JP5740135B2 - Plate thickness measuring device - Google Patents

Plate thickness measuring device Download PDF

Info

Publication number
JP5740135B2
JP5740135B2 JP2010238792A JP2010238792A JP5740135B2 JP 5740135 B2 JP5740135 B2 JP 5740135B2 JP 2010238792 A JP2010238792 A JP 2010238792A JP 2010238792 A JP2010238792 A JP 2010238792A JP 5740135 B2 JP5740135 B2 JP 5740135B2
Authority
JP
Japan
Prior art keywords
probe
scanning unit
steel pipe
pipe column
plate thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010238792A
Other languages
Japanese (ja)
Other versions
JP2012093126A (en
Inventor
雅也 遠渡
雅也 遠渡
鈴木 敏一
敏一 鈴木
久人 古田
久人 古田
Original Assignee
中日本ハイウェイ・エンジニアリング東京株式会社
株式会社ニチゾウテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中日本ハイウェイ・エンジニアリング東京株式会社, 株式会社ニチゾウテック filed Critical 中日本ハイウェイ・エンジニアリング東京株式会社
Priority to JP2010238792A priority Critical patent/JP5740135B2/en
Publication of JP2012093126A publication Critical patent/JP2012093126A/en
Application granted granted Critical
Publication of JP5740135B2 publication Critical patent/JP5740135B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

この発明は板厚測定装置に関し、特に、外面から直接計測できない地際および地中の板厚を測定可能な板厚測定装置に関する。   The present invention relates to a plate thickness measuring apparatus, and more particularly, to a plate thickness measuring apparatus capable of measuring the thickness of the ground and the underground where it cannot be directly measured from the outer surface.

土壌と接触している地際部分の鋼管柱の腐食状態を測定する方法が、たとえば、特開平5−126804号公報(特許文献1)に開示されている。同公報によれば、鋼管柱の足場釘固定用の穴から超音波探触子を挿入し、挿入した風船を膨らますことによって、その超音波探触子を鋼管柱内面側に接触させて超音波を用いて測定している。具体的には、超音波探触子を駆動して鋼管柱の鋼板部などに超音波を入力すると同時に、鋼管柱外面側および内面側で多重反射した超音波をその超音波探触子で受信し、受信した超音波から、多重反射した超音波の周期性などを演算し、予め別に求めておいた腐食量と受信した超音波データを比較することにより、減肉厚さ、鋼管柱外面側の劣化状況を求めることで、鋼管柱を掘り起こしたりすることなく、地中部の腐食を測定している。   A method for measuring the corrosion state of a steel pipe column at a ground portion in contact with soil is disclosed in, for example, Japanese Patent Laid-Open No. 5-126804 (Patent Document 1). According to the publication, an ultrasonic probe is inserted through a hole for fixing a scaffolding nail of a steel pipe column, and the inserted balloon is inflated to bring the ultrasonic probe into contact with the inner surface of the steel pipe column. It is measured using. Specifically, the ultrasonic probe is driven to input ultrasonic waves to the steel pipe column and the like, and at the same time, the ultrasonic probe receives multiple reflected ultrasonic waves on the outer surface side and the inner surface side of the steel tube column. By calculating the periodicity of the multiple reflected ultrasonic waves from the received ultrasonic waves and comparing the received ultrasonic data with the corrosion amount obtained separately in advance, the thickness of the steel tube column outer surface side By determining the deterioration status, the underground corrosion is measured without digging up the steel pipe column.

特開平5−126804号公報Japanese Patent Laid-Open No. 5-126804

従来の鋼管柱の地中部の腐食を測定する方法は上記のように行なわれていた。鋼管柱の周辺を掘削することなく測定はできたが、この方法によれば、探触子が膨らまされた風船で押し付けられ固定されるため、鋼管柱全体の測定をするのに時間がかかるという問題があった。   A conventional method for measuring the underground corrosion of a steel pipe column has been performed as described above. Although it was possible to measure without excavating the periphery of the steel pipe column, according to this method, it takes time to measure the entire steel pipe column because the probe is pressed and fixed with an inflated balloon. There was a problem.

この発明は上記のような問題点を解消するためになされたもので、鋼管柱の地際および地中部の腐食の程度を容易に測定できる板厚測定装置を提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a plate thickness measuring device that can easily measure the degree of corrosion of the steel pipe column at the ground and underground.

