JP5742214B2 - Method of quenching annular body using continuous quenching furnace - Google Patents

Method of quenching annular body using continuous quenching furnace Download PDF

Info

Publication number
JP5742214B2
JP5742214B2 JP2010290631A JP2010290631A JP5742214B2 JP 5742214 B2 JP5742214 B2 JP 5742214B2 JP 2010290631 A JP2010290631 A JP 2010290631A JP 2010290631 A JP2010290631 A JP 2010290631A JP 5742214 B2 JP5742214 B2 JP 5742214B2
Authority
JP
Japan
Prior art keywords
quenching
deformation
annular body
belt
work
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010290631A
Other languages
Japanese (ja)
Other versions
JP2012136744A (en
Inventor
昌志 津村
昌志 津村
沖田 滋
滋 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2010290631A priority Critical patent/JP5742214B2/en
Publication of JP2012136744A publication Critical patent/JP2012136744A/en
Application granted granted Critical
Publication of JP5742214B2 publication Critical patent/JP5742214B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、連続焼入れ炉を用いた環状体の焼入れ方法に関する。   The present invention relates to an annular body quenching method using a continuous quenching furnace.

転がり軸受の内輪や外輪に対しては、焼入れによる硬化処理が行われる。焼入れは、加熱工程と冷却工程とからなり、加熱工程で使用される焼入れ炉には、ベルトなどの駆動によりワークを搬送しながら連続的に加熱する連続焼入れ炉と、ワークを一つ一つ加熱処理するバッチ式の焼入れ炉がある。一般に、バッチ式の焼入れ炉よりも連続焼入れ炉の方が焼入れ変形が大きいことが分かっている。また、連続焼入れ炉は、生産性を重視して大量のワークに焼入れを行う場合に適しており、バッチ式の焼入れ炉は、多品種、異種条件に対応し易い。
図1は、転がり軸受の内輪や外輪に対する一般的な連続熱処理設備を示す。この設備は、連続加熱炉1と、その内部に配置された耐熱リンクベルト3と、このベルト3の上流側にワーク5を導入するためのフィーダー2と、ベルト3の下流に達したワーク(加熱後のワーク)6を、焼入れ油8を入れた容器7に落とすシューター4を備えている。
A hardening process by quenching is performed on the inner ring and the outer ring of the rolling bearing. Quenching consists of a heating process and a cooling process. In the quenching furnace used in the heating process, a continuous quenching furnace that continuously heats the work while conveying the work by driving a belt, etc., and heating the work one by one There are batch-type quenching furnaces to process. In general, it has been found that quenching deformation is greater in a continuous quenching furnace than in a batch quenching furnace. In addition, the continuous quenching furnace is suitable for a case where a large amount of workpieces are quenched with an emphasis on productivity, and the batch-type quenching furnace is easy to deal with various types and different conditions.
FIG. 1 shows a general continuous heat treatment facility for an inner ring and an outer ring of a rolling bearing. This equipment includes a continuous heating furnace 1, a heat-resistant link belt 3 disposed therein, a feeder 2 for introducing a work 5 upstream of the belt 3, and a work (heating) that reaches the downstream of the belt 3. A shooter 4 for dropping the later workpiece 6) into a container 7 containing quenching oil 8 is provided.

容器7内には、ワーク6を焼入れ油8に浸漬しながら上昇させて容器7外まで導く搬送メッシュベルト9が配置されている。そして、焼入れ後のワーク10は、搬送メッシュベルト9から洗浄槽11内とその前後に渡って配置された搬送ベルト16の上流側に落とされる。搬送ベルト16に載せられたワーク(焼入れ後のワーク)10は、洗浄槽11内で洗浄されながら進み、洗浄後のワーク14が焼戻し炉12用の搬送ベルト17に載せられて焼戻しがなされ、焼戻し完了後のワーク15として次工程のために回収される。
焼入れ油8を入れた容器7に自然落下させた時のワーク6の姿勢や落下のタイミングによって、ワーク6の冷却状態が変わり、図2(a)に示すように、比較的素直に落下する場合と、図2(b)に示すように、後ろのワーク6と干渉して落下が遅れる場合とでは、後者の方が冷却ムラが発生し易いため、焼入れ変形が大きくなる。
In the container 7, a transport mesh belt 9 is arranged that raises the work 6 while being immersed in the quenching oil 8 and guides the work 6 to the outside of the container 7. Then, the workpiece 10 after quenching is dropped from the transport mesh belt 9 to the upstream side of the transport belt 16 disposed in the cleaning tank 11 and across the front and rear thereof. The work (work after quenching) 10 placed on the transport belt 16 proceeds while being cleaned in the cleaning tank 11, and the cleaned work 14 is placed on the transport belt 17 for the tempering furnace 12 to be tempered and tempered. The workpiece 15 after completion is collected for the next process.
The cooling state of the workpiece 6 changes depending on the posture of the workpiece 6 and the timing of the dropping when the workpiece 6 is naturally dropped into the container 7 containing the quenching oil 8 and falls relatively straightly as shown in FIG. As shown in FIG. 2B, when the fall is delayed due to interference with the rear workpiece 6, the latter is more likely to cause uneven cooling, and thus quenching deformation becomes larger.

[本発明に至る経緯]
図1に示す連続熱処理設備で、呼び番号が6009である深溝玉軸受の外輪を熱処理し、各工程を行うことによって生じる外輪の変形量を調べる試験を行った。
この外輪は、外径が75mmで、有効肉厚が3.734mmで、幅が16mmの環状体である。また、この外輪の材質は高炭素クロム軸受鋼2種(SUJ2)である。
連続加熱炉1としては、リンクベルト3で搬送する方式のものを用い、フィーダー2としては振動を加えてワーク5をリンクベルト3に向かわせる振動フィーダーを用いた。焼入れ剤としては、出光興産(株)製の「ダフニーブライドクエンチ油」を用い、洗浄槽に入れる洗浄液としては、カンエイ産業(株)製「クリンスーパー285N」を用いた。
[Background to the present invention]
In the continuous heat treatment facility shown in FIG. 1, the outer ring of a deep groove ball bearing having a nominal number of 6009 was heat-treated, and a test for examining the deformation amount of the outer ring caused by performing each step was performed.
The outer ring is an annular body having an outer diameter of 75 mm, an effective thickness of 3.734 mm, and a width of 16 mm. The outer ring is made of high-carbon chromium bearing steel type 2 (SUJ2).
As the continuous heating furnace 1, the one that is conveyed by the link belt 3 is used, and as the feeder 2, a vibration feeder that applies vibration to the work 5 toward the link belt 3 is used. As the quenching agent, “Daffney Bride Quenched Oil” manufactured by Idemitsu Kosan Co., Ltd. was used, and “Krin Super 285N” manufactured by Kanei Sangyo Co., Ltd. was used as the cleaning liquid to be put into the cleaning tank.

