JP2010022977A - Biological desulfurization method and biological desulfurization apparatus - Google Patents

Biological desulfurization method and biological desulfurization apparatus Download PDF

Info

Publication number
JP2010022977A
JP2010022977A JP2008189892A JP2008189892A JP2010022977A JP 2010022977 A JP2010022977 A JP 2010022977A JP 2008189892 A JP2008189892 A JP 2008189892A JP 2008189892 A JP2008189892 A JP 2008189892A JP 2010022977 A JP2010022977 A JP 2010022977A
Authority
JP
Japan
Prior art keywords
gas
hydrogen sulfide
sulfur
liquid
absorption liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008189892A
Other languages
Japanese (ja)
Inventor
Kenji Sato
健治 佐藤
Makoto Kitano
誠 北野
Tomomi Hatsutani
智美 初谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2008189892A priority Critical patent/JP2010022977A/en
Publication of JP2010022977A publication Critical patent/JP2010022977A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Gas Separation By Absorption (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biological desulfurization technique which reduces cost required for pH adjusting of water to be used and can efficiently desulfurize a gas with a small-sized facility. <P>SOLUTION: The biological desulfurization apparatus 1 includes a pH adjustment means 17, 19 for adjusting pH of an absorbing liquid mainly containing water to a pH value lower than 7, a gas-liquid contact means 5, 7, F which gas-liquid contacts the absorbing liquid with a H<SB>2</SB>S containing gas to absorb H2S in the absorbing liquid, and acidophilic sulfur-oxidizing bacteria for oxidizing H<SB>2</SB>S to be absorbed in the absorbing liquid. The pH of the absorbing liquid is adjusted to a pH value lower 7, the absorbing liquid is gas-liquid contacted with the H<SB>2</SB>S containing gas to absorb H<SB>2</SB>S in the absorbing liquid and H<SB>2</SB>S to be absorbed in the absorbing liquid is oxidized by the acidophilic sulfur-oxidizing bacteria. The acidophilic sulfur-oxidizing bacteria are set on the gas-liquid contact means and oxidizing by the bacteria is progressed in the substantially same site as gas-liquid contacting. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、石炭、低品位炭やバイオマスを原料とするガス化燃料や合成ガス、下水汚泥のメタン発酵で生成するバイオガスなどのエネルギーガスの精製システムに適用してエネルギーガスに含まれる硫化水素を除去する生物脱硫方法及び生物脱硫装置に関し、特に、硫黄酸化細菌による硫化水素の酸化作用を利用して硫化水素を除去する脱硫効率を改善してエネルギーガスの生物脱硫による精製の実用化に寄与し得る生物脱硫方法及び生物脱硫装置に関する。   The present invention is applied to a gasification fuel or synthesis gas made from coal, low-grade coal or biomass, biogas produced by methane fermentation of sewage sludge, and hydrogen sulfide contained in the energy gas. Contributing to the practical application of the purification of energy gas by biodesulfurization by improving the desulfurization efficiency of removing hydrogen sulfide by utilizing the oxidizing action of hydrogen sulfide by sulfur-oxidizing bacteria The present invention relates to a biodesulfurization method and a biodesulfurization apparatus.

近年、石油資源の大量消費による地球温暖化や資源枯渇が問題となり、従来使用されなかった資源の有効利用が注目されている。このような資源として、従来は使用しなかった褐炭等の低品位の石炭からガス化される水素、一酸化炭素等を含んだガス化燃料や、家畜糞尿等を発酵して得られるメタンガスを主成分とするバイオガスなどがある。これらのエネルギーガスは、触媒被毒や装置の腐食原因となる有毒な硫化水素を含むため、実用に際してはガス化燃料の脱硫処理が必要となる。   In recent years, global warming and resource depletion due to mass consumption of petroleum resources have become problems, and attention has been paid to effective use of resources that have not been used in the past. As such resources, hydrogen gas that is gasified from low-grade coal such as lignite that has not been used before, gasified fuel containing carbon monoxide, etc., and methane gas obtained by fermenting livestock manure, etc. are mainly used. There are biogas as a component. Since these energy gases contain poisonous hydrogen sulfide that causes catalyst poisoning and corrosion of the apparatus, it is necessary to desulfurize the gasified fuel in practical use.

従来の脱硫処理は、化学薬剤を用いて化学吸着や反応によって脱硫する化学脱硫が用いられており、例えば、酸化鉄を用いて硫化水素を酸化脱硫する乾式脱硫や、アミン系吸収液に接触させて化学吸収によって収硫化水素を除去する湿式脱硫が知られている。   Conventional desulfurization treatment uses chemical desulfurization that uses chemical agents to desulfurize by chemical adsorption or reaction. For example, dry desulfurization that oxidizes and desulfurizes hydrogen sulfide using iron oxide, or contact with an amine-based absorbent. Wet desulfurization, in which hydrogen sulfide is removed by chemical absorption, is known.

これに対し、設備維持に要する費用・手間や廃棄物処理、環境への配慮などの観点から、微生物の作用を利用する生物脱硫の利用が注目されている。生物脱硫では、硫化物を栄養源とする独立栄養型の好気性細菌である硫黄酸化細菌を利用して、硫化水素を硫黄又は硫酸イオンに変換する。   On the other hand, the use of biodesulfurization that uses the action of microorganisms has attracted attention from the viewpoints of cost and labor required for equipment maintenance, waste disposal, environmental considerations, and the like. In biodesulfurization, hydrogen sulfide is converted into sulfur or sulfate ions using sulfur-oxidizing bacteria, which are autotrophic aerobic bacteria using sulfide as a nutrient source.