この発明に係る板厚測定装置は、探触子を保持する走査部と、走査部を制御する制御部とを含み、円筒状の鋼管柱の内周の所望の位置に走査部が載置されたとき、探触子を用いて鋼管柱の板厚を測定する。板厚測定装置では、走査部に保持された探触子を鋼管柱の内周の所望の位置に位置させる位置決め手段と、探触子が位置決め手段によって所望の位置に載置されたとき、走査部を鋼管柱の内周に沿って移動させる移動手段と、探触子の探傷した探傷データを制御部へ送信する送信手段とを含む。   The plate thickness measuring apparatus according to the present invention includes a scanning unit for holding a probe and a control unit for controlling the scanning unit, and the scanning unit is placed at a desired position on the inner periphery of the cylindrical steel pipe column. The thickness of the steel pipe column is measured using a probe. In the plate thickness measuring device, the positioning means for positioning the probe held by the scanning unit at a desired position on the inner periphery of the steel pipe column, and scanning when the probe is placed at the desired position by the positioning means. Moving means for moving the section along the inner circumference of the steel pipe column, and transmission means for transmitting the flaw detection data detected by the probe to the control section.

好ましくは、移動手段は走査部を鋼管柱の内周に接触しながら移動するマグネットローラを含む。また、探触子も鋼管柱の内周に接触しながら移動するマグネットローラを含んでもよい。   Preferably, the moving means includes a magnet roller that moves while the scanning unit is in contact with the inner periphery of the steel pipe column. The probe may also include a magnet roller that moves while contacting the inner periphery of the steel pipe column.

走査部は磁石を含んでもよい。   The scanning unit may include a magnet.

鋼管柱の内部の所望の位置で探触子が走査部に保持されて移動して測定するため、鋼管柱の所望の部分の測定を容易に行うことができる。   Since the probe is held by the scanning unit and moved and measured at a desired position inside the steel pipe column, measurement of a desired portion of the steel pipe column can be easily performed.

その結果、鋼管柱の地際および地中部分の厚さを容易に測定できる板厚測定装置を提供できる。   As a result, it is possible to provide a plate thickness measuring device that can easily measure the thickness of the underground and underground portions of the steel pipe column.

この発明に係る板厚測定装置の要部を示す図である。It is a figure which shows the principal part of the plate | board thickness measuring apparatus which concerns on this invention. 板厚測定装置の要部を示すブロック図である。It is a block diagram which shows the principal part of a plate thickness measuring apparatus. 探触子送り込み治具に載置された走査部を示す図である。It is a figure which shows the scanning part mounted in the probe sending jig | tool. 探触子の探傷状態を示す図である。It is a figure which shows the flaw detection state of a probe. 探触子を走査部に取付けた状態を示す図である。It is a figure which shows the state which attached the probe to the scanning part. 探触子を取付けた走査部を示す図である。It is a figure which shows the scanning part which attached the probe. 板厚測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of a plate thickness measuring apparatus. 図7のS15で示す計測処理の内容を示すフローチャートである。It is a flowchart which shows the content of the measurement process shown by S15 of FIG.

以下、この発明の一実施の形態を図面を参照して説明する。図1はこの実施の形態に係る板厚測定装置の使用状態を示す図(図1(A))と、測定対象である、鋼管柱42内での板厚測定時の走査部20の状態を示す、鋼管柱42を上方向から見た図(図1(B))であり、図2は板厚測定装置の全体構成を示すブロック図である。   An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a diagram (FIG. 1 (A)) showing a use state of a plate thickness measuring apparatus according to this embodiment, and a state of the scanning unit 20 at the time of plate thickness measurement in a steel pipe column 42, which is a measurement target. FIG. 2 is a diagram (FIG. 1B) of the steel pipe column 42 seen from above, and FIG. 2 is a block diagram showing the overall configuration of the plate thickness measuring apparatus.

図1および図2を参照してこの実施の形態に係る板厚測定装置10は、土壌と接触している地際部分41における鋼管柱42の腐食状態を測定する。なお、地際より下部の測定も可能である。ここでは、鋼管柱42はたとえば、ガードレールを固定する円筒部材である。板厚測定装置10は、鋼管柱42において板厚を測定する探触子11を着脱自在に保持する走査部(移動手段)20と走査部20に接続された制御部30とを含む。走査部20は後に説明する探触子送り込み治具で所望の板厚測定位置に位置決めされる。走査部20と制御部30とは電送線25で接続されている。制御部30から走査部20へ電源の供給、走査部の制御用信号、走査部からの計測データの送信等はこの電送線25を介して行なう。   With reference to FIG. 1 and FIG. 2, the plate | board thickness measuring apparatus 10 which concerns on this Embodiment measures the corrosion state of the steel pipe column 42 in the subsurface part 41 which is contacting with soil. Measurements below the ground are also possible. Here, the steel pipe column 42 is, for example, a cylindrical member that fixes the guard rail. The plate thickness measuring apparatus 10 includes a scanning unit (moving means) 20 that detachably holds a probe 11 that measures a plate thickness in a steel pipe column 42 and a control unit 30 connected to the scanning unit 20. The scanning unit 20 is positioned at a desired plate thickness measurement position by a probe feeding jig described later. The scanning unit 20 and the control unit 30 are connected by a transmission line 25. Supply of power from the control unit 30 to the scanning unit 20, transmission of control signals for the scanning unit, measurement data from the scanning unit, and the like are performed via the transmission line 25.

