JP5741235B2 - Tire rubber composition containing polylactic acid or diene polymer modified with the same - Google Patents

Tire rubber composition containing polylactic acid or diene polymer modified with the same Download PDF

Info

Publication number
JP5741235B2
JP5741235B2 JP2011130809A JP2011130809A JP5741235B2 JP 5741235 B2 JP5741235 B2 JP 5741235B2 JP 2011130809 A JP2011130809 A JP 2011130809A JP 2011130809 A JP2011130809 A JP 2011130809A JP 5741235 B2 JP5741235 B2 JP 5741235B2
Authority
JP
Japan
Prior art keywords
polylactic acid
weight
rubber composition
parts
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011130809A
Other languages
Japanese (ja)
Other versions
JP2012158738A (en
Inventor
和也 上西
和也 上西
直樹 串田
直樹 串田
石川 和憲
和憲 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2011130809A priority Critical patent/JP5741235B2/en
Publication of JP2012158738A publication Critical patent/JP2012158738A/en
Application granted granted Critical
Publication of JP5741235B2 publication Critical patent/JP5741235B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • C08G81/02Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers at least one of the polymers being obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C08G81/024Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G
    • C08G81/027Block or graft polymers containing sequences of polymers of C08C or C08F and of polymers of C08G containing polyester or polycarbonate sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring
    • C08K5/47Thiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)

Description

本発明は、ポリ乳酸またはそれで変性されたジエン系ポリマーを配合したタイヤ用ゴム組成物に関する。さらに詳しくは、加工性を確保しながら、さらなる物性の向上を可能とするタイヤ用ゴム組成物の一成分等として有効に使用し得るポリ乳酸またはそれで変性されたジエン系ポリマーを配合したタイヤ用ゴム組成物に関する。 The present invention relates to a tire rubber composition containing polylactic acid or a diene polymer modified with the same. More particularly, while ensuring workability, rubber tire compounded with effectively used may polylactic acid or so modified diene polymer as one component such as a rubber composition for a tire which can improve a further physical properties Relates to the composition.

特許文献1には、ポリ乳酸を約50質量%以上含み、ポリプロピレンおよびD-乳酸と糖類との共重合体を含有するポリマーアロイが記載されており、ポリ乳酸単体では、自動車部品のように過度の外力や高温下で使用する場合、その特性は不十分であり、適用には限界があるという課題の解決が図られている。また、ポリマーアロイ化に際しては、任意の構造のスチレン-ブタジエン共重合体の如き相溶化剤が、ポリ乳酸100重量部に対し2〜10重量部の割合で用いられることも述べられている。   Patent Document 1 describes a polymer alloy containing polylactic acid in an amount of about 50% by mass or more and containing a copolymer of polypropylene and D-lactic acid and a saccharide. When used under external force or at high temperature, the problem is that the characteristics are insufficient and the application is limited. In addition, it is also described that a compatibilizing agent such as a styrene-butadiene copolymer having an arbitrary structure is used in a ratio of 2 to 10 parts by weight with respect to 100 parts by weight of polylactic acid in polymer alloying.

自動車用タイヤに求められる性能は多岐にわたり、特に高速走行時での操縦安定性、湿潤路面での安定性、自動車の低燃費化のための転がり抵抗の低減、耐摩耗性の向上などが挙げられる。   The performance required for automobile tires is diverse, and in particular, handling stability during high-speed driving, stability on wet roads, reduction of rolling resistance to reduce fuel consumption of automobiles, improvement of wear resistance, etc. .

従来、特に転がり抵抗の低減と湿潤路面での安定性を両立させるために、補強用フィラーとしてシリカが幅広く使用されている。シリカの分散性を向上させるために、混合時間を長くしたり、シランカップリング剤を多く配合するなどの手法が一般に知られている。しかるに、混合時間を長くするとゲル分が増加し過ぎ、転がり抵抗を悪化させる。また、シランカップリング剤を多く配合するとスコーチ時間が短くなりすぎ、トレッドの押出性が悪化するようになる。   Conventionally, silica is widely used as a reinforcing filler in order to achieve both reduction in rolling resistance and stability on wet road surfaces. In order to improve the dispersibility of silica, methods such as increasing the mixing time or adding a large amount of silane coupling agent are generally known. However, if the mixing time is lengthened, the gel content increases too much and the rolling resistance is deteriorated. Moreover, when a lot of silane coupling agents are blended, the scorch time becomes too short, and the tread extrudability deteriorates.

転がり抵抗の低減のため、トレッド部に使用されるゴム組成物については、補強用フィラーの配合量を減らしたり、潤滑性分も含まれるオイルの配合量を減らしたりしている。しかるに、このようなゴム組成物は潤滑成分が少なくなるため、ゴム組成物の粘度が高くなり、混合加工性、押出加工性などの加工性が悪化する。一方、補強性フィラーの配合量を減らした場合には、ゴム硬度を高くすることが難しく、操縦安定性の確保が難しくなる。さらに、ゴムの破断時伸びが小さくなるため、加工性の大幅な悪化が避けられない。   In order to reduce rolling resistance, the rubber composition used in the tread portion is reduced in the amount of reinforcing filler or the amount of oil that also contains a lubricating component. However, since such a rubber composition has fewer lubricating components, the viscosity of the rubber composition is increased, and processability such as mixing processability and extrusion processability is deteriorated. On the other hand, when the compounding amount of the reinforcing filler is reduced, it is difficult to increase the rubber hardness, and it becomes difficult to ensure the steering stability. Furthermore, since the elongation at break of rubber is small, a significant deterioration in workability is inevitable.

また、特許文献2には、高温多湿条件下でも十分な接着強度を備え、接着耐久性にすぐれた接着剤組成物として、水性分散媒中にポリ乳酸粒子および合成ゴム粒子を分散させたものが記載されており、合成ゴムとしてはスチレン-ブタジエン系共重合体等が挙げられている。   Patent Document 2 discloses a composition in which polylactic acid particles and synthetic rubber particles are dispersed in an aqueous dispersion medium as an adhesive composition having sufficient adhesive strength even under high-temperature and high-humidity conditions and having excellent adhesion durability. As the synthetic rubber, a styrene-butadiene copolymer and the like are mentioned.

特開2008−280474号公報JP 2008-280474 A 特開2008−50414号公報JP 2008-50414 A

本発明の目的は、加工性を確保しながら、さらなる物性の向上を可能とするタイヤ用ゴム組成物の一成分等として有効に使用し得るポリ乳酸またはそれで変性されたジエン系ポリマーを配合したタイヤ用ゴム組成物を提供することにある。 An object of the present invention is a tire blended with polylactic acid or a diene polymer modified therewith, which can be used effectively as a component of a rubber composition for a tire that can further improve physical properties while ensuring processability It is to provide a rubber composition for use.

本発明によって、ジエン系ゴム100重量部に対し、シリカ5〜150重量部およびジエン系ポリマーの二重結合部位と付加反応可能な官能基を有するポリ乳酸0.1〜10重量部を配合したタイヤ用ゴム組成物が提供される。 According to the present invention , a tire rubber in which 5 to 150 parts by weight of silica and 0.1 to 10 parts by weight of polylactic acid having a functional group capable of addition reaction with a double bond site of a diene polymer are blended with 100 parts by weight of a diene rubber. A composition is provided.

また、本発明によって、ジエン系ゴム100重量部に対しシリカ5〜150重量部を配合したゴム組成物において、ジエン系ゴム100重量部中5〜50重量部が、ジエン系ポリマーの二重結合部位と付加反応可能な官能基を有するポリ乳酸で変性された、ポリ乳酸部位を有する変性ジエン系ポリマーで置換されたタイヤ用ゴム組成物が提供される。 Further, according to the present invention, in a rubber composition in which 5 to 150 parts by weight of silica is blended with 100 parts by weight of diene rubber, 5 to 50 parts by weight of 100 parts by weight of diene rubber is a double bond site of the diene polymer. There is provided a rubber composition for a tire, which is modified with a polylactic acid having a functional group capable of undergoing an addition reaction with a modified diene polymer having a polylactic acid moiety.

