JP2013243254A - Semiconductor light-emitting element - Google Patents

Semiconductor light-emitting element Download PDF

Info

Publication number
JP2013243254A
JP2013243254A JP2012115469A JP2012115469A JP2013243254A JP 2013243254 A JP2013243254 A JP 2013243254A JP 2012115469 A JP2012115469 A JP 2012115469A JP 2012115469 A JP2012115469 A JP 2012115469A JP 2013243254 A JP2013243254 A JP 2013243254A
Authority
JP
Japan
Prior art keywords
layer
electrode structure
electrode
semiconductor light
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012115469A
Other languages
Japanese (ja)
Other versions
JP5978758B2 (en
Inventor
Hiroaki Kageyama
弘明 蔭山
Takamasa Suda
高政 寸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP2012115469A priority Critical patent/JP5978758B2/en
Publication of JP2013243254A publication Critical patent/JP2013243254A/en
Application granted granted Critical
Publication of JP5978758B2 publication Critical patent/JP5978758B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor light-emitting element in which light output is improved by preventing the diffusion of Al while using a cover electrode structure using Al.SOLUTION: The semiconductor light-emitting element includes a first electrode structure 20 containing Ag and a second electrode structure 30 disposed on a top surface of the first electrode structure 20. The top layer of the first electrode structure 20 is made to be a Ru layer 22, and the bottom layer of the second electrode structure 30 is made to be an Al layer 32. For this reason, light extraction efficiency can be improved while preventing the diffusion of Al. The first electrode structure 20 includes a sequential stack of a Ni layer and a Ti layer between an Ag-containing layer 24 and the Ru layer 22. The second electrode structure 30 is composed of Al.

Description

本発明は、半導体発光素子に関し、特にその電極構造に関する。   The present invention relates to a semiconductor light emitting device, and more particularly to an electrode structure thereof.

半導体発光素子は、一般に発光ダイオード(Light Emitting Diode:LED)やレーザダイオード(Laser Diode:LD)等があり、バックライト等に用いる各種光源、照明、信号機、大型ディスプレイ等に幅広く利用されている。   Semiconductor light emitting devices generally include light emitting diodes (LEDs), laser diodes (LDs), and the like, and are widely used in various light sources used for backlights, lighting, traffic lights, large displays, and the like.

このような半導体発光素子は、基本的に、基板上にn型半導体層、p型半導体層が積層され、n型、p型のそれぞれの半導体層に電気的に接続するn側電極、p側電極が形成された構造である。両電極を上面側に形成する場合、上層のp型半導体層の一部を除去してn型半導体層が露出した領域にn側電極を形成し、p型半導体層上にp側電極を形成する。   In such a semiconductor light emitting device, an n-type semiconductor layer and a p-type semiconductor layer are basically stacked on a substrate, and an n-side electrode and a p-side electrically connected to the n-type and p-type semiconductor layers, respectively. In this structure, an electrode is formed. When both electrodes are formed on the upper surface side, a part of the upper p-type semiconductor layer is removed to form an n-side electrode in a region where the n-type semiconductor layer is exposed, and a p-side electrode is formed on the p-type semiconductor layer. To do.

このような半導体発光素子の電極には、導電性に優れ、光を効率良く反射することができるAgが用いられている(以下、Ag電極とする)。しかしながら、Agは、酸素や水分などの影響で変質し易く、劣化によって反射率が低下することが知られている。このため、従来からAg電極の上面及び側面を金属層などで被覆して、外部環境からAg電極を保護することにより、Agの劣化を防止していた。また、このような金属層には、半導体発光素子として光出力(光取り出し効率)が低下しないように、できるだけ反射率に優れた材料、例えばAlを用いるための検討がなされてきた。   As an electrode of such a semiconductor light emitting element, Ag that is excellent in conductivity and can reflect light efficiently (hereinafter referred to as an Ag electrode) is used. However, Ag is known to easily change in quality due to the influence of oxygen, moisture, and the like, and it is known that the reflectance decreases due to deterioration. For this reason, conventionally, deterioration of Ag has been prevented by covering the upper and side surfaces of the Ag electrode with a metal layer or the like to protect the Ag electrode from the external environment. Further, studies have been made to use a material having excellent reflectivity as much as possible, for example, Al so that the light output (light extraction efficiency) of the metal layer does not decrease as a semiconductor light emitting element.

しかしながら、Alは比較的拡散し易い性質のため、低温であってもAg電極にAlが拡散してしまうという問題があった。Alが拡散すると、Ag電極が腐食されてしまうため、順方向電圧が上昇したり、反射率が低下したりするなどの弊害が生じる。   However, since Al is relatively easy to diffuse, there is a problem that Al diffuses into the Ag electrode even at low temperatures. When Al diffuses, the Ag electrode is corroded, which causes adverse effects such as an increase in forward voltage and a decrease in reflectance.

国際出願公開第WO2006/043422号International Application Publication No. WO2006 / 043422 特開2010−267797号公報JP 2010-267997 A

本発明は、従来のこのような問題点を解決するためになされたものである。本発明の主な目的は、Ag含有層を有する電極構造体を覆う金属層の材料にAlを用いても、Alが電極構造体に拡散するのを抑制して、光取出し効率を向上させた半導体発光素子を提供することにある。   The present invention has been made to solve such conventional problems. The main object of the present invention is to suppress the diffusion of Al into the electrode structure and improve the light extraction efficiency even when Al is used as the material of the metal layer covering the electrode structure having the Ag-containing layer. The object is to provide a semiconductor light emitting device.

課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention

上記の目的を達成するために、本発明の第1の側面に係る半導体発光素子によれば、半導体層10と、前記半導体層10の上面に設けられ、Agを含むAg含有層24を有する第一電極構造体20と、前記第一電極構造体20の表面を覆う第二電極構造体30と、前記第二電極構造体30の上面に設けられるパッド電極6p、と、を備える半導体発光素子であって、前記第一電極構造体20の最上層が、Ru層22であり、前記第二電極構造30の最下層を、Al含有層32とできる。上記構成により、Al含有層32のAlが、Ag含有層24に拡散するのをRu層32で防止することができると共に、光取り出し効率を向上させることができる。   In order to achieve the above object, according to the semiconductor light emitting device of the first aspect of the present invention, the semiconductor layer 10 and the Ag-containing layer 24 including Ag provided on the upper surface of the semiconductor layer 10 are provided. A semiconductor light emitting device comprising: one electrode structure 20; a second electrode structure 30 covering the surface of the first electrode structure 20; and a pad electrode 6p provided on the upper surface of the second electrode structure 30. Thus, the uppermost layer of the first electrode structure 20 can be the Ru layer 22, and the lowermost layer of the second electrode structure 30 can be the Al-containing layer 32. With the above configuration, the Ru layer 32 can prevent Al in the Al-containing layer 32 from diffusing into the Ag-containing layer 24, and can improve light extraction efficiency.

