emitting diode
JP2007103689A (en) Semiconductor light emitting device
WO2010095353A1 (en) Light-emitting diode, method for producing same, and light-emitting diode lamp
TW201145587A (en) Light emitting device
JP6149878B2 (en) Light emitting element
JP2006108161A (en) Semiconductor light-emitting device
US11296258B2 (en) Light-emitting diode
JP2012124321A (en) Semiconductor light-emitting element, lamp and method of manufacturing semiconductor light-emitting element
TW201505211A (en) Light-emitting element
KR101669640B1 (en) High efficiency light emitting diode and method for fabricating the same
JP5543164B2 (en) Light emitting element
KR20090085772A (en) Light emitting diode with a plurality of insulator layers and fabrication method of the same
JP5652358B2 (en) Semiconductor light emitting device, lamp, and method for manufacturing semiconductor light emitting device
KR101776302B1 (en) Light emitting device and light emitting device package
KR20120016831A (en) Semiconductor light emitting diode and method of manufacturing thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140120

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140224

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140307

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150320

R150 Certificate of patent or registration of utility model

Ref document number: 5719110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250