前述の如く、自動車用タイヤに求められる性能の中には、転がり抵抗の軽減や湿潤路面での安定性などが含まれる。このような転がり抵抗の軽減や湿潤路面での安定性を両立させる方法として、タイヤ用ゴム組成物中にそれの補強フィラーとしてシリカを配合することが行われている。しかしながら、タイヤ用ゴム組成物中にシリカを配合しようとしても、シリカのタイヤ用ゴム組成物中への分散性が低く、例え多量のシリカを添加したとしても、その効果が十分に発揮できないという課題がみられる。   As described above, the performance required for automobile tires includes reduction of rolling resistance and stability on wet road surfaces. As a method for achieving both reduction of rolling resistance and stability on a wet road surface, silica is added as a reinforcing filler to the tire rubber composition. However, even if silica is added to the tire rubber composition, the dispersibility of the silica in the tire rubber composition is low, and even if a large amount of silica is added, the effect cannot be fully exhibited. Is seen.

本発明においては、ジエン系ポリマーの二重結合部位との付加反応性を示す官能基を有するポリ乳酸、またはその反応性官能基を有するポリ乳酸とジエン系ポリマーの二重結合部位とを付加反応させ、ジエン系ポリマーにポリ乳酸を温和な反応条件下で均一に導入した、ポリ乳酸部位を有する変性ジエン系ポリマーをタイヤ用ゴム組成物の一成分として用いることにより、シリカをタイヤ用ゴム組成物中に均一に分散させることを可能とする。それによって、粘度、ペイン効果の低減、スコーチ性の改善、加工性の改善、高硬度化、破断時伸びの向上、低発熱化、ランボーン摩耗の良化などが達成され、前記転がり抵抗の軽減や湿潤路面での安定性の両立を図ることができ、それによって自動車用タイヤに必要な機能および性能の向上を達成させることができる。   In the present invention, polylactic acid having a functional group exhibiting addition reactivity with the double bond site of the diene polymer, or polylactic acid having the reactive functional group and the double bond site of the diene polymer are added. By using a modified diene polymer having a polylactic acid moiety, in which polylactic acid is uniformly introduced into the diene polymer under mild reaction conditions, as a component of the tire rubber composition, silica is used for the tire rubber composition. It is possible to disperse uniformly in the inside. As a result, reduction of viscosity, pain effect, improvement of scorch property, improvement of workability, high hardness, improvement of elongation at break, low heat generation, improvement of lamborn wear, etc. are achieved. It is possible to achieve both stability on a wet road surface, and thereby achieve improvements in the functions and performance required for automobile tires.

ジエン系ポリマーの二重結合部位と付加反応可能な官能基が導入されるポリ乳酸は、生分解性プラスチックの代表的なポリマーであり、植物原料(とうもろこし等)から合成されるL-乳酸を重合したポリ-L-乳酸である。一方、エチレンを出発原料とする化学的合成法により得られる乳酸は、D、L-乳酸(ラセミ体)である。   Polylactic acid, in which a functional group capable of addition reaction with a double bond site of a diene polymer is introduced, is a typical polymer of biodegradable plastics, and polymerizes L-lactic acid synthesized from plant raw materials (such as corn). Poly-L-lactic acid. On the other hand, lactic acid obtained by a chemical synthesis method using ethylene as a starting material is D, L-lactic acid (racemic).

ポリ-L-乳酸は、実際には乳酸の環状2量体であるラクチドを開環重合することにより製造される。ラクチドを経由する場合には、乳酸を溶融重縮合して低分子量ポリ乳酸を合成し、この低分子量体を高温にすると末端から解重合が起こり、解重合物を精製してラクチドを得ているが、解重合の段階でD-体を含むラクチドが形成し、その際D/Lの比率は触媒の種類および使用量、滞留時間、温度などを調節することで任意に変えることができる。   Poly-L-lactic acid is actually produced by ring-opening polymerization of lactide, which is a cyclic dimer of lactic acid. When passing through lactide, lactic acid is melt polycondensed to synthesize low molecular weight polylactic acid. When this low molecular weight product is heated to high temperature, depolymerization occurs from the end, and the depolymerized product is purified to obtain lactide. However, lactide containing D-form is formed at the depolymerization stage, and the ratio of D / L can be arbitrarily changed by adjusting the type and amount of catalyst used, residence time, temperature and the like.

L-乳酸のみからなるポリ-L-乳酸は融点が180℃、ガラス転移温度(Tg)が60℃の結晶性ポリマーであり、D-乳酸がランダム共重合されることにより融点は低下し、D-乳酸を12%含む共重合体の融点は140℃以下となり、ほぼ非晶性ポリマーを形成する。本発明においては、L-乳酸が85%以上で融点120℃以上、好ましくはL-乳酸が90重量%以上で融点が140℃以上のポリ乳酸が用いられる。   Poly-L-lactic acid consisting only of L-lactic acid is a crystalline polymer with a melting point of 180 ° C and a glass transition temperature (Tg) of 60 ° C. The melting point is lowered by the random copolymerization of D-lactic acid. -The copolymer containing 12% lactic acid has a melting point of 140 ° C or lower and forms an almost amorphous polymer. In the present invention, polylactic acid having an L-lactic acid content of 85% or more and a melting point of 120 ° C. or more, preferably an L-lactic acid content of 90% by weight or more and a melting point of 140 ° C. or more is used.

また、乳酸をジフェニルエーテル等の溶媒中で脱水重縮合反応を行い、生成する水を溶媒との共沸混合物として除くことにより、重合反応を進行させて、高分子量ポリ乳酸を得る方法で製造されたものを用いることもできる。   Also produced by a method of obtaining a high molecular weight polylactic acid by carrying out a dehydration polycondensation reaction in a solvent such as diphenyl ether and removing the water produced as an azeotrope with the solvent to advance the polymerization reaction. Things can also be used.

本発明で用いられるポリ乳酸の分子量は、乳酸単位

Figure 0005741235
のn値として、2〜100、好ましくは2〜10程度のものが用いられる。 The molecular weight of polylactic acid used in the present invention is lactic acid units.
Figure 0005741235
N value of 2 to 100, preferably about 2 to 10 is used.

かかるポリ乳酸には、ジエン系ポリマーの付加二重結合部位と反応可能な官能基、例えばアクリル基由来の末端ビニル基、メルカプト基、スルフィド基が導入される。このような官能基を有する化合物としては、例えば2-ヒドロキシエチルアクリレート、3-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルアクリレート、2,2′-ジヒドロキシエチルジスルフィド、2,2′-ジヒドロキシエチルテトラスルフィド等が挙げられ、好ましくは末端水酸基を有する化合物が用いられる。   Such polylactic acid is introduced with a functional group capable of reacting with an additional double bond site of a diene polymer, for example, a terminal vinyl group derived from an acrylic group, a mercapto group, or a sulfide group. Examples of the compound having such a functional group include 2-hydroxyethyl acrylate, 3-hydroxypropyl acrylate, 2-hydroxypropyl acrylate, 2,2′-dihydroxyethyl disulfide, 2,2′-dihydroxyethyl tetrasulfide, and the like. Preferably, a compound having a terminal hydroxyl group is used.

これらの官能基含有化合物のポリ乳酸への導入は、乳酸の環状2量体であるラクチドを開環重合させてポリ乳酸を形成させる際、官能基含有化合物の存在下で開環重合反応させることにより行われる。官能基含有化合物がモノヒドロキシ化合物である場合には、反応は1段で行われるが、例えばジヒドロキシ基を有するジスルフィド化合物の場合には、ジヒドロキシ基それぞれがラクチドと反応するので、その中間生成物を還元剤であるトリオクチルホスフィン等と反応させることにより、ジスルフィド結合を分裂させ、メルカプト基を有する化合物を形成させるという2段階の反応が行われる。   These functional group-containing compounds are introduced into polylactic acid by ring-opening polymerization reaction in the presence of the functional group-containing compound when ring-opening polymerization of lactide, which is a cyclic dimer of lactic acid, to form polylactic acid. Is done. When the functional group-containing compound is a monohydroxy compound, the reaction is carried out in one stage. For example, in the case of a disulfide compound having a dihydroxy group, each dihydroxy group reacts with lactide. By reacting with a reducing agent such as trioctylphosphine or the like, a two-stage reaction is performed in which a disulfide bond is split and a compound having a mercapto group is formed.