また、本発明の第2の側面に係る半導体発光素子によれば、前記第一電極構造体20が、前記Ag含有層24と前記Ru層22との間に、Agの拡散を防止するAg拡散防止層26を有してなることができる。上記構成により、第一電極構造体からAgがパッド電極側に拡散するのを防止することができる。   Further, according to the semiconductor light emitting device according to the second aspect of the present invention, the first electrode structure 20 has Ag diffusion for preventing Ag diffusion between the Ag-containing layer 24 and the Ru layer 22. The prevention layer 26 can be provided. With the above configuration, it is possible to prevent Ag from diffusing from the first electrode structure to the pad electrode side.

さらに、本発明の第3の側面に係る半導体発光素子によれば、前記Ag拡散防止層26が、前記Ag含有層24に面したNi層と、その上に積層されたTi層を有してなることができる。上記構成により、拡散防止層によるAgのバリア効果を高めることができる。   Furthermore, according to the semiconductor light emitting device according to the third aspect of the present invention, the Ag diffusion prevention layer 26 has a Ni layer facing the Ag-containing layer 24 and a Ti layer laminated thereon. Can be. With the above configuration, the barrier effect of Ag by the diffusion preventing layer can be enhanced.

さらにまた、本発明の第4の側面に係る半導体発光素子によれば、前記第二電極構造体30を、Al及びCuを含む単一層で構成することができる。上記構成により、パッド電極に接続されるワイヤなどの外部接続部材に反射された戻り光を、第二電極構造体の最表面で効率良く反射することができ、光取り出し効率の改善に寄与できる。さらに、パッド電極に外部接続部材が接合される際に生じる応力を、第二電極構造体が緩和することによって、第一電極構造体を外部環境から保護することができる。   Furthermore, according to the semiconductor light emitting device according to the fourth aspect of the present invention, the second electrode structure 30 can be constituted by a single layer containing Al and Cu. With the above configuration, the return light reflected by the external connection member such as a wire connected to the pad electrode can be efficiently reflected on the outermost surface of the second electrode structure, which can contribute to the improvement of the light extraction efficiency. Furthermore, the first electrode structure can be protected from the external environment by the second electrode structure relieving the stress generated when the external connection member is bonded to the pad electrode.

本発明の実施形態1に係る半導体発光素子の平面図である。It is a top view of the semiconductor light-emitting device concerning Embodiment 1 of the present invention. 図1の半導体発光素子のII−II線における断面図である。It is sectional drawing in the II-II line of the semiconductor light-emitting device of FIG. 半導体発光素子の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of a semiconductor light-emitting device. 図2の半導体発光素子における電極構造を示す拡大断面図である。FIG. 3 is an enlarged sectional view showing an electrode structure in the semiconductor light emitting device of FIG. 2. 変形例に係る半導体発光素子における電極構造を示す拡大断面図である。It is an expanded sectional view which shows the electrode structure in the semiconductor light-emitting device which concerns on a modification.

以下、本発明に係る実施形態及び実施例を、図面に基づいて説明する。ただし、以下に示す実施形態及び実施例は、本発明の技術思想を具体化するための、半導体発光素子を例示するものであって、本発明は、半導体発光素子を以下のものに特定しない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments and examples according to the present invention will be described with reference to the drawings. However, the following embodiments and examples exemplify semiconductor light emitting elements for embodying the technical idea of the present invention, and the present invention does not specify the semiconductor light emitting elements as follows.

なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する態様としてもよいし、逆に一の部材の機能を複数の部材で分担して実現することもできる。また、一部の実施例、実施形態において説明された内容は、他の実施例、実施形態等に利用可能なものもある。さらに、本明細書において、層上等でいう「上」とは、必ずしも上面に接触して形成される場合に限られず、離間して上方に形成される場合も含んでおり、層と層の間に介在層が存在する場合も包含する意味で使用する。
(実施形態1)
Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely, the function of one member is constituted by a plurality of members. It can also be realized by sharing. In addition, the contents described in some examples and embodiments may be used in other examples and embodiments. Further, in this specification, the term “upper” as used on the layer or the like is not necessarily limited to the case where the upper surface is formed in contact with the upper surface, but includes the case where the upper surface is formed apart. It is used to include the case where there is an intervening layer between them.
(Embodiment 1)

図1及び図2に、本発明の実施形態1に係る半導体発光素子を示す。この半導体発光素子100は、図2の断面図に示すように、基板1と、この基板1上に設けられる半導体層10と、半導体層10の上面に設けられ、Agを含むAg含有層24を有する第一電極構造体20と、第一電極構造体20の表面を覆う第二電極構造体30と、第二電極構造体30の上面に設けられるパッド電極6pと、を少なくとも備えており、第一電極構造体20の最上層が、Ru層22であり、第二電極構造体30の最下層が、Al含有層32である。   1 and 2 show a semiconductor light emitting device according to Embodiment 1 of the present invention. As shown in the cross-sectional view of FIG. 2, the semiconductor light emitting device 100 includes a substrate 1, a semiconductor layer 10 provided on the substrate 1, and an Ag-containing layer 24 provided on the upper surface of the semiconductor layer 10 and containing Ag. A first electrode structure 20, a second electrode structure 30 covering the surface of the first electrode structure 20, and a pad electrode 6 p provided on the upper surface of the second electrode structure 30. The uppermost layer of the one electrode structure 20 is the Ru layer 22, and the lowermost layer of the second electrode structure 30 is the Al-containing layer 32.

より具体的には、半導体層10は、活性領域3を挟んで積層されたn型半導体層2及びp型半導体層4を有する。つまり半導体発光素子100は、基板1上に、n型半導体層2、活性領域3、p型半導体層4をこの順に積層して構成される。さらに半導体発光素子100は、p型半導体層4の一部を除去して露出されたn型半導体層2にn側電極7nが設けられると共に、p型半導体層4の主面にはp側電極7pを備える。このn側電極7n及びp側電極7pを介して、n型半導体層2及びp型半導体層4にそれぞれ電力が供給されると、活性領域3より光が出射し、半導体層10の下方に位置するn型半導体層4側を主発光面側として、すなわち図1に示される面とは反対側の基板1から主に光が取り出される。   More specifically, the semiconductor layer 10 includes an n-type semiconductor layer 2 and a p-type semiconductor layer 4 stacked with the active region 3 interposed therebetween. That is, the semiconductor light emitting device 100 is configured by laminating the n-type semiconductor layer 2, the active region 3, and the p-type semiconductor layer 4 in this order on the substrate 1. Further, in the semiconductor light emitting device 100, an n-side electrode 7 n is provided on the n-type semiconductor layer 2 exposed by removing a part of the p-type semiconductor layer 4, and a p-side electrode is formed on the main surface of the p-type semiconductor layer 4. 7p is provided. When power is supplied to the n-type semiconductor layer 2 and the p-type semiconductor layer 4 through the n-side electrode 7n and the p-side electrode 7p, light is emitted from the active region 3 and is positioned below the semiconductor layer 10. The light is mainly extracted from the substrate 1 on the side opposite to the surface shown in FIG. 1 with the n-type semiconductor layer 4 side as the main light emitting surface side.