制御部30は走査部を制御する制御器31と超音波探傷器32とを含む。超音波探傷器32は測定結果波形を示すモニタを含む。   The control unit 30 includes a controller 31 that controls the scanning unit and an ultrasonic flaw detector 32. The ultrasonic flaw detector 32 includes a monitor showing a measurement result waveform.

図1(B)に示すように、所望の測定位置に載置された走査部20は、図中矢印Aで示すように、鋼管柱42の内面に沿って移動しながら探触子11を用いて、その地点における板厚を測定する。なお、図1(B)には円筒部材においてガードレールを固定する固定ボルト43も示している。   As shown in FIG. 1B, the scanning unit 20 placed at a desired measurement position uses the probe 11 while moving along the inner surface of the steel pipe column 42 as indicated by an arrow A in the figure. And measure the thickness at that point. FIG. 1B also shows a fixing bolt 43 for fixing the guard rail in the cylindrical member.

図2に示すように、走査部20は探触子11を保持する探触子保持部29と、走査用のモータ23と、エンコーダ24と、マグネットローラ26と、探触子11を鋼管柱42に当接する方向に回転させる回転駆動部28とを含む。   As shown in FIG. 2, the scanning unit 20 includes a probe holding unit 29 that holds the probe 11, a scanning motor 23, an encoder 24, a magnet roller 26, and the probe 11 with a steel pipe column 42. And a rotation drive unit 28 that rotates in a direction in contact with the rotation drive unit 28.

探触子保持部29は、超音波を発射する探触子11と、探触子11を鋼管柱42の内周に正対させるためのマグネットローラ12と、受信した超音波信号を超音波探傷器32に送信する送信装置(送信手段)13とを含む。なお、超音波探傷器32はメモリカードを内蔵しており、メモリカードを介して測定データが別の場所に設けられたパソコン33に送られて、そこで、データ解析やグラフ化が行なわれる。   The probe holding unit 29 includes a probe 11 that emits ultrasonic waves, a magnet roller 12 that causes the probe 11 to face the inner circumference of the steel pipe column 42, and ultrasonic inspection of received ultrasonic signals. And a transmission device (transmission means) 13 for transmitting to the device 32. Note that the ultrasonic flaw detector 32 has a built-in memory card, and measurement data is sent via the memory card to a personal computer 33 provided at another location, where data analysis and graphing are performed.

図3は探触子送り込み治具(位置決め手段)50を用いて、走査部20を鋼管柱42の内部に送り込む状態を示す図である。なお、図3(A)には鋼管柱42も示している。また、ここでは、鋼管柱42の上端部は開口されている状態を示す。図3を参照して、探触子送り込み治具50は挿入板51と、挿入板51の先端部に設けられた走査部保持部52と、保持部52とは反対側の挿入板端部に設けられた把手部53とを含む。走査部20は走査部保持部52によって保持されて、ユーザが把持部53で治具50を把持して鋼管柱42の所望の高さまで下ろす。なお、探触子送り込み治具50は走査部20を保持して所望の高さまで下ろすときに、固定ボルト43と鋼管柱42との隙間を問題なく通過できる寸法となっていることから、ガードレールを取外さなくても測定でき、作業時間の短縮が可能である。また、測定装置の小型化を図っていることから、小口径の鋼管の板厚測定ができる。   FIG. 3 is a view showing a state in which the scanning unit 20 is fed into the steel pipe column 42 using the probe feeding jig (positioning means) 50. In addition, the steel pipe column 42 is also shown in FIG. Moreover, the upper end part of the steel pipe column 42 shows the state opened. Referring to FIG. 3, the probe feeding jig 50 is attached to the insertion plate 51, the scanning unit holding unit 52 provided at the distal end of the insertion plate 51, and the insertion plate end opposite to the holding unit 52. And a handle portion 53 provided. The scanning unit 20 is held by the scanning unit holding unit 52, and the user holds the jig 50 with the holding unit 53 and lowers the steel pipe column 42 to a desired height. Note that the probe feeding jig 50 has a size that can pass through the gap between the fixing bolt 43 and the steel pipe column 42 without problems when the scanning unit 20 is held and lowered to a desired height. Measurements can be made without removal, reducing work time. In addition, since the measuring device is downsized, it is possible to measure the thickness of a steel pipe having a small diameter.