例えば、下記特許文献1,2では、活性汚泥などの微生物が分散する液相中において、水に溶解する硫化水素を酸化する生物脱硫方法を開示する。このような方法は、生物脱硫を行う液相の容積が極めて大きく、エネルギーガスの精製プラント等のような高負荷での処理において実用化するには不向きである。   For example, Patent Documents 1 and 2 below disclose a biodesulfurization method that oxidizes hydrogen sulfide dissolved in water in a liquid phase in which microorganisms such as activated sludge are dispersed. Such a method has an extremely large liquid phase volume for biological desulfurization, and is not suitable for practical use in high-load processing such as an energy gas purification plant.

一方、下記特許文献3では、微生物を担持させた担体が用いられ、気液接触によって硫化水素を吸収させた吸収液を、微生物担持体が投入された被処理水に導入して、微生物によって硫化水素を硫酸イオンに酸化することが開示されている。   On the other hand, in Patent Document 3 below, a carrier carrying microorganisms is used, and an absorption liquid in which hydrogen sulfide is absorbed by gas-liquid contact is introduced into the water to be treated into which the microorganism carrier is introduced, and sulfurized by the microorganisms. It is disclosed to oxidize hydrogen to sulfate ions.

また、下記特許文献4では、脱硫作用を有する微生物による生物膜を有する樹脂製基材を充填物として用いた生物脱硫塔に、栄養物質及びアルカリを含有する循環液とバイオガスとを供給することが記載され、バイオガスと循環液との気液接触により吸収された硫化水素を基材上の微生物によって脱硫する方法が記載されている。更に、下記特許文献5では、硫黄酸化細菌を担持する充填材を積層した気液接触塔に硫化水素含有ガスと洗浄溶液とを気液接触させて生物脱硫を行う脱硫方法が記載され、硫化水素含有ガスの流量と洗浄溶液の流量との比率及び硫化水素含有ガスが充填材積層部分に滞留する時間を規定している。
特開2003−62421号公報 特開2004−135579号公報 特開2002−79294号公報 特開2006−36961号公報 特開2008−12489号公報
Moreover, in the following Patent Document 4, a circulating liquid and a biogas containing a nutrient substance and an alkali are supplied to a biological desulfurization tower using a resin base material having a biofilm by a microorganism having a desulfurization action as a packing. And a method for desulfurizing hydrogen sulfide absorbed by gas-liquid contact between a biogas and a circulating fluid by a microorganism on a substrate. Furthermore, Patent Document 5 below describes a desulfurization method in which a hydrogen-sulfide-containing gas and a cleaning solution are brought into gas-liquid contact with a gas-liquid contact tower in which a filler carrying sulfur-oxidizing bacteria is laminated, and biological desulfurization is performed. The ratio between the flow rate of the contained gas and the flow rate of the cleaning solution and the time during which the hydrogen sulfide-containing gas stays in the filler laminate portion are defined.
JP 2003-62421 A JP 2004-135579 A JP 2002-79294 A JP 2006-36961 A JP 2008-12489 A

上記特許文献1,2のような液相に分散した微生物を用いる方法に比べて、上記特許文献3,4のような微生物を担持させた担体を用いる方法は、生物反応に要する容積を縮小する上で有利であると考えられる。   Compared with the method using microorganisms dispersed in a liquid phase as in Patent Documents 1 and 2, the method using a carrier supporting microorganisms as in Patent Documents 3 and 4 reduces the volume required for biological reaction. This is considered advantageous.

しかし、硫化水素の気液接触による水への吸収は、HSイオンへの解離平衡が律速となって、pH7以下においては非常に吸収され難い。このため、硫化水素の吸収を促進するためにアルカリ剤を用いて塩基性に調整する必要があり、上記特許文献3,4の生物脱硫においては、硫化水素を吸収する液のpHを塩基性に保持するためのアルカリ剤が用いられている。従って、使用するアルカリ剤によって運転コストが増加する。 However, the absorption of hydrogen sulfide in water by gas-liquid contact is very difficult to absorb at pH 7 or lower because the dissociation equilibrium to HS - ions is rate-limiting. For this reason, in order to promote absorption of hydrogen sulfide, it is necessary to adjust the basicity using an alkali agent. In the biological desulfurization of Patent Documents 3 and 4, the pH of the liquid that absorbs hydrogen sulfide is made basic. An alkaline agent is used for holding. Therefore, the operating cost increases depending on the alkaline agent used.

一方、上記特許文献5の生物脱硫方法は、pH7.5程度での吸収及び反応を目的としており、上記特許文献3,4に比べてアルカリ剤の使用量を低減できるが、それでも、中和に用いるアルカリ剤はかなりの量となり、細菌が生成する硫酸の中和に要する理論量を著しく超過する。   On the other hand, the biological desulfurization method of Patent Document 5 is intended for absorption and reaction at a pH of about 7.5, and can reduce the amount of alkaline agent used compared to Patent Documents 3 and 4, but it is still effective for neutralization. The amount of alkaline agent used is considerable and significantly exceeds the theoretical amount required to neutralize the sulfuric acid produced by the bacteria.

本発明は、上記問題を鑑み、運転コストが低く、使用する設備の小型化が可能で、脱硫効率のよい生物脱硫方法を提供することを課題とする。   In view of the above problems, it is an object of the present invention to provide a biological desulfurization method that has low operating costs, enables downsizing of equipment to be used, and has high desulfurization efficiency.

