JP5739191B2 - Water retaining body for watering purification device, watering purification device, and operation method of watering purification device - Google Patents

Water retaining body for watering purification device, watering purification device, and operation method of watering purification device Download PDF

Info

Publication number
JP5739191B2
JP5739191B2 JP2011042822A JP2011042822A JP5739191B2 JP 5739191 B2 JP5739191 B2 JP 5739191B2 JP 2011042822 A JP2011042822 A JP 2011042822A JP 2011042822 A JP2011042822 A JP 2011042822A JP 5739191 B2 JP5739191 B2 JP 5739191B2
Authority
JP
Japan
Prior art keywords
water
watering
treated water
microorganisms
retaining body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011042822A
Other languages
Japanese (ja)
Other versions
JP2012179517A (en
Inventor
潤 坪田
潤 坪田
晶良 大橋
晶良 大橋
阿部 憲一
憲一 阿部
博也 小寺
博也 小寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Osaka Gas Co Ltd
Original Assignee
Hiroshima University NUC
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC, Osaka Gas Co Ltd filed Critical Hiroshima University NUC
Priority to JP2011042822A priority Critical patent/JP5739191B2/en
Publication of JP2012179517A publication Critical patent/JP2012179517A/en
Application granted granted Critical
Publication of JP5739191B2 publication Critical patent/JP5739191B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Biological Treatment Of Waste Water (AREA)
  • Gas Separation By Absorption (AREA)

Description

本発明は、処理空間中に充填配置された保水体に、処理水を伝わらせて流下させ、前記処理空間内に酸素含有ガスを導入するとともに、前記処理空間から気体を排出することによって、処理水をろ過するとともに前記保水体の付着微生物により処理水中または酸素含有ガス中の処理対象物を分解処理する散水式浄化装置用保水体に関し、さらには、このろ材を用いた散水式浄化装置およびその運転方法に関する。   In the present invention, the water holding body filled and disposed in the treatment space is caused to flow down the treated water, introduces an oxygen-containing gas into the treatment space, and discharges the gas from the treatment space. The present invention relates to a water retention body for a watering purification device that filters water and decomposes a treatment object in treated water or an oxygen-containing gas by microorganisms adhering to the water retention body. It relates to the driving method.

排水浄化は通常活性汚泥法により行われるが、曝気動力が大きい、汚泥が大量に発生するという課題がある。一方、好気処理でありながら、曝気を必要とせず、汚泥発生量も少ない方法として、散水式水処理方法がある。しかし、通常の散水ろ床は、保水性がない。これまで知られていた散水式水処理方法では、散水した水が自然流下して下部に到達するまでの比較的短い時間で、排水が散水ろ床に担持された微生物と接触して浄化される。そのため、散水式水処理方法においては、気液接触時間(HRT)が十分とれないために、効率的な処理は望めないという問題がある。   Waste water purification is usually performed by the activated sludge method, but there is a problem that aeration power is large and a large amount of sludge is generated. On the other hand, there is a sprinkling water treatment method as a method that does not require aeration and generates less sludge while being aerobic. However, a normal trickling filter does not have water retention. In the watering treatment method known so far, the wastewater is purified in contact with the microorganisms supported on the watering filter bed in a relatively short time until the sprinkled water naturally flows down and reaches the lower part. . Therefore, in the watering type water treatment method, there is a problem that an efficient treatment cannot be expected because the gas-liquid contact time (HRT) cannot be taken sufficiently.

これを解決するためにDHS(Downflow Hanging Sponge)法による水処理方法が開発されている(特許文献1,2参照)。DHS法とは、汚水を、スポンジ担体を充填した反応槽の上部から散水し、処理水がスポンジ担体上に増殖している微生物と接触しながら流下する間に好気的に浄化を行う方法であり、処理空間中に吊り下げて配置されたスポンジ担体と、前記スポンジ担体の上部に処理水を供給する散水部とを有する散水ろ床で処理水を生物処理する。   In order to solve this, a water treatment method using a DHS (Downflow Hanging Sponge) method has been developed (see Patent Documents 1 and 2). The DHS method is a method in which sewage is sprinkled from the upper part of a reaction tank filled with a sponge carrier, and the treated water is aerobically purified while flowing down in contact with microorganisms growing on the sponge carrier. The treated water is biologically treated in a sprinkling filter having a sponge carrier suspended in the treatment space and a sprinkling part for supplying treated water to the top of the sponge carrier.

DHS法を行うDHSリアクターに用いられるスポンジ担体は保水性があるために、HRTを長時間確保することができ、数時間かけて排水処理することも可能である。また、散水ろ床では、ろ床を構成するろ材の表面のみに薄い生物膜が形成されるのに対して、DHSリアクターではスポンジ担体の内部にも微生物が生息することができるために、通常の散水ろ床に比べて単位体積あたりの保持微生物量が非常に多い。さらに、DHSリアクターにおいては、処理水は、スポンジ担体の内部および表面を下降しつつ案内されて流下する。すると、前記処理水は、流下してスポンジ担体の上端に達したところで、前記スポンジ担体の内部に分散するように流れる。このとき、処理水は比較的狭い領域から比較的広い領域に拡散されつつ流下することになるとともに、前記処理水は、スポンジ担体の下端で再度集合することになる。この処理形態では、前記処理水は、分散したときに流速が低下し、集合したときに流速が上昇する変動を繰り返すことになる。これにより、流速の低下した状況で処理水中の溶存酸素を微生物に与え、流速の上昇したときに処理水に酸素を溶かし込むという作用を繰り返すため、処理水に対する酸素溶解効率を高めることができる。そのため、溶存酸素は、処理空間中における液中への酸素の溶解、処理水中への拡散、処理水の流下移動によって、スポンジ内部に供給されることになり、散水ろ床に比べて、微生物による水処理環境が良好に維持されやすいものと考えられる。   Since the sponge carrier used in the DHS reactor performing the DHS method has water retention, HRT can be secured for a long time, and wastewater treatment can be performed over several hours. In addition, in the sprinkling filter bed, a thin biofilm is formed only on the surface of the filter medium constituting the filter bed, whereas in the DHS reactor, microorganisms can inhabit inside the sponge carrier. The amount of retained microorganisms per unit volume is much higher than that of a trickling filter. Further, in the DHS reactor, the treated water is guided and flows down while descending the inside and the surface of the sponge carrier. Then, when the treated water flows down and reaches the upper end of the sponge carrier, it flows so as to be dispersed inside the sponge carrier. At this time, the treated water flows down while being diffused from a relatively narrow area to a relatively wide area, and the treated water gathers again at the lower end of the sponge carrier. In this treatment mode, the treated water repeats fluctuations in which the flow velocity decreases when dispersed and the flow velocity increases when the treated water is collected. Thereby, since the dissolved oxygen in the treated water is given to the microorganisms in a state where the flow rate is lowered and the oxygen is dissolved in the treated water when the flow rate is increased, the oxygen dissolution efficiency in the treated water can be increased. Therefore, dissolved oxygen is supplied into the sponge by dissolving oxygen in the liquid in the treatment space, diffusing into the treated water, and moving down the treated water. It is considered that the water treatment environment is easily maintained well.