先ず、フィーダー2を25〜50Hzで稼動して、ワーク5を連続加熱炉1内のリンクベルト3に載せる。リンクベルト3の駆動速度は、炉の加熱部長さ当り15〜43分である。この条件でワーク5の移動を行うと、図3(a)に示すように、フィーダー2からワーク5がリンクベルト3の上に載せられ、図3(b)に示すように、フィーダー2内でワーク5が詰まり、空間ができる場合があるが、その後にフィーダー2から入れられたワークにより押されて詰まりが解消し、図3(c)に示すように、密に配置された状態となってリンクベルト3で搬送されながら加熱される。この加熱温度は830〜850℃とし、加熱時間は15〜43分とした。   First, the feeder 2 is operated at 25 to 50 Hz, and the work 5 is placed on the link belt 3 in the continuous heating furnace 1. The driving speed of the link belt 3 is 15 to 43 minutes per length of the heating section of the furnace. When the workpiece 5 is moved under this condition, the workpiece 5 is placed on the link belt 3 from the feeder 2 as shown in FIG. 3 (a), and inside the feeder 2 as shown in FIG. 3 (b). Although the work 5 may be clogged and a space may be formed, the clogging is eliminated by being pushed by the work put in from the feeder 2 after that, and as shown in FIG. It is heated while being conveyed by the link belt 3. The heating temperature was 830 to 850 ° C., and the heating time was 15 to 43 minutes.

フィーダー2上の下流端まで進んだワーク6は、シューター4から焼入れ油8が入った容器7内に落下して、搬送メッシュベルト9上に載る。搬送メッシュベルト9上に載ったワーク10は、メッシュベルト9の駆動により、容器7の底側から徐々に上昇して焼入れ油8の上方まで搬送されることで焼入れされる。焼入れ後のワーク10は、搬送メッシュベルト9から洗浄槽11内とその前後に渡って配置された搬送ベルト16の上流側に落とされる。搬送ベルト16に載せられたワーク(焼入れ後のワーク)10は、洗浄槽11内で洗浄されながら進み、洗浄後のワーク14が焼戻し炉12用の搬送ベルト17に載せられて焼戻しがなされ、焼戻し完了後のワーク15が得られる。   The work 6 that has advanced to the downstream end on the feeder 2 falls from the shooter 4 into the container 7 containing the quenching oil 8 and is placed on the transport mesh belt 9. The workpiece 10 placed on the transport mesh belt 9 is quenched by being gradually lifted from the bottom side of the container 7 and transported to above the quenching oil 8 by driving the mesh belt 9. The workpiece 10 after quenching is dropped from the transport mesh belt 9 to the upstream side of the transport belt 16 disposed in the cleaning tank 11 and across the front and rear thereof. The work (work after quenching) 10 placed on the transport belt 16 proceeds while being cleaned in the cleaning tank 11, and the cleaned work 14 is placed on the transport belt 17 for the tempering furnace 12 to be tempered and tempered. The completed work 15 is obtained.

各工程後のワークの変形量は、真円度と反りを測定してその変化率で比較した。環状体の径方向での変形(楕円変形)に関しては、ワークである外輪の外径寸法の最大値と最小値を測定して、その差を真円度とし、この真円度を外径の最小値で割った値を楕円変形率(%)とした。環状体の軸方向での変形(反り変形)に関しては、ワークである外輪の軸方向寸法の最大値と最小値を測定して、その差を反りとし、この反りを軸方向寸法の最小値で割った値を反り変形率(%)とした。楕円変形率および反り変形率を各工程後に60個ずつ測定した。また、これらの測定値から、それぞれの変形率の平均値を算出した。
その結果を下記の表1と図4に示す。
The deformation amount of the work after each process was compared by measuring the roundness and warpage and the rate of change. Regarding the deformation in the radial direction of the annular body (elliptical deformation), the maximum and minimum values of the outer diameter of the outer ring as the workpiece are measured, and the difference is defined as the roundness. The value divided by the minimum value was defined as the elliptic deformation rate (%). Regarding the deformation of the annular body in the axial direction (warp deformation), the maximum value and minimum value of the axial dimension of the outer ring, which is the workpiece, are measured, and the difference is taken as the warp. The divided value was defined as the warpage deformation rate (%). The elliptic deformation rate and the warp deformation rate were measured 60 after each step. Moreover, the average value of each deformation rate was calculated from these measured values.
The results are shown in Table 1 below and FIG.

Figure 0005742214
Figure 0005742214

この結果から、焼入れ時の加熱工程と冷却工程で変態応力や熱応力が作用することで、焼入れ後の楕円変形および反り変形が大きくなるが、その後の工程では搬送時の落下やワーク同士の衝突などで徐々に変形したものと考えられる。
次に、焼入れ時の加熱工程のみでのワークの変形量を調べるために、リンクベルト3の最も下流の位置に達したワークを、リンクベルト3の回転の向きを交互に変えることで、その位置にとどめた状態で炉内で徐冷し、焼入れしない状態で取り出して変形率を調べた。また、徐冷後に、洗浄および焼き戻し工程を行った後のワークの変形率も調べた。その結果を、下記の表2と図5に併せて示す。
From these results, transformation stress and thermal stress act in the heating process and cooling process during quenching, so that elliptical deformation and warping deformation after quenching increase, but in subsequent processes, dropping during transportation and collision between workpieces It is thought that it changed gradually.
Next, in order to investigate the deformation amount of the work only in the heating process at the time of quenching, the work that has reached the most downstream position of the link belt 3 is changed to the position of the link belt 3 by alternately changing the direction of rotation. The steel was slowly cooled in a furnace while remaining in the furnace, taken out without quenching and examined for deformation rate. Moreover, the deformation rate of the workpiece | work after performing washing | cleaning and a tempering process after slow cooling was also investigated. The results are shown in Table 2 below and FIG.

Figure 0005742214
Figure 0005742214

この結果から、焼入れ時の加熱工程のみでも、大きく楕円変形および反り変形していることが分かる。
次に、加熱焼入れによって発生する変形の一部として、前工程として行った旋削などの機械加工で付与された残留応力が解放されることで発生する変形があるため、この残留応力の解放による変形のみを調べた。すなわち、バッチ式の熱処理炉を用いてワークを加熱した後、球状焼鈍の熱処理パターンで時間をかけてゆっくり冷却した場合の変形量を測定した。その結果を表3と図6に示す。
From this result, it can be seen that the elliptical deformation and warping deformation are greatly caused only by the heating process at the time of quenching.
Next, as a part of deformation caused by heat quenching, there is deformation that occurs due to the release of residual stress applied by machining such as turning performed as a previous process. Only examined. That is, after heating a workpiece | work using a batch-type heat processing furnace, the deformation | transformation amount at the time of cooling slowly over time with the heat processing pattern of spherical annealing was measured. The results are shown in Table 3 and FIG.