この反応に際しては、ラクチドに対し約1/1〜1/50、好ましくは約1/1〜1/5のモル比で官能基含有化合物が反応に供せられる。これよりも少ないモル比で官能基含有化合物が反応に用いられると、最終的に目的とするジエン系ポリマーのポリ乳酸部位による変性が十分に行われない。一方、これ以上のモル比で官能基含有化合物が反応に用いられると、ポリ乳酸中に含有されるジエン系ポリマーの二重結合部位と付加反応可能な官能基が多くなりすぎ、ジエンポリマーの本来の物性に影響を与えることになるので好ましくない。   In this reaction, the functional group-containing compound is subjected to the reaction at a molar ratio of about 1/1 to 1/50, preferably about 1/1 to 1/5, with respect to lactide. If the functional group-containing compound is used in the reaction at a molar ratio lower than this, the final diene polymer will not be sufficiently modified with the polylactic acid moiety. On the other hand, when a functional group-containing compound is used in the reaction at a molar ratio higher than this, the number of functional groups capable of addition reaction with the double bond sites of the diene polymer contained in the polylactic acid becomes too large, and the diene polymer inherently This is unfavorable because it affects the physical properties.

官能基含有化合物存在下でのラクチドの開環重合反応は、溶媒の存在下でも行われるが、一般には溶媒の不存在下で行われる。その際、反応触媒としてジオクチル錫、ジブチル錫ジラウレート等が、ラクチドに対し約0.01〜10%、好ましくは約0.1〜3%のモル比で用いられる。   The ring-opening polymerization reaction of lactide in the presence of a functional group-containing compound is performed in the presence of a solvent, but is generally performed in the absence of a solvent. At that time, dioctyltin, dibutyltin dilaurate and the like are used as a reaction catalyst in a molar ratio of about 0.01 to 10%, preferably about 0.1 to 3% with respect to lactide.

開環重合反応は、約60〜150℃で約1〜24時間程度行われ、得られた反応混合物を例えばアセトン溶液としてヘキサン中に滴下し、ヘキサン不溶分とヘキサン可溶分とに分け、ヘキサン不溶分を再度アセトン溶液とし、ヘキサンを用いる再沈殿法により精製することにより、ジエン系ポリマーの二重結合部位と付加反応可能な官能基、例えばアクリル基由来の末端ビニル基、メルカプト基、スルフィド基等を有するポリ乳酸を得ることができる。   The ring-opening polymerization reaction is carried out at about 60 to 150 ° C. for about 1 to 24 hours. The obtained reaction mixture is dropped into hexane, for example, as an acetone solution, and divided into a hexane insoluble part and a hexane soluble part. The insoluble matter is again made into an acetone solution and purified by a reprecipitation method using hexane, so that a functional group capable of addition reaction with the double bond site of the diene polymer, for example, a terminal vinyl group derived from an acrylic group, a mercapto group, a sulfide group Etc. can be obtained.

これらの官能基を有するポリ乳酸は、ジエン系ポリマーの二重結合部位と付加反応し、ジエン系ポリマー中にポリ乳酸部位を導入することができる。ジエン系ポリマーとしては、スチレンブタジエンゴム、合成イソプレン、ブタジエンゴム、ブチルゴム、ハロゲン化ブチルゴム、EPDM等が挙げられ、好ましくはスチレンブタジエンゴムが用いられる。スチレンブタジエンゴムは、乳化重合SBR(E-SBR)またはアニオン重合SBR(S-SBR)のいずれであってもよい。   Polylactic acid having these functional groups can be added to the double bond site of the diene polymer to introduce a polylactic acid site into the diene polymer. Examples of the diene polymer include styrene butadiene rubber, synthetic isoprene, butadiene rubber, butyl rubber, halogenated butyl rubber, and EPDM, and styrene butadiene rubber is preferably used. The styrene butadiene rubber may be either emulsion polymerization SBR (E-SBR) or anion polymerization SBR (S-SBR).

ジエン系ゴムと官能基含有ポリ乳酸との反応は、ジエン系ゴムに対して約0.001〜2、好ましくは約0.001〜0.1の重量比になるような官能基含有ポリ乳酸を用い、トルエン、キシレン、ベンゼン等の溶媒中の存在下または不存在下で、約60〜200℃で約0.5〜24時間程度付加反応させることにより行われる。実際に、タイヤ用ゴム組成物の一成分として変性ジエン系ポリマーが用いられる場合には、この重量比が0.01程度で十分であるが、後記参考例3〜4ではポリ乳酸のSBRへの導入が明確になるように1.170または1.207の重量比で反応が行われている。 The reaction between the diene rubber and the functional group-containing polylactic acid is performed using a functional group-containing polylactic acid in a weight ratio of about 0.001 to 2, preferably about 0.001 to 0.1, based on the diene rubber. The reaction is carried out by addition reaction for about 0.5 to 24 hours at about 60 to 200 ° C. in the presence or absence of a solvent such as benzene. Actually, when a modified diene polymer is used as one component of the rubber composition for a tire, a weight ratio of about 0.01 is sufficient. However, in Reference Examples 3 to 4 described below, polylactic acid is introduced into SBR. The reaction is performed at a weight ratio of 1.170 or 1.207 for clarity.

反応終了後の処理は、例えば反応混合物溶液をメタノール中に滴下してメタノール不溶分とメタノール可溶分とに分け、メタノール不溶分を再度トルエン溶液とし、これをアセトン、メタノール等を用いた再沈殿法によって精製された、ポリ乳酸部位を有する変性ジエン系ポリマーとして取得される。 The treatment after the completion of the reaction is, for example, dropping the reaction mixture solution into methanol to divide it into a methanol insoluble part and a methanol soluble part, making the methanol insoluble part a toluene solution again, and reprecipitation using acetone, methanol, etc. Obtained as a modified diene polymer having a polylactic acid moiety purified by the method.

前述の如くにして得られた二重結合部位と付加反応可能な官能基、より具体的にはアクリル基由来の末端ビニル基、メルカプト基、ニトロン基等を有するポリ乳酸は、ジエン系ゴム100重量部に対して5〜150重量部、好ましくは20〜120重量部、より好ましくは30〜100重量部の割合で用いられるシリカと共に、0.1〜10重量部、好ましくは1〜7重量部、より好ましくは2〜5重量部の割合で併用されて、タイヤ用ゴム組成物を形成させる。   The polylactic acid having a functional group capable of addition reaction with the double bond site obtained as described above, more specifically a terminal vinyl group derived from an acrylic group, a mercapto group, a nitrone group, etc. is 100 weights of diene rubber. 5 to 150 parts by weight, preferably 20 to 120 parts by weight, more preferably 30 to 100 parts by weight, together with silica used, 0.1 to 10 parts by weight, preferably 1 to 7 parts by weight, more preferably Are used together at a ratio of 2 to 5 parts by weight to form a rubber composition for a tire.

タイヤ用ゴム組成物の主成分として用いられるジエン系ゴムとしては、前述の如き少なくとも一種の各種合成ゴム、天然ゴムまたは合成ゴムと天然ゴムとのブレンドゴムが用いられる。   As the diene rubber used as the main component of the tire rubber composition, at least one kind of various synthetic rubbers as described above, natural rubber, or a blend rubber of synthetic rubber and natural rubber is used.

シリカとしては、その合成方法によって湿式と乾式との2種類があり、タイヤ用途には性能およびコストの面から、湿式シリカが好んで用いられる。乗用車用空気入りタイヤのトレッド配合にシリカを充填剤として用いることにより、耐摩耗性を犠牲にすることなく、低転がり抵抗とウエット路面でのタイヤ性能を高度に両立させることができ、かかる見地から上記配合割合のシリカが混合されるが、特定の変性剤をジエン系ゴムに配合している本発明においては、耐摩耗性の改善も達成されている。   There are two types of silica, wet and dry, depending on the synthesis method, and wet silica is preferably used for tire applications from the viewpoint of performance and cost. By using silica as a filler in the tread formulation of passenger car pneumatic tires, it is possible to achieve both high rolling resistance and high tire performance on wet surfaces without sacrificing wear resistance. In the present invention in which the specific blending agent is blended with the diene rubber, the abrasion resistance is improved.

充填剤として用いられるシリカは、ゴムポリマーとの親和性に乏しく、またゴム中ではシリカ同士がシラノール基を通して水素結合を生成し、シリカのゴム中への分散性を低下させる性能を有するので、シリカに求められる諸特性およびジエン系ゴムとの分散性を高めるために、シランカップリング剤がシリカ重量に対して2〜18重量%、好ましくは5〜10重量%の割合で用いられる。シランカップリング剤の使用割合がこれよりも少ないと、シリカに求められる特性やジエン系ゴムとの分散性が十分に発揮されず、一方これよりも多い添加割合で用いられると、加工性が悪化するようになる。   Silica used as a filler has poor affinity with rubber polymers, and in rubber, silica has the ability to generate hydrogen bonds through silanol groups and lower the dispersibility of silica in rubber. In order to improve the properties required for the above and the dispersibility with the diene rubber, the silane coupling agent is used in a proportion of 2 to 18% by weight, preferably 5 to 10% by weight, based on the silica weight. If the proportion of silane coupling agent used is less than this, the properties required of silica and dispersibility with diene rubber will not be fully exhibited, while if it is used in a proportion higher than this, workability will deteriorate. To come.