特許第3586745号公報Japanese Patent No. 3586745 特開2009−220075号公報JP 2009-220075 A

しかし、DHSリアクターの処理規模を大きくしたいような場合に、DHSリアクターに対する担体の充填率を確保するために、大きなスポンジ担体を用いることが考えられる。しかし、スポンジ担体が大きくなると、酸素供給速度と消費速度の関係で、内部まで酸素が供給されにくくなる。そのため、スポンジ担体に担持される微生物量が多くなっても水処理能力をあまり向上させることができないという問題がある。逆に、小さなスポンジ担体を多数使用し、DHSリアクターに対する担体の充填率を確保したとすると、スポンジ担体全体としての比表面積は大きくなり、スポンジ担体内部への酸素供給速度は上がり、深部まで好気状態にすることができる。その反面、多数のスポンジ担体を処理空間中に間隔をあけて並べると、担体間のスペースを小さくせざるを得なくなるため、生物膜が成長したときに、担体間が容易に閉塞してしまい、処理水の流れが悪化するなどの問題が生じやすくなる。   However, when it is desired to increase the processing scale of the DHS reactor, it is conceivable to use a large sponge carrier in order to ensure the filling rate of the carrier into the DHS reactor. However, when the sponge carrier becomes large, it becomes difficult to supply oxygen to the inside due to the relationship between the oxygen supply rate and the consumption rate. Therefore, there is a problem that the water treatment capacity cannot be improved much even if the amount of microorganisms carried on the sponge carrier increases. Conversely, if a large number of small sponge carriers are used and the filling rate of the carrier in the DHS reactor is ensured, the specific surface area of the entire sponge carrier increases, the oxygen supply rate inside the sponge carrier increases, and aerobic to the deep part Can be in a state. On the other hand, if a large number of sponge carriers are arranged at intervals in the processing space, the space between the carriers must be reduced, so when the biofilm grows, the carriers are easily blocked. Problems such as deterioration of the flow of treated water are likely to occur.

本発明の目的は、上記実情に鑑み、DHS法による高い処理効率を生かしつつ、処理規模を大きくするのに有利な散水式浄化装置を提供することにあり、具体的には、その散水式浄化装置においてDHSリアクターのスポンジ担体に代えて用いることができる部材を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a watering purification device that is advantageous for increasing the processing scale while making use of the high processing efficiency of the DHS method. An object of the present invention is to provide a member that can be used in place of a sponge carrier of a DHS reactor in an apparatus.

〔構成1〕
上記課題を解決するための本発明の散水式浄化装置の特徴構成は、
中空のタンク内に処理空間を形成するとともに、散水部を設け、
前記散水部の下方に保水体を充填配置した状態で、
前記散水部より前記保水体に処理水を供給する処理水供給手段を備え、
前記保水体により浄化された処理水を取出す処理水排出手段を備え、
前記処理空間内に酸素含有ガスを前記処理水と並流で供給する給気管を設け、
前記処理空間内のガスを排出する排気管を設けた散水式浄化装置であって、
前記処理空間は、前記処理水と前記酸素含有ガスとを流下させるものであり、
前記保水体は、前記処理空間内に充填配置された状態で内側に通気路を形成可能な保形性を有する筒状芯材を有するとともに、
前記筒状芯材の内外表面に微生物を付着育成可能な繊維材料または多孔質材料からなる被覆担体層を形成してあり、
前記通気路は、前記被覆担体層に微生物が付着育成された状態で通気自在に開放される点にある。
[Configuration 1]
Characteristic feature of the sprinkler purifier equipment of the present invention for solving the above problems,
While forming a treatment space in a hollow tank, a watering part is provided,
In a state where the water retaining body is filled and arranged below the watering part,
A treated water supply means for supplying treated water to the water retaining body from the water sprinkling unit;
A treated water discharge means for removing treated water purified by the water retaining body;
An air supply pipe for supplying oxygen-containing gas in parallel with the treated water is provided in the treated space,
A watering purification device provided with an exhaust pipe for discharging the gas in the processing space,
The treatment space allows the treated water and the oxygen-containing gas to flow down,
The water retaining body has a cylindrical core material having a shape retaining property capable of forming an air passage on the inner side in a state of being filled and disposed in the processing space,
A coated carrier layer made of a fiber material or a porous material capable of adhering and growing microorganisms on the inner and outer surfaces of the cylindrical core material is formed,
The air passage is in a state where the air passage can be freely opened in a state where microorganisms adhere to and grow on the coated carrier layer.

〔作用効果〕
上記構成に基づけば、前記散水部から処理水供給手段により処理水を散水することにより中空のタンク中の処理空間に処理水を散水することができる。散水部の下方には保水体を充填配置してあるから、前記処理水は、前記保水体に付着する。そして前記保水体には、付着微生物が生育する被覆担体層を設けてあるので、前記処理水は前記被覆担体層に吸収されつつ前記被覆担体層の内部を伝って流下する。また、前記被覆担体層の吸水能力を適宜設定することによって、HRTも好適に設定しておくことができる。これにより、DHS法の処理水の流れを再現することができ、DHS法と同様に処理水に対するエア導通手段からの酸素溶解効率を高めることが可能となっている。そのために、前記被覆担体層に処理水を伝わらせて流下させることによって、処理水が被覆担体層を伝って内部を流下する間に、処理水をろ過するとともに前記被覆担体層の付着微生物により分解処理することができる。
したがって、上記構成の散水式浄化装置によれば、前記処理空間内に酸素含有ガスを導入するとともに、前記処理空間から気体を排出する工程を行いつつ、処理空間内に処理水供給手段により処理水を供給し、処理水排出手段により浄化済みの処理水を取出す工程を行えば、連続的に処理水の浄化を行うことができる。
さらに、前記処理空間内に酸素含有ガスを供給する給気管を設け、前記処理空間内のガスを排出する排気管を設けてあるから、前記保水体には、酸素含有ガスが効率よく供給され、微生物による処理水の好気分解処理が促進される。
また、前記被覆担体層は、前記処理空間内に充填配置された状態で内側に通気路を形成可能な保形性を有する筒状芯材の内外表面に形成されているから、前記処理空間内に保水体を充填配置したとしても、前記筒状芯材が重力に耐え、前記被覆担体層が圧密化されるのを防ぎ、その被覆担体層内で微生物が育成される空間を確保することができるとともに、前記被覆担体層が、前記筒状芯材同士の間および、前記通気路に形成される空間に効率よく接することになり、前記空間に流通される酸素含有ガスが、効率よく前記微生物に供給され、高い水処理効率の実現に寄与する。このような保水体を用いることによって、処理空間内への保水体の充填率を高め、さらに高い処理水の分解処理効率を実現することができる。
また、前記被覆担体層は、筒状芯材の表面に薄い層として形成されるから、薄い空間に大量の微生物を育成することが出来るとともに、その微生物に対する酸素供給効率を高くすることができる。
[Function and effect]
Based on the above configuration, the treated water can be sprinkled into the treatment space in the hollow tank by sprinkling the treated water from the water sprinkling unit by the treated water supply means. Since the water holding body is filled and arranged below the water sprinkling part, the treated water adheres to the water holding body. Since the water retaining body is provided with a coated carrier layer on which attached microorganisms grow, the treated water flows down through the inside of the coated carrier layer while being absorbed by the coated carrier layer. Moreover, HRT can also be set suitably by setting the water absorption capacity of the said coating support layer suitably. Thereby, the flow of the treated water of the DHS method can be reproduced, and the oxygen dissolution efficiency from the air conduction means for the treated water can be increased as in the DHS method. For this purpose, by treating the coated carrier layer with the treated water flowing down, the treated water is filtered and decomposed by the microorganisms adhering to the coated carrier layer while the treated water flows down through the coated carrier layer. Can be processed.
Therefore, according to the sprinkling type purification apparatus having the above-described configuration, the treatment water is supplied into the treatment space by the treatment water supply means while performing the steps of introducing the oxygen-containing gas into the treatment space and discharging the gas from the treatment space. If the process of taking out the treated water which has been purified by the treated water discharging means is performed, the treated water can be purified continuously.
Furthermore, since an air supply pipe for supplying an oxygen-containing gas is provided in the processing space and an exhaust pipe for discharging the gas in the processing space is provided, the oxygen-containing gas is efficiently supplied to the water retaining body, Aerobic decomposition treatment of treated water by microorganisms is promoted.
In addition, since the coated carrier layer is formed on the inner and outer surfaces of a cylindrical core material having a shape-retaining property capable of forming an air passage on the inner side in a state of being filled and arranged in the processing space, Even if the water-retaining body is filled and disposed, the cylindrical core material can withstand gravity, prevent the coated carrier layer from being consolidated, and ensure a space in which the microorganism is grown in the coated carrier layer. In addition, the coated carrier layer is in efficient contact with the spaces formed between the cylindrical core members and in the air passage, and the oxygen-containing gas circulated in the space is efficiently used as the microorganism. To contribute to the realization of high water treatment efficiency. By using such a water-retaining body, the filling rate of the water-retaining body into the treatment space can be increased, and higher treatment water decomposition efficiency can be realized.
In addition, since the coated carrier layer is formed as a thin layer on the surface of the cylindrical core material, a large amount of microorganisms can be grown in a thin space and the oxygen supply efficiency for the microorganisms can be increased.