又、本発明は、効率良く脱硫を行うことができ、使用する容積を縮小でき、pH調整その他の処理に要するコストを低く抑えて運転可能な生物脱硫装置を提供することを課題とする。   Another object of the present invention is to provide a biological desulfurization apparatus that can efficiently perform desulfurization, reduce the volume to be used, and can operate with low cost for pH adjustment and other treatments.

上記課題を解決するために、本発明者らは、鋭意研究を重ねた結果、好酸性の硫黄酸化細菌の高い酸化作用を利用して硫化水素の気液接触による吸収を促進可能な構成を見出し、これに基づいて、酸性での硫化水素の吸収及び酸化を実現することによって、硫化水素を吸収する水のpH調整に要するコストを著しく低減させ、効率よく生物脱硫を実施できる本発明を完成するに至った。従って、運転コストや資源の節約などの点で非常に有効であり、処理設備の小型化においても有利である。   In order to solve the above problems, the present inventors have conducted extensive research and found a structure capable of promoting absorption of hydrogen sulfide by gas-liquid contact using the high oxidizing action of acidophilic sulfur-oxidizing bacteria. Based on this, the present invention that can effectively perform biodesulfurization can be achieved by significantly reducing the cost required for adjusting the pH of water that absorbs hydrogen sulfide by realizing acidic hydrogen sulfide absorption and oxidation. It came to. Therefore, it is very effective in terms of operating cost and resource saving, and is advantageous in reducing the size of the processing equipment.

本発明の一態様によれば、生物脱硫装置は、水を主体とする吸収液のpHを7未満に調整するpH調整手段と、前記吸収液を硫化水素含有ガスに気液接触させて硫化水素を前記吸収液に吸収させる気液接触手段と、前記吸収液に吸収される硫化水素を酸化するための好酸性の硫黄酸化細菌とを有することを要旨とする。   According to one aspect of the present invention, a biological desulfurization apparatus includes a pH adjusting unit that adjusts the pH of an absorption liquid mainly composed of water to less than 7, and hydrogen absorption by bringing the absorption liquid into gas-liquid contact with a hydrogen sulfide-containing gas. The gist of the present invention is to have a gas-liquid contact means for absorbing water into the absorption liquid and an acidophilic sulfur-oxidizing bacterium for oxidizing hydrogen sulfide absorbed in the absorption liquid.

又、本発明の一態様によれば、生物脱硫方法は、水を主体とする吸収液のpHを7未満に調整し、前記吸収液を硫化水素含有ガスに気液接触させて硫化水素を前記吸収液に吸収させ、前記吸収液に吸収される硫化水素を好酸性の硫黄酸化細菌によって酸化することを要旨とする。   Further, according to one aspect of the present invention, the biological desulfurization method adjusts the pH of an absorption liquid mainly composed of water to less than 7, and causes the absorption liquid to come into gas-liquid contact with a hydrogen sulfide-containing gas so that the hydrogen sulfide is mixed with the hydrogen sulfide. The gist is to oxidize hydrogen sulfide absorbed in the absorbing solution and absorbed into the absorbing solution by acidophilic sulfur-oxidizing bacteria.

上記において、前記硫黄酸化細菌は、前記気液接触手段上に配設され、硫黄酸化細菌による酸化は、気液接触と実質的に同じ場において進行する。   In the above, the sulfur-oxidizing bacteria are disposed on the gas-liquid contact means, and oxidation by the sulfur-oxidizing bacteria proceeds in substantially the same field as the gas-liquid contact.

本発明によれば、好酸性の硫黄酸化細菌を用いて酸性状態での生物反応を効率よく進行させることによって、水中の硫化水素イオンが消費されて濃度が低下し、解離平衡及び気液平衡が常に硫化水素を溶解する方向にシフトするので、酸性状態であっても硫化水素ガスの吸収が進行する。従って、生物脱硫系の水を塩基性に調整するために必要なアルカリ剤を省略でき、しかも、水に溶解する炭酸ガスの濃度が酸性状態では低下するので、炭酸ガスの中和に要するアルカリ剤の省略も可能となり、全体としてのアルカリ剤の使用量が格段に低下し、運転コストの低減に有利である。   According to the present invention, by efficiently proceeding a biological reaction in an acidic state using an acidophilic sulfur-oxidizing bacterium, hydrogen sulfide ions in water are consumed and the concentration is reduced, and dissociation equilibrium and gas-liquid equilibrium are achieved. Since the shift is always in the direction of dissolving hydrogen sulfide, absorption of hydrogen sulfide gas proceeds even in an acidic state. Therefore, the alkali agent necessary for adjusting the water of the biodesulfurization system to basic can be omitted, and the concentration of carbon dioxide dissolved in water is lowered in an acidic state, so that the alkali agent required for neutralization of carbon dioxide is required. Can be omitted, and the amount of the alkaline agent used as a whole is remarkably reduced, which is advantageous in reducing the operating cost.