n型半導体層2に電気的に接続するn側電極7nは、パッド電極6nから構成され、図1の平面図に示すように、p型半導体層4及び活性領域3の一部が除去されて露出された、n型半導体層2の表面上に直接設けられる。一方、p型半導体層4に電気的に接続するp側電極7pは、p型半導体層4の上面のほぼ全面に設けられる第一電極構造体20と、第一電極構造体20の表面である上面及び側面を覆う第二電極構造体30と、第二電極構造体の上面に複数設けられたパッド電極6pとから構成される。   The n-side electrode 7n electrically connected to the n-type semiconductor layer 2 is composed of a pad electrode 6n. As shown in the plan view of FIG. 1, the p-type semiconductor layer 4 and a part of the active region 3 are removed. It is directly provided on the exposed surface of n-type semiconductor layer 2. On the other hand, the p-side electrode 7 p that is electrically connected to the p-type semiconductor layer 4 is a first electrode structure 20 provided on substantially the entire upper surface of the p-type semiconductor layer 4 and the surface of the first electrode structure 20. It is comprised from the 2nd electrode structure 30 which covers an upper surface and a side surface, and the pad electrode 6p provided with two or more by the upper surface of the 2nd electrode structure.

本実施形態における第一電極構造体20は、最下層がAg含有層24であり、このAg含有層24がp型半導体層4の上面に接して設けられる。Ag含有層24は、p型半導体層4の上面端部よりも内側の領域に設けられており、Ag含有層24が設けられる領域以外の領域ではp型半導体層4の上面が露出する。また、第一電極構造体20の最上層はRu層22であり、Ru層22に接して、第二電極構造体30が第一電極構造体20を覆うように設けられる。このとき、第二電極構造体の最下層は、Al含有層32であり、Al含有層32がRu層22に接する。さらに、Ru層22に接するAl含有層32は、第一電極構造体20から露出したp側半導体層4の上面まで連続して設けられる。これにより、第一電極構造体20は、Al含有層32(第二電極構造体30)によって完全に覆われるため、外部環境から遮蔽される。第二電極構造体30の上面には、複数のp側パッド電極6pが設けられる。複数のp側パッド電極6pは、平面視において互いに離間するように配置される。   In the first electrode structure 20 in the present embodiment, the lowermost layer is an Ag-containing layer 24, and this Ag-containing layer 24 is provided in contact with the upper surface of the p-type semiconductor layer 4. The Ag-containing layer 24 is provided in a region inside the upper end portion of the p-type semiconductor layer 4, and the upper surface of the p-type semiconductor layer 4 is exposed in a region other than the region where the Ag-containing layer 24 is provided. The uppermost layer of the first electrode structure 20 is the Ru layer 22, and the second electrode structure 30 is provided so as to cover the first electrode structure 20 in contact with the Ru layer 22. At this time, the lowermost layer of the second electrode structure is the Al-containing layer 32, and the Al-containing layer 32 is in contact with the Ru layer 22. Further, the Al-containing layer 32 in contact with the Ru layer 22 is continuously provided up to the upper surface of the p-side semiconductor layer 4 exposed from the first electrode structure 20. Thereby, since the 1st electrode structure 20 is completely covered with the Al content layer 32 (2nd electrode structure 30), it is shielded from external environment. A plurality of p-side pad electrodes 6 p are provided on the upper surface of the second electrode structure 30. The plurality of p-side pad electrodes 6p are arranged so as to be separated from each other in plan view.

また、絶縁性の保護膜9は、n側電極7n及びp側電極7pの上面を除いた、半導体層10の全表面を被覆する。
(基板1)
The insulating protective film 9 covers the entire surface of the semiconductor layer 10 except for the upper surfaces of the n-side electrode 7n and the p-side electrode 7p.
(Substrate 1)

基板1は、窒化物系半導体をエピタキシャル成長させることができる基板材料であればよく、大きさや厚さ等は特に限定されない。このような基板材料としては、C面、R面、A面のいずれかを主面とするサファイアやスピネル(MgAl24)のような絶縁性基板、また炭化ケイ素(SiC)、シリコン、ZnS、ZnO、Si、GaAs、ダイヤモンド、及び窒化物系半導体と格子接合するニオブ酸リチウム、ガリウム酸ネオジウム等の酸化物基板が挙げられる。
(n型半導体層2、活性領域3、p型半導体層4)
The substrate 1 may be any substrate material capable of epitaxially growing a nitride-based semiconductor, and the size and thickness are not particularly limited. As such a substrate material, an insulating substrate such as sapphire or spinel (MgAl 2 O 4 ) whose main surface is any of the C-plane, R-plane, and A-plane, silicon carbide (SiC), silicon, ZnS ZnO, Si, GaAs, diamond, and oxide substrates such as lithium niobate and neodymium gallate that are lattice-bonded to nitride semiconductors.
(N-type semiconductor layer 2, active region 3, p-type semiconductor layer 4)

n型半導体層2、活性領域3、及びp型半導体層4としては、特に限定されるものではないが、例えばInXAlYGa1-X-YN(0≦X、0≦Y、X+Y<1)等の窒化ガリウム系化合物半導体が好適に用いられる。
(n側電極7n、p側電極7p)
n-type semiconductor layer 2, the active region 3, and as the p-type semiconductor layer 4, is not particularly limited, for example, In X Al Y Ga 1-XY N (0 ≦ X, 0 ≦ Y, X + Y <1 A gallium nitride compound semiconductor such as) is preferably used.
(N-side electrode 7n, p-side electrode 7p)

n側電極7nはn型半導体層2に、p側電極7pはp型半導体層4に、それぞれ電気的に接続して外部から電流を供給するための部材である。
(第一電極構造体20)
The n-side electrode 7n is a member for supplying an electric current from the outside by being electrically connected to the n-type semiconductor layer 2 and the p-side electrode 7p to the p-type semiconductor layer 4, respectively.
(First electrode structure 20)

p側電極7pは、p型半導体層4の上面に直接に、その全面又はそれに近い面積の領域(ほぼ全面)に設けられた、Ag含有層24を有する第一電極構造体20を備える。   The p-side electrode 7p includes a first electrode structure 20 having an Ag-containing layer 24 provided directly on the upper surface of the p-type semiconductor layer 4 and on the entire surface or a region having an area close thereto (substantially the entire surface).

本実施形態における第一電極構造体20は、最下層にAg含有層24を有しており、活性領域3からp型半導体層4側に出射された光を、基板1側に効率良く反射することができる。一方、第一電極構造体の最上層はRu層22であり、後述する第二電極構造体30に含まれるAlが、Ru層22によってAg含有層24に拡散されるのを防止することができる。   The first electrode structure 20 in this embodiment has an Ag-containing layer 24 in the lowermost layer, and efficiently reflects light emitted from the active region 3 to the p-type semiconductor layer 4 side to the substrate 1 side. be able to. On the other hand, the uppermost layer of the first electrode structure is the Ru layer 22, and Al contained in the second electrode structure 30 to be described later can be prevented from diffusing into the Ag-containing layer 24 by the Ru layer 22. .