上記散水式浄化装置用の保水体の好ましい構成は、処理空間中に充填配置された保水体に、処理水を伝わらせて流下させ、前記処理空間内に酸素含有ガスを導入するとともに、前記処理空間から気体を排出することによって、処理水をろ過するとともに前記保水体の付着微生物により処理水中および/または酸素含有ガス中の処理対象物を分解処理する散水式浄化装置用保水体であって、前記保水体は、前記処理空間内に充填配置された状態で内側に通気路を形成可能な保形性を有する筒状芯材を有するとともに、前記筒状芯材の内外表面に微生物を付着育成可能な繊維材料または多孔質材料からなる被覆担体層を形成してあり、前記通気路は、前記被覆担体層に微生物が付着育成された状態で通気自在に開放することである。
上記散水式浄化装置用の保水体は、前記処理空間内に充填配置された状態で内側に通気路を形成可能な保形性を有する筒状芯材を有するから、前記通気路に通気可能な空間を確保した状態で、前記散水式浄化装置に充填することができる。また、前記筒状芯材の内外表面に微生物を付着育成可能な繊維材料または多孔質材料からなる被覆担体層を形成してあるから、前記被覆担体層は、保水性があるとともに、処理水を浄化するための微生物を育成することができる。また、前記被覆担体層の吸水能力を適宜設定することによって、HRTも好適に設定しておくことができる。そのために、前記保水体に処理水を伝わらせて流下させることによって、処理水が被覆担体層を伝って内部を流下する間に、処理水をろ過するとともに前記被覆担体層の付着微生物により分解処理することができる。
また、前記保水体は処理空間中に充填配置されるとともに、前記処理空間内に酸素含有ガスを導入するとともに、前記処理空間から気体を排出するから、前記保水体の通気路には、酸素含有ガスが流通介在し、その酸素含有ガスが前記被覆担体層に吸収された処理水に良好に供給される。これにより、前記被覆担体層には、十分な生物膜が形成され、処理水中および/または酸素含有ガス中の処理対象物を分解処理する効率を向上することができる。
A preferable configuration of the water retention body for the watering purification device is that the water retention body filled in the treatment space is caused to flow down the treated water, introduces an oxygen-containing gas into the treatment space, and the treatment A water retention body for a watering purification device that filters treated water by discharging gas from the space and decomposes a treatment target in treated water and / or oxygen-containing gas by microorganisms attached to the water retention body, The water retaining body has a cylindrical core material having a shape retaining property capable of forming an air passage inside in a state of being filled and disposed in the processing space, and microorganisms are attached and grown on the inner and outer surfaces of the cylindrical core material. A coated carrier layer made of a possible fiber material or porous material is formed, and the air passage is opened freely in a state where microorganisms adhere to and grow on the coated carrier layer.
Since the water retaining body for the watering purification device has a cylindrical core material having a shape retaining property capable of forming an air passage inside while being filled in the treatment space, the water retaining body can be ventilated to the air passage. The watering purification device can be filled in a space secured. Further, since a coated carrier layer made of a fiber material or a porous material capable of adhering and growing microorganisms is formed on the inner and outer surfaces of the cylindrical core material, the coated carrier layer has water retention and treated water. It is possible to grow microorganisms for purification. Moreover, HRT can also be set suitably by setting the water absorption capacity of the said coating support layer suitably. Therefore, by treating the water retaining body with the treated water and flowing down, while the treated water flows down through the coated carrier layer, the treated water is filtered and decomposed by microorganisms adhering to the coated carrier layer. can do.
Further, the water retaining body is filled and disposed in the treatment space, and an oxygen-containing gas is introduced into the treatment space and gas is discharged from the treatment space. The gas is circulated, and the oxygen-containing gas is satisfactorily supplied to the treated water absorbed by the coated carrier layer. Thereby, a sufficient biofilm is formed on the coated carrier layer, and the efficiency of decomposing the treatment object in the treated water and / or the oxygen-containing gas can be improved.

さらに、このような形態では、前記通気路は、前記被覆担体層に微生物が付着育成された状態で通気自在に開放されるため、前記処理空間内に供給された酸素含有ガスは、効率よく前記保水体表面の被覆担体層に育成される微生物に供給される。   Furthermore, in such a form, the air passage is opened in a state where microorganisms are attached and grown on the coated carrier layer, so that the oxygen-containing gas supplied into the processing space can be efficiently used. Supplied to microorganisms grown on the coated carrier layer on the surface of the water retaining body.

また、前記被覆担体層は、微生物を付着育成可能な繊維材料または多孔質材料からなる。そのため、比較的薄い層で大きな表面積を維持させたとしても、内部に十分量の微生物を育成することができる。また、薄い層となることで、通気性が高く、前記被覆担体層の内部まで好気的条件に維持しやすい。そのため、微生物による水処理効率を高く維持して長期にわたって高負荷な水処理を継続できる。   The coated carrier layer is made of a fiber material or a porous material capable of adhering and growing microorganisms. Therefore, even if a large surface area is maintained with a relatively thin layer, a sufficient amount of microorganisms can be grown inside. Moreover, by being a thin layer, air permeability is high and it is easy to maintain an aerobic condition to the inside of the said coating support layer. Therefore, the water treatment efficiency by microorganisms can be maintained high, and high load water treatment can be continued for a long time.

前記保水体の通気路は前記被覆担体層が内部に水を保持可能な空間(以下、隙間とも言う)よりも十分大きく、前記保水体に伝わらせて流下する処理水が、前記通気路を閉塞することなく流下する大きさとする。また、筒状芯材の通気路長さと通気路径の比率は0.5〜2程度がよい。   The air passage of the water retaining body is sufficiently larger than the space (hereinafter also referred to as a gap) in which the coated carrier layer can hold water, and the treated water flowing down through the water retaining body blocks the air passage. It will be the size that flows down without doing. Further, the ratio of the length of the ventilation path and the diameter of the ventilation path of the cylindrical core material is preferably about 0.5 to 2.

〔構成2〕
また、上記構成に加えて、前記被覆担体層が繊維の太さ10〜2000μm、目付0.005〜0.2g/cm2の織布または不織布、編み地、タオル地もしくは孔径0.01〜2mmの多孔質シートから構成してあることが好ましい。
[Configuration 2]
In addition to the above configuration, the coated carrier layer has a fiber thickness of 10 to 2000 μm, a woven fabric or nonwoven fabric having a basis weight of 0.005 to 0.2 g / cm 2 , a knitted fabric, a towel fabric, or a pore diameter of 0.01 to 2 mm. It is preferable to be comprised from the porous sheet.