Figure 0005742214
Figure 0005742214

この結果から、残留応力の解放による変形のみで生じる変形量は、楕円変形については加熱炉で加熱後に放冷した場合の変形量(表2参照)より小さいことが分かる。反り変形については、加熱炉で加熱後に放冷した場合の変形量(表2参照)と同等であった。
以上のことから、図1に示す連続熱処理設備で処理されたワークは、加熱炉1での加熱工程で大きく楕円変形しているが、その主な原因は残留応力の解放ではないことが分かる。
From this result, it can be seen that the deformation amount caused only by the deformation due to the release of the residual stress is smaller than the deformation amount (see Table 2) when the elliptical deformation is allowed to cool after heating in the heating furnace. The warpage deformation was equivalent to the deformation amount (see Table 2) when it was allowed to cool after heating in a heating furnace.
From the above, it can be seen that the workpiece processed by the continuous heat treatment equipment shown in FIG. 1 is largely elliptically deformed in the heating process in the heating furnace 1, but the main cause is not the release of the residual stress.

標準的な連続焼入れ設備では、平面図である図7(a)と側面図である図7(b)に示すように、フィーダー2上のワーク5も加熱炉1内のワーク6も、互いに接触して押し合いながら密に存在しているため、温度が上昇してワークが熱膨張すると、図8(a)の状態から図8(b)の状態になる。ワークがSUJ2製の前記寸法の外輪であるため、730℃で約1mmほど膨張する(d2−d1≒1mm)。この外輪が押し合い状態となってオーステナイト組織に変態するため、変態超塑性が作用して変形しやすい状態になる。変態超塑性とは、変態が発生、進行しているときに、低い作用応力で塑性が発生する現象である。図8(b)に示すように、互いに押し合った状態で変態超塑性が作用してワークが変形する。   In a standard continuous quenching facility, as shown in FIG. 7A which is a plan view and FIG. 7B which is a side view, the workpiece 5 on the feeder 2 and the workpiece 6 in the heating furnace 1 are in contact with each other. Then, since they are densely in contact with each other, when the temperature rises and the workpiece is thermally expanded, the state shown in FIG. 8 (a) is changed to the state shown in FIG. 8 (b). Since the workpiece is an outer ring having the above dimensions made of SUJ2, the workpiece expands by about 1 mm at 730 ° C. (d2−d1≈1 mm). Since the outer ring is pressed and transformed into an austenite structure, the transformation superplasticity acts to make it easy to deform. Transformation superplasticity is a phenomenon in which plasticity occurs with a low acting stress when transformation occurs and progresses. As shown in FIG. 8 (b), the transformation superplasticity acts in a state where they are pressed against each other, and the workpiece is deformed.

一方、反り変形については、バッチ式加熱炉においても連続焼入れ設備と同様に、反り変形を抑える拘束がないため、反り変形量が同等であったものと考えられる。
このように、従来の連続焼入れ方法ではワークの楕円変形を抑えることは困難であり、従来のバッチ式焼入れにおいてもワークの反り変形を抑えることは困難である。
特許文献1には、焼入れ変形を小さくするために、処理材を投入する際の焼入れ油の面圧を減圧し、処理材の表面が蒸気膜段階または沸騰段階にある状態で不活性ガスあるいは空気を導入して焼入れ油面圧を大きくすることで、冷却ムラに起因して発生する歪みを小さくする方法が記載されている。しかし、この方法は連続焼入れ炉ではなく、バッチ式の焼入れ炉に適用される方法である。
On the other hand, with regard to warpage deformation, it is considered that the amount of warpage deformation was the same in a batch-type heating furnace as there is no constraint to suppress warpage deformation as in the case of continuous quenching equipment.
Thus, it is difficult to suppress the elliptical deformation of the workpiece by the conventional continuous quenching method, and it is difficult to suppress the warp deformation of the workpiece even by the conventional batch quenching.
In Patent Document 1, in order to reduce quenching deformation, the surface pressure of the quenching oil when the treatment material is introduced is reduced, and the surface of the treatment material is in an inert gas or air state in a vapor film stage or a boiling stage. Describes a method of reducing distortion generated due to uneven cooling by introducing quenching to increase the quenching oil surface pressure. However, this method is not a continuous quenching furnace but a method applied to a batch-type quenching furnace.

特許文献2には、転がり軸受の環状体の焼入れにおける冷却工程で、環状体の組織がオーステナイト状態のうちに、環状体を金型に圧入して塑性加工による変形矯正を行うことで焼入れ変形を小さくすることが記載されている。しかし、この方法は、連続焼入れ炉で加熱した後の冷却工程でワークを一つ一つ処理する方法であるため、生産性が低く、大量生産には向いていない。   In Patent Document 2, in the cooling process in the quenching of the annular body of the rolling bearing, while the structure of the annular body is in the austenite state, the annular body is press-fitted into a mold and the deformation is corrected by plastic working. It is described to make it smaller. However, this method is a method of processing workpieces one by one in the cooling step after heating in a continuous quenching furnace, so that the productivity is low and it is not suitable for mass production.

特許文献3には、連続焼入れ炉を用いた環状体の焼入れ方法として、図9に示す方法が記載されている。この方法で使用する設備は、ワーク(環状体)5をベルト3で搬送しながら連続的に加熱する連続加熱炉1と、ベルト3上にワーク5を、径方向が水平方向に沿って置かれるように導くフィーダー2と、焼入れ油(焼入れ剤)8を入れた容器7と、加熱後のワーク6を搬送ベルト3から容器7内に配置された搬送メッシュベルト9上に落下させるシューター4と、からなる。   Patent Document 3 describes a method shown in FIG. 9 as a method for quenching an annular body using a continuous quenching furnace. The equipment used in this method is a continuous heating furnace 1 that continuously heats the work (annular body) 5 while being conveyed by the belt 3, and the work 5 is placed on the belt 3 along the horizontal direction in the radial direction. A feeder 2 that guides, a container 7 containing quenching oil (quenching agent) 8, a shooter 4 that drops the heated workpiece 6 from the conveyor belt 3 onto a conveyor mesh belt 9 disposed in the container 7, Consists of.

特許文献3の方法では、フィーダー2上、加熱炉1の搬送ベルト3上、搬送メッシュベルト9上で、全てのワーク5,6,10同士が接触しない状態に保持しながら移動させることで、環状体の楕円変形(図8で説明した変形)を抑制することができる。
しかし、特許文献3の方法では、環状体の軸方向での変形(反り変形)を抑制することができない。また、この方法は、加熱炉の搬送ベルト上において、全ての環状体同士を接触しない状態に保持しながら移動させるため、加熱炉で処理できるワーク数が少ないことから、生産性の点で改善の余地がある。
In the method of Patent Document 3, the workpiece 2 is moved on the feeder 2, on the conveyor belt 3 of the heating furnace 1, and on the conveyor mesh belt 9 while keeping all the workpieces 5, 6, 10 out of contact with each other. Elliptical deformation of the body (the deformation described in FIG. 8) can be suppressed.
However, the method of Patent Document 3 cannot suppress deformation (warp deformation) in the axial direction of the annular body. In addition, since this method moves on the conveyor belt of the heating furnace while keeping all the annular bodies in contact with each other, since the number of workpieces that can be processed in the heating furnace is small, it is improved in terms of productivity. There is room.