また、第一電極構造体20は、Ag含有層24とRu層22との間に、Agがp側パッド電極側に拡散するのを防止するAg拡散防止層26を有することができる。Ag拡散防止層26は、p側パッド電極6pが設けられる領域の膜厚が、その周縁領域よりも厚くなるように設けられるのが好ましく、Agの拡散をさらに抑制しつつ、p側パッド電極6pが外部回路などに接合される際に生じる応力が、Ag拡散防止層26にかかったとしても破断せずにバリア性を十分に維持することができる。このようなAg拡散防止層26は、Ag含有層24に面したNi層と、その上に積層されたTi層から構成でき、Ag拡散防止層26によるAgのバリア効果を高めることができる。図2の電極構造の拡大図を、図4に示す。この図に示す例では、第一電極構造体20を、p型半導体層4側からAg層、Ni層、Ti層、Ru層の順に同一マスク形状にて積層して構成している。
(第二電極構造体30)
In addition, the first electrode structure 20 can include an Ag diffusion preventing layer 26 that prevents Ag from diffusing to the p-side pad electrode side between the Ag-containing layer 24 and the Ru layer 22. The Ag diffusion prevention layer 26 is preferably provided so that the film thickness of the region where the p-side pad electrode 6p is provided is thicker than the peripheral region thereof, while further suppressing the diffusion of Ag and the p-side pad electrode 6p. Even when the stress generated when the material is bonded to an external circuit or the like is applied to the Ag diffusion preventing layer 26, the barrier property can be sufficiently maintained without breaking. Such an Ag diffusion preventing layer 26 can be composed of a Ni layer facing the Ag-containing layer 24 and a Ti layer laminated thereon, and the Ag barrier effect of the Ag diffusion preventing layer 26 can be enhanced. An enlarged view of the electrode structure of FIG. 2 is shown in FIG. In the example shown in this figure, the first electrode structure 20 is configured by laminating in the same mask shape in the order of the Ag layer, Ni layer, Ti layer, and Ru layer from the p-type semiconductor layer 4 side.
(Second electrode structure 30)

さらに、第一電極構造体20の上面及び側面には、第二電極構造体30が配置される。第二電極構造体30は、光反射率に優れるAlを主成分とする金属から構成されていれば良く、例えば、比較的に強度の高いAl−Cu系のAl合金(以下、AC層という)から構成されるのが好ましい。本実施形態における第二電極構造体30は、最下層にAl含有層32を有し、さらにAl含有層32の上には、後述するパッド電極との間でAlの拡散を抑制可能なRu/Ti層(Al拡散防止層)34を有する多層構造である。このAl含有層32が、第一電極構造体20の上面及び側面を覆うと共に、第一電極構造体20から露出したp型半導体層4の上面まで連続して覆うように設けられるのが好ましい。これにより、外部環境から第一電極構造体20のAg含有層24を遮蔽できるため、Agがn側電極7nとの間で移動するエレクトロマイグレーションの発生を防止することができる。さらに、第一電極構造体20から露出されたp型半導体層4の上面において、Al含有層32が基板1の側に光を効率よく反射することができるため、光取り出し効率を向上させることができる。また、第二電極構造体30は、第一電極構造体20の上面を覆う膜厚よりも、側面を覆う膜厚の方が厚くなるように設けられているのが好ましく、第一電極構造体20のAg含有層24から、p型半導体層4の上面をAgが移動するのを防止することができる。   Further, the second electrode structure 30 is disposed on the upper surface and the side surface of the first electrode structure 20. The second electrode structure 30 only needs to be made of a metal whose main component is Al, which is excellent in light reflectivity. For example, an Al—Cu-based Al alloy having relatively high strength (hereinafter referred to as an AC layer). It is preferable that it is comprised from these. The second electrode structure 30 in the present embodiment has an Al-containing layer 32 in the lowermost layer, and on the Al-containing layer 32, a Ru / that can suppress diffusion of Al with a pad electrode described later. This is a multilayer structure having a Ti layer (Al diffusion preventing layer) 34. The Al-containing layer 32 is preferably provided so as to cover the upper surface and side surfaces of the first electrode structure 20 and continuously cover the upper surface of the p-type semiconductor layer 4 exposed from the first electrode structure 20. Thereby, since the Ag containing layer 24 of the 1st electrode structure 20 can be shielded from an external environment, generation | occurrence | production of the electromigration which Ag moves between the n side electrodes 7n can be prevented. Furthermore, since the Al-containing layer 32 can efficiently reflect light toward the substrate 1 on the upper surface of the p-type semiconductor layer 4 exposed from the first electrode structure 20, the light extraction efficiency can be improved. it can. The second electrode structure 30 is preferably provided such that the film thickness covering the side surface is thicker than the film thickness covering the upper surface of the first electrode structure 20. It is possible to prevent Ag from moving from the 20 Ag-containing layers 24 to the upper surface of the p-type semiconductor layer 4.

また、第二電極構造体30は、本実施形態のように多層構造であっても良いが、単一層で構成しても良い。単一層で構成する場合は、特にAC層を用いるのが好ましく、後述するパッド電極6n,6pに外部接続部材(図示しない)が接合される際に生じる応力を、第二電極構造体30が緩和することによって、第一電極構造体20を外部環境から保護することができる。   Further, the second electrode structure 30 may have a multilayer structure as in the present embodiment, but may also be configured with a single layer. In the case of a single layer, it is particularly preferable to use an AC layer, and the second electrode structure 30 relieves stress generated when an external connection member (not shown) is joined to pad electrodes 6n and 6p described later. By doing so, the first electrode structure 20 can be protected from the external environment.

なお、図2の断面図の例では、第一電極構造体20を矩形状で示し、この上面及び側面を同じく矩形状の第二電極構造体30で被覆する状態を示しているが、この図は模式的に示したものであって、例えば図5に示すように、半導体層10の上面に曲面状の第一電極構造体20を積層し、さらにその上面を覆うように同じく曲面状の第二電極構造体30で被覆するような態様も、本願発明に包含する。
(n側パッド電極6n、p側パッド電極6p)
In the example of the cross-sectional view of FIG. 2, the first electrode structure 20 is shown in a rectangular shape, and the upper surface and side surfaces thereof are covered with the same rectangular second electrode structure 30. 5 schematically shows, for example, as shown in FIG. 5, a curved first electrode structure 20 is laminated on the upper surface of the semiconductor layer 10, and the curved first electrode structure 20 is further covered so as to cover the upper surface. An embodiment in which the two-electrode structure 30 is covered is also included in the present invention.
(N-side pad electrode 6n, p-side pad electrode 6p)

n側パッド電極6n及びp側パッド電極6pは、外部回路と電気的に接続するために、ハンダや共晶金属などの外部接続部材が接合されるための部材である。n側パッド電極6n及びp側パッド電極6pは、外部接続部を接続するのに必要な平面視形状及び面積であれば良く、その位置についても特に限定しないが、活性領域3全体に均一な電流が供給されるように配置するのが好ましい。
(半導体発光素子のパッド電極の製造方法)
The n-side pad electrode 6n and the p-side pad electrode 6p are members for joining an external connection member such as solder or eutectic metal in order to be electrically connected to an external circuit. The n-side pad electrode 6n and the p-side pad electrode 6p may have any shape and area in plan view necessary for connecting the external connection portion, and the position thereof is not particularly limited. Is preferably arranged so that is supplied.
(Method for manufacturing pad electrode of semiconductor light emitting device)