次に板厚測定装置10を用いた具体的な測定方法について説明する。図4は鋼管柱42の板厚を測定している状態を示す図であり、図1(B)に示した走査部20が鋼管柱42の内面に位置している状態を示す断面図である。図4に示すように、鋼管柱42に、図示の無い磁石で当接した走査部20は探触子11を保持する。探触子11はアレイ式の探触子であり、鋼管柱42の一定の幅wを同時に測定可能である。但し、単一の探触子での測定も可能である。走査部20を図4において矢印で示す円周方向に走査させて、探触子11によって鋼管柱42を探傷することによって地際等の所望の位置における鋼管柱42の板厚を容易に測定可能である。   Next, a specific measuring method using the plate thickness measuring apparatus 10 will be described. FIG. 4 is a diagram showing a state in which the plate thickness of the steel pipe column 42 is being measured, and is a cross-sectional view showing a state in which the scanning unit 20 shown in FIG. 1 (B) is located on the inner surface of the steel pipe column 42. . As shown in FIG. 4, the scanning unit 20 that abuts the steel pipe column 42 with a magnet (not shown) holds the probe 11. The probe 11 is an array-type probe, and can measure a certain width w of the steel pipe column 42 at the same time. However, measurement with a single probe is also possible. By scanning the scanning unit 20 in the circumferential direction indicated by the arrow in FIG. 4 and flaw detection of the steel pipe column 42 by the probe 11, the plate thickness of the steel pipe column 42 at a desired position such as the ground can be easily measured. It is.

図5は走査部20の概要を示す模式図である。図5(A)は走査部20の全体の概要を示す斜視図であり、図5(B)は図5(A)において、矢印B−Bで示す部分の概略矢視図である。図5を参照して、走査部20は中央部に探触子11を着脱自在に保持する探触子保持部29を有する全体が直方体状である。走査部20は短辺側から見ると、矩形部分とその下部に設けられた矩形部分の一辺を共通とする台形状の部分とからなり、この台形状の部分の短辺と斜辺との交点部分に駆動部としての、マグネットローラ26が設けられている。マグネットローラ26は、走査部20の長手方向の両端部にそれぞれ一対設けられている。   FIG. 5 is a schematic diagram showing an outline of the scanning unit 20. FIG. 5A is a perspective view showing an overview of the entire scanning unit 20, and FIG. 5B is a schematic arrow view of a portion indicated by arrows BB in FIG. 5A. Referring to FIG. 5, the entire scanning unit 20 has a probe holder 29 that detachably holds the probe 11 at the center, and has a rectangular parallelepiped shape. When viewed from the short side, the scanning unit 20 includes a rectangular portion and a trapezoidal portion that shares one side of the rectangular portion provided at the lower portion thereof, and an intersection portion between the short side and the oblique side of the trapezoidal portion. A magnet roller 26 is provided as a drive unit. A pair of magnet rollers 26 are provided at both ends of the scanning unit 20 in the longitudinal direction.

マグネットローラ26a〜26dは磁性を有するローラであり、鋼管柱42のような磁性体に吸着しながらマグネットローラ26a〜26dが回転することにより磁性体に沿って移動する。マグネットローラは走査部20の長手方向の一方側と他方側とに設けられているため、全部で4個のマグネットローラが設けられている。   The magnet rollers 26a to 26d are magnetized rollers, and move along the magnetic body by rotating the magnet rollers 26a to 26d while adsorbing to the magnetic body such as the steel pipe column 42. Since the magnet rollers are provided on one side and the other side of the scanning unit 20 in the longitudinal direction, a total of four magnet rollers are provided.

マグネットローラの回転軸は走行装置23の長手方向に沿った方向であり、それによって、図5(B)において、矢印B−Bで示す方向に円弧に沿って移動可能である。   The rotation axis of the magnet roller is a direction along the longitudinal direction of the traveling device 23, and is thereby movable along the arc in the direction indicated by the arrow BB in FIG.

図5(A)に示すように、探触子ホルダ21は探触子11を保持する探触子保持部29を収容する。探触子保持部29は直方体状であり、長手方向の両端部において、それぞれ一対のマグネットローラ12a〜12dが設けられている。マグネットローラ12a〜12dの回転軸は、走査部20のマグネットローラ26a〜26dの回転軸と同じ方向である。図5(B)に示すように、走査部20の短辺側から見たとき、探触子保持部29のマグネットローラ12a〜12dは走査部20のマグネットローラ26a〜26dに挟まれてその下部に位置し、それによって、探触子保持部29のマグネットローラ12a〜12dと走査部20のマグネットローラ26a〜26dとは同じ円弧上(すなわち、鋼管柱42の内周面)を移動可能である。   As shown in FIG. 5A, the probe holder 21 accommodates a probe holder 29 that holds the probe 11. The probe holding portion 29 has a rectangular parallelepiped shape, and a pair of magnet rollers 12a to 12d are provided at both ends in the longitudinal direction. The rotation axes of the magnet rollers 12a to 12d are in the same direction as the rotation axes of the magnet rollers 26a to 26d of the scanning unit 20. As shown in FIG. 5B, when viewed from the short side of the scanning unit 20, the magnet rollers 12a to 12d of the probe holding unit 29 are sandwiched by the magnet rollers 26a to 26d of the scanning unit 20 and below the magnet rollers 12a to 26d. Accordingly, the magnet rollers 12a to 12d of the probe holding unit 29 and the magnet rollers 26a to 26d of the scanning unit 20 can move on the same arc (that is, the inner peripheral surface of the steel pipe column 42). .