〔作用効果〕
前記被覆担体層が繊維の太さ10〜2000μm、目付0.005〜0.2g/cm2の織布または不織布、編み地、タオル地もしくは孔径0.01〜2mmの多孔質シートから構成してあることにより、その隙間に容易に処理水が浸入しつつ、前記被覆担体層の厚さ内面を伝って処理水が流下しやすい。前記隙間は、織布または不織布の場合は、目開きとして、スポンジ、焼結体シート等からなる多孔質シートの場合は、孔径として規定することができる。
[Function and effect]
The coated carrier layer is composed of a woven or non-woven fabric, a knitted fabric, a towel fabric, or a porous sheet having a pore diameter of 0.01 to 2 mm having a fiber thickness of 10 to 2000 μm and a basis weight of 0.005 to 0.2 g / cm 2. Thus, the treated water easily flows into the gap, and the treated water tends to flow down along the inner surface of the coated carrier layer. The gap can be defined as an opening in the case of a woven fabric or a non-woven fabric, and as a pore diameter in the case of a porous sheet made of a sponge, a sintered sheet or the like.

〔構成3〕
前記被覆担体層がナイロン、ポリエステル、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリウレタン、ビニロン、アクリル繊維、炭素繊維から選ばれる少なくとも一種を主材とすることができる。
[Configuration 3]
The coated carrier layer can be mainly composed of at least one selected from nylon, polyester, polyethylene, polypropylene, polyvinyl chloride, polyurethane, vinylon, acrylic fiber, and carbon fiber.

〔作用効果〕
前記被覆担体層の材質は、処理空間に充填されて、処理水を含んだ状態の重量でも十分受けられる強度と、処理水の性状によらず物性の変化をきたさない安定性と、微生物が着床して生育しやすいこととが要求される。これらの観点からナイロン、ポリエステル、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリウレタン、ビニロン、アクリル繊維、炭素繊維から選ばれる少なくとも一種を主材とするものが、強度、安定性、微生物の生育の観点でいずれも良好な物性を備えているため、好ましい。
[Function and effect]
The material of the coated carrier layer is such that the treatment space is sufficiently filled with the weight of the treated water, the stability that does not change the physical properties regardless of the properties of the treated water, and the microorganisms are attached. It must be easy to grow on the floor. From these viewpoints, the main material is at least one selected from nylon, polyester, polyethylene, polypropylene, polyvinyl chloride, polyurethane, vinylon, acrylic fiber, and carbon fiber, and any of them in terms of strength, stability, and microbial growth. Is preferable because it has good physical properties.

〔構成
また、上記構成に加え、前記中空のタンク内に処理ガスを供給する処理ガス供給手段を設けるとともに、前記処理ガスに含有される処理対象物を前記処理水とともに前記保水体の付着微生物により分解処理することが好ましい。
[Configuration 4 ]
Further, in addition to the above configuration, a processing gas supply means for supplying a processing gas into the hollow tank is provided, and a processing object contained in the processing gas is decomposed by the microorganisms attached to the water holding body together with the processing water. It is preferable to do.

〔作用効果〕
前記タンク内に処理ガスを供給する処理ガス供給手段を設けてあれば、前記処理ガス供給手段により供給された処理ガスは、前記保水体の前記被覆担体層に酸素含有ガスとともに吸収されるので、前記被覆担体層に付着する微生物に供給することができる。すると、微生物に供給された処理ガスに含まれる処理対象物は、前記微生物に資化され、浄化される。したがって、上記構成によれば、処理水中の処理対象物のみならず処理ガス中の処理対象物も同時に浄化することができる散水式浄化装置を提供することができることになる。
[Function and effect]
If the processing gas supply means for supplying the processing gas is provided in the tank, the processing gas supplied by the processing gas supply means is absorbed together with the oxygen-containing gas in the coated carrier layer of the water holding body, It can supply to the microorganisms adhering to the said coating support layer. Then, the processing target contained in the processing gas supplied to the microorganism is assimilated by the microorganism and purified. Therefore, according to the said structure, the sprinkling type purification apparatus which can purify | clean not only the process target object in process water but the process target object in process gas simultaneously can be provided.

〔構成
また、本発明の散水式浄化装置の運転方法の特徴構成は、上記散水式浄化装置を運転するに、前記筒状芯材の内外表面に付着育成される微生物の育成に関し、前記微生物が増殖して前記筒状芯材の通気路を閉塞した、あるいは閉塞するおそれが高くなった時点で、前記散水式浄化装置への処理水供給を停止あるいは減少させ、前記通気路が形成された状態で、前記散水式浄化装置への処理水供給を再開することにより、前記保水体の内側に通気路を維持した状態で処理水の供給を調整する点にある。
[Configuration 5 ]
In addition, the characteristic configuration of the operation method of the watering purification apparatus of the present invention relates to the growth of microorganisms that adhere and grow on the inner and outer surfaces of the cylindrical core material when the watering purification apparatus is operated. At the time when the air passage of the cylindrical core material is closed or when the possibility of closing is high, the treated water supply to the watering purification device is stopped or reduced, and the air passage is formed, By restarting the supply of treated water to the sprinkling type purification apparatus, the supply of treated water is adjusted in a state where an air passage is maintained inside the water retaining body.

〔作用効果〕
上記散水式浄化装置は、上述のように、保水体の筒状芯材状に形成される被覆担体層内の処理水が高効率に気液接触することによって、その被覆担体層内の微生物が高い水処理能力を、維持発揮するものであるから、水処理に伴って、前記微生物も増殖し、前記保水体が膨潤する。前記被覆担体層が膨潤すると、その被覆担体層に保水される保水量が増えるが、被覆担体層の周辺に形成される前記筒状芯材同士の間および、前記通気路に形成される空間が減少することを意味する。前記被覆担体層が膨潤し、前記空間が減少すると、前記被覆担体層内部に育成される微生物に対する酸素含有ガスの供給効率が低下することになる。
[Function and effect]
As described above, the sprinkling purification device is configured such that the treated water in the coated carrier layer formed in the cylindrical core material of the water retaining body is in gas-liquid contact with high efficiency so that the microorganisms in the coated carrier layer are Since the high water treatment ability is maintained and exhibited, the microorganisms also proliferate with the water treatment, and the water retaining body swells. When the coated carrier layer swells, the amount of water retained in the coated carrier layer increases, but there is a space formed between the cylindrical cores formed around the coated carrier layer and in the air passage. It means to decrease. When the coated carrier layer swells and the space decreases, the supply efficiency of the oxygen-containing gas to the microorganisms grown inside the coated carrier layer decreases.

このような場合、前記空間が十分確保されている状態を維持するように運転することによって、前記散水式浄化装置の運転効率を高く維持することができる。そのため、前記微生物が増殖して前記筒状芯材の通気路を閉塞した、あるいは閉塞するおそれが高くなった時点で、前記散水式浄化装置への処理水供給を停止あるいは減少させ、前記通気路が形成された状態で、前記散水式浄化装置への処理水供給を再開することにより、前記保水体の内側に通気路を維持した状態で処理水の供給を調整すると、常時、前記通気路を介した微生物への酸素含有ガスの供給が行えるので、前記微生物による高い水処理効率が長期にわたって維持して前記散水式浄化装置を運転できる。   In such a case, the operation efficiency of the watering purifier can be kept high by operating so as to maintain the space sufficiently secured. Therefore, when the microorganisms grow and block the ventilation path of the cylindrical core material, or when there is a high risk of blocking, the supply of treated water to the sprinkling purification apparatus is stopped or reduced, and the ventilation path When the supply of treated water is adjusted in a state where the air passage is maintained inside the water retaining body by restarting the supply of treated water to the sprinkling purification device in a state where is formed, the air passage is always Since the oxygen-containing gas can be supplied to the microorganisms, the water-purifying device can be operated while maintaining high water treatment efficiency by the microorganisms over a long period of time.