シランカップリング剤としては、一般式
(R′)3-n(OR)nSiR″SxR″Si(OR)n(R′)3-n
R :炭素数1〜3のアルキル基
R′:炭素数1〜3のアルキル基
R″:炭素数1〜5のアルキレン基
X :2〜4
n :1〜3
で表わされるシリカ表面のシラノール基と反応するアルコキシシリル基とポリマーと反応するイオウ連鎖を有するポリスルフィド系シランカップリング剤が用いられる。具体的には、例えばビス(3-トリエトキシシリルプロピル)テトラスルフィド、ビス(2-トリエトキシシリルエチル)テトラスルフィド、ビス(3-トリメトキシシリルプロピル)テトラスルフィド、ビス(3-トリエトキシシリルプロピル)ジスルフィド等が好んで用いられる。
The silane coupling agent has a general formula
(R ′) 3-n (OR) n SiR ″ SxR ″ Si (OR) n (R ′) 3-n
R: an alkyl group having 1 to 3 carbon atoms
R ′: an alkyl group having 1 to 3 carbon atoms
R ″: an alkylene group having 1 to 5 carbon atoms
X: 2-4
n: 1 to 3
A polysulfide silane coupling agent having an alkoxysilyl group that reacts with a silanol group on the silica surface and a sulfur chain that reacts with a polymer is used. Specifically, for example, bis (3-triethoxysilylpropyl) tetrasulfide, bis (2-triethoxysilylethyl) tetrasulfide, bis (3-trimethoxysilylpropyl) tetrasulfide, bis (3-triethoxysilylpropyl) ) Disulfide and the like are preferably used.

二重結合部位と付加反応可能な官能基としてアクリル基を有するポリ乳酸をジエン系ゴムに所定量配合した場合には、加工性の改善や高硬度化が可能となるばかりではなく、規定された範囲内でシリカ量を減量させることにより、損失正接tanδ(60℃)の値が小さくなり、低発熱化をも可能とする。なお、規定された割合以上でポリ乳酸を用いると、特にtanδ(60℃)の値が上昇するようになる(表1 No.4参照)。   When a predetermined amount of polylactic acid having an acrylic group as a functional group capable of addition reaction with a double bond site is blended in a diene rubber, not only improvement in workability and high hardness can be achieved, but also specified. By reducing the amount of silica within the range, the value of loss tangent tan δ (60 ° C.) is reduced, and low heat generation is also possible. When polylactic acid is used at a prescribed ratio or more, the value of tan δ (60 ° C.) is particularly increased (see Table 1 No. 4).

また、二重結合部位と付加反応可能な官能基としてメルカプト基を有するポリ乳酸をジエン系ゴムに配合した場合には、粘度、ペイン効果の低減、スコーチ性の改善、低温tanδ(0℃)のアップ、ランボーン摩耗の良化などが達成され、規定された範囲内でシリカを減量させることにより、硬度が同等でさらに加工性の良化が得られるようになる。なお、規定された割合以上でポリ乳酸を用いると、加硫速度が遅くなる (表2 No.4参照)。   In addition, when polylactic acid having a mercapto group as a functional group capable of addition reaction with a double bond site is blended with a diene rubber, the viscosity, the Pain effect are reduced, the scorch property is improved, and the low temperature tanδ (0 ° C) is reduced. Up, improvement of the Lambourn wear, etc. are achieved, and by reducing the amount of silica within the specified range, the hardness is equivalent and the workability can be further improved. If polylactic acid is used at a specified ratio or more, the vulcanization rate will be slow (see Table 2, No. 4).

さらに、ジエン系ゴム100重量部に対しシリカ5〜150重量部、好ましくは20〜120重量部、より好ましくは30〜100重量部を配合したゴム組成物において、ジエン系ゴム100重量部中5〜50重量部、好ましくは10〜40重量部、より好ましくは20〜30重量部のポリ乳酸部位を有する変性ジエン系ポリマーで置換したタイヤ用ゴム組成物にあっては、硬度アップ、破断時伸びの向上、tanδ(60℃)の低下が図られ、tanδ(60℃)の値は、規定された範囲内でシリカ量を減量させた場合にもさらなる低下を可能とする。なお、規定された置換割合は所望の改善効果を得るために必要であり、これ以下の置換割合では所望の改善効果が達成されず、一方これ以上の置換割合で用いると、破断時伸びが低くなる。   Furthermore, in a rubber composition in which 5 to 150 parts by weight of silica, preferably 20 to 120 parts by weight, more preferably 30 to 100 parts by weight are blended with 100 parts by weight of diene rubber, 5 to 100 parts by weight of diene rubber In the rubber composition for tires substituted with 50 parts by weight, preferably 10 to 40 parts by weight, more preferably 20 to 30 parts by weight of a modified diene polymer having a polylactic acid moiety, the hardness is increased and the elongation at break is increased. Improvement and reduction in tan δ (60 ° C.) are achieved, and the value of tan δ (60 ° C.) allows further reduction even when the amount of silica is reduced within a specified range. The prescribed substitution ratio is necessary to obtain a desired improvement effect, and if the substitution ratio is less than this, the desired improvement effect is not achieved. Become.

以上の各成分を必須成分とするシリカ配合ジエン系ゴム組成物中には、ゴムの配合剤として一般的に用いられている酸合剤、例えばカーボンブラックによって代表された補強剤または充填剤、ジエン系ゴムの種類に応じて硫黄等の加硫剤、チアゾール系、スルフェンアミド系、グアニジン系、チウラム系等の加硫促進剤、ステアリン酸、パラフィンワックス、アロマオイル等の加工助剤、老化防止剤、可塑剤などが適宜配合されて用いられる。   In the silica-containing diene rubber composition containing the above components as essential components, an acid mixture generally used as a rubber compounding agent, for example, a reinforcing agent or a filler represented by carbon black, a diene Depending on the type of rubber, vulcanizing agents such as sulfur, vulcanizing accelerators such as thiazole, sulfenamide, guanidine and thiuram, processing aids such as stearic acid, paraffin wax and aroma oil, anti-aging An agent, a plasticizer, and the like are appropriately mixed and used.

組成物の調製は、加硫系各成分を除く他の配合剤を密閉式バンバリーミキサ等を用いて約1〜10分間程度混合し、これらの混合物を混合機外に放出して室温まで冷却させた後、バンバリーミキサ、オープンロール等を用いて加硫系各成分を配合し、混合することによって行われ、所望のシリカ配合ジエン系ゴム組成物が製造される。   The composition is prepared by mixing other compounding ingredients excluding vulcanizing system components for about 1 to 10 minutes using a closed Banbury mixer, etc., and releasing these mixtures outside the mixer to cool to room temperature. Thereafter, the vulcanized components are blended using a Banbury mixer, an open roll or the like and mixed to produce a desired silica-blended diene rubber composition.

このようにして製造されたシリカ配合ジエン系ゴム組成物は、空気入りタイヤのトレッド形状などに押出加工され、タイヤ成形機上で通常の方法によりケーシング部と貼り合わせて未加硫タイヤを成形し、これを加硫機中で加圧・加熱して、この組成物からトレッド部などを形成させた空気入りタイヤを得ることができる。なお、トレッド部は、キャップトレッド、アンダートレッド、サイドトレッド等のいずれであってもよく、またカーカスコート、リムクッション等への適用も可能である。   The silica-containing diene rubber composition produced in this manner is extruded into a tread shape of a pneumatic tire, and is bonded to the casing portion by a normal method on a tire molding machine to form an unvulcanized tire. This can be pressurized and heated in a vulcanizer to obtain a pneumatic tire having a tread portion and the like formed from this composition. The tread portion may be any of a cap tread, an under tread, a side tread, etc., and can be applied to a carcass coat, a rim cushion, or the like.

次に、実施例について本発明を説明する。   Next, the present invention will be described with reference to examples.