また、探触子ホルダ21は直方体状の探触子保持部29をその長手方向の対向する2面で収納可能な対向する壁面21aと、それぞれの壁面21aの中央部に設けられた円筒形状の突起部21bとを含む。探触子保持部29はその長手方向の対向する2面のそれぞれに、突起部21bに係合して突起部21bの回転に応じて回転する円筒状の係合凹部14を有している。走査部20は突起部21bを回転駆動するための回転駆動部28(図2参照)を有し、それによって、探触子保持部29は走査部20に対して図5(A)において矢印Cで示す方向に回転可能である。   The probe holder 21 has a rectangular parallelepiped-shaped probe holding portion 29 which can be accommodated by two opposing surfaces in the longitudinal direction, and cylindrical shapes provided at the center of each wall surface 21a. And a protruding portion 21b. The probe holding portion 29 has cylindrical engagement concave portions 14 that are engaged with the protruding portion 21b and rotate in accordance with the rotation of the protruding portion 21b on each of two opposing surfaces in the longitudinal direction. The scanning unit 20 includes a rotation driving unit 28 (see FIG. 2) for rotationally driving the protrusion 21b, whereby the probe holding unit 29 moves the arrow C in FIG. It can be rotated in the direction indicated by.

すなわち、探触子11は走査部20が鋼管柱42の内周面に沿って円周方向に移動しながら、走査部20の長手方向の中央部を回転中心として鋼管柱42に当接、または、離隔する方向に回転可能である。   That is, the probe 11 is in contact with the steel pipe column 42 around the center in the longitudinal direction of the scanning unit 20 while the scanning unit 20 moves in the circumferential direction along the inner peripheral surface of the steel pipe column 42, or , Can be rotated in the direction of separation.

なお、図5(A)に示すように、走査部20の長手方向の両端部には磁石22a,22bが設けられている。なお、この磁石22a,22bはマグネットローラ26a〜26dが設けられている側に設けられている。これによって、走査部20はより安定して鋼管柱42の内周面に保持される。   As shown in FIG. 5A, magnets 22a and 22b are provided at both ends of the scanning unit 20 in the longitudinal direction. The magnets 22a and 22b are provided on the side where the magnet rollers 26a to 26d are provided. As a result, the scanning unit 20 is more stably held on the inner peripheral surface of the steel pipe column 42.

次に、走査部20の詳細について説明する。図6(A)は走査部20の平面図(図6(B)においてVIA-VIAで示す部分の矢視図)であり、図6(B)はその側面図(図6(A)においてVIB-VIBで示す部分の矢視図)である。図6を参照して、平面図において矩形状を有する探触子ホルダ21は、走査部20に設けられた取付けノブ28a〜28dによって走査部20に取り付けられている。取付けノブ28a〜28dは矩形状を有する探触子ホルダ21をその四隅で保持している。   Next, details of the scanning unit 20 will be described. 6A is a plan view of the scanning unit 20 (an arrow view of a portion indicated by VIA-VIA in FIG. 6B), and FIG. 6B is a side view thereof (VIB in FIG. 6A). -Arrow view of the part indicated by VIB). Referring to FIG. 6, probe holder 21 having a rectangular shape in a plan view is attached to scanning unit 20 by attachment knobs 28 a to 28 d provided in scanning unit 20. The attachment knobs 28a to 28d hold the probe holder 21 having a rectangular shape at its four corners.

また、探触子保持部29のほぼ中央部には測定時に必要な接触媒質(ここでは水)を供給する接触媒質供給口27が設けられている。   In addition, a contact medium supply port 27 for supplying a contact medium (water here) necessary for measurement is provided at a substantially central portion of the probe holding unit 29.