したがって、従来のスポンジ担体を用いた場合に比べ、格段に早い速度で排水処理、ガス処理を行うことができる。DHSは好気性の有効微生物を保持して効率的に酸素供給を行うためのシステムであるため、排水およびガス中に含まれる成分に対応した微生物が自然に増殖することにより、生物分解可能な成分であれば、処理が可能である。   Therefore, compared with the case where the conventional sponge carrier is used, waste water treatment and gas treatment can be performed at a remarkably high speed. Since DHS is a system for efficiently supplying oxygen by holding aerobic effective microorganisms, the microorganisms corresponding to the components contained in the waste water and gas naturally grow, so that biodegradable components If so, processing is possible.

散水式浄化装置の模式図Schematic diagram of watering purification equipment 保水体の模式図(a)は斜視図、(b)は筒状芯材Schematic diagram (a) of the water retaining body is a perspective view, and (b) is a cylindrical core material.

以下に、本発明の散水式浄化装置および保水体を説明する。なお、以下に好適な実施形態を記すが、これら実施形態はそれぞれ、本発明をより具体的に例示するために記載されたものであって、本発明の趣旨を逸脱しない範囲において種々変更が可能であり、本発明は、以下の記載に限定されるものではない。   Below, the watering type | formula purification apparatus and water holding body of this invention are demonstrated. Preferred embodiments will be described below, but these embodiments are described in order to more specifically illustrate the present invention, and various modifications can be made without departing from the spirit of the present invention. The present invention is not limited to the following description.

図1に示すように、散水式浄化装置は、架台1上に中空のタンク2を設けてなり、前記中空のタンク2内に処理空間21を形成するとともに、散水部3を設け、該散水部3の下方で、多数の保水体4を有孔底板51と押え部材52との間に充填する充填部5を設けて構成する。また、前記充填部5に前記保水体4を充填した状態で、前記散水部3より前記保水体4に処理水を供給する処理水供給手段6を備え、前記保水体4により浄化された処理水を取出す処理水排出手段7を備え、前記処理空間21内を大気開放状態に維持する給気管8および排気管9を備える。   As shown in FIG. 1, the watering purification apparatus includes a hollow tank 2 provided on a gantry 1, a treatment space 21 is formed in the hollow tank 2, and a watering part 3 is provided. 3, a filling portion 5 for filling a large number of water retaining bodies 4 between the perforated bottom plate 51 and the pressing member 52 is provided. The treated water purified by the water retaining body 4 is provided with treated water supplying means 6 for supplying treated water from the water sprinkling section 3 to the water retaining body 4 in a state where the water retaining body 4 is filled in the filling section 5. And a water supply pipe 8 and an exhaust pipe 9 for keeping the inside of the processing space 21 open to the atmosphere.

前記タンク2の上部には給水管61を設けるとともに、前記給水管61から供給される処理水を前記散水部3により前記保水体4に供給可能に処理水供給手段6を構成する。また、タンク2の底部には、前記保水体4を下方から支持する有孔底板51を設けるとともにその上方に前記保水体4を充填する充填部5を形成する。前記有孔底板51の下部には、前記有孔底板51を通過して滴下する処理水を集める集水部71を形成し、前記集水部71には排水管72を設けて処理水排出手段7を構成する。これにより前記給水管61から供給される処理水は、前記保水体4を伝って流下し、前記集水部71で集水された後、排水管72を通してタンク2外に排出される。
なお、タンク2内面やその他のタンク2内の部材には、腐食防止のため、表面にステンレス加工を施すことが望ましい。
A water supply pipe 61 is provided in the upper part of the tank 2, and the treated water supply means 6 is configured so that the treated water supplied from the water supply pipe 61 can be supplied to the water holding body 4 by the water sprinkling unit 3. A perforated bottom plate 51 for supporting the water retaining body 4 from below is provided at the bottom of the tank 2, and a filling portion 5 for filling the water retaining body 4 is formed thereabove. A water collecting part 71 is formed in the lower part of the perforated bottom plate 51 to collect treated water that passes through the perforated bottom plate 51 and drops, and a drain pipe 72 is provided in the water collecting part 71 to discharge the treated water. 7 is configured. Thus, the treated water supplied from the water supply pipe 61 flows down through the water retaining body 4, is collected by the water collection unit 71, and is then discharged out of the tank 2 through the drain pipe 72.
Note that the inner surface of the tank 2 and other members in the tank 2 are desirably subjected to stainless steel processing to prevent corrosion.

前記散水部3は、給水管61から供給される処理水を受ける皿状部材31を備え、前記皿状部材31は、底面に多数の散水孔32を開設してある。前記皿状部材31はタンク2内の上部に水平姿勢に設けられ、前記散水孔32から均一に前記保水体4に処理水を滴下供給可能に構成してある。なお、前記散水部3としては、上記のような皿状部材31のほか、多数の孔を有する管体を旋回させる構造や、多数の孔を開設したシャワ−状のものなど、種々の構造を採用することができる。   The water sprinkling unit 3 includes a dish-shaped member 31 that receives treated water supplied from a water supply pipe 61, and the dish-shaped member 31 has a large number of water sprinkling holes 32 formed on the bottom surface. The dish-like member 31 is provided in a horizontal posture at the upper part in the tank 2, and is configured so that treated water can be supplied dropwise to the water retaining body 4 uniformly from the watering holes 32. In addition to the dish-shaped member 31 as described above, the water sprinkling unit 3 may have various structures such as a structure for rotating a tubular body having a large number of holes and a shower-shaped structure having a large number of holes. Can be adopted.

前記タンク2内の上部の前記散水部3の直下には、水平姿勢で配備されるメッシュ状の押え部材52を設ける、これにより、前記保水体4の膨潤に伴う浮上を抑制するとともに、前記有孔底板51と前記押え部材52との間に前記保水体4を充填保持される。   A mesh-like pressing member 52 provided in a horizontal posture is provided immediately below the water sprinkling portion 3 in the upper portion of the tank 2, thereby suppressing floating due to swelling of the water retaining body 4, and The water retaining body 4 is filled and held between the hole bottom plate 51 and the pressing member 52.

前記保水体4は、図2に示すように、保形性の高い合成樹脂製の筒状芯材41の内外表面に微生物を付着育成可能な繊維材料または多孔質材料からなる被覆担体層42を形成してあり、前記保水体4は、前記処理空間21内に充填配置された状態で内側に通気路43を形成するとともに、前記通気路43は、前記被覆担体層42に微生物が付着育成された状態で通気自在に開放される。前記筒状芯材41および前記被覆担体層42は、ポリエチレンテレフタラートなどの芳香族ポリエステル系、ポリプロピレン、ポリスチレンなどのポリオレフィン系、炭素繊維から選ばれる少なくとも一種を主材とする材料からなり、前記被覆担体層42は、繊維の太さ10〜2000μm、目付0.005〜0.2g/cm2の織布または不織布、編み地、タオル地もしくは孔径0.01〜2mmの多孔質シートから構成してある。具体的には、前記筒状芯材41は、内寸10〜600mm、の多孔状の樹脂管を20〜100mm長さに切断した形状としてあり、前記被覆担体層42は、前記筒状芯材41にタオル地を被覆して構成してある。 As shown in FIG. 2, the water retaining body 4 includes a coated carrier layer 42 made of a fiber material or a porous material capable of adhering and growing microorganisms on the inner and outer surfaces of a cylindrical core material 41 made of a synthetic resin having a high shape retaining property. The water retaining body 4 is formed with an air passage 43 on the inner side in a state of being filled in the treatment space 21, and the air passage 43 has microorganisms attached and grown on the coated carrier layer 42. It is opened in a state where it can be ventilated. The cylindrical core material 41 and the coated carrier layer 42 are made of a material mainly composed of at least one selected from aromatic polyesters such as polyethylene terephthalate, polyolefins such as polypropylene and polystyrene, and carbon fibers. The carrier layer 42 is composed of a woven or non-woven fabric having a fiber thickness of 10 to 2000 μm and a basis weight of 0.005 to 0.2 g / cm 2 , a knitted fabric, a towel fabric, or a porous sheet having a pore diameter of 0.01 to 2 mm. . Specifically, the cylindrical core member 41 has a shape obtained by cutting a porous resin tube having an inner dimension of 10 to 600 mm into a length of 20 to 100 mm, and the coated carrier layer 42 includes the cylindrical core member. 41 is formed by covering a towel cloth.