特開2001−316722号公報JP 2001-316722 A 特許3817764号公報Japanese Patent No. 3817764 特開2009−84635号公報JP 2009-84635 A

本発明の課題は、連続焼入れ炉を用いた環状体の焼入れ方法として、焼入れ変形を、楕円変形だけでなく反り変形についても抑えることができ、特許文献3の方法よりも生産性が高い方法を提供することである。   The subject of the present invention is a method of quenching deformation, not only elliptical deformation but also warping deformation, as a method of quenching an annular body using a continuous quenching furnace, and a method with higher productivity than the method of Patent Document 3. Is to provide.

上記課題を解決するために、本発明は、環状体からなるワークをベルトで搬送しながら連続的に加熱する加熱炉と、この加熱炉の搬送ベルト上に環状体を、径方向が水平方向に沿って置かれるように導くフィーダーと、焼入れ剤を入れた容器と、加熱後のワークを搬送ベルトから前記容器内に配置された搬送メッシュベルト上に落下させるシューターと、を備え、搬送メッシュベルトはワークを焼入れ剤に浸漬しながら容器外まで導くものである連続焼入れ炉を用いた環状体の焼入れ方法において、前記フィーダー上および前記加熱炉の搬送ベルト上で、全ての環状体を、互いに外周面が接触せず、鉛直方向に2個以上が積み上げられた状態に保持しながら移動させ、前記搬送メッシュベルト上で、全ての環状体を互いに接触しない状態に保持しながら移動させることを特徴とする連続焼入れ炉を用いた環状体の焼入れ方法を提供する。   In order to solve the above-described problems, the present invention provides a heating furnace that continuously heats a workpiece made of an annular body while conveying the workpiece with a belt, and an annular body on the conveying belt of the heating furnace so that the radial direction is horizontal. A feeder that guides it to be placed along, a container containing a quenching agent, and a shooter that drops the heated workpiece from the conveyor belt onto the conveyor mesh belt disposed in the container, In the method of quenching an annular body using a continuous quenching furnace, which guides the workpiece to the outside of the container while immersing the workpiece in the quenching agent, all the annular bodies are arranged on the outer peripheral surface on the feeder and on the conveyor belt of the heating furnace. Are not in contact with each other, and are moved while being held in a state where two or more are stacked in the vertical direction, so that all the annular bodies are not in contact with each other on the transport mesh belt. It provides a method of hardening the annular body using a continuous hardening furnace, characterized in that to move while.

本発明の方法は、前記フィーダー上および前記加熱炉の搬送ベルト上で、全ての環状体を、互いに外周面が接触せず、鉛直方向に2個積み上げられた状態に保持しながら移動させた場合、環状体の厚さをtとし、外径をDとし、軸方向寸法をBとしたとき、「D/t」で表される肉厚率が11.2以上27.2以下であり、「D/B」が3.5以上8.2以下である環状体が対象の時に、特に高い効果が得られる。 In the method of the present invention, on the feeder and the conveyor belt of the heating furnace, all the annular bodies are moved while being held in a state where two outer peripheral surfaces are not in contact with each other and are stacked in the vertical direction. , Where the thickness of the annular body is t, the outer diameter is D, and the axial dimension is B, the thickness ratio represented by “D / t” is 11.2 to 27.2, D / B " is 3 . A particularly high effect is obtained when an annular body of 5 or more and 8.2 or less is a target.

本発明の連続焼入れ炉を用いた環状体の焼入れ方法によれば、焼入れ時の環状体の楕円変形および反り変形を抑えることができるとともに、特許文献3の方法よりも生産性を高くすることができる。   According to the method for quenching an annular body using the continuous quenching furnace of the present invention, elliptical deformation and warping deformation of the annular body during quenching can be suppressed, and productivity can be made higher than the method of Patent Document 3. it can.

転がり軸受の内輪や外輪に対する一般的な連続熱処理設備を示す概略構成図である。It is a schematic block diagram which shows the general continuous heat processing equipment with respect to the inner ring | wheel and outer ring | wheel of a rolling bearing. 加熱炉の下流端から焼入れ油を入れた容器に自然落下させた時のワークの姿勢や落下のタイミングを説明する図であり、比較的素直に落下する場合(a)と後ろのワークと干渉して落下が遅れる場合(b)を示す。It is a figure explaining the posture of the work and the timing of the fall when it naturally falls into the container filled with quenching oil from the downstream end of the heating furnace. (B) is shown when the fall is delayed. フィーダーからワークがリンクベルトの上に載せられた状態を示す側面図(a)、フィーダー内でワークが詰まり、空間ができる場合を示す平面図(b)、フィーダーから入れられたワークにより押されて詰まりが解消した状態を示す平面図(c)である。Side view (a) showing a state where the work is placed on the link belt from the feeder, Plan view (b) showing a case where the work is clogged and a space is formed in the feeder, and pushed by the work put from the feeder It is a top view (c) which shows the state from which clogging was eliminated. 従来法で各工程後のワークの平均変形率を示すグラフである。It is a graph which shows the average deformation rate of the workpiece | work after each process by the conventional method. 従来法で、加熱後に焼入れしない状態(徐冷後)で取り出して調べた変形率と、徐冷後に、洗浄および焼き戻し工程を行った後に調べたワークの変形率を示すグラフである。It is a graph which shows the deformation rate which it took out and investigated in the state which is not quenched after heating (after slow cooling) by the conventional method, and the deformation rate of the work investigated after performing a washing and tempering process after slow cooling. バッチ式の熱処理炉を用いてワークを加熱した後、球状焼鈍の熱処理パターンで時間をかけてゆっくり冷却した場合の変形量を測定した結果を示す図である。It is a figure which shows the result of having measured the deformation | transformation amount when heating a workpiece | work using a batch type heat processing furnace, and cooling slowly over time with the heat processing pattern of spherical annealing. 標準的な連続焼入れ設備を示す平面図(a)と側面図(b)である。It is the top view (a) and side view (b) which show a standard continuous hardening equipment. 図7の連続焼入れ設備で温度が上昇してワークが熱膨張した時の変化を示す図であり、加熱前の状態(a)と加熱後の状態(b)の状態を示す。It is a figure which shows the change when temperature rises with the continuous hardening equipment of FIG. 7, and a workpiece | work thermally expands, and shows the state (a) before a heating, and the state (b) after a heating. 特許文献3の方法を示す平面図(a)と側面図(b)である。It is the top view (a) and side view (b) which show the method of patent document 3. FIG. 本発明の実施形態の方法を示す平面図(a)と側面図(b)である。It is the top view (a) and side view (b) which show the method of embodiment of this invention. 実施例の方法で、加熱後に焼入れしない状態(徐冷後)で取り出して調べた変形率と、徐冷後に、洗浄および焼き戻し工程を行った後に調べたワークの変形率を示すグラフであって、(a)は楕円変形率を(b)は反り変形率を示す。It is the graph which shows the deformation rate which it took out in the state of not quenching after heating (after slow cooling) by the method of an example, and investigated, and the deformation rate of the work investigated after performing a washing and tempering process after slow cooling. , (A) shows the elliptic deformation rate and (b) shows the warp deformation rate. 焼入れ時に変態しないステンレス鋼を用いて矩形リングを作製し、これを用いて、連続焼入れ、洗浄、焼戻しの一連の工程を行った結果(楕円変形率)を示すグラフであって、(a)は従来の方法による結果を、(b)は実施例の方法による結果を示す。It is a graph which shows the result (elliptical deformation rate) which produced the rectangular ring using the stainless steel which does not transform at the time of quenching, and performed a series of processes of continuous quenching, washing, and tempering, using (a) The result by the conventional method is shown, and (b) shows the result by the method of the example. 焼入れ時に変態しないステンレス鋼を用いて矩形リングを作製し、これを用いて、連続焼入れ、洗浄、焼戻しの一連の工程を行った結果(反り変形率)を示すグラフであって、(a)は従来の方法による結果を、(b)は実施例の方法による結果を示す。It is a graph which shows the result (warp deformation rate) which produced the rectangular ring using the stainless steel which does not transform at the time of quenching, and performed a series of processes of continuous quenching, washing, and tempering, using (a) The result by the conventional method is shown, and (b) shows the result by the method of the example. 実施例の方法で、加熱炉の下流端から焼入れ油を入れた容器に自然落下させた時のワークの姿勢や落下のタイミングを説明する図である。It is a figure explaining the attitude | position of a workpiece | work when it is made to fall naturally to the container which put quenching oil from the downstream end of the heating furnace with the method of an Example, and the timing of dropping. 表7に示す、各寸法の内輪および外輪のそれぞれ1000個について、従来の方法と本発明の方法と比較例(特許文献3)の方法で、連続焼入れ、洗浄、焼戻しを行い、不良率を測定した結果を示すグラフであって、(a)は、楕円変形不良率と肉厚率(D/t)との関係を、従来の方法を「○」で本発明の方法を「●」で示し、(b)は、反り変形率不良率とD/Bとの関係を、従来の方法を「○」で本発明の方法を「●」で比較例の方法を「△」で示す。For each of the 1000 inner rings and outer rings shown in Table 7, continuous quenching, cleaning, and tempering were performed by the conventional method, the method of the present invention, and the method of Comparative Example (Patent Document 3), and the defect rate was measured. (A) shows the relationship between the oval deformation defect rate and the wall thickness ratio (D / t), the conventional method is indicated by “◯”, and the method of the present invention is indicated by “●”. (B) shows the relationship between the warp deformation rate defect rate and D / B, the conventional method is indicated by “◯”, the method of the present invention is indicated by “●”, and the method of the comparative example is indicated by “Δ”. 表7に示す、各寸法の内輪および外輪のそれぞれ1000個について、従来の方法と本発明の方法と特許文献3(比較例)の方法で、連続焼入れ、洗浄、焼戻しを行い、不良率を測定した結果を示すグラフであって、(a)は「従来例と本発明例とでの楕円変形不良率の差」と肉厚率(D/t)との関係を示し、(b)は、「従来例と本発明例とでの反り変形不良率の差」とD/Bとの関係(○)と「比較例と本発明例とでの反り変形不良率の差」とD/Bとの関係(△)を示す。For 1000 pieces of inner ring and outer ring of each dimension shown in Table 7, continuous quenching, washing and tempering are performed by the conventional method, the method of the present invention and the method of Patent Document 3 (comparative example), and the defect rate is measured. (A) shows the relationship between the "difference in elliptic deformation defect rate between the conventional example and the present invention example" and the wall thickness ratio (D / t), (b) Relationship between “difference in warp deformation defect rate between conventional example and present invention example” and D / B (◯), “difference in warp deformation defect rate between comparative example and present invention example” and D / B (Δ) is shown.