次に、この実施の形態に係る板厚測定装置10の動作について説明する。図7はこの実施の形態における板厚測定装置の動作を示すフローチャートである。図7を参照して、まず事前準備を行なう(ステップS11,以下、ステップを省略する)。具体的には、板厚測定装置を構成する部材である、探触子11、走査部20、超音波探傷器32、探触子送り込み治具50、板厚測定装置の較正を行なうための、所定の厚みを有する調整用試験片等をそろえる。   Next, the operation of the plate thickness measuring apparatus 10 according to this embodiment will be described. FIG. 7 is a flowchart showing the operation of the plate thickness measuring apparatus in this embodiment. Referring to FIG. 7, first, preliminary preparation is performed (step S11, hereinafter, steps are omitted). Specifically, for calibrating the probe 11, the scanning unit 20, the ultrasonic flaw detector 32, the probe feeding jig 50, and the plate thickness measuring device, which are members constituting the plate thickness measuring device, Prepare test specimens for adjustment having a predetermined thickness.

次に、探触子11を探触子保持部29にセットし、調整用試験片を用いて、板厚測定装置を較正する(S12)。走査部20に探触子保持部29を取付ける(S13)。探触子11が保持された走査部20を探触子送り込み治具50を用いて鋼管柱42内に送り込む(S14)。所定の高さまで送り込んだら走査部20を自走させて鋼管柱内周面に正対させ、その後、走査部20を所定の開始位置に移動させることによって鋼管柱42の板厚の計測を開始する(S15)。計測が終了すれば走査部20を回収する(S16)。その後、測定すべき別の鋼管柱に移動する(S17)。これを全ての鋼管柱について実行する。全ての鋼管柱について計測が完了すれば後作業を行なう(S18)。後作業が終了後、事務所等でパソコンを用いて計測結果を解析する(S19)。   Next, the probe 11 is set on the probe holder 29, and the plate thickness measuring device is calibrated using the adjustment test piece (S12). The probe holder 29 is attached to the scanning unit 20 (S13). The scanning unit 20 holding the probe 11 is sent into the steel pipe column 42 using the probe sending jig 50 (S14). After feeding to a predetermined height, the scanning unit 20 is self-propelled so as to face the inner peripheral surface of the steel pipe column, and thereafter, the measurement of the plate thickness of the steel pipe column 42 is started by moving the scanning unit 20 to a predetermined start position. (S15). When the measurement is completed, the scanning unit 20 is collected (S16). Then, it moves to another steel pipe column to be measured (S17). This is performed for all steel pipe columns. If the measurement is completed for all the steel pipe columns, the post-operation is performed (S18). After the post-operation is completed, the measurement result is analyzed using a personal computer in the office or the like (S19).

次に図7において、S15で示した計測処理について説明する。図8はこの計測処理の内容を示すフローチャートである。この処理は、制御部30の有する制御器31(具体的には制御器の有するCPU)が行なう動作である。   Next, in FIG. 7, the measurement process shown in S15 will be described. FIG. 8 is a flowchart showing the contents of this measurement process. This process is an operation performed by the controller 31 (specifically, the CPU included in the controller) included in the control unit 30.

図8を参照して、ここでは、まず走査部20を探触子送り込み治具50の上から鋼管柱42の内周に沿って移動させる(S151)。走査部20が鋼管柱内を360°移動したか、すなわち、鋼管柱42内を一周したか否かを判断する(S152)。一周したら(S152でYES)、適切な探傷データが得られているか否かを判断して処理を終了する(S153)。これは、鋼管柱42の内周面に異物等が堆積したり、塗装時において塗料が一部に堆積して、走査部20(探触子11)が鋼管柱42の内周面に密着できないことが起こりうるためである。S152で一周していなかったり(S152でNO)、S153で適切な探傷データが得られていないときは(S153でNO)、S151に戻って走査部20を移動させる。   Referring to FIG. 8, here, first, the scanning unit 20 is moved from the top of the probe feeding jig 50 along the inner periphery of the steel pipe column 42 (S151). It is determined whether the scanning unit 20 has moved 360 ° within the steel pipe column, that is, whether the scanning unit 20 has made a round within the steel pipe column 42 (S152). If it makes one round (YES in S152), it is determined whether or not appropriate flaw detection data is obtained, and the process is terminated (S153). This is because foreign matter or the like accumulates on the inner peripheral surface of the steel pipe column 42 or paint partially accumulates at the time of painting, and the scanning unit 20 (probe 11) cannot adhere to the inner peripheral surface of the steel pipe column 42. This is because it can happen. If the circuit has not made a round in S152 (NO in S152) or if appropriate flaw detection data has not been obtained in S153 (NO in S153), the process returns to S151 and the scanning unit 20 is moved.