参考例1(アクリル基を有するポリ乳酸の製造)
2-ヒドロキシエチルアクリレート CH2=CHCOOCH2CH2OH 16.2g(140ミリモル)とラクチド(武蔵野化学研究所製)60.3g(418ミリモル)との混合物にジオクチル錫 0.810g(2.0ミリモル)を加え、100℃で3時間攪拌した後、冷却した。反応混合物をアセトン30mlに溶解し、その溶液を500mlのヘキサン中に滴下し、ヘキサン不溶部とヘキサン可溶部とに分離した。ヘキサン不溶部を再度アセトンに溶解し、ヘキサンを用いた再沈殿法により精製して、褐色の粘性液体72.8g(収率95%)を得た。
Reference Example 1 (Production of polylactic acid having an acrylic group)
Dioctyltin 0.810 g (2.0 mmol) was added to a mixture of 2-hydroxyethyl acrylate CH 2 = CHCOOCH 2 CH 2 OH 16.2 g (140 mmol) and lactide (Musashino Chemical Laboratory) 60.3 g (418 mmol), and 100 The mixture was stirred at 0 ° C. for 3 hours and then cooled. The reaction mixture was dissolved in 30 ml of acetone, and the solution was dropped into 500 ml of hexane to separate into a hexane insoluble part and a hexane soluble part. The hexane-insoluble part was dissolved again in acetone and purified by a reprecipitation method using hexane to obtain 72.8 g (yield 95%) of a brown viscous liquid.

反応生成物は、NMR分析により、アクリル基を有するポリ乳酸(n=6)であることが確認された。
1HNMR(CDCl3、20℃) δ:6.4 (d)
6.1 (m)
5.9 (d)
5.3〜5.1 (m)
4.5〜4.2 (m)
2.8〜2.3 (br)
1.7〜1.4 (m)

Figure 0005741235
The reaction product was confirmed by NMR analysis to be polylactic acid having an acrylic group (n = 6).
1 HNMR (CDCl 3 , 20 ° C.) δ: 6.4 (d)
6.1 (m)
5.9 (d)
5.3 to 5.1 (m)
4.5 to 4.2 (m)
2.8-2.3 (br)
1.7-1.4 (m)
Figure 0005741235

参考例2(メルカプト基を有するポリ乳酸の製造)
(1) 2,2′-ジヒドロキシエチルジスルフィド HOCH2CH2SSCH2CH2OH 7.17g(46.5ミリモル)とラクチド40.2g(279ミリモル)との混合物にジオクチル錫 0.880g(2.2ミリモル)を加え、100℃で3時間攪拌した後、冷却した。反応混合物をアセトン30mlに溶解し、その溶液を500mlのヘキサン中に滴下し、ヘキサン不溶部とヘキサン可溶部とに分離した。ヘキサン不溶部を再度アセトンに溶解し、ヘキサンを用いた再沈殿法により精製して、褐色の粘性液体42.8g(収率90%)を得た。
Reference Example 2 (Production of polylactic acid having a mercapto group)
(1) 2,2′-dihydroxyethyl disulfide 0.880 g (2.2 mmol) of dioctyltin was added to a mixture of 7.17 g (46.5 mmol) of HOCH 2 CH 2 SSCH 2 CH 2 OH and 40.2 g (279 mmol) of lactide, The mixture was stirred at 0 ° C. for 3 hours and then cooled. The reaction mixture was dissolved in 30 ml of acetone, and the solution was dropped into 500 ml of hexane to separate into a hexane insoluble part and a hexane soluble part. The hexane-insoluble part was dissolved again in acetone and purified by a reprecipitation method using hexane to obtain 42.8 g (yield 90%) of a brown viscous liquid.

反応生成物は、NMR分析により、ジスルフィド基を有するポリ乳酸(n=6)であることが確認された。
1HNMR(CDCl3、20℃) δ:5.3〜5.1 (m)
4.5〜4.3 (m)
2.9 (m)
2.2〜1.7 (br)
1.6〜1.4 (m)

Figure 0005741235
The reaction product was confirmed to be polylactic acid (n = 6) having a disulfide group by NMR analysis.
1 HNMR (CDCl 3 , 20 ° C.) δ: 5.3 to 5.1 (m)
4.5 to 4.3 (m)
2.9 (m)
2.2 to 1.7 (br)
1.6-1.4 (m)
Figure 0005741235

(2) 上記(1)で得られたジスルフィド基を有するポリ乳酸31.9g(31.3ミリモル)を酢酸エチル 50mlに溶解させ、この酢酸エチル溶液にトリオクチルホスフィン P(C8H17)3 11.6g(31.3ミリモル)を加え、室温条件下で1日攪拌した。その反応溶液を500mlのヘキサン中に滴下し、ヘキサン不溶部とヘキサン可溶部とに分離した。ヘキサン不溶部を再度アセトンに溶解し、ヘキサンを用いた再沈殿法により精製して、褐色の粘性液体28.7g(収率91%)を得た。 (2) 31.9 g (31.3 mmol) of polylactic acid having a disulfide group obtained in (1) above was dissolved in 50 ml of ethyl acetate, and trioctylphosphine P (C 8 H 17 ) 3 11.6 g ( 31.3 mmol) was added and stirred at room temperature for 1 day. The reaction solution was dropped into 500 ml of hexane, and separated into a hexane insoluble part and a hexane soluble part. The hexane-insoluble part was again dissolved in acetone and purified by a reprecipitation method using hexane to obtain 28.7 g (yield 91%) of a brown viscous liquid.

反応生成物は、NMR分析により、メルカプト基を有するポリ乳酸(n=6)であることが確認された。
1HNMR(CDCl3、20℃) δ:5.3〜5.1 (m)
4.3 (m)
4.2 (m)
2.8 (m)
2.2〜1.7 (br)
1.6〜1.4 (m)

Figure 0005741235
The reaction product was confirmed to be polylactic acid (n = 6) having a mercapto group by NMR analysis.
1 HNMR (CDCl 3 , 20 ° C.) δ: 5.3 to 5.1 (m)
4.3 (m)
4.2 (m)
2.8 (m)
2.2 to 1.7 (br)
1.6-1.4 (m)
Figure 0005741235

参考例3(アクリル基を有するポリ乳酸を用いたSBRの変性)
SBR(日本ゼオン製品A1326)2.35gをトルエン40mlに溶解させた溶液に、実施例1で得られたアクリル基含有ポリ乳酸2.74gを加え、還流条件下で1日攪拌した後、冷却した。反応混合物溶液を300mlのメタノール中に滴下し、メタノール不溶部とメタノール可溶部とに分離した。メタノール不溶部を再度トルエンに溶解し、アセトンを用いた再沈殿法により精製し、白色固体状の反応生成物2.27gを得た。
Reference Example 3 (Modification of SBR using polylactic acid having an acrylic group)
2.74 g of acrylic acid-containing polylactic acid obtained in Example 1 was added to a solution prepared by dissolving 2.35 g of SBR (Nippon ZEON product A1326) in 40 ml of toluene, and the mixture was stirred for 1 day under reflux conditions and then cooled. The reaction mixture solution was dropped into 300 ml of methanol and separated into a methanol-insoluble part and a methanol-soluble part. The methanol-insoluble part was again dissolved in toluene and purified by a reprecipitation method using acetone to obtain 2.27 g of a reaction product as a white solid.

反応生成物は、NMR分析により、SBRの二重結合にアクリル基含有ポリ乳酸の末端ビニル基が付加したSBR変性物であることが確認された。
1HNMR(CDCl3、20℃) δ:7.3〜7.2 (br)
7.2〜6.9 (br)
5.7〜5.1 (br)
5.0〜4.9 (br)
4.4〜4.2 (br)
2.7〜2.4 (br)
2.4〜0.8 (br)
The reaction product was confirmed by NMR analysis to be an SBR-modified product in which the terminal vinyl group of acrylic group-containing polylactic acid was added to the SBR double bond.
1 HNMR (CDCl 3 , 20 ° C.) δ: 7.3 to 7.2 (br)
7.2 to 6.9 (br)
5.7-5.1 (br)
5.0 ~ 4.9 (br)
4.4〜4.2 (br)
2.7 ~ 2.4 (br)
2.4-0.8 (br)

参考例4(メルカプト基を有するポリ乳酸を用いたSBRの変性)
SBR(日本ゼオン製品A1326)2.70gをトルエン40mlに溶解させた溶液に、実施例2で得られたメルカプト基含有ポリ乳酸3.26gを加え、80℃で1日攪拌した後、冷却した。反応混合物溶液を300mlのメタノール中に滴下し、メタノール不溶部とメタノール可溶部とに分離した。メタノール不溶部を再度トルエンに溶解し、メタノールを用いた再沈殿法により精製し、白色固体状の反応生成物4.42gを得た。
Reference Example 4 (SBR modification using polylactic acid having a mercapto group)
3.26 g of the mercapto group-containing polylactic acid obtained in Example 2 was added to a solution obtained by dissolving 2.70 g of SBR (Nippon ZEON product A1326) in 40 ml of toluene, and the mixture was stirred at 80 ° C. for 1 day and then cooled. The reaction mixture solution was dropped into 300 ml of methanol and separated into a methanol-insoluble part and a methanol-soluble part. The methanol-insoluble part was again dissolved in toluene and purified by a reprecipitation method using methanol to obtain 4.42 g of a reaction product as a white solid.