硫黄酸化細菌は、硫化物を栄養源とする独立栄養型の好気性細菌であり、硫化水素を硫黄又は硫酸に酸化する。従来の生物脱硫においては、硫化水素ガスを水に吸収させて硫黄酸化細菌に供給する際に、塩基性に調整した水を硫化水素に接触させて硫化水素ガスの吸収を高めている。この理由は、硫化水素の解離度が低く硫化水素ガスの水への接触吸収が律速段階となるため、反応効率を高めるには塩基性の水を用いて吸収性を上げる必要があるからである。従って、硫黄酸化細菌は、塩基性域で反応可能な種(中性菌と称する)を利用している。しかし、水を塩基性に調整するためのアルカリ剤に要するコストは無視できない量になり、特にバイオガスの処理において著しい。これは、塩基性では空気などに含まれる炭酸ガスも吸収し得るためであり、特にバイオガスのように硫化水素0.5〜2%に対して炭酸ガスを30〜40%の割合で含む硫化水素含有ガスの脱硫では、中和時に消費されるアルカリ剤の主要部はむしろ炭酸ガスに起因する。   Sulfur-oxidizing bacteria are autotrophic aerobic bacteria that use sulfide as a nutrient source, and oxidize hydrogen sulfide to sulfur or sulfuric acid. In conventional biological desulfurization, when hydrogen sulfide gas is absorbed in water and supplied to sulfur-oxidizing bacteria, the water adjusted to basic is brought into contact with hydrogen sulfide to enhance the absorption of hydrogen sulfide gas. This is because the degree of dissociation of hydrogen sulfide is low and the contact absorption of hydrogen sulfide gas into water becomes the rate-determining step. Therefore, it is necessary to increase the absorbency with basic water in order to increase the reaction efficiency. . Therefore, sulfur-oxidizing bacteria utilize species that can react in the basic region (referred to as neutral bacteria). However, the cost required for the alkaline agent for adjusting the water to basicity is a non-negligible amount, particularly in the treatment of biogas. This is because carbon dioxide contained in air or the like can be absorbed when basic, and sulfur dioxide containing carbon dioxide at a ratio of 30 to 40% with respect to 0.5 to 2% of hydrogen sulfide like biogas. In the desulfurization of a hydrogen-containing gas, the main part of the alkaline agent consumed during neutralization is rather attributed to carbon dioxide.

このようなことから、本願発明者らは、生物脱硫反応とpHとの関係について検討したところ、好酸性の硫黄酸化細菌の酸化速度は、pHが上昇するに従って小さくなるが、中性付近でも中性菌よりかなり大きいことから、細菌の酸化速度の活用について検討し、この酸化速度を用いて硫化水素ガスの水への吸収を促進可能な手法を見出した。本発明の生物脱硫方法及び生物脱硫装置においては、水を主体とする吸収液と硫化水素含有ガスとの気液接触により吸収液に吸収された硫化水素を、好酸性硫黄酸化細菌を用いて酸化する。以下、本発明の生物脱硫方法及びこれに用いる生物脱硫装置について詳細に説明する。   For this reason, the present inventors examined the relationship between the biodesulfurization reaction and pH, and the oxidation rate of the acidophilic sulfur-oxidizing bacteria decreases as the pH increases. Since it is much larger than the sex bacteria, we investigated the utilization of the oxidation rate of bacteria, and found a method that can promote the absorption of hydrogen sulfide gas into water using this oxidation rate. In the biological desulfurization method and biological desulfurization apparatus of the present invention, the hydrogen sulfide absorbed in the absorption liquid by the gas-liquid contact between the absorption liquid mainly composed of water and the hydrogen sulfide-containing gas is oxidized using an acidophilic sulfur-oxidizing bacterium. To do. Hereinafter, the biodesulfurization method of the present invention and the biodesulfurization apparatus used therefor will be described in detail.

硫黄酸化細菌は、概して耐酸性を有し、好酸性菌(生育pH:0.5〜6程度)と中性菌(生育pH:5〜9程度)とでは、環境pHによる硫黄酸化反応の反応速度が異なる。具体的には、1cell当たりの生物的酸化速度V[×10−13(g-S/h/cell)]は、中性菌では、V=約0(pH3)、V=約0.2(pH7.5)であるのに対し、好酸性菌ではV=約3.5(pH2)、V=約3.0(pH3)、V=約1.6(pH7.5)となる。つまり、好酸性菌の生物的酸化速度は、pHの上昇に従って低下するが、中性でも酸性域の半分程度の酸化能を維持し、中性菌と比較すると7倍程度となる。従って、pH7以下において好酸性菌の反応性を好適に活用可能に構成すれば、硫化水素ガスの処理能力が高い生物脱硫が実現できる。この場合に問題となるのは、硫化水素ガスの水への吸収性の低さであるが、本発明では、好酸性菌の高い反応性を、硫化水素ガスの吸収を高める手段として利用する。つまり、気液接触による硫化水素の吸収と、硫黄酸化細菌の酸化反応とを実質的に同じ場において進行させ、硫黄酸化細菌の硫化水素消費(HS→S→SO 2−)による硫化水素イオン濃度の低下を、硫化水素の気液平衡バランス(HSgas⇔HSaq⇔HS+H)にリンクさせて、ガス状態から吸収・解離状態への移行を促進する。 Sulfur-oxidizing bacteria generally have acid resistance, and in acidophilic bacteria (growth pH: about 0.5 to 6) and neutral bacteria (growth pH: about 5 to 9), reaction of sulfur oxidation reaction by environmental pH. The speed is different. Specifically, the biological oxidation rate V [× 10 −13 ( gS / h / cell)] per cell is V = about 0 (pH 3) and V = about 0.2 (neutral for neutral bacteria. pH = 7.5), whereas in acidophilic bacteria, V = about 3.5 (pH 2), V = about 3.0 (pH 3), and V = about 1.6 (pH 7.5). That is, the biooxidation rate of acidophilic bacteria decreases with an increase in pH, but even in neutrality, it maintains an oxidizing ability of about half of the acidic range, and is about 7 times that of neutral bacteria. Therefore, if the reactivity of acidophilic bacteria can be suitably used at pH 7 or lower, biological desulfurization with a high hydrogen sulfide gas treatment capacity can be realized. In this case, the problem is the low absorbability of hydrogen sulfide gas into water. In the present invention, the high reactivity of acidophilic bacteria is used as a means for enhancing the absorption of hydrogen sulfide gas. That is, absorption of hydrogen sulfide by gas-liquid contact and oxidation reaction of sulfur-oxidizing bacteria proceed in substantially the same field, and sulfurization by sulfur-oxidizing bacteria's hydrogen sulfide consumption (HS → S 0 → SO 4 2− ). The decrease in the hydrogen ion concentration is linked to the vapor-liquid equilibrium balance of hydrogen sulfide (H 2 Sgas⇔H 2 Saq⇔HS + H + ) to promote the transition from the gas state to the absorption / dissociation state.