本発明に係る半導体発光素子のパッド電極の製造方法について、前記実施形態に係る半導体発光素子の製造も含めて、図3を参照して一例を説明する。
(半導体層の形成:S10)
An example of the method for manufacturing the pad electrode of the semiconductor light emitting device according to the present invention will be described with reference to FIG. 3 including the manufacturing of the semiconductor light emitting device according to the embodiment.
(Formation of semiconductor layer: S10)

サファイア基板を基板1として、MOVPE反応装置を用いて、基板1上に、n型半導体層2、活性領域3、及びp型半導体層4を構成するそれぞれの窒化物系半導体を成長させる(S11)。半導体層10が形成された基板1(以下、ウェハという)を装置の処理室内にて窒素雰囲気で、600〜700℃程度のアニールを行って、p型半導体層4を低抵抗化する(S12)。
(n側コンタクト領域の形成:S20)
Using the sapphire substrate as the substrate 1, each nitride semiconductor constituting the n-type semiconductor layer 2, the active region 3, and the p-type semiconductor layer 4 is grown on the substrate 1 using a MOVPE reactor (S11). . The substrate 1 on which the semiconductor layer 10 is formed (hereinafter referred to as a wafer) is annealed at about 600 to 700 ° C. in a nitrogen atmosphere in the processing chamber of the apparatus to reduce the resistance of the p-type semiconductor layer 4 (S12). .
(Formation of n-side contact region: S20)

n側電極(n側パッド電極)7nを接続するためのコンタクト領域として、n型半導体層2の一部を露出させる。アニール後のウェハ上にレジストにて所定の形状のマスクを形成して(S21)、反応性イオンエッチング(RIE)にて、p型半導体層4及び活性領域3、さらにn型半導体層2の一部を除去して、その表面にn側コンタクト領域を形成する(S22)。エッチングの後、レジストを除去する(S23)。なお、n側コンタクト領域と同時に、半導体発光素子100(チップ)の周縁部(スクライブ領域)をエッチングしてもよい(図2参照)。
(第一電極構造体の形成:S30)
A part of n-type semiconductor layer 2 is exposed as a contact region for connecting n-side electrode (n-side pad electrode) 7n. A mask having a predetermined shape is formed on the annealed wafer with a resist (S21), and one of the p-type semiconductor layer 4 and the active region 3, and the n-type semiconductor layer 2 is formed by reactive ion etching (RIE). The part is removed, and an n-side contact region is formed on the surface (S22). After the etching, the resist is removed (S23). Note that the peripheral portion (scribe region) of the semiconductor light emitting element 100 (chip) may be etched simultaneously with the n-side contact region (see FIG. 2).
(Formation of first electrode structure: S30)

p型半導体層4の表面にp側コンタクト領域が露出するように、レジストを用いたマスクを形成する(S31)。スパッタ装置にウェハを設置し、スパッタガスとしてアルゴンガスを用いて、p側コンタクト領域のほぼ全面に、Ag層、Ni層、Ti層およびRu層を順に、それぞれ所定の膜厚ずつ連続的に成膜する(S32)。リフトオフ法を用いてレジスト及びその上に形成されたAg/Ni/Ti/Ru層を除去し、第一電極構造体20を形成する(S33)。次に、第一電極構造体20が形成されたウェハを、窒素雰囲気で熱処理(アニール)して、第一電極構造体20のp型半導体層4へのオーミック接触特性を向上させる(S34)。
(第二電極構造体の形成:S40)
A mask using a resist is formed so that the p-side contact region is exposed on the surface of the p-type semiconductor layer 4 (S31). A wafer is placed in the sputtering apparatus, and an argon layer is used as a sputtering gas, and an Ag layer, a Ni layer, a Ti layer, and a Ru layer are sequentially formed on the substantially entire surface of the p-side contact region in a predetermined thickness. Form a film (S32). The resist and the Ag / Ni / Ti / Ru layer formed thereon are removed using the lift-off method, and the first electrode structure 20 is formed (S33). Next, the wafer on which the first electrode structure 20 is formed is heat-treated (annealed) in a nitrogen atmosphere to improve the ohmic contact characteristics of the first electrode structure 20 to the p-type semiconductor layer 4 (S34).
(Formation of second electrode structure: S40)

第一電極構造体20から離間して周囲を囲むように、レジストを用いたマスクを形成し(S41)、このマスクの上からスパッタリング装置にてAC層、Ru層およびTi層を順に、それぞれ所定の膜厚ずつ連続的に成膜する(S42)。リフトオフ法を用いてレジスト及びその上に成膜されたAC/Ru/Ti層を除去することにより、第一電極構造体20の上面及び側面を覆う第二電極構造体30を形成する(S43)。
(パッド電極の形成:S50)
A mask using a resist is formed so as to surround the first electrode structure 20 so as to be separated from the first electrode structure 20 (S41), and the AC layer, the Ru layer, and the Ti layer are sequentially formed on the mask by a sputtering apparatus in order. The film is continuously formed for each film thickness (S42). By removing the resist and the AC / Ru / Ti layer formed thereon using the lift-off method, the second electrode structure 30 covering the upper surface and side surfaces of the first electrode structure 20 is formed (S43). .
(Formation of pad electrode: S50)

露出させたn型窒化物系半導体層2上、及び第二電極構造体30上のそれぞれに所定領域を空けたマスクをレジストにて形成し(S51)、このマスクの上から、スパッタリング装置にて、p側パッド電極6p、n側パッド電極6nを構成するAl−Si−Cu系のAl合金(以下、ASC層という)、Ti層、Pt層およびAu層をそれぞれ所定の膜厚ずつ連続的に成膜する(S52)。その後、レジストをその上のASC層/Ti/Pt/Au層ごと除去する(S53)と、前記の所定領域にn側パッド電極6n、p側パッド電極6pが形成された状態となる。
(保護膜9の形成:S60)
A mask having a predetermined area formed on each of the exposed n-type nitride semiconductor layer 2 and the second electrode structure 30 is formed of a resist (S51). The p-side pad electrode 6p and the n-side pad electrode 6n are made of Al—Si—Cu-based Al alloy (hereinafter referred to as ASC layer), Ti layer, Pt layer, and Au layer continuously in a predetermined thickness. A film is formed (S52). Thereafter, when the resist is removed together with the ASC layer / Ti / Pt / Au layer thereon (S53), the n-side pad electrode 6n and the p-side pad electrode 6p are formed in the predetermined region.
(Formation of protective film 9: S60)

ウェハの全面に、保護膜9としてSiO2膜をスパッタリング装置にて成膜する(S61)。外部接続部材が接続される領域としてp側パッド電極6p、n側パッド電極6n上の所定領域を空けたマスクをレジストにて形成し(S62)、SiO2膜をエッチングした(S63)後、レジストを除去する(S64)。 A SiO 2 film is formed as a protective film 9 on the entire surface of the wafer by a sputtering apparatus (S61). As a region to which the external connection member is connected, a mask is formed by using a resist in a predetermined region on the p-side pad electrode 6p and the n-side pad electrode 6n (S62), and the SiO 2 film is etched (S63). Is removed (S64).