なお、上記実施の形態においては、探触子送り込み治具で所望の位置に走査部を載置する場合について説明したが、これに限らず、鋼管柱の上端部の開口に走査部をセットし、そこから所望の探傷位置まで制御部の制御によって移動させるようにしてもよい。なお、この場合は、マグネットローラの軸方向は任意の方向に回転可能とするのが好ましい。   In the above embodiment, the case where the scanning unit is placed at a desired position by the probe feeding jig has been described. However, the present invention is not limited to this, and the scanning unit is set at the opening at the upper end of the steel pipe column. From there, it may be moved to a desired flaw detection position under the control of the control unit. In this case, it is preferable that the axial direction of the magnet roller is rotatable in an arbitrary direction.

また、円周方向のみでなく、鋼管柱の軸方向に走査して軸方向に板厚を測定してもよい。   Further, the plate thickness may be measured not only in the circumferential direction but also in the axial direction by scanning in the axial direction of the steel pipe column.

また、上記実施の形態においては、走査部のみならず、探触子にもマグネットローラを設けたが、探触子にはマグネットローラを設けなくてもよい。   In the above embodiment, the magnet roller is provided not only in the scanning unit but also in the probe, but the probe may not be provided with a magnet roller.

また、上記実施の形態においては、走査部に磁石を設けた場合について説明したが、これに限らず、磁石を設けなくてもよい。   Moreover, in the said embodiment, although the case where the magnet was provided in the scanning part was demonstrated, it does not need to provide not only this but a magnet.

また、上記実施の形態においては、探触子と制御部との交信は有線で行なう場合について説明したが、これに限らず、無線で行なってもよい。   Further, in the above embodiment, the case where the communication between the probe and the control unit is performed by wire, but the present invention is not limited to this, and may be performed wirelessly.

図面を参照してこの発明の一実施形態を説明したが、本発明は、図示した実施形態に限定されるものではない。本発明と同一の範囲内において、または均等の範囲内において、図示した実施形態に対して種々の変更を加えることが可能である。   Although one embodiment of the present invention has been described with reference to the drawings, the present invention is not limited to the illustrated embodiment. Various modifications can be made to the illustrated embodiment within the same scope or equivalent scope as the present invention.

この発明に係る板厚測定装置は、鋼管柱の内部の所定の位置で走査部に保持された探触子が円周方向に移動して測定するため、鋼管柱の所望の部分の測定が容易に行うことができる板厚測定装置として有利に利用される。   In the plate thickness measuring apparatus according to the present invention, since the probe held by the scanning unit moves in the circumferential direction at a predetermined position inside the steel pipe column, measurement of a desired portion of the steel pipe column is easy. It can be advantageously used as a plate thickness measuring apparatus that can be used for

10 板厚測定装置、11 探触子、12,26 マグネットローラ、20 走査部、21 探触子ホルダ、22 磁石、23 モータ、24 エンコーダ、25 電送線、27 接触媒質供給口、29 探触子保持部、30 制御部、31 制御器、32 超音波探傷器、33 パソコン、41地際部分、42 鋼管柱、50 探触子送り込み治具。   DESCRIPTION OF SYMBOLS 10 Thickness measuring apparatus, 11 Probe, 12, 26 Magnet roller, 20 Scan part, 21 Probe holder, 22 Magnet, 23 Motor, 24 Encoder, 25 Transmission line, 27 Contact medium supply port, 29 Probe Holding part, 30 control part, 31 controller, 32 ultrasonic flaw detector, 33 personal computer, 41 edge part, 42 steel pipe pillar, 50 probe feeding jig.

Claims (3)

探触子を保持する走査部と、前記走査部を制御する制御部とを含み、円筒状の鋼管柱の
内周の所望の位置に前記走査部が載置されたとき、前記探触子を用いて前記鋼管柱の板厚
を測定する板厚測定装置であって、
前記走査部に保持された前記探触子を前記鋼管柱の内周の所望の位置に位置させる位置
決め手段と、
前記探触子が前記位置決め手段によって所望の位置に載置されたとき、前記走査部を前
記鋼管柱の内周に沿って移動させる直方体状の移動手段と、
前記探触子の探傷した探傷データを前記制御部へ送信する送信手段とを含み、
前記探触子は前記鋼管柱の内周に接触しながら移動するマグネットローラを有し、
前記移動手段は前記探触子を着脱自在に保持する探触子ホルダを含み、
前記探触子ホルダは、前記探触子を前記移動手段の長手方向に対して交わる軸を中心に回転可能に保持する、板厚測定装置。
A scanning unit that holds the probe; and a control unit that controls the scanning unit. A plate thickness measuring device for measuring the plate thickness of the steel pipe column using:
Positioning means for positioning the probe held by the scanning unit at a desired position on the inner periphery of the steel pipe column;
When the probe is placed at a desired position by the positioning means, a rectangular parallelepiped moving means that moves the scanning unit along the inner periphery of the steel pipe column;
Transmitting means for transmitting flaw detection data detected by the probe to the control unit,
The probe may have a magnet roller moves while in contact with the inner periphery of the tubular columns,
The moving means includes a probe holder that detachably holds the probe,
The probe holder is a plate thickness measuring device that holds the probe rotatably about an axis that intersects the longitudinal direction of the moving means .
前記移動手段は前記走査部を前記鋼管柱の内周に接触しながら移動するマグネットロー
ラを含む、請求項1に記載の板厚測定装置。
The plate thickness measuring apparatus according to claim 1, wherein the moving unit includes a magnet roller that moves the scanning unit while contacting the inner periphery of the steel pipe column.
前記走査部は磁石を含む、請求項1又は2に記載の板厚測定装置。 The scanning unit includes a magnet, a plate thickness measuring apparatus according to claim 1 or 2.
JP2010238792A 2010-10-25 2010-10-25 Plate thickness measuring device Active JP5740135B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010238792A JP5740135B2 (en) 2010-10-25 2010-10-25 Plate thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010238792A JP5740135B2 (en) 2010-10-25 2010-10-25 Plate thickness measuring device