反応生成物は、NMR分析により、SBRの二重結合にメルカプト基含有ポリ乳酸の末端メルカプト基が付加したSBR変性物であることが確認された。
1HNMR(CDCl3、20℃) δ:7.3〜7.2 (br)
7.2〜6.9 (br)
5.7〜5.1 (br)
5.0〜4.0 (br)
4.5〜4.1 (br)
2.8〜2.4 (br)
2.3〜0.6 (br)
The reaction product was confirmed by NMR analysis to be a modified SBR product in which the terminal mercapto group of mercapto group-containing polylactic acid was added to the double bond of SBR.
1 HNMR (CDCl 3 , 20 ° C.) δ: 7.3 to 7.2 (br)
7.2 to 6.9 (br)
5.7-5.1 (br)
5.0 ~ 4.0 (br)
4.5-4.1 (br)
2.8-2.4 (br)
2.3 ~ 0.6 (br)

実施例1
SBR(日本ゼオン製品Nipol NS460;37.5重量部油展) 96.3重量部
ブタジエンゴム(日本ゼオン製品BR1220) 30.0 〃
シリカ(エボニックデグッサ社製品Ultrasil 7000GR) (所定量)
カーボンブラック(東海カーボン製品シースト6;N2SA 119m2/g) (所定量)
シランカップリング剤(エボニックデグッサ社製品Si69) (所定量)
参考例1で得られたアクリル基を有するポリ乳酸 (所定量)
酸化亜鉛(正同化学工業製品酸化亜鉛3種) 3 〃
ステアリン酸(日本油脂製品ビーズステアリン酸) 2 〃
老化防止剤(フレキシス社製品6PPD) 3 〃
アロマオイル(昭和シェル製品エキストラクト4号S) 10 〃
硫黄(鶴見化学工業製品金華印油入微粉硫黄) 2 〃
加硫促進剤(大内新興化学工業製品ノクセラーCZ-G) 2 〃
加硫促進剤(住友化学工業製品ソクシノールD-G) 1 〃
Example 1
SBR (Nippon Zeon product Nipol NS460; 37.5 parts by weight oil exhibition) 96.3 parts by weight Butadiene rubber (Nippon Zeon product BR1220) 30.0 0.0
Silica (Evonik Degussa product Ultrasil 7000GR) (predetermined amount)
Carbon black (Tokai carbon product seast 6; N 2 SA 119m 2 / g) (predetermined amount)
Silane coupling agent (Evonik Degussa Si69) (predetermined amount)
Polylactic acid having an acrylic group obtained in Reference Example 1 (predetermined amount)
Zinc oxide (Zondox Chemical Products Zinc Oxide 3 types) 3 〃
Stearic acid (Japanese oil and fat product beads stearic acid) 2 〃
Anti-aging agent (Flexis product 6PPD) 3 〃
Aroma oil (Showa Shell Product Extract No. 4 S) 10 〃
Sulfur (Tsurumi Chemical Co., Ltd., Jinhua Indian Oil Fine Powdered Sulfur) 2〃
Vulcanization accelerator (Ouchi Emerging Chemical Industry Noxeller CZ-G) 2
Vulcanization accelerator (Sumitomo Chemical product Soxinol DG) 1 〃

以上の各成分の内、硫黄および加硫促進剤を除く各成分を7L密閉式バンバリーミキサを用いて5分間混合し、ゴム混合物を混合機外に放出させて室温迄冷却させた後、同じバンバリーミキサを用いて硫黄および加硫促進剤を配合し、混合した。得られたゴム組成物を、150℃で30分間プレス加硫して目的とする試験片を得た。   Among the above components, each component excluding sulfur and vulcanization accelerator is mixed for 5 minutes using a 7L closed Banbury mixer, the rubber mixture is discharged outside the mixer and cooled to room temperature, and then the same Banbury. Using a mixer, sulfur and a vulcanization accelerator were blended and mixed. The obtained rubber composition was press vulcanized at 150 ° C. for 30 minutes to obtain a desired test piece.

このゴム組成物および試験片について、次の各項目の測定を行い、変性ポリ乳酸を配合しないNo.1を100とする指数で示した。
粘度:JIS K6300に準拠し、100℃で測定
指数が小さい程、低粘度であることを示している
ペイン効果:未加硫ゴム組成物を用いて160℃で20分間の加硫を行い、歪0.28〜
30.0%迄の歪せん断応力G′を測定し、その差を指数表示した
指数が大きい程、シリカ分散性が良好であることを示している
20℃硬度:JIS K6253に準拠し、20℃で測定
指数が大きい程、硬度が高いことを示している
tanδ:岩本製作所製粘弾性スペクトロメーターを用い、伸長変形歪率10±2%
、振動数20Hz、温度0℃および60℃の条件下で測定
指数が高い程、発熱性の指数となるtanδが高いことを示している
With respect to this rubber composition and test piece, the following items were measured and indicated by an index where No. 1 containing no modified polylactic acid was 100.
Viscosity: Measured at 100 ° C according to JIS K6300
The smaller the index is, the lower the viscosity is. Payne effect: Unvulcanized rubber composition is vulcanized at 160 ° C for 20 minutes, strain 0.28 ~
The strain shear stress G 'up to 30.0% was measured and the difference was displayed as an index.
The larger the index, the better the silica dispersibility.
20 ℃ hardness: Measured at 20 ℃ according to JIS K6253
The larger the index, the higher the hardness.
tanδ: Tensile deformation strain rate of 10 ± 2% using a viscoelastic spectrometer manufactured by Iwamoto Seisakusho
, Measured under conditions of frequency 20Hz, temperature 0 ℃ and 60 ℃
The higher the index, the higher the tanδ that is the index of exothermicity.

以上の測定結果は、所定量用いられた各成分量(単位:重量部)と共に、次の表1に示される。
表1
No.1 No.2 No.3 No.4 No.5 No.6
〔ゴム組成物成分〕
シリカ 70 70 70 70 64 62
カーボンブラック 5 5 5 5 5 5
シランカップリング剤 7.0 7.0 7.0 7.0 6.4 6.2
アクリル基含有ポリ乳酸 − 2.0 5.0 15.0 2.0 5.0
〔測定結果〕
粘度 100 95 90 86 90 83
ペイン効果 100 93 88 84 91 84
20℃硬度 100 104 108 110 101 105
tanδ
0℃ 100 101 102 104 105 105
60℃ 100 99 98 103 94 92
The above measurement results are shown in the following Table 1 together with the amount of each component (unit: parts by weight) used in a predetermined amount.
Table 1
No.1 No.2 No.3 No.4 No.5 No.6
[Rubber composition component]
Silica 70 70 70 70 64 62
Carbon black 5 5 5 5 5 5
Silane coupling agent 7.0 7.0 7.0 7.0 6.4 6.2
Acrylic group-containing polylactic acid − 2.0 5.0 15.0 2.0 5.0
〔Measurement result〕
Viscosity 100 95 90 86 90 83
Payne effect 100 93 88 84 91 84
20 ° C hardness 100 104 108 110 101 105
tanδ
0 ° C 100 101 102 104 105 105
60 ° C 100 99 98 103 94 92

以上の結果から、次のようなことがいえる。
(1) 実施例であるNo.2〜3の結果から、アクリル基を有するポリ乳酸を配合することにより、粘度、ペイン効果の低減、硬度アップが図られ、tanδは同等維持かやや良化傾向がみられ、すなわち加工性の改善が可能となることが分かる。
(2) 共に実施例であるNo.5〜6とNo.2〜3の結果を対比することにより、シリカ配合量を減らすことで高硬度化、tanδ(60℃)の低下が可能となり、すなわち加工性の改善、高硬度化、低発熱化が可能となることが分かる。
From the above results, the following can be said.
(1) From the results of Examples Nos. 2 to 3, by adding polylactic acid having an acrylic group, the viscosity, the Payne effect are reduced, the hardness is increased, and tanδ is maintained at the same level or slightly improved It can be seen that the processability can be improved.
(2) By comparing the results of Nos. 5-6 and Nos. 2-3, which are both examples, it is possible to increase the hardness and reduce tan δ (60 ° C) by reducing the amount of silica blended, that is, It can be seen that the workability can be improved, the hardness can be increased, and the heat generation can be reduced.