最後に、ウェハをスクライブやダイシング等で分離して、1個の半導体発光素子100(チップ)となる。また、チップに分離する前に、ウェハの裏面から基板1を研削(バックグラインド)して所望の厚さとなるまで薄く加工してもよい。   Finally, the wafer is separated by scribing, dicing, or the like to form one semiconductor light emitting element 100 (chip). Further, before separation into chips, the substrate 1 may be ground (back grind) from the back surface of the wafer and thinned to a desired thickness.

以上の工程による本発明に係る半導体発光素子のパッド電極の製造方法は、前記の実施形態に係る半導体発光素子について、p側、n側のそれぞれにパッド電極を同時に形成することができるため、生産性が向上する。   The manufacturing method of the pad electrode of the semiconductor light emitting device according to the present invention by the above steps can be produced because the pad electrode can be simultaneously formed on each of the p side and the n side in the semiconductor light emitting device according to the above embodiment. Improves.

なお、本発明に係る半導体発光素子のパッド電極は、p側パッド電極のみに適用されて、このときn側パッド電極は従来公知の構造(例えば、Cr/PtやCr/Pt/Au、CrRh/Pt、CrRh/Pt/Au、CrRh/Pt/Au/Pt、Rh/W/Au等)としてもよい。また、本発明に係る半導体発光素子のパッド電極は、前記実施形態(図1参照)に係る半導体発光素子に限らず、例えばn側電極を導電性基板の裏面(下面)側に設けた半導体発光素子に適用することもできる(図示せず)。
(実施例1〜2、比較例1〜4)
The pad electrode of the semiconductor light emitting device according to the present invention is applied only to the p-side pad electrode. At this time, the n-side pad electrode has a conventionally known structure (for example, Cr / Pt, Cr / Pt / Au, CrRh / Pt, CrRh / Pt / Au, CrRh / Pt / Au / Pt, Rh / W / Au, etc.). The pad electrode of the semiconductor light emitting device according to the present invention is not limited to the semiconductor light emitting device according to the embodiment (see FIG. 1). For example, semiconductor light emission in which an n-side electrode is provided on the back surface (lower surface) side of the conductive substrate. It can also be applied to a device (not shown).
(Examples 1-2, Comparative Examples 1-4)

従来のAg含有層を有する第一電極構造体は最表面をPtとしている。しかし、この構成では、低温下であっても第一電極構造体を覆う第二電極構造体に用いられるAlが、最表面のPt、さらにはAg含有層にまで拡散してしまうという問題があった。   A conventional first electrode structure having an Ag-containing layer has Pt as the outermost surface. However, in this configuration, there is a problem that Al used for the second electrode structure covering the first electrode structure diffuses to the outermost Pt and further to the Ag-containing layer even at a low temperature. It was.

そこで、Ag含有層を有する第一電極構造体のAl拡散防止効果を確認するために、以下の条件で作成した実施例1及び2、比較例1乃至4をそれぞれ準備し、これらのサンプルを熱処理した状態での拡散の様子を確認した。この結果を表1に示す。実施例1、2では第一電極構造体としてAg/Ni/Ti/Ruを順で積層し、また比較例1、3はAg/Ni/Ti/Pt、比較例2、4はAg/Ni/Ti/Rhとしている。各層の膜厚はそれぞれ100nmとした。またオーミックアニールは540℃で10分間行った。   Therefore, in order to confirm the Al diffusion preventing effect of the first electrode structure having the Ag-containing layer, Examples 1 and 2 and Comparative Examples 1 to 4 prepared under the following conditions were prepared, and these samples were heat-treated. The state of diffusion was confirmed. The results are shown in Table 1. In Examples 1 and 2, Ag / Ni / Ti / Ru was laminated in this order as the first electrode structure, Comparative Examples 1 and 3 were Ag / Ni / Ti / Pt, Comparative Examples 2 and 4 were Ag / Ni / Ti / Rh. The thickness of each layer was 100 nm. The ohmic annealing was performed at 540 ° C. for 10 minutes.

さらに実施例1、比較例2〜3のグループでは、第一電極構造体を、AC(Al,Cu)/Ti/Au/W/Tiの順で積層しており、各層の膜厚は、100/500/1400/100/3[nm]としている。一方、実施例2、比較例4〜5のグループでは、p側パッド電極6p、n側パッド電極6nとして、ASC(Al,Si,Cu)/Ti/Pt/Auの順で積層しており、各層の膜厚は500/150/50/450[nm]としている。さらにまた、熱処理は電気炉で行い、N2雰囲気下で250〜500℃(昇温30分〜安定10分〜降温30分)とした。 Furthermore, in the group of Example 1 and Comparative Examples 2-3, the first electrode structure is laminated in the order of AC (Al, Cu) / Ti / Au / W / Ti, and the film thickness of each layer is 100. / 500/1400/100/3 [nm]. On the other hand, in the group of Example 2 and Comparative Examples 4 to 5, the p-side pad electrode 6p and the n-side pad electrode 6n are laminated in the order of ASC (Al, Si, Cu) / Ti / Pt / Au, The thickness of each layer is 500/150/50/450 [nm]. Furthermore, the heat treatment was performed in an electric furnace, and the temperature was 250 to 500 ° C. (temperature rising 30 minutes to stable 10 minutes to temperature falling 30 minutes) in an N 2 atmosphere.

表1において、○は拡散が発生していないこと、×は拡散して混入が確認されたことを示している。この表に示すように、まず実施例1及び比較例1〜2に係る、第一電極構造体と第二電極構造体との組み合わせにおいては、Pt(比較例1)、Rh(比較例2)を最上層とした構成では共に500℃でACと拡散した。一方、Ru(実施例1)では拡散しないことが確認された。   In Table 1, ◯ indicates that no diffusion has occurred, and X indicates that diffusion has been confirmed by mixing. As shown in this table, first, in the combination of the first electrode structure and the second electrode structure according to Example 1 and Comparative Examples 1 and 2, Pt (Comparative Example 1), Rh (Comparative Example 2) In the configuration in which is the top layer, both diffused with AC at 500 ° C. On the other hand, it was confirmed that Ru (Example 1) did not diffuse.