また、酸性域では炭酸ガスの解離度(CO+HO→HCO +H)が低下し、特にpH5以下ではほぼ解離せず、炭酸ガスの溶解性が極めて低くなるので、炭酸ガスの中和に消費されるアルカリ剤の量が減少する。従って、吸収液をpH7未満の酸性域、特にpH5以下に調整することによって、pH調整の際に中和されるのは、実質的に硫化水素の酸化によって生成する硫酸のみになり、アルカリ剤の消費量を被処理硫化水素量に基づく理論中和量に近づけることができる。 In the acidic region, the dissociation degree of carbon dioxide gas (CO 2 + H 2 O → HCO 3 + H + ) is lowered, and particularly at pH 5 or lower, the carbon dioxide gas is hardly dissociated and the solubility of carbon dioxide gas becomes extremely low. The amount of alkaline agent consumed for neutralization is reduced. Therefore, by adjusting the absorption liquid to an acidic range below pH 7, particularly pH 5 or less, it is only sulfuric acid produced by oxidation of hydrogen sulfide that is neutralized during pH adjustment. The consumption can be brought close to the theoretical neutralization amount based on the amount of hydrogen sulfide to be treated.

このような生物脱硫は、具体的には、以下のような形態において実施することができる。   Specifically, such biological desulfurization can be carried out in the following forms.

図1は、本発明の生物脱硫を実施する生物脱硫装置の一実施形態を示す。図1において、生物脱硫装置1は、硫黄酸化細菌を表面に担持する充填物Fを保持する生物反応槽3を有し、充填物F上で吸収液と硫化水素含有ガスとを気液接触させるために吸収液及び硫化水素含有ガスを生物反応槽3に供給する供給手段として、生物反応槽3の上部に接続される送液管5、及び、生物反応槽3の下部に接続される送気管7を有する。充填物Fは、槽内に充填・保持された状態で液体及び気体が中を通過可能な部材であり、具体的には、粒状、網状又は多孔性の素材で構成した部材や、ラシヒリングやレッシングリング等のような気液接触面積を増加させるために一般的に用いられる形態の、高い比表面積を得られる部材を利用して構成することができる。   FIG. 1 shows an embodiment of a biodesulfurization apparatus for performing biodesulfurization of the present invention. In FIG. 1, the biological desulfurization apparatus 1 has a biological reaction tank 3 that holds a packing F that supports sulfur-oxidizing bacteria on its surface, and makes the absorption liquid and the hydrogen sulfide-containing gas in gas-liquid contact on the packing F. Therefore, as supply means for supplying the absorption liquid and the hydrogen sulfide-containing gas to the biological reaction tank 3, a liquid supply pipe 5 connected to the upper part of the biological reaction tank 3 and an air supply pipe connected to the lower part of the biological reaction tank 3 7 The filling F is a member through which liquid and gas can pass while being filled and held in the tank. Specifically, the filling F is a member made of a granular, net-like or porous material, Raschig ring or lessing. It can be configured using a member that can obtain a high specific surface area in a form generally used for increasing the gas-liquid contact area such as a ring.

水を主体とする吸収液を貯水槽17に収容し、ポンプ9の駆動によって送液管5から生物反応槽3に供給すると、先端に取り付けられる撒水ノズル11から充填物Fに撒水されて充填物F1を濡らしながら通過した後、生物反応部3の下部に落下する。一方、送気管7からは、硫化水素含有ガス(バイオガスやガス化資源等の硫化水素を含んだエネルギーガス)がポンプ等(図示省略)によって生物反応槽3内の充填物F下方に供給され、上方に向かって充填物F中を通過する際に、充填物Fの表面で吸収液と硫化水素含有ガスとが気液接触し、硫化水素が吸収液に吸収される。吸収された硫化水素は、充填物Fに担持される好酸性の硫黄酸化細菌によって硫黄及び硫酸に酸化され、充填物F中を流れ落ちるに従って吸収水の硫酸濃度が上昇する。充填物Fを透過した硫酸を含んだ吸収液は、生物反応槽3の下部に落下し底部に貯留される。生物反応槽3の底部は、配管15によって貯水槽17と接続されており、吸収液は、貯水槽17を介して送液管5から生物反応槽3へ還流可能に構成されている。生物反応槽3において硫黄酸化細菌によって硫化水素が除去されたガスは、生物反応槽3の頂部から送気管13を通って排出され、必要に応じて適宜処理を施した後にエネルギーガスとして使用に供される。   When an absorption liquid mainly composed of water is stored in the water storage tank 17 and is supplied to the biological reaction tank 3 from the liquid feeding pipe 5 by driving the pump 9, it is submerged to the filling F from the submerged nozzle 11 attached to the tip. After passing while wetting F1, it falls to the bottom of the biological reaction part 3. On the other hand, a hydrogen sulfide-containing gas (energy gas containing hydrogen sulfide such as biogas or gasification resources) is supplied from the air supply pipe 7 below the filling F in the biological reaction tank 3 by a pump or the like (not shown). When passing through the filling F upward, the absorbing liquid and the hydrogen sulfide-containing gas come into gas-liquid contact on the surface of the filling F, and hydrogen sulfide is absorbed by the absorbing liquid. The absorbed hydrogen sulfide is oxidized into sulfur and sulfuric acid by the acidophilic sulfur-oxidizing bacteria carried on the filler F, and the sulfuric acid concentration of the absorbed water increases as it flows down the filler F. The absorbing liquid containing sulfuric acid that has passed through the packing F falls to the lower part of the biological reaction tank 3 and is stored at the bottom. The bottom of the biological reaction tank 3 is connected to a water storage tank 17 by a pipe 15, and the absorption liquid is configured to be able to return to the biological reaction tank 3 from the liquid feeding pipe 5 via the water storage tank 17. The gas from which hydrogen sulfide has been removed by the sulfur-oxidizing bacteria in the biological reaction tank 3 is discharged from the top of the biological reaction tank 3 through the air supply pipe 13, and is used as an energy gas after being appropriately treated as necessary. Is done.