以下、本発明の実施形態について説明する。
図10は、この実施形態の方法を示す平面図(a)と側面図(b)である。この方法で使用する設備は、ワーク(環状体)5a,5bをベルト3で搬送しながら連続的に加熱する連続加熱炉1と、ベルト3上にワーク5a,5bを、径方向が水平方向に沿って置かれるように導くフィーダー2と、焼入れ油(焼入れ剤)8を入れた容器7と、加熱後のワーク6a,6bを搬送ベルト3から容器7内に配置された搬送メッシュベルト9上に落下させるシューター4と、からなる。
Hereinafter, embodiments of the present invention will be described.
FIG. 10 is a plan view (a) and a side view (b) showing the method of this embodiment. The equipment used in this method includes a continuous heating furnace 1 that continuously heats the workpieces (annular bodies) 5a and 5b while being conveyed by the belt 3, and the workpieces 5a and 5b on the belt 3 with the radial direction in the horizontal direction. Feeder 2 that is guided so as to be placed along, container 7 containing quenching oil (quenching agent) 8, and heated workpieces 6 a and 6 b are placed on conveyor mesh belt 9 disposed in container 7 from conveyor belt 3. A shooter 4 to be dropped.

そして、フィーダー2上と加熱炉1の搬送ベルト3上で、全てのワーク5a,5b,6a,6bを、互いに外周面が接触せず、鉛直方向に2個積み上げられた状態に保持しながら移動させる。フィーダー2上で、上側のワーク5aは、下側の隣り合う3つのワーク5bで形成される隙間の中心と、各ワーク5aの中心を合わせて配置され、この状態が維持されてワーク6a,6bが搬送ベルト3上を移動する。この移動は、加熱時のワーク最大径などから加熱前のワーク同士の隙間を計算し、ワーク加熱時でもワーク外周面が互いに接触せず、フィーダー2上でのワークの配置が維持されるように、フィーダー2の周波数を調整することで実現する。   Then, on the feeder 2 and on the conveyor belt 3 of the heating furnace 1, all the workpieces 5a, 5b, 6a, 6b are moved while keeping the outer peripheral surfaces thereof in contact with each other and being stacked in the vertical direction. Let On the feeder 2, the upper work 5a is arranged by aligning the center of the gap formed by the lower three adjacent works 5b with the center of each work 5a, and this state is maintained and the works 6a and 6b are maintained. Moves on the conveyor belt 3. This movement is calculated so that the gap between the workpieces before heating is calculated from the workpiece maximum diameter at the time of heating, etc., and the workpiece outer peripheral surfaces do not contact each other even when the workpiece is heated, and the arrangement of the workpieces on the feeder 2 is maintained. This is realized by adjusting the frequency of the feeder 2.

また、搬送メッシュベルト9上では、全てのワーク10が互いに接触せず、鉛直方向にも1個のみが存在する状態に保持しながら移動させる。この移動は、加熱時のワーク最大径などから加熱前のワーク同士の隙間を計算し、ワーク加熱時でもワーク外周面が互いに接触しないようにフィーダー2の周波数を調整することで実現する。
この実施形態では、ワークを鉛直方向に2個積み上げられた状態にしているが、鉛直方向にワークを積み上げる個数は3個以上であってもよく、最上段のワークは製品として使用しないダミーを用いてもよい。
Further, on the transport mesh belt 9, all the workpieces 10 are moved while being held in a state where only one piece exists in the vertical direction without being in contact with each other. This movement is realized by calculating the gap between the workpieces before heating from the workpiece maximum diameter during heating and adjusting the frequency of the feeder 2 so that the outer peripheral surfaces of the workpieces do not contact each other even during heating of the workpiece.
In this embodiment, two workpieces are stacked in the vertical direction, but the number of workpieces stacked in the vertical direction may be three or more, and the uppermost workpiece is a dummy that is not used as a product. May be.