また実施例2及び比較例3〜4に係る、第一電極構造体とp側及びn側パッド電極の組み合わせにおいては、比較例3に係るPtは350℃で、比較例4に係るRhは500℃で、それぞれASCと拡散した。一方、実施例2に係るRuは拡散していないことが確認された。このことから、第一電極構造体の最上層をPtからRuに変更することで、Alの拡散防止効果が向上されることが確認された。
(実施例3、比較例5)
In the combination of the first electrode structure and the p-side and n-side pad electrodes according to Example 2 and Comparative Examples 3 to 4, Pt according to Comparative Example 3 is 350 ° C., and Rh according to Comparative Example 4 is 500. Each diffused with ASC at ° C. On the other hand, it was confirmed that Ru according to Example 2 was not diffused. From this, it was confirmed that the effect of preventing Al diffusion was improved by changing the uppermost layer of the first electrode structure from Pt to Ru.
(Example 3, Comparative Example 5)

次に、第一電極構造体のAl拡散防止効果がPtとRuのいずれか優れているかを確認するため、第二電極構造体を熱処理してGDS調査を行った。ここでは実施例3として第一電極構造体にAg/Ni/Ti/Ruを使用し、比較例5として第一電極構造体にAg/Ni/Ti/Ptを用いた。各第一電極構造体は成膜後にオーミックアニール処理している。各層の膜厚は100/100/100/100[nm]としている。また第二電極構造体は、いずれもAC/Ru/Tiの順で積層し、各層の膜厚を2000/100/30[nm]としている。また熱処理には電気炉を用いて、500℃(昇温30分〜安定10分、30分又は60分〜降温30分)に加熱した。この結果を表2に示す。   Next, in order to confirm whether the Al diffusion preventing effect of the first electrode structure is superior to Pt or Ru, the second electrode structure was heat-treated and a GDS investigation was performed. Here, as Example 3, Ag / Ni / Ti / Ru was used for the first electrode structure, and as Comparative Example 5, Ag / Ni / Ti / Pt was used for the first electrode structure. Each first electrode structure is subjected to ohmic annealing after film formation. The film thickness of each layer is 100/100/100/100 [nm]. The second electrode structures are all laminated in the order of AC / Ru / Ti, and the thickness of each layer is 2000/100/30 [nm]. Moreover, it heated at 500 degreeC (temperature rising 30 minutes-stable 10 minutes, 30 minutes or 60 minutes-temperature falling 30 minutes) using the electric furnace for heat processing. The results are shown in Table 2.

この表に示すように、第一電極構造体で最上層に用いる金属をPtとRuとで比較したところ、実施例3に係るRu構造の方が熱拡散に優位性があることが確認された。また得られた窒化物系化合物半導体のウェハを熱処理の前後で比較したところ、Agで腐食された部分が黒色に変色しており、特に裏面側に比べ、熱処理した表面側の変色が激しいことが確認された。さらにRuを用いた電極は、変色の度合いが低いことも確認できた。このことから、第一電極構造体の最上層にRuを採用する構造の優位性が確認された。   As shown in this table, when the metal used for the uppermost layer in the first electrode structure was compared between Pt and Ru, it was confirmed that the Ru structure according to Example 3 had superior thermal diffusion. . Further, when the nitride compound semiconductor wafers obtained were compared before and after the heat treatment, the portion corroded with Ag was discolored to black, and in particular, the discoloration of the heat treated surface side was more severe than the back side. confirmed. It was also confirmed that the electrode using Ru has a low degree of discoloration. From this, the superiority of the structure employing Ru as the uppermost layer of the first electrode structure was confirmed.

本発明の半導体発光素子は、照明用光源、発光素子を光源としてドットマトリックス状に配置したディスプレイ、バックライト光源、信号機、照明式スイッチ、イメージスキャナ等の各種センサ及び各種インジケータ等に好適に利用できる。   The semiconductor light emitting device of the present invention can be suitably used for illumination light sources, displays arranged in a dot matrix using the light emitting devices as light sources, backlight light sources, traffic lights, illumination switches, various sensors such as image scanners, various indicators, and the like. .

100…半導体発光素子
1…基板
2…n型半導体層
3…活性領域
4…p型半導体層
6p…p側パッド電極;6n…n側パッド電極
7n…n側電極;7p…p側電極
9…保護膜
10…半導体層
20…第一電極構造体
22…最上層
24…Ag含有層
26…Ag拡散防止層
30…第二電極構造体
32…最下層
34…Al拡散防止層
DESCRIPTION OF SYMBOLS 100 ... Semiconductor light-emitting device 1 ... Substrate 2 ... N-type semiconductor layer 3 ... Active region 4 ... P-type semiconductor layer 6p ... P-side pad electrode; 6n ... N-side pad electrode 7n ... N-side electrode; Protective film 10 ... Semiconductor layer 20 ... First electrode structure 22 ... Uppermost layer 24 ... Ag-containing layer 26 ... Ag diffusion prevention layer 30 ... Second electrode structure 32 ... Lowermost layer 34 ... Al diffusion prevention layer

Claims (4)

半導体層(10)と、
前記半導体層(10)の上面に設けられ、Ag含有層(24)を有する第一電極構造体(20)と、
前記第一電極構造体(20)の表面を覆う第二電極構造体(30)と、
前記第二電極構造体(30)の上面に設けられるパッド電極(6p)と、
を備える半導体発光素子であって、
前記第一電極構造体(20)の最上層(22)が、Ru層であり、
前記第二電極構造体(30)の最下層(32)が、Al含有層であることを特徴とする半導体発光素子。
A semiconductor layer (10);
A first electrode structure (20) provided on an upper surface of the semiconductor layer (10) and having an Ag-containing layer (24);
A second electrode structure (30) covering the surface of the first electrode structure (20);
A pad electrode (6p) provided on the upper surface of the second electrode structure (30);
A semiconductor light emitting device comprising:
The uppermost layer (22) of the first electrode structure (20) is a Ru layer,
A semiconductor light emitting element, wherein the lowermost layer (32) of the second electrode structure (30) is an Al-containing layer.
請求項1に記載の半導体発光素子であって、
前記第一電極構造体(20)が、前記Ag含有層(24)と前記Ru層の間に、Agの拡散を防止するAg拡散防止層(26)を有してなることを特徴とする半導体発光素子。
The semiconductor light emitting device according to claim 1,
The first electrode structure (20) includes an Ag diffusion preventing layer (26) for preventing diffusion of Ag between the Ag-containing layer (24) and the Ru layer. Light emitting element.
請求項2に記載の半導体発光素子であって、
前記Ag拡散防止層(26)が、前記Ag含有層(24)に面したNi層と、その上に積層されたTi層を有してなることを特徴とする半導体発光素子。
The semiconductor light emitting device according to claim 2,
The semiconductor light-emitting element, wherein the Ag diffusion preventing layer (26) comprises a Ni layer facing the Ag-containing layer (24) and a Ti layer laminated thereon.
請求項1から3のいずれか一に記載の半導体発光素子であって、
前記第二電極構造体(30)が、Al及びCuを含む単一層で構成されてなることを特徴とする半導体発光素子。
The semiconductor light-emitting device according to claim 1,
The semiconductor light-emitting element, wherein the second electrode structure (30) is composed of a single layer containing Al and Cu.
JP2012115469A 2012-05-21 2012-05-21 Semiconductor light emitting device Active JP5978758B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012115469A JP5978758B2 (en) 2012-05-21 2012-05-21 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012115469A JP5978758B2 (en) 2012-05-21 2012-05-21 Semiconductor light emitting device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016143540A Division JP6319371B2 (en) 2016-07-21 2016-07-21 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2013243254A true JP2013243254A (en) 2013-12-05
JP5978758B2 JP5978758B2 (en) 2016-08-24