本発明において、生物脱硫は、生物反応槽3の充填物F上において硫化水素の気液接触と実質的に同じ場で進行する。詳細には、充填物F上で吸収液との接触によって吸収された硫化水素は、充填物Fに担持される好酸性の硫黄酸化細菌によって硫黄及び硫酸に酸化され、これにより、吸収液中の硫化水素は減少し、硫酸濃度が増加する。この時、吸収液の硫化水素濃度の低下によって気液平衡バランスがシフトして、更にガスから液中への硫化水素の吸収が促される。つまり、気液接触による硫化水素の吸収と、好酸性硫黄酸化細菌による生物脱硫とが実質的に同じ場(充填物上の吸収液中)で進行し、互いにリンクすることによって、生物脱硫の反応速度が硫化水素の吸収を促進させる作用をする。この結果、充填物F中を流れ落ちるに従って吸収水の硫酸濃度が上昇する。   In the present invention, the biological desulfurization proceeds on the filling F of the biological reaction tank 3 in substantially the same field as the gas-liquid contact of hydrogen sulfide. Specifically, the hydrogen sulfide absorbed by the contact with the absorbing solution on the packing F is oxidized to sulfur and sulfuric acid by the acidophilic sulfur-oxidizing bacteria supported on the packing F, and thereby in the absorbing solution. Hydrogen sulfide decreases and sulfuric acid concentration increases. At this time, the gas-liquid equilibrium balance shifts due to a decrease in the hydrogen sulfide concentration of the absorption liquid, and further absorption of hydrogen sulfide from the gas into the liquid is promoted. In other words, the absorption of hydrogen sulfide by gas-liquid contact and the biological desulfurization by acidophilic sulfur-oxidizing bacteria proceed in substantially the same field (in the absorbent on the packing) and link each other, thereby reacting the biological desulfurization reaction. The speed acts to promote the absorption of hydrogen sulfide. As a result, the sulfuric acid concentration of absorbed water increases as it flows down through the filler F.

生物反応槽3の下部に落下した吸収液は、配管15を介して貯水槽17へ供給され、硫酸によって低下した吸収液のpHは、アルカリ槽19から送水管21及びポンプ23によって供給されるアルカリ液を用いて適宜調整されて一定のpHに保持され、送液管5を通じて生物反応槽3へ還流される。生物脱硫によって生成した硫酸は、このpH調整によって中和される。尚、貯水槽17中の吸収液は、その一部を外部水と適宜置換することによって塩濃度の上昇が防止され、貯水槽17から排出された吸収液は適宜希釈等を経て放水される。   The absorption liquid that has dropped to the lower part of the biological reaction tank 3 is supplied to the water storage tank 17 via the pipe 15, and the pH of the absorption liquid that has been lowered by sulfuric acid is the alkali supplied from the alkali tank 19 by the water supply pipe 21 and the pump 23. The liquid is appropriately adjusted to be maintained at a constant pH, and is refluxed to the biological reaction tank 3 through the liquid feeding pipe 5. The sulfuric acid produced by biodesulfurization is neutralized by this pH adjustment. In addition, the absorption liquid in the water tank 17 is prevented from rising in salt concentration by appropriately replacing a part of the liquid with external water, and the water discharged from the water tank 17 is appropriately diluted and discharged.