実施例
SBR(Nipol NS460) 96.3重量部
ブタジエンゴム(BR1220) 30.0 〃
シリカ(Ultrasil 7000GR) (所定量)
カーボンブラック(シースト6) (所定量)
シランカップリング剤(Si69) (所定量)
参考例2で得られたメルカプト基を有するポリ乳酸 (所定量)
酸化亜鉛(酸化亜鉛3種) 3 〃
ステアリン酸(ビーズステアリン酸) 2 〃
老化防止剤(6PPD) 3 〃
アロマオイル(エキストラクト4号S) 10 〃
硫黄(金華印油入微粉硫黄) 2 〃
加硫促進剤(ノクセラーCZ-G) 2 〃
加硫促進剤(ソクシノールD-G) 1 〃
Example 2
SBR (Nipol NS460) 96.3 parts by weight Butadiene rubber (BR1220) 30.0 〃
Silica (Ultrasil 7000GR) (predetermined amount)
Carbon black (Seast 6) (predetermined amount)
Silane coupling agent (Si69) (predetermined amount)
Polylactic acid having a mercapto group obtained in Reference Example 2 (predetermined amount)
Zinc oxide (3 types of zinc oxide) 3 〃
Stearic acid (bead stearic acid) 2 〃
Anti-aging agent (6PPD) 3 〃
Aroma oil (Extract No. 4 S) 10 〃
Sulfur (fine powder sulfur with Jinhua seal oil) 2 2
Vulcanization accelerator (Noxeller CZ-G) 2 〃
Vulcanization accelerator (Soxinol DG) 1 〃

以上の各成分を用い、実施例と同様にして、加硫および測定が行われた。得られた測定結果は、所定量用いられた各成分量(単位:重量部)と共に、次の表2に示される。なお、測定項目として、次の測定項目が追加された。
ムーニースコーチ:JIS K6300に準拠し、120℃で測定
指数が大きい程、スコーチが遅いことを示している
ランボーン摩耗:岩本製作所製ランボーン摩耗試験機を用い、荷重5kg(49N)、
スリップ率25%、時間4分間、室温という条件下で測定し、摩
耗減量を指数として示した
指数が大きい程、耐摩耗性が良好であることを示している
表2
No.1 No.2 No.3 No.4 No.5
〔ゴム組成物成分〕
シリカ 80 80 80 80 75
カーボンブラック 5 5 5 5 5
シランカップリング剤 8.0 8.0 8.0 8.0 7.5
メルカプト基含有ポリ乳酸 − 2.0 5.0 15.0 5.0
〔測定結果〕
粘度 100 89 84 80 82
ムーニースコーチ 100 130 140 155 140
ペイン効果 100 73 70 68 68
20℃硬度 100 100 101 102 100
tanδ(0℃) 100 106 108 110 110
ランボーン摩耗 100 127 130 129 128
Vulcanization and measurement were performed in the same manner as in Example 1 using the above components. The obtained measurement results are shown in the following Table 2 together with the amount of each component (unit: parts by weight) used in a predetermined amount. In addition, the following measurement items were added as measurement items.
Mooney scorch: Measured at 120 ° C according to JIS K6300
The larger the index is, the slower the scorch is. Lambourne wear: Using a lambourne wear tester manufactured by Iwamoto Seisakusho, the load is 5 kg (49 N),
Measured under conditions of slip rate 25%, time 4 minutes, room temperature,
The weight loss was shown as an index.
The larger the index, the better the wear resistance.
Table 2
No.1 No.2 No.3 No.4 No.5
[Rubber composition component]
Silica 80 80 80 80 75
Carbon black 5 5 5 5 5
Silane coupling agent 8.0 8.0 8.0 8.0 7.5
Mercapto group-containing polylactic acid-2.0 5.0 15.0 5.0
〔Measurement result〕
Viscosity 100 89 84 80 82
Mooney Scorch 100 130 140 155 140
Pain effect 100 73 70 68 68
20 ° C hardness 100 100 101 102 100
tanδ (0 ° C) 100 106 108 110 110
Lambourne wear 100 127 130 129 128

以上の結果から、次のようなことがいえる。
(1) 実施例であるNo.2〜3の結果から、メルカプト基を有するポリ乳酸を配合することにより、粘度、ペイン効果の低減、スコーチ性の改善、低温tanδの値のアップが図られ、ランボーン摩耗も良好となることが分かる。
(2) 共に実施例であるNo.5とNo.3の結果を対比することにより、シリカ配合量を減らすことで、硬度が同等でさらに加工性を良化できることが分かる。
From the above results, the following can be said.
(1) From the results of Nos. 2 to 3 as examples, by blending a polylactic acid having a mercapto group, the viscosity, the pain effect is reduced, the scorch property is improved, and the value of the low temperature tan δ is increased. It can be seen that the lamborn wear is also good.
(2) By comparing the results of No. 5 and No. 3 which are both examples, it can be seen that by reducing the amount of silica, the hardness is equivalent and the workability can be further improved.

実施例
SBR(Nipol NS460) (所定量)
SBR(日本ゼオン製品Nipol NS616) (所定量)
シリカ(Ultrasil 7000GR) (所定量)
カーボンブラック(シースト6) 5重量部
シランカップリング剤(Si69) (所定量)
参考例4で得られたメルカプト基を有するポリ乳酸で (所定量)
変性されたSBR
酸化亜鉛(酸化亜鉛3種) 3 〃
ステアリン酸(ビーズステアリン酸) 2 〃
老化防止剤(6PPD) 3 〃
アロマオイル(エキストラクト4号S) (所定量)
硫黄(金華印油入微粉硫黄) 2 〃
加硫促進剤(ノクセラーCZ-G) 2 〃
加硫促進剤(ソクシノールD-G) 1 〃
Example 3
SBR (Nipol NS460) (predetermined amount)
SBR (Nippon ZEON product Nipol NS616) (predetermined amount)
Silica (Ultrasil 7000GR) (predetermined amount)
Carbon black (Seast 6) 5 parts by weight Silane coupling agent (Si69) (predetermined amount)
Polylactic acid having a mercapto group obtained in Reference Example 4 (predetermined amount)
Modified SBR
Zinc oxide (3 types of zinc oxide) 3 〃
Stearic acid (bead stearic acid) 2 〃
Anti-aging agent (6PPD) 3 〃
Aroma oil (Extract No. 4 S) (predetermined amount)
Sulfur (fine powder sulfur with Jinhua seal oil) 2 2
Vulcanization accelerator (Noxeller CZ-G) 2 〃
Vulcanization accelerator (Soxinol DG) 1 〃

以上の各成分を用い、実施例と同様にして、加硫および測定が行われた。得られた測定結果は、所定量用いられた各成分量(単位:重量部)と共に、次の表3に示される。なお、測定項目として、次の測定項目が追加された。
破断時伸び:JIS K6251に準拠し、室温条件下で引張試験を行い、破断時の伸び
を求めた
指数が大きい程、破断時の伸びが高いことを示している
表3
No.1 No.2 No.3 No.4 No.5 No.6
〔ゴム組成物成分〕
SBR(Nipol NS460) 110.0 96.3 110.0 96.3 96.3 110.0
SBR(Nipol NS616) 20.0 30.0 − − − 20.0
ポリ乳酸変性SBR − − 20.0 30.0 30.0 −
シリカ 65 65 65 65 60 60
シランカップリング剤 6.5 6.5 6.5 6.5 6.0 6.0
アロマオイル 18 8 18 8 8 18
〔測定結果〕
20℃硬度 100 100 102 102 100 95
破断時伸び 100 85 106 105 103 96
tanδ
0℃ 100 104 100 105 106 102
60℃ 100 105 98 99 94 98
Vulcanization and measurement were performed in the same manner as in Example 1 using the above components. The obtained measurement results are shown in the following Table 3 together with the amount of each component (unit: parts by weight) used in a predetermined amount. In addition, the following measurement items were added as measurement items.
Elongation at break: In accordance with JIS K6251, a tensile test is performed at room temperature, and elongation at break
Sought
The larger the index, the higher the elongation at break
Table 3
No.1 No.2 No.3 No.4 No.5 No.6
[Rubber composition component]
SBR (Nipol NS460) 110.0 96.3 110.0 96.3 96.3 110.0
SBR (Nipol NS616) 20.0 30.0 − − − 20.0
Polylactic acid modified SBR − − 20.0 30.0 30.0 −
Silica 65 65 65 65 60 60
Silane coupling agent 6.5 6.5 6.5 6.5 6.0 6.0
Aroma oil 18 8 18 8 8 18
〔Measurement result〕
20 ° C hardness 100 100 102 102 100 95
Elongation at break 100 85 106 105 103 96
tanδ
0 ° C 100 104 100 105 106 102
60 ° C 100 105 98 99 94 98