Publications (2)

Publication Number Publication Date
JP2012093126A JP2012093126A (en) 2012-05-17
JP5740135B2 true JP5740135B2 (en) 2015-06-24

Family

ID=46386627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010238792A Active JP5740135B2 (en) 2010-10-25 2010-10-25 Plate thickness measuring device

Country Status (1)

Country Link
JP (1) JP5740135B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105277614A (en) * 2014-06-09 2016-01-27 鞍钢股份有限公司 Method for replacing probe of automatic flaw detector
DE102016223996B4 (en) * 2016-12-02 2024-07-18 Robert Bosch Gmbh Detection device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61196113A (en) * 1985-02-26 1986-08-30 Toho Gas Kk Ultrasonic measurement of piping
JP2564430Y2 (en) * 1993-03-12 1998-03-09 日本電信電話株式会社 Sensor device
JP2799667B2 (en) * 1993-08-20 1998-09-21 東電工業株式会社 Chimney tube inspection system
JP3822149B2 (en) * 2002-07-26 2006-09-13 東京電設サービス株式会社 Method for measuring the thickness of a hydraulic iron pipe
JP4004535B2 (en) * 2002-10-25 2007-11-07 旭化成エンジニアリング株式会社 Thickness measuring device for container steel plate
JP4255674B2 (en) * 2002-10-28 2009-04-15 新日本非破壊検査株式会社 Thickness measuring system for large diameter pipes

Also Published As

Publication number Publication date
JP2012093126A (en) 2012-05-17

Similar Documents

Publication Publication Date Title
JP4632962B2 (en) Coaxiality / perpendicularity measuring apparatus and method
EP2138838B1 (en) Ultrasonic inspection probe carrier system for performing nondestructive testing
KR100884524B1 (en) Automatic ultrasonic testing device
JP6425249B2 (en) Structure inspection tool
KR101002434B1 (en) Automatic ultrasonic testing apparatus
JP2007199059A (en) Tube degradation core sampler and sample coring method
KR101819031B1 (en) Train access warning system
JP2008122090A (en) Ultrasonic flaw detection method of rod material, and ultrasonic flaw detection system
KR100975330B1 (en) Multi Channel Ultrasonic Welding Inspection System and Control Method
KR20180011003A (en) Ultrasonic testing equipment for optimized measurement of crack depth in concrete
JP2009035945A (en) Device for testing foldable static cone penetration
KR200448699Y1 (en) a bending measurement device of the shaft
JP5740135B2 (en) Plate thickness measuring device
JP2007285813A (en) Ultrasonic flaw inspection device and ultrasonic flaw inspection method
KR101255837B1 (en) Automatic ultrasonic testing apparatus
JP2009084974A (en) Pile position measuring device and method of measuring pile position
KR101710573B1 (en) Ultrasonic Inspection apparatus equipped with Variable extension 2-axis rail
KR101710576B1 (en) Ultrasonic Inspection apparatus equipped with bar-rail
CN210269732U (en) Bridge steel construction ultrasonic probe operating means
JP2005300363A (en) Ultrasonic flaw detecting system and ultrasonic flaw detecting test method
KR101358343B1 (en) Diagnosing device and method of layer strurcure including various material of inner layer
JP2008304430A (en) Probe holder and probe holder assembly
KR100800640B1 (en) A stud bolt an automatic inspection supersonic waves probe
JP6489798B2 (en) Defect evaluation method and defect evaluation apparatus
JP2001056318A (en) Flaw detection method of pipe by ultrasonic waves and ultrasonic flaw detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140509

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141104

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20150109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150204

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150427

R150 Certificate of patent or registration of utility model

Ref document number: 5740135

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250