貯水槽17において調整される吸収液のpHは7未満、つまり酸性に調整され、炭酸ガスの溶解抑制の点ではpH6.0以下が好ましく、pH5.0以下がより好ましい。炭酸ガスを含有するバイオガスの脱硫においては、吸収液のpHを5.0以下に調整することが非常に有用である。pHが低い方が好酸性硫黄酸化細菌の生物的酸化速度が高いが、硫化水素の気液接触における吸収性を考慮すると、実用的にはpH2〜7程度、好ましくはpH3〜6に調整される。貯水槽17の吸収液のpHを測定するpH測定器25を付設して、測定値に応じてポンプ23によるアルカリ槽19からのアルカリ液の供給を自動的に制御するように構成すると正確に調整するのに有利である。尚、硫黄酸化細菌は好気性細菌であり、酸化反応を進めるために酸素の供給が必要である。このためには、例えば、貯水槽17に曝気装置27を付設して吸収液に酸素を吹き込んで溶存酸素濃度を高めることによって、充填物F上の硫黄酸化細菌に吸収液と共に酸素を供給することができる。この場合、吸収液は炭酸ガスの溶解性が低い酸性であるので、曝気装置27から供給する酸素源として空気を用いても、中和に要するアルカリ剤量の増加は抑制され、pH5.0以下においては実質的に脱硫による硫酸の理論中和量となる。処理対象とする硫化水素含有ガスがメタンを含まないガス(例えば石炭ガス化燃料等)である場合は、酸素ガスを生物反応槽3に直接供給するようなに装置を構成してもよい。   The pH of the absorbent adjusted in the water storage tank 17 is less than 7, that is, adjusted to be acidic, and is preferably 6.0 or less, more preferably 5.0 or less in terms of suppressing dissolution of carbon dioxide. In the desulfurization of biogas containing carbon dioxide gas, it is very useful to adjust the pH of the absorbing solution to 5.0 or less. The lower the pH, the higher the rate of biooxidation of the acidophilic sulfur-oxidizing bacteria, but considering the absorbability of hydrogen sulfide in gas-liquid contact, it is practically adjusted to about pH 2-7, preferably pH 3-6. . A pH measuring device 25 for measuring the pH of the absorption liquid in the water storage tank 17 is attached, and it is accurately adjusted if the supply of the alkaline liquid from the alkaline tank 19 by the pump 23 is automatically controlled according to the measured value. It is advantageous to do. The sulfur-oxidizing bacterium is an aerobic bacterium, and oxygen supply is required to advance the oxidation reaction. For this purpose, for example, oxygen is supplied to the sulfur-oxidizing bacteria on the filler F together with the absorbing solution by adding an aeration device 27 to the water tank 17 and blowing oxygen into the absorbing solution to increase the dissolved oxygen concentration. Can do. In this case, since the absorption liquid is acidic with low solubility of carbon dioxide, even if air is used as an oxygen source supplied from the aeration device 27, an increase in the amount of alkaline agent required for neutralization is suppressed, and the pH is 5.0 or less. Is substantially the theoretical neutralization amount of sulfuric acid by desulfurization. When the hydrogen sulfide-containing gas to be treated is a gas that does not contain methane (for example, coal gasification fuel), the apparatus may be configured to supply oxygen gas directly to the biological reaction tank 3.

本発明において、好酸性硫黄酸化細菌は、生物反応槽3内に保持される充填物Fの表面に担持されており、このような微生物を担持した担体を利用する生物脱硫は、設備の小型化に有用である。充填物Fを構成する素材は、微生物を担持可能な素材であれば良く、磁性又は樹脂製の通常の気液接触用充填材や、多孔質軟質樹脂、活性炭等の炭素材、ゼオライト、セラミックス等の多孔質体などが挙げられ、繊維状、粉末又は粒子状などの形態を適宜使用できる。例えば、炭素繊維フェルト、木炭等を利用できる。微生物を担持し易い素材としては、臨界表面張力が40dyne/cm程度以下の素材があり、微生物が付着し易い。臨界表面張力が低い素材には、各種プラスチックがあり、臨界表面張力が40dyne/cm以下のプラスチックとして、例えば、ポリエチレン、ポリプロピレン、ポリ塩化ビニル、PVDC、PTFE等が挙げられ、このようなプラスチック類から適宜選択して使用できるが、これらに限定されるものではない。効率よく気液接触を行うために、充填物Fは、比表面積が10cm/cm程度以上(BET比表面積)であることが好ましく、目詰まりを防止する点を考慮すると、細菌を担持して生物反応槽3に保持された状態で、100〜400cm/cm程度となることが好ましい。 In the present invention, the acidophilic sulfur-oxidizing bacteria are supported on the surface of the packing material F held in the biological reaction tank 3, and the biodesulfurization using the carrier supporting such microorganisms reduces the size of the equipment. Useful for. The material constituting the filler F may be any material capable of supporting microorganisms, such as a normal magnetic or resin filler for gas-liquid contact, a porous soft resin, a carbon material such as activated carbon, zeolite, ceramics, etc. The porous body etc. are mentioned, and forms, such as a fibrous form, a powder, or a particulate form, can be used suitably. For example, carbon fiber felt or charcoal can be used. As materials that easily carry microorganisms, there are materials whose critical surface tension is about 40 dyne / cm or less, and microorganisms are likely to adhere. Examples of materials having a low critical surface tension include various plastics. Examples of plastics having a critical surface tension of 40 dyne / cm or less include polyethylene, polypropylene, polyvinyl chloride, PVDC, PTFE, and the like. Although it can select and use suitably, it is not limited to these. In order to make gas-liquid contact efficiently, the filling F preferably has a specific surface area of about 10 cm 2 / cm 3 or more (BET specific surface area). In consideration of preventing clogging, the packing F supports bacteria. Thus, it is preferable that the pressure is about 100 to 400 cm 2 / cm 3 in the state of being held in the biological reaction tank 3.