また、図1に示すように、前記タンク2には、前記タンク2内に空気を供給する給気管8を連通させて設けるとともに、前記タンク2内の空気を排気する常開の排気管9を連通させてある。なお、前記給気管8には、前記タンク2内に例えば硫化水素などの処理ガスを供給する処理ガス供給手段81を連設してあり、前記タンク2内に空気を供給する際に処理ガスをあわせて供給し、空気とともに前記処理ガスを、前記保水体4に吸収された処理水に溶解させることができるように構成してある。   As shown in FIG. 1, the tank 2 is provided with an air supply pipe 8 for supplying air into the tank 2 and a normally open exhaust pipe 9 for exhausting the air in the tank 2. Communicated. The supply pipe 8 is connected to a processing gas supply means 81 for supplying a processing gas such as hydrogen sulfide in the tank 2, and the processing gas is supplied when air is supplied into the tank 2. In addition, the treatment gas is supplied together with the air so that the treatment gas can be dissolved in the treatment water absorbed by the water holding body 4.

次に、上記のような構成した装置の使用方法について説明する。
先ず、処理水を処理する場合は、図1に示すように、処理水を前記給水管61を介して前記タンク2内の前記散水部3内に供給する。これにより処理水は、前記散水孔32を介して前記保水体4に均等に散水され、吸水される。
Next, a method for using the apparatus configured as described above will be described.
First, when treating treated water, as shown in FIG. 1, treated water is supplied into the water sprinkling part 3 in the tank 2 through the water supply pipe 61. As a result, the treated water is evenly sprayed and absorbed by the water retaining body 4 through the water spray holes 32.

前記保水体4に吸収された処理水は、前記保水体4を伝って流下する間に、前記保水体4の被覆担体層42の付着微生物により分解処理されるとともに、浮遊物質(SS)の捕捉が行われる。処理水は、前記保水体4下端に達した後、下方にある保水体4に順次落下し、有孔底板22を透過した後、集水部71、排水管72を介して前記タンク2外に送水される。なお、処理工程中は、給気管8および排気管9を開放し、前記タンク2内に常に新鮮な空気を流入させ、前記保水体4中に生育する微生物に酸素を供給するとともに、処理水の浄化処理能力の促進を図る。また、前記処理ガス供給手段81から処理ガスを導入しつつ上記処理水の浄化を行うと、前記処理ガスは、前記処理水中に溶解しつつ、前記処理水とともに微生物により分解浄化される。   The treated water absorbed by the water retaining body 4 is decomposed by microorganisms adhering to the coated carrier layer 42 of the water retaining body 4 while flowing down through the water retaining body 4 and traps suspended substances (SS). Is done. After the treated water reaches the lower end of the water retaining body 4, the treated water sequentially falls to the water retaining body 4 below, passes through the perforated bottom plate 22, and then goes out of the tank 2 through the water collecting part 71 and the drain pipe 72. Water is sent. During the treatment process, the air supply pipe 8 and the exhaust pipe 9 are opened, fresh air is always allowed to flow into the tank 2, oxygen is supplied to microorganisms growing in the water retaining body 4, and treated water Promote purification treatment capacity. Further, when the treatment water is purified while introducing the treatment gas from the treatment gas supply means 81, the treatment gas is dissolved and purified by microorganisms together with the treatment water while being dissolved in the treatment water.

上記散水式浄化装置のモデル試験を行った実施形態を以下に示す。
〔実施形態〕
長さ1m、内径4cmの透明アクリルチューブを上記タンク2として用いて、前記アクリルチューブ上部に密栓を設け、前記密栓に人口排水を供給する給水管61および処理ガス供給手段81としての給気管8を設けた散水式浄化装置を作成した。この散水式浄化装置の内部に下記保水体4を挿入充填し、1日あたり200mlのメタン発酵廃液(CODcr20,000mg/L)を上部から滴下した。また、同時に処理ガスとして、硫化水素400ppmを含むバイオガス100L/日を、空気24L/日と混合して、前記アクリルチューブ製タンク2内に循環供給した。
An embodiment in which a model test of the watering purifier is performed is shown below.
Embodiment
A transparent acrylic tube having a length of 1 m and an inner diameter of 4 cm is used as the tank 2. A sealing plug is provided on the acrylic tube, and a water supply pipe 61 for supplying artificial waste water to the sealing plug and a supply pipe 8 as a processing gas supply means 81 are provided. A watering type purification device was created. The water-retaining body 4 shown below was inserted and filled into this watering purification device, and 200 ml of methane fermentation waste liquid (CODcr 20,000 mg / L) was dripped from the top per day. At the same time, 100 L / day of biogas containing 400 ppm of hydrogen sulfide as a processing gas was mixed with 24 L / day of air and circulated and supplied into the tank 2 made of acrylic tube.

保水体
筒状芯材
材質:ポリエチレン
寸法:内径28mm
:長さ32mm
:厚さ2mm
被覆担体層
材質:ポリエステル
形状:タオル地
繊維の太さ:20〜40番手
目付:0.25〜0.35g/cm2
HRT:50日(液相滞留時間)
GRT:2時間(気相滞留時間)
被覆担体層は、筒状芯材の内外表面全面に接着
Water retention body Tubular core Material: Polyethylene Dimensions: Inner diameter 28mm
: Length 32mm
: Thickness 2mm
Coated carrier layer Material: Polyester Shape: Towel fabric Fiber thickness: 20-40 count Weight: 0.25-0.35 g / cm 2
HRT: 50 days (liquid phase residence time)
GRT: 2 hours (gas phase residence time)
The coated carrier layer adheres to the entire inner and outer surfaces of the cylindrical core material

2週間後、排ガス中の硫化水素濃度を測定したところ、硫化水素濃度は0ppmとなっており、処理ガス中の硫化水素が分解処理され、高度に浄化されていることがわかった。さらに、排ガス中の酸素濃度も0ppmとなっており、硫化水素の酸化であまった酸素は、メタン発酵廃液中のCODの酸化に利用されたと推測された。   Two weeks later, when the hydrogen sulfide concentration in the exhaust gas was measured, the hydrogen sulfide concentration was 0 ppm, and it was found that the hydrogen sulfide in the process gas was decomposed and highly purified. Furthermore, the oxygen concentration in the exhaust gas was also 0 ppm, and it was speculated that the oxygen that was oxidized by hydrogen sulfide was used for the oxidation of COD in the methane fermentation waste liquid.

〔比較例〕
上記実施形態で用いた散水式浄化装置の内部に前記保水体4に代え、下記スポンジ状の担体を充填し、上記実施形態と同様の試験を行った。
[Comparative Example]
Instead of the water retaining body 4, the following spongy carrier was filled in the watering purification device used in the above embodiment, and the same test as in the above embodiment was performed.