以上の結果から、次のようなことがいえる。
(1) 実施例であるNo.3〜4の結果から、メルカプト基を有するポリ乳酸で変性されたSBRを配合することで、硬度アップ、破断時伸びの向上、tanδ(60℃)の低下が図られ、変性SBRを増量しても破断時伸びが確保されることが分かる。
(2) 共に実施例であるNo.5とNo.4の結果を対比することにより、シリカ配合量を減らすことでさらにtanδ(60℃)の低下が可能となることが分かる。
(3) 比較例であるNo.2の結果から、未変性SBRを増量すると破断時伸びが低下することが分かる。
From the above results, the following can be said.
(1) From the results of Nos. 3 to 4 as examples, by adding SBR modified with polylactic acid having a mercapto group, the hardness is increased, the elongation at break is improved, and the tan δ (60 ° C.) is decreased. It can be seen that the elongation at break is secured even when the amount of the modified SBR is increased.
(2) By comparing the results of No. 5 and No. 4 which are both examples, it can be seen that tan δ (60 ° C.) can be further reduced by reducing the amount of silica.
(3) From the result of Comparative Example No. 2, it is understood that the elongation at break decreases when the amount of unmodified SBR is increased.

Claims (4)

ジエン系ゴム100重量部に対し、シリカ5〜150重量部およびジエン系ポリマーの二重結合部位と付加反応可能な官能基を有するポリ乳酸0.1〜10重量部を配合してなるタイヤ用ゴム組成物。Rubber composition for tire comprising 100 parts by weight of diene rubber and 5 to 150 parts by weight of silica and 0.1 to 10 parts by weight of polylactic acid having a functional group capable of addition reaction with a double bond site of diene polymer . ジエン系ゴム100重量部に対しシリカ5〜150重量部を配合したゴム組成物において、ジエン系ゴム100重量部中5〜50重量部がジエン系ポリマーの二重結合部位と付加反応可能な官能基を有するポリ乳酸で変性された、ポリ乳酸部位を有する変性ジエン系ポリマーで置換されたタイヤ用ゴム組成物。In a rubber composition in which 5 to 150 parts by weight of silica is blended with 100 parts by weight of diene rubber, 5 to 50 parts by weight of 100 parts by weight of diene rubber is a functional group capable of addition reaction with the double bond site of the diene polymer. A rubber composition for tires, which is substituted with a modified diene polymer having a polylactic acid moiety, which is modified with a polylactic acid having a polylactic acid. タイヤのトレッド部形成に用いられる請求項1または2記載のタイヤ用ゴム組成物。The rubber composition for a tire according to claim 1 or 2, which is used for forming a tread portion of a tire. 請求項3記載のタイヤ用ゴム組成物からトレッド部が形成された自動車用空気入りタイヤ。An automotive pneumatic tire having a tread portion formed from the rubber composition for a tire according to claim 3.
JP2011130809A 2011-01-14 2011-06-13 Tire rubber composition containing polylactic acid or diene polymer modified with the same Active JP5741235B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011130809A JP5741235B2 (en) 2011-01-14 2011-06-13 Tire rubber composition containing polylactic acid or diene polymer modified with the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011005421 2011-01-14
JP2011005421 2011-01-14
JP2011130809A JP5741235B2 (en) 2011-01-14 2011-06-13 Tire rubber composition containing polylactic acid or diene polymer modified with the same

Publications (2)

Publication Number Publication Date
JP2012158738A JP2012158738A (en) 2012-08-23
JP5741235B2 true JP5741235B2 (en) 2015-07-01

Family

ID=46839528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011130809A Active JP5741235B2 (en) 2011-01-14 2011-06-13 Tire rubber composition containing polylactic acid or diene polymer modified with the same

Country Status (1)

Country Link
JP (1) JP5741235B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5682594B2 (en) 2012-05-24 2015-03-11 横浜ゴム株式会社 Modified diene polymer
JP5716780B2 (en) 2013-03-26 2015-05-13 横浜ゴム株式会社 Thermosetting resin composition
JP6163973B2 (en) * 2013-08-28 2017-07-19 横浜ゴム株式会社 Rubber composition for tire and pneumatic tire
JP6398406B2 (en) * 2014-07-15 2018-10-03 富士ゼロックス株式会社 Modifier for modifying polylactic acid resin, resin composition and resin molded body
KR101667200B1 (en) * 2014-12-24 2016-10-18 한국타이어 주식회사 Rubber composition for tire and tire manufactured by using the same
JP2018024768A (en) * 2016-08-10 2018-02-15 株式会社ブリヂストン Rubber composition and tire
FR3060582A1 (en) 2016-12-21 2018-06-22 Compagnie Generale Des Etablissements Michelin PROCESS FOR THE PREPARATION OF POLYDIENE / POLYLACTIDE COPOLYMERS BY REACTIVE EXTRUSION
FR3060454A1 (en) * 2016-12-21 2018-06-22 Compagnie Generale Des Etablissements Michelin RUBBER COMPOSITION COMPRISING A POLYDIENE / POLYLACTIDE COPOLYMER
FR3082519B1 (en) * 2018-06-19 2020-11-20 Michelin & Cie ELASTOMERIC BLEND INCLUDING PLLA AND PDLA
CN114539645A (en) * 2021-12-17 2022-05-27 山东玲珑轮胎股份有限公司 Wear-resistant tire and preparation method thereof
CN114539644A (en) * 2021-12-17 2022-05-27 山东玲珑轮胎股份有限公司 Low-noise tire and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3349755B2 (en) * 1993-04-15 2002-11-25 三井化学株式会社 Macromonomer
DE4315611A1 (en) * 1993-05-11 1994-11-17 Basf Ag Functionalized polylactide
DE10101387A1 (en) * 2001-01-13 2002-07-18 Merck Patent Gmbh Polyester with methacrylate end groups

Also Published As

Publication number Publication date
JP2012158738A (en) 2012-08-23

Similar Documents

Publication Publication Date Title
JP5741235B2 (en) Tire rubber composition containing polylactic acid or diene polymer modified with the same
US8637606B2 (en) Tires and tread formed from phenol-aromatic-terpene resin
CN108456348B (en) Rubber composition for tread cap and pneumatic tire
JP5485650B2 (en) Rubber composition for tread and pneumatic tire
US20090306267A1 (en) Rubber mixture with improved abrasion
JP5739535B2 (en) Rubber composition for tread and pneumatic tire
JP5347353B2 (en) Method for producing silica-containing diene rubber composition
CN114341212B (en) Hydrogenated petroleum resin and rubber composition containing the same
CN112513166B (en) Sulfur-crosslinkable rubber mixture, vulcanized rubber and vehicle tire
KR20150143398A (en) Novel cardanol based organic vulcanizing agent, manufacturing method of the same and rubber composition for tire using the same
JP2012111795A (en) Rubber composition for base tread, and pneumatic tire
JP5662231B2 (en) Rubber composition for tire and pneumatic tire
JP2019131648A (en) Tire rubber composition and tire
JP5654362B2 (en) Rubber composition for tire and pneumatic tire
DE102011111394A1 (en) Rubber composition for winter tires and winter tires
JP6772539B2 (en) Manufacturing method of rubber composition for tires and rubber composition for tires
JP2018150505A (en) Rubber composition for tire, and pneumatic tire
EP3635016B1 (en) Silane functionalized poly (farnesene) and rubber compound comprising the same
JP6030104B2 (en) Manufacturing method of tire rubber composition and tire
JP5654360B2 (en) Rubber composition for tire and pneumatic tire
JP6465559B2 (en) Rubber composition and pneumatic tire
JP2009185164A (en) Method for producing modified diene rubber
EP1878590A1 (en) Rubber composition for covering carcass cord and tire having carcass using same
JP2019131647A (en) Tire rubber composition and tire
JP2014009265A (en) Rubber composition for high performance wet tire tread, and high performance wet tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140605

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150413

R150 Certificate of patent or registration of utility model

Ref document number: 5741235

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250