硫黄酸化細菌が担持した充填物Fは、上記のような充填物Fに好酸性硫黄酸化細菌及び栄養源を含むpH0.5〜6程度の水を供給し、細菌の繁殖に適した温度で両者の接触を維持して充填物表面で細菌を繁殖・付着させることによって調製できる。好酸性硫黄酸化細菌として、例えば、Thiobacillus thioosidans、Acidithiobacillus thioosidans、T.ferrooxidansやSulfolobus等が挙げられるが、特に限定することなく、環境中の細菌群から適宜培養して利用できる。繁殖に適する温度は、概して28〜35℃程度である。充填物Fに担持される硫黄酸化細菌は、好酸性硫黄酸化細菌単独である必要はなく、好酸性硫黄酸化細菌の作用が阻害されない限り、中性菌や他の微生物が共存しても良い。従って、例えば、活性汚泥や鉱物質土壌等に含まれる微生物群を利用して適宜培養して得た硫黄酸化細菌を充填剤に担持することができる。細菌を担持した充填物Fの充填容積当たりの処理能力は、担持細菌量、有効接触面積及び吸収液のpHによって変化するので、必要な処理能力を発揮し得る担持量及び表面積となるように、充填物を構成する部材の形態や担持充填物の調製条件を必要に応じて適宜変更すればよい。   The packing F carried by the sulfur-oxidizing bacteria supplies the above-described packing F with water having a pH of 0.5 to 6 containing acidophilic sulfur-oxidizing bacteria and nutrient sources, and at a temperature suitable for bacterial propagation. It can be prepared by propagating bacteria on the surface of the packing while maintaining the contact. Examples of the acidophilic sulfur-oxidizing bacteria include Thiobacillus thioosidans, Acidithiobacillus thioosidans, T. ferrooxidans, Sulfolobus, and the like, but are not particularly limited and can be appropriately cultured from the bacterial group in the environment. The temperature suitable for breeding is generally about 28 to 35 ° C. The sulfur-oxidizing bacteria carried on the filler F need not be acidophilic sulfur-oxidizing bacteria alone, and neutral bacteria and other microorganisms may coexist as long as the action of the acidophilic sulfur-oxidizing bacteria is not inhibited. Therefore, for example, sulfur-oxidizing bacteria obtained by culturing appropriately using a microorganism group contained in activated sludge, mineral soil, or the like can be supported on the filler. The processing capacity per packing volume of the packing material F supporting bacteria varies depending on the amount of supporting bacteria, the effective contact area, and the pH of the absorbing solution, so that the supporting capacity and surface area that can exhibit the required processing capacity are obtained. What is necessary is just to change suitably the form of the member which comprises a filler, and the preparation conditions of a support | filler filler as needed.

本発明の生物脱硫装置1は、硫黄酸化細菌による酸化の好適な進行を維持するために、必要に応じて生物反応槽3を適正温度に加熱、冷却又は保温する手段を設けてもよく、これにより、外気温度の変動などによる影響を排除して安定した脱硫処理を継続することができる。図1の生物脱硫装置1においては、充填物Fに供給される吸収液を加熱又は冷却する温度調節装置29が付設され、吸収液によって充填物Fの温度が25〜35℃に維持される。温度調節装置29の動作は、温度センサーの検知温度に応じて自動制御するように構成するとよい。   The biological desulfurization apparatus 1 of the present invention may be provided with means for heating, cooling or keeping the biological reaction tank 3 at an appropriate temperature as necessary in order to maintain a suitable progress of oxidation by sulfur-oxidizing bacteria. Thus, stable desulfurization treatment can be continued while eliminating the influence of fluctuations in the outside air temperature. In the biological desulfurization apparatus 1 of FIG. 1, a temperature adjusting device 29 for heating or cooling the absorbent supplied to the filler F is attached, and the temperature of the filler F is maintained at 25 to 35 ° C. by the absorbent. The operation of the temperature adjustment device 29 may be configured to be automatically controlled according to the temperature detected by the temperature sensor.

硫化水素の吸収は、気液接触部の濃度平衡によって進行し、気液接触時間(硫化水素含有ガスが充填剤Fに滞留する時間)によって硫化水素の吸収量は変動するので、処理対象ガスについて所望の硫化水素除去率を達成するには、硫化水素の吸収量が除去すべき量に達し得る気液接触時間を確保する必要があり、必要な気液接触時間(ガスの滞留時間)は、処理対象ガスの硫化水素ガス濃度及び生物反応槽3の処理能力(反応速度)に依存する。気液接触時間は、処理対象ガスの流速(供給速度)及び生物反応槽3の充填容量(充填高さ)によって定まるので、処理対象ガス(硫化水素含有ガス)の供給速度及び生物反応槽3の充填容量(充填高さ)は、処理対象ガスの硫化水素濃度及び充填物Fの処理能力に応じて設定される。換言すれば、処理するガスの硫黄負荷(1日に供給される容積当たり硫黄質量[kgS/m/d])が増加した時は、生物反応槽3の充填容積(充填高さ)を増加するか、ガスの供給速度を低下させることによって対応可能できる。尚、吸収液の調整pHを低下させると硫黄酸化細菌の反応速度が高まるので、これによって生物反応槽3の処理能力を高めて、必要とされる気液接触時間を短縮することも可能である。このような条件設定は、例えば、送気管13から排出されるガスの内容をガスメータ31によって分析し、この結果に基づいて処理対象ガスの供給速度及び生物反応槽3の充填高さを適宜変更することによって可能である。 The absorption of hydrogen sulfide proceeds due to the concentration equilibrium of the gas-liquid contact portion, and the amount of hydrogen sulfide absorbed varies depending on the gas-liquid contact time (the time during which the hydrogen sulfide-containing gas stays in the filler F). In order to achieve a desired hydrogen sulfide removal rate, it is necessary to secure a gas-liquid contact time at which the absorbed amount of hydrogen sulfide can reach the amount to be removed, and the necessary gas-liquid contact time (gas residence time) is: It depends on the hydrogen sulfide gas concentration of the gas to be treated and the treatment capacity (reaction rate) of the biological reaction tank 3. Since