スポンジ担体
筒状芯材
材質:ポリエチレン
寸法:内径28mm
:長さ32mm
:厚さ2mm
スポンジ
材質:ポリウレタン
孔径:0.2〜0.5mm
HRT:50日(液相滞留時間)
GRT:2時間(気相滞留時間)
スポンジは筒状芯材の内部に圧入固定
Sponge carrier Tubular core Material: Polyethylene Dimensions: Inner diameter 28mm
: Length 32mm
: Thickness 2mm
Sponge Material: Polyurethane Pore diameter: 0.2-0.5mm
HRT: 50 days (liquid phase residence time)
GRT: 2 hours (gas phase residence time)
Sponge is press-fitted and fixed inside the cylindrical core

2週間後、排ガス中の硫化水素濃度を測定したところ、硫化水素濃度は100ppmとなっており、処理ガス中の硫化水素は分解処理されているものの、スポンジ担体の使用量に比して浄化能力が十分ではないことがわかった。   Two weeks later, when the hydrogen sulfide concentration in the exhaust gas was measured, the hydrogen sulfide concentration was 100 ppm, and although the hydrogen sulfide in the treatment gas was decomposed, the purification capacity compared to the amount of sponge carrier used I found that was not enough.

その結果、本発明の散水式浄化装置用保水体4を用いれば、DHS法同様に処理水を処理する機能を再現しつつ、散水式浄化装置に供給される処理ガスを良好に浄化できることが明らかになった。   As a result, it is clear that the use of the water retaining body 4 for the water purifying device of the present invention can purify the processing gas supplied to the watering purifying device while reproducing the function of treating the treated water as in the DHS method. Became.

また、このような散水式浄化装置に負荷の高い処理水を供給し続けると、前記被覆担体層に微生物の増殖によると思われる通気路の減少が見られたが、暫くの間処理水の供給を減少させ負荷の少ない環境で運転させたところ、通気路の回復が確認され、前記微生物が増殖して前記筒状芯材の通気路を閉塞した、あるいは閉塞するおそれが高くなった時点で、前記散水式浄化装置への処理水供給を停止あるいは減少させ、前記通気路が形成された状態で、前記散水式浄化装置への処理水供給を再開することにより、前記保水体の内側に通気路を維持した状態で処理水の供給を調整することによって、良好な運転状態を継続維持できることがわかった。   In addition, when the treated water having a high load was continuously supplied to such a sprinkling type purification apparatus, a decrease in the air passage thought to be caused by the growth of microorganisms was observed in the coated carrier layer. When the operation was performed in an environment with a reduced load, the recovery of the ventilation path was confirmed, and when the microorganisms grew and the ventilation path of the cylindrical core material was blocked, or the risk of blocking was increased, By stopping or reducing the supply of treated water to the watering purification apparatus and restarting the supply of treated water to the watering purification apparatus in a state where the airflow path is formed, an airflow path is formed inside the water retaining body. It was found that by adjusting the supply of treated water while maintaining the above, good operating conditions can be maintained continuously.

〔別実施形態〕
上記実施形態では、処理水を処理ガスとともに微生物処理する例を示したが、処理水のみの処理を行う系に適用してもかまわない。
また、散水式浄化装置を運転する場合に、処理水や処理ガスの供給・停止は、育成される微生物の環境等に応じて種々慣用されているタイミングで行っても良い。
[Another embodiment]
In the said embodiment, although the example which microbe-processes treated water with process gas was shown, you may apply to the system which processes only treated water.
Further, when the watering purification apparatus is operated, the supply / stop of the treated water and the treated gas may be performed at various commonly used timings depending on the environment of the microorganism to be cultivated.

したがって、早い速度で排水処理、ガス処理を行うことができるとともに、装置の大型化にも対応容易な浄化装置を提供することができた。   Therefore, it was possible to provide a purification device that can perform wastewater treatment and gas treatment at a high speed and can easily cope with an increase in the size of the device.

1 :架台
2 :タンク
21 :処理空間
22 :有孔底板
3 :散水部
31 :皿状部材
32 :散水孔
4 :保水体
41 :筒状芯材
42 :被覆担体層
43 :通気路
5 :充填部
51 :有孔底板
52 :押え部材
6 :処理水供給手段
61 :給水管
7 :処理水排出手段
71 :集水部
72 :排水管
8 :給気管
81 :処理ガス供給手段
9 :排気管
1: Stand 2: Tank 21: Processing space 22: Perforated bottom plate 3: Sprinkling part 31: Dish-shaped member 32: Sprinkling hole 4: Water retaining body 41: Cylindrical core material 42: Covered carrier layer 43: Ventilation channel 5: Filling Part 51: Perforated bottom plate 52: Holding member 6: Treated water supply means 61: Water supply pipe 7: Treated water discharge means 71: Water collecting part 72: Drain pipe 8: Air supply pipe 81: Process gas supply means 9: Exhaust pipe

Claims (5)

中空のタンク内に処理空間を形成するとともに、散水部を設け、
前記散水部の下方に保水体を充填配置した状態で、
前記散水部より前記保水体に処理水を供給する処理水供給手段を備え、
前記保水体により浄化された処理水を取出す処理水排出手段を備え、
前記処理空間内に酸素含有ガスを前記処理水と並流で供給する給気管を設け、
前記処理空間内のガスを排出する排気管を設けた散水式浄化装置であって、
前記処理空間は、前記処理水と前記酸素含有ガスとを流下させるものであり、
前記保水体は、前記処理空間内に充填配置された状態で内側に通気路を形成可能な保形性を有する筒状芯材を有するとともに、
前記筒状芯材の内外表面に微生物を付着育成可能な繊維材料または多孔質材料からなる被覆担体層を形成してあり、
前記通気路は、前記被覆担体層に微生物が付着育成された状態で通気自在に開放される散水式浄化装置。
While forming a treatment space in a hollow tank, a watering part is provided,
In a state where the water retaining body is filled and arranged below the watering part,
A treated water supply means for supplying treated water to the water retaining body from the water sprinkling unit;
A treated water discharge means for removing treated water purified by the water retaining body;
An air supply pipe for supplying oxygen-containing gas in parallel with the treated water is provided in the treated space,
A watering purification device provided with an exhaust pipe for discharging the gas in the processing space,
The treatment space allows the treated water and the oxygen-containing gas to flow down,
The water retaining body has a cylindrical core material having a shape retaining property capable of forming an air passage on the inner side in a state of being filled and disposed in the processing space,
A coated carrier layer made of a fiber material or a porous material capable of adhering and growing microorganisms on the inner and outer surfaces of the cylindrical core material is formed,
The air passage is a watering purification device that is opened in a freely ventilated state with microorganisms attached and grown on the coated carrier layer.
前記被覆担体層が繊維の太さ10〜2000μm、目付0.005〜0.2g/cm2の織布または不織布、編み地、タオル地もしくは孔径0.01〜2mmの多孔質シートから構成してある請求項1に記載の散水式浄化装置。 The coated carrier layer is composed of a woven or non-woven fabric, a knitted fabric, a towel fabric, or a porous sheet having a pore diameter of 0.01 to 2 mm having a fiber thickness of 10 to 2000 μm and a basis weight of 0.005 to 0.2 g / cm 2. watering purifier equipment according to claim 1. 前記被覆担体層がナイロン、ポリエステル、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、ポリウレタン、ビニロン、アクリル繊維、炭素繊維から選ばれる少なくとも一種を主材とする請求項1または2に記載の散水式浄化装置。 The coated carrier layer is nylon, polyester, polyethylene, polypropylene, polyvinyl chloride, polyurethane, vinylon, acrylic fibers, watering purifier equipment according to claim 1 or 2, composed primarily of at least one selected from carbon fibers. 前記中空のタンク内に処理ガスを供給する処理ガス供給手段を設けるとともに、前記処理ガスに含有される処理対象物を前記処理水とともに前記保水体の付着微生物により分解処理する請求項1〜3の何れか1項に記載の散水式浄化装置。 The process gas supply means which supplies process gas in the said hollow tank is provided, and the process target substance contained in the said process gas is decomposed | disassembled by the microorganisms adhering to the said water holding body with the said process water . The watering type | formula purification apparatus of any one of Claims . 請求項1〜4の何れか1項に記載の散水式浄化装置の運転方法であって、前記筒状芯材の内外表面に付着育成される微生物の育成に関し、前記微生物が増殖して前記筒状芯材の通気路を閉塞した、あるいは閉塞するおそれが高くなった時点で、前記散水式浄化装置への処理水供給を停止あるいは減少させ、前記通気路が形成された状態で、前記散水式浄化装置への処理水供給を再開することにより、前記保水体の内側に通気路を維持した状態で処理水の供給を調整する散水式浄化装置の運転方法。 It is an operating method of the sprinkling type purification apparatus of any one of Claims 1-4, Comprising: About the growth of the microorganisms which adhere and grow on the inner and outer surface of the said cylindrical core material, the said microorganisms propagate and the said cylinder When the aeration path of the core material is closed or when the possibility of clogging becomes high, the treated water supply to the watering purification device is stopped or reduced, and the watering type is formed in the state where the ventilation path is formed. An operation method of a watering type purification apparatus that adjusts the supply of treated water in a state where an air passage is maintained inside the water retaining body by resuming the supply of treated water to the purification apparatus.
JP2011042822A 2011-02-28 2011-02-28 Water retaining body for watering purification device, watering purification device, and operation method of watering purification device Active JP5739191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011042822A JP5739191B2 (en) 2011-02-28 2011-02-28 Water retaining body for watering purification device, watering purification device, and operation method of watering purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011042822A JP5739191B2 (en) 2011-02-28 2011-02-28 Water retaining body for watering purification device, watering purification device, and operation method of watering purification device