実施形態に記載した設備を用い、焼入れ時の加熱工程のみでのワーク6の変形量を調べるために、リンクベルト3の最も下流の位置に達したワークを、リンクベルト3の回転の向きを交互に変えることで、その位置にとどめた状態で炉内で徐冷し、焼入れしない状態で取り出して変形率を調べた。また、徐冷後に、洗浄および焼き戻し工程を行った後のワークの変形率も調べた。その結果を、下記の表4と図11に併せて示す。図11(a)は楕円変形率、図11(b)は反り変形率を示すグラフである。   In order to investigate the deformation amount of the work 6 only by the heating process at the time of quenching using the equipment described in the embodiment, the work that has reached the most downstream position of the link belt 3 is alternately switched in the direction of rotation of the link belt 3. By changing to, it was gradually cooled in the furnace while staying at that position, taken out without quenching and examined for deformation rate. Moreover, the deformation rate of the workpiece | work after performing washing | cleaning and a tempering process after slow cooling was also investigated. The results are shown in Table 4 below and FIG. FIG. 11A is a graph showing the elliptic deformation rate, and FIG. 11B is a graph showing the warp deformation rate.

Figure 0005742214
Figure 0005742214

この結果を前述した従来法の結果(表2および図5)と比較すると、焼入れ時の加熱工程のみでのワークの変形量が低減している(平均変形量:楕円変形0.18→0.11、反り変形1.5→1.0)ことが分かる。ただし、焼戻し後の変形量が従来法では低減していた(表2で、楕円変形0.18→0.14、反り変形1.5→1.2)のに対して、この実施例の方法では僅かではあるが増加していた(表4で、楕円変形0.11→0.16、反り変形1.0→1.3)。また、最大変形率が従来法では楕円変形0.94、反り変形4.7であったのに対して、この実施例の方法では楕円変形0.38、反り変形2.3と大幅に低減されていた。   When this result is compared with the result of the above-described conventional method (Table 2 and FIG. 5), the deformation amount of the workpiece is reduced only in the heating process at the time of quenching (average deformation amount: elliptic deformation 0.18 → 0. 11, warping deformation 1.5 → 1.0). However, the deformation amount after tempering was reduced in the conventional method (in Table 2, the elliptical deformation 0.18 → 0.14, the warp deformation 1.5 → 1.2), but the method of this example. However, it slightly increased (in Table 4, elliptic deformation 0.11 → 0.16, warpage deformation 1.0 → 1.3). In addition, the maximum deformation rate was elliptic deformation 0.94 and warpage deformation 4.7 in the conventional method, whereas in the method of this embodiment, the elliptic deformation 0.38 and warpage deformation 2.3 were significantly reduced. It was.

焼戻し後の変形率が大きくなる理由として、焼入れの冷却工程でワーク間の隙間が適切に保持されていないことが考えられる。そのため、焼入れ時に変態しないステンレス鋼を用いて矩形リングを作製し、これを用いて、従来の方法とこの実施例の方法でそれぞれ連続焼入れ、洗浄、焼戻しの一連の工程を行った。その結果を、従来法については表5に、実施例の方法については表6に示す。   The reason why the deformation rate after tempering increases is that the gap between the workpieces is not properly maintained in the quenching cooling process. Therefore, a rectangular ring was produced using stainless steel that does not transform during quenching, and a series of steps of continuous quenching, cleaning, and tempering were performed using the conventional method and the method of this example. The results are shown in Table 5 for the conventional methods and Table 6 for the methods of the examples.

Figure 0005742214
Figure 0005742214

Figure 0005742214
Figure 0005742214

また、図12に、従来法による楕円変形率(a)と実施例の方法による楕円変形率(b)のグラフを示す。図13に、従来法による反り変形率(a)と実施例の方法による反り変形率(b)のグラフを示す。
この結果から従来例(表5と図12(a)および図13(a))よりも実施例(表6と図12(b)および図13(b))の方が、加熱放冷後も焼戻し後も変形率が少なくなることが分かる。ただし、従来例と実施例とで加熱放冷後と焼戻し後での変形率の増加量が同じになっている。このことから、実施例の方法により、焼入れの冷却工程での変態応力を制御する効果があると推測される。
また、実施例の方法では、図14に示すように、ワーク6をベルト3から焼入れ油8を入れた容器7に自然落下させる際に一定のタイミングで安定して落下するが、従来法では図2(a)および図2(b)に示すように、ワーク6の落下のタイミングがばらついたり、落下姿勢や落下時の回転量が異なるため安定しない。
FIG. 12 shows a graph of the elliptical deformation rate (a) according to the conventional method and the elliptical deformation rate (b) according to the method of the example. FIG. 13 shows a graph of the warp deformation rate (a) according to the conventional method and the warp deformation rate (b) according to the method of the example.
From these results, the example (Table 6, FIG. 12 (b) and FIG. 13 (b)) is more heated and allowed to cool than the conventional example (Table 5 and FIG. 12 (a) and FIG. 13 (a)). It can be seen that the deformation rate decreases even after tempering. However, the increase amount of the deformation rate after heating and cooling and after tempering is the same in the conventional example and the example. From this, it is presumed that the method of the example has an effect of controlling the transformation stress in the quenching cooling step.
Further, in the method of the embodiment, as shown in FIG. 14, when the work 6 is naturally dropped from the belt 3 to the container 7 containing the quenching oil 8, it is stably dropped at a constant timing. As shown in FIG. 2 (a) and FIG. 2 (b), the timing of dropping the workpiece 6 varies, and the dropping posture and the amount of rotation at the time of dropping are not stable.

次に、下記の表7に示す、各寸法の内輪および外輪のそれぞれ1000個について、従来の方法と本発明の方法と特許文献3(比較例)の方法で、連続焼入れ、洗浄、焼戻しを行った。そして、従来の方法と本発明の方法で得られたものについては、最大真円度が0.15mmを超えたものを不良品として、楕円変形の不良率を測定した。また、従来の方法と本発明の方法と特許文献3(比較例)の方法で得られたものについて、最大反りが0.15mmを超えたものを不良品として、反り変形の不良率を測定した。
特許文献3の方法としては、図10において上側のワーク5aを載せずに下側のワーク5bのみを同じ配置となるようにした以外は実施形態と同じ方法(すなわち、図9に示す方法)を実施した。
Next, continuous quenching, cleaning, and tempering were performed on each of 1000 inner rings and outer rings shown in Table 7 below by the conventional method, the method of the present invention, and the method of Patent Document 3 (comparative example). It was. And about what was obtained by the conventional method and the method of this invention, the defective rate of elliptical deformation was measured by making the thing whose maximum roundness exceeded 0.15 mm into a defective article. Moreover, about the thing obtained by the method of the conventional method, the method of this invention, and the method of patent document 3 (comparative example), the thing with the largest curvature exceeding 0.15 mm was made into a defective article, and the defect rate of curvature deformation was measured. .
As the method of Patent Document 3, the same method as that of the embodiment (that is, the method shown in FIG. 9) is used except that only the lower work 5b is placed in the same arrangement without placing the upper work 5a in FIG. Carried out.