Family

ID=49843864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115469A Active JP5978758B2 (en) 2012-05-21 2012-05-21 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5978758B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120047A1 (en) * 2015-01-26 2016-08-04 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component, optoelectronic arrangement and method for producing an optoelectronic semiconductor component
WO2016159694A1 (en) * 2015-04-03 2016-10-06 엘지이노텍 주식회사 Light emitting element
JP2018006535A (en) * 2016-06-30 2018-01-11 ウシオ電機株式会社 Semiconductor light-emitting device
WO2018048275A1 (en) * 2016-09-10 2018-03-15 엘지이노텍 주식회사 Semiconductor device
US10593838B2 (en) 2017-08-14 2020-03-17 Lg Innotek Co., Ltd. Semiconductor device
US10910519B2 (en) 2016-09-13 2021-02-02 Lg Innotek Co., Ltd. Semiconductor device having layers including aluminum and semiconductor device package including same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080469A (en) * 2004-09-13 2006-03-23 Mitsubishi Cable Ind Ltd Nitride semiconductor light emitting element
JP2007080899A (en) * 2005-09-12 2007-03-29 Showa Denko Kk Gallium nitride system semiconductor light emitting element and its manufacturing method
JP2007311764A (en) * 2006-04-17 2007-11-29 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2008103674A (en) * 2006-10-18 2008-05-01 Samsung Electro Mech Co Ltd Multilayer reflection film electrode and compound semiconductor light emitting device with same
JP2010267797A (en) * 2009-05-14 2010-11-25 Showa Denko Kk Semiconductor light emitting element, lamp, illuminating apparatus, electronic apparatus, and electrode
JP2011138820A (en) * 2009-12-25 2011-07-14 Nichia Corp Light-emitting element
WO2011105194A1 (en) * 2010-02-26 2011-09-01 日亜化学工業株式会社 Nitride semiconductor light emitting element and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080469A (en) * 2004-09-13 2006-03-23 Mitsubishi Cable Ind Ltd Nitride semiconductor light emitting element
JP2007080899A (en) * 2005-09-12 2007-03-29 Showa Denko Kk Gallium nitride system semiconductor light emitting element and its manufacturing method
JP2007311764A (en) * 2006-04-17 2007-11-29 Nichia Chem Ind Ltd Semiconductor light-emitting element
JP2008103674A (en) * 2006-10-18 2008-05-01 Samsung Electro Mech Co Ltd Multilayer reflection film electrode and compound semiconductor light emitting device with same
JP2010267797A (en) * 2009-05-14 2010-11-25 Showa Denko Kk Semiconductor light emitting element, lamp, illuminating apparatus, electronic apparatus, and electrode
JP2011138820A (en) * 2009-12-25 2011-07-14 Nichia Corp Light-emitting element
WO2011105194A1 (en) * 2010-02-26 2011-09-01 日亜化学工業株式会社 Nitride semiconductor light emitting element and method for manufacturing same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016120047A1 (en) * 2015-01-26 2016-08-04 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component, optoelectronic arrangement and method for producing an optoelectronic semiconductor component
US10283686B2 (en) 2015-01-26 2019-05-07 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor component, optoelectronic arrangement and method of producing an optoelectronic semiconductor component
WO2016159694A1 (en) * 2015-04-03 2016-10-06 엘지이노텍 주식회사 Light emitting element
US10236417B2 (en) 2015-04-03 2019-03-19 Lg Innotek Co., Ltd. Light-emitting element
JP2018006535A (en) * 2016-06-30 2018-01-11 ウシオ電機株式会社 Semiconductor light-emitting device
JP2021129121A (en) * 2016-06-30 2021-09-02 ウシオ電機株式会社 Light irradiation device
JP7228120B2 (en) 2016-06-30 2023-02-24 ウシオ電機株式会社 Light irradiation device
WO2018048275A1 (en) * 2016-09-10 2018-03-15 엘지이노텍 주식회사 Semiconductor device
US11569416B2 (en) 2016-09-10 2023-01-31 Suzhou Lekin Semiconductor Co., Ltd. Light emitting semiconductor device
US11961943B2 (en) 2016-09-10 2024-04-16 Suzhou Lekin Semiconductor Co., Ltd. Light emitting semiconductor device for enhancing light extraction efficiency
US10910519B2 (en) 2016-09-13 2021-02-02 Lg Innotek Co., Ltd. Semiconductor device having layers including aluminum and semiconductor device package including same
US10593838B2 (en) 2017-08-14 2020-03-17 Lg Innotek Co., Ltd. Semiconductor device

Also Published As

Publication number Publication date
JP5978758B2 (en) 2016-08-24

Similar Documents

Publication Publication Date Title
JP5016808B2 (en) Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device
JP5978758B2 (en) Semiconductor light emitting device
US9972657B2 (en) Semiconductor light emitting element
US8299501B2 (en) Nitride semiconductor device
JPWO2006082687A1 (en) GaN-based light emitting diode and light emitting device
JP2007173465A (en) Manufacturing method of nitride semiconductor light-emitting element
JP6319371B2 (en) Semiconductor light emitting device
JP5780242B2 (en) Nitride semiconductor light emitting device
KR101132910B1 (en) Manufacturing Process of Light Emitting Diode
JP2005033197A (en) Nitride semiconductor device
WO2011111642A1 (en) Semiconductor light-emitting element, and method for producing same
JP2009218495A (en) Semiconductor light-emitting element and semiconductor light-emitting device
JP5609607B2 (en) Nitride semiconductor light emitting device
JP5471485B2 (en) Nitride semiconductor device and pad electrode manufacturing method for nitride semiconductor device
JP5949140B2 (en) Semiconductor light emitting device
JP4868821B2 (en) Gallium nitride compound semiconductor and light emitting device
JP2007149983A (en) Manufacture of nitride semiconductor light-emitting element
JP2007173369A (en) Semiconductor light-emitting element and manufacturing method thereof
JPWO2011125290A1 (en) Nitride-based semiconductor device and manufacturing method thereof
KR101499954B1 (en) fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP2007201046A (en) Compound semiconductor and light emitting element
JP2008226866A (en) Gallium nitride based light-emitting diode element and light-emitting device
JP2015026646A (en) Light-emitting device
KR20090115631A (en) Fabrication of vertical structured light emitting diodes using group 3 nitride-based semiconductors and its related methods
JP5533573B2 (en) Semiconductor element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160113

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160711

R150 Certificate of patent or registration of utility model

Ref document number: 5978758

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250