Publications (2)

Publication Number Publication Date
JP2012179517A JP2012179517A (en) 2012-09-20
JP5739191B2 true JP5739191B2 (en) 2015-06-24

Family

ID=47011235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011042822A Active JP5739191B2 (en) 2011-02-28 2011-02-28 Water retaining body for watering purification device, watering purification device, and operation method of watering purification device

Country Status (1)

Country Link
JP (1) JP5739191B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103073095B (en) * 2012-12-27 2014-03-19 浙江大学苏州工业技术研究院 Micro-electrolytic filler structure
JP6207183B2 (en) * 2013-03-13 2017-10-04 大阪瓦斯株式会社 Method and apparatus for producing 3-hydroxyalkanoic acid
JP6117049B2 (en) * 2013-08-08 2017-04-19 メタウォーター株式会社 Water treatment system
JP2016123957A (en) * 2015-01-07 2016-07-11 三機工業株式会社 Apparatus and method for treating waste water containing dissolved substance and volatile substance
CN105130008B (en) * 2015-08-27 2017-11-24 安徽三环水泵有限责任公司 A kind of sanitary sewage disposal filler
JP2017051892A (en) * 2015-09-08 2017-03-16 レール・リキード−ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード Gas-liquid mixer and gas-liquid mixing method
JP6465910B2 (en) * 2017-03-01 2019-02-06 鹿島建設株式会社 Microorganism carrier for biological treatment and method for producing fixed bed
JP6804366B2 (en) * 2017-03-30 2020-12-23 三機工業株式会社 Watering device and watering purification device
CN111186902A (en) * 2018-11-14 2020-05-22 中国环境科学研究院 Biological nest water body purification system and method thereof

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526810B2 (en) * 1972-04-24 1977-02-25
JPS5117090Y2 (en) * 1972-10-05 1976-05-10
JPS588587A (en) * 1981-07-07 1983-01-18 Keizo Sekine Closed activated-sludge system for treating organic waste water
JPS63209788A (en) * 1987-02-24 1988-08-31 Fuji Electric Co Ltd Microorganism carrier
EP0730562B1 (en) * 1994-09-10 1997-07-16 Bernd Ch. Tlok Water filtration
JP3885110B2 (en) * 1996-11-21 2007-02-21 三菱化学産資株式会社 Carrier for attaching microorganism and method for producing the same
JP3470944B2 (en) * 1998-01-28 2003-11-25 鹿島建設株式会社 Microbial carrier for biological treatment
JP4131772B2 (en) * 2000-03-24 2008-08-13 株式会社日立ハウステック Microbial carrier reinforced with skeletal material
JP3967896B2 (en) * 2001-09-05 2007-08-29 秀樹 原田 Sewage purification element and sewage purification device
KR100430867B1 (en) * 2002-03-22 2004-05-10 김기덕 Contacting filter material consist of trickling filter
JP2004074046A (en) * 2002-08-20 2004-03-11 Best Tech:Kk Filtering medium for anaerobic treatment and nitrogen removing method of sewage
DE102005051711A1 (en) * 2005-10-28 2007-05-10 Lutz Dr.Rer.Nat. Haldenwang Method for microbiological aerobic wastewater treatment
JP4902315B2 (en) * 2006-11-06 2012-03-21 株式会社日立プラントテクノロジー VOC gas treatment method
JP2008178824A (en) * 2007-01-25 2008-08-07 Kazuaki Tamatsubo Method and device for recovering phosphorous
JP2008283873A (en) * 2007-05-15 2008-11-27 Hitachi Plant Technologies Ltd Purification apparatus and method for operating the purification apparatus
JP5072638B2 (en) * 2008-02-14 2012-11-14 株式会社東芝 Biogas biodesulfurization equipment
JP2010022977A (en) * 2008-07-23 2010-02-04 Ihi Corp Biological desulfurization method and biological desulfurization apparatus
JP5550965B2 (en) * 2010-03-31 2014-07-16 三機工業株式会社 Sludge control method in sprinkling water treatment system

Also Published As

Publication number Publication date
JP2012179517A (en) 2012-09-20

Similar Documents

Publication Publication Date Title
JP5739191B2 (en) Water retaining body for watering purification device, watering purification device, and operation method of watering purification device
KR0175229B1 (en) Apparatus and method for waste water treatment using granular sludge
KR101434427B1 (en) Filtration device with biological filtering function
CN102259979A (en) Novel bio-reaction bed and treatment method for landfill leachate
JP2016168029A (en) Enrichment culture method of manganese oxidation bacteria, method for generation of bio-manganese oxidation materials, recovery method of metals, and microbial community
JP2006192429A (en) Method for treating polluted fluid, system for treating polluted fluid, and method for producing biomass carrier suitable for treating polluted fluid
US7087158B2 (en) Oxygen-supply-capable cooling water equipment, filtration-equipment and filtration-equipped cooling water equipment incorporated with these equipment
JP3663178B2 (en) Sewage treatment method by intermittent aeration using a membrane diffuser.
CN206607121U (en) Biological activated carbon absorption, degraded, filtering integral equipment
CN208234621U (en) The multistage composite biofilm reactor in situ for administering black and odorous water
CN209815909U (en) System for biologically coupling photocatalysis synchronous processing is difficult for degrading organic waste water
CN213803395U (en) Unpowered rural domestic sewage purification tank device
JP2003033625A (en) Biological deodorizing method
JP5722661B2 (en) Water retention body for watering purification device and watering purification device
JP2592356B2 (en) Organic sewage biological filtration equipment
JPH10263578A (en) Cleaning zone, cleaning device and method for cleaning sewage
CN210885489U (en) Ammonia nitrogen sewage emergency treatment BAF integrated equipment
JP2003225690A (en) Water cleaning method and apparatus using fine air bubble and carbon fiber
CN215161341U (en) Biological aerated filter
RU2090246C1 (en) Bioreactor for purifying air to remove toxic, harmful, and volatile substances with unpleasant smell
CN216918751U (en) Aquaculture normal position water treatment facilities
JPH0631900U (en) River water purification equipment
JP2019177325A (en) Water purification element and water purification apparatus
CN213085573U (en) River and lake water treatment device
CN217202420U (en) TMBR sewage treatment system based on MABR and MBR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150423

R150 Certificate of patent or registration of utility model

Ref document number: 5739191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250