なお、熱処理前の旋削工程や冷間加工で発生する残留応力のばらつきを考慮して、同じサンプルを前工程のロットが異なる別のタイミングで2回測定している。この結果を下記の表7に併せて示すとともに、図15にグラフで示す。
図15(a)は肉厚率と楕円変形不良率との関係を示すグラフであり、図15(b)は「D/B」と反り変形不良率との関係を示すグラフである。これらのグラフにおいて、「●」は実施例の方法による結果を、「○」は従来例の方法による結果を示す。また、図15(b)において、「△」は特許文献3(比較例)の方法による結果を示す。
また、同じ肉厚率の従来例の2種類の楕円変形不良率と本発明例の2種類の楕円変形不良率のうち、従来例の楕円変形不良率の最小値から本発明例の楕円変形不良率の最大値を引いた値を、楕円変形不良率の差として算出した。この結果を下記の表7に併せて示すとともに、肉厚率と「楕円変形不良率の差」との関係を図16(a)にグラフで示す。
Note that the same sample is measured twice at different timings with different lots in the previous process in consideration of the variation in residual stress generated in the turning process and cold working before the heat treatment. The results are shown together in Table 7 below, and are shown graphically in FIG.
FIG. 15A is a graph showing the relationship between the thickness ratio and the elliptic deformation defect rate, and FIG. 15B is a graph showing the relationship between “D / B” and the warp deformation defect rate. In these graphs, “●” indicates the result by the method of the example, and “◯” indicates the result by the method of the conventional example. In FIG. 15B, “Δ” indicates the result obtained by the method of Patent Document 3 (Comparative Example).
Of the two types of elliptic deformation defect rates of the conventional example having the same thickness ratio and the two types of elliptic deformation defect rates of the example of the present invention, the elliptic deformation defect of the example of the present invention is determined from the minimum value of the elliptic deformation defect rate of the conventional example. A value obtained by subtracting the maximum value of the rate was calculated as a difference in the oval deformation rate. The results are shown together in Table 7 below, and the relationship between the wall thickness ratio and the “difference in elliptic deformation rate” is shown in a graph in FIG.

また、同じ「D/B」の従来例の2種類の反り変形不良率と本発明例の2種類の反り変形不良率のうち、従来例の反り変形不良率の最小値から本発明例の反り変形不良率の最大値を引いた値を、反り変形不良率の差(対従来例)として算出した。さらに、同じ「D/B」の比較例(特許文献3の方法で得られたもの)の2種類の反り変形不良率と本発明例の2種類の反り変形不良率のうち、比較例の反り変形不良率の最小値から本発明例の反り変形不良率の最大値を引いた値を、反り変形不良率の差(対比較例)として算出した。
これらの結果も下記の表7に併せて示すとともに、「D/B」と「反り変形不良率の差」との関係を図16(b)にグラフで示す。図16(b)において、「○」は従来例との差を示し、「△」は比較例(特許文献3の方法で得られたもの)との差を示す。
Of the two types of warp deformation failure rate of the conventional example of the same “D / B” and the two types of warp deformation failure rate of the example of the present invention, the warp of the example of the present invention is determined from the minimum value of the warp deformation defect rate of the conventional example. A value obtained by subtracting the maximum value of the deformation defect rate was calculated as a difference in the warp deformation defect rate (vs. conventional example). Further, of the two types of warp deformation failure rate of the same “D / B” comparative example (obtained by the method of Patent Document 3) and the two types of warp deformation failure rate of the present invention example, the warp of the comparative example A value obtained by subtracting the maximum value of the warp deformation defect rate of the example of the present invention from the minimum value of the deformation defect rate was calculated as a difference of the warp deformation defect rate (vs. comparative example).
These results are also shown in Table 7 below, and the relationship between “D / B” and “difference in warp deformation failure rate” is shown in a graph in FIG. In FIG. 16B, “◯” indicates the difference from the conventional example, and “Δ” indicates the difference from the comparative example (obtained by the method of Patent Document 3).

Figure 0005742214
Figure 0005742214

この結果から、楕円変形については、肉厚率が8.7の場合は従来の方法でも不良率が0であり、31.7の場合は本発明例の方が不良率が高いため、肉厚率が11.2以上27.2以下で本発明の方法による効果が得られ、肉厚率が13.7以上24.0以下であるとさらに高い効果が得られることが分かる。反り変形については、「D/B」が9.5の場合は従来の方法でも不良率が0であり、2.8と3.1の場合は本発明例の方が不良率が高いため、「D/B」が3.5以上8.2以下で本発明の方法による効果が得られ、「D/B」が3.9以上8.2以下であるとさらに高い効果が得られることが分かる。   From this result, regarding the elliptical deformation, when the wall thickness ratio is 8.7, the defect rate is 0 even in the conventional method, and when the wall thickness ratio is 31.7, the defect ratio is higher in the example of the present invention. It can be seen that when the rate is 11.2 or more and 27.2 or less, the effect of the method of the present invention is obtained, and when the thickness ratio is 13.7 or more and 24.0 or less, a further higher effect is obtained. Regarding warpage deformation, when “D / B” is 9.5, the defect rate is 0 even in the conventional method, and in the case of 2.8 and 3.1, the defect rate is higher in the example of the present invention. The effect of the method of the present invention can be obtained when “D / B” is 3.5 or more and 8.2 or less, and a higher effect can be obtained when “D / B” is 3.9 or more and 8.2 or less. I understand.

1 連続加熱炉
2 フィーダー
3 耐熱リンクベルト
4 シューター
5 ワーク
5a 上側のワーク
5b 下側のワーク
6 加熱後のワーク
6a 加熱後の上側のワーク
6b 加熱後の下側のワーク
7 容器
8 焼入れ油
9 搬送メッシュベルト
10 焼入れ後のワーク
11 洗浄槽
12 焼戻し炉
14 洗浄後のワーク
15 焼戻し完了後のワーク
16 搬送ベルト
17 搬送ベルト
DESCRIPTION OF SYMBOLS 1 Continuous heating furnace 2 Feeder 3 Heat resistant link belt 4 Shooter 5 Work 5a Upper work 5b Lower work 6 Heated work 6a Heated upper work 6b Heated lower work 7 Container 8 Quenching oil 9 Conveyance Mesh belt 10 Work after quenching 11 Cleaning tank 12 Tempering furnace 14 Work after washing 15 Work after tempering completion 16 Conveying belt 17 Conveying belt

Claims (2)

環状体からなるワークをベルトで搬送しながら連続的に加熱する加熱炉と、この加熱炉の搬送ベルト上に環状体を、径方向が水平方向に沿って置かれるように導くフィーダーと、焼入れ剤を入れた容器と、加熱後のワークを搬送ベルトから前記容器内に配置された搬送メッシュベルト上に落下させるシューターと、を備え、搬送メッシュベルトはワークを焼入れ剤に浸漬しながら容器外まで導くものである連続焼入れ炉を用いた環状体の焼入れ方法において、
環状体の厚さをtとし、外径をDとし、軸方向寸法をBとしたとき、「D/t」で表される肉厚率が11.2以上27.2以下であり、「D/B」が3.5以上8.2以下である環状体を対象とし、
前記フィーダー上および前記加熱炉の搬送ベルト上で、全ての環状体を、互いに外周面が接触せず、鉛直方向に2個以上が積み上げられた状態に保持しながら移動させ、前記搬送メッシュベルト上で、全ての環状体を互いに接触しない状態に保持しながら移動させることを特徴とする連続焼入れ炉を用いた環状体の焼入れ方法。
A heating furnace that continuously heats a workpiece made of an annular body while being conveyed by a belt, a feeder that guides the annular body on the conveying belt of the heating furnace so that the radial direction is placed along the horizontal direction, and a quenching agent And a shooter for dropping the heated work from the transport belt onto the transport mesh belt disposed in the container, the transport mesh belt guiding the work outside the container while immersing the work in the quenching agent. In the method of quenching an annular body using a continuous quenching furnace,
When the thickness of the annular body is t, the outer diameter is D, and the axial dimension is B, the thickness ratio represented by “D / t” is 11.2 to 27.2, / B "is intended for an annular body having a value of 3.5 or more and 8.2 or less,
On the conveyor mesh belt, all the annular bodies are moved on the feeder and the conveyor belt of the heating furnace while maintaining the state in which two or more annular bodies are stacked in the vertical direction without contacting each other. The method of quenching an annular body using a continuous quenching furnace, wherein all the annular bodies are moved while being held in a state of not contacting each other.
環状体からなるワークをベルトで搬送しながら連続的に加熱する加熱炉と、この加熱炉の搬送ベルト上に環状体を、径方向が水平方向に沿って置かれるように導くフィーダーと、焼入れ剤を入れた容器と、加熱後のワークを搬送ベルトから前記容器内に配置された搬送メッシュベルト上に落下させるシューターと、を備え、搬送メッシュベルトはワークを焼入れ剤に浸漬しながら容器外まで導くものである連続焼入れ炉を用いた環状体の焼入れ方法において、
環状体の厚さをtとし、外径をDとし、軸方向寸法をBとしたとき、「D/t」で表される肉厚率が11.2以上27.2以下であり、「D/B」が3.5以上8.2以下である環状体を対象とし、
前記フィーダー上および前記加熱炉の搬送ベルト上で、全ての環状体を、互いに外周面が接触せず、鉛直方向に2個積み上げられた状態に保持しながら移動させ、前記搬送メッシュベルト上で、全ての環状体を互いに接触しない状態に保持しながら移動させることを特徴とする連続焼入れ炉を用いた環状体の焼入れ方法。
A heating furnace that continuously heats a workpiece made of an annular body while being conveyed by a belt, a feeder that guides the annular body on the conveying belt of the heating furnace so that the radial direction is placed along the horizontal direction, and a quenching agent And a shooter for dropping the heated work from the transport belt onto the transport mesh belt disposed in the container, the transport mesh belt guiding the work outside the container while immersing the work in the quenching agent. In the method of quenching an annular body using a continuous quenching furnace,
When the thickness of the annular body is t, the outer diameter is D, and the axial dimension is B, the thickness ratio represented by “D / t” is 11.2 to 27.2, / B " is 3 . For cyclic bodies that are 5 or more and 8.2 or less,
On the feeder and on the conveyor belt of the heating furnace, all the annular bodies are moved while being held in a state where two outer peripheral surfaces are not in contact with each other and stacked in the vertical direction, on the conveyor mesh belt, A method for quenching an annular body using a continuous quenching furnace, wherein all the annular bodies are moved while being kept out of contact with each other.
JP2010290631A 2010-12-27 2010-12-27 Method of quenching annular body using continuous quenching furnace Active JP5742214B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010290631A JP5742214B2 (en) 2010-12-27 2010-12-27 Method of quenching annular body using continuous quenching furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010290631A JP5742214B2 (en) 2010-12-27 2010-12-27 Method of quenching annular body using continuous quenching furnace

Publications (2)

Publication Number Publication Date
JP2012136744A JP2012136744A (en) 2012-07-19
JP5742214B2 true JP5742214B2 (en) 2015-07-01

Family

ID=46674392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010290631A Active JP5742214B2 (en) 2010-12-27 2010-12-27 Method of quenching annular body using continuous quenching furnace

Country Status (1)

Country Link
JP (1) JP5742214B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104032118B (en) * 2014-05-14 2016-03-30 绍兴正梁轴承有限公司 Middle-size and small-size bearing ring heat treatment quenching equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531102A (en) * 1978-05-04 1980-03-05 Ntn Toyo Bearing Co Ltd Partially hardening method
JP3345949B2 (en) * 1993-03-29 2002-11-18 いすゞ自動車株式会社 Quenching method and equipment
US5447293A (en) * 1994-07-22 1995-09-05 Clarke; Beresford N. Method and apparatus for quenching heat treated objects
JP2005133159A (en) * 2003-10-30 2005-05-26 Nsk Ltd Heat treatment device, and rolling bearing
JP2009084635A (en) * 2007-09-28 2009-04-23 Nsk Ltd Method for quenching annular body using continuous quenching furnace

Also Published As

Publication number Publication date
JP2012136744A (en) 2012-07-19

Similar Documents

Publication Publication Date Title
JP6094722B2 (en) Metal plate manufacturing method and quench quenching apparatus
JP7163642B2 (en) Carburizing and quenching equipment and carburizing and quenching method
JP2009084635A (en) Method for quenching annular body using continuous quenching furnace
CN108202292B (en) Method for manufacturing aluminum target
JP5742214B2 (en) Method of quenching annular body using continuous quenching furnace
JP5446410B2 (en) Heat treatment method for annular workpiece
JP2005113186A (en) Rolling bearing ring and its producing method, and rolling bearing
JP5152832B2 (en) Hardening method of high carbon chromium bearing steel, high carbon chromium bearing steel, bearing parts and rolling bearing
JP3926431B2 (en) Hardening method for thin plate parts
US20070194504A1 (en) Heat Treatment System
JP2005113213A (en) Heat treatment system
JP2010215943A (en) Heat treatment method, heat treatment apparatus, and heat-treated component
JP2005133214A (en) Heat treatment system
JP2005133212A (en) Heat treatment system
JP4223995B2 (en) Heat treatment method for iron-based sintered workpieces
JP2006219725A (en) Method for producing bearing race
JPWO2020203261A1 (en) Quenching equipment and metal plate manufacturing method
CN104946859A (en) Heat treatment hardening and tempering technology for hexagonal flange nut
JP6084738B2 (en) Heat treatment apparatus and heat treatment method
JP2006045629A (en) Method for manufacturing bearing ring of rolling bearing
JP7161710B2 (en) Quenching method
JP2001181735A (en) Quenching method for steel
JP2005133215A (en) Heat treatment system
JP2007138222A (en) Method and apparatus for die-quenching ring type article
KR101676203B1 (en) Heat treatment method of stainless steel slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R150 Certificate of patent or registration of utility model

Ref document number: 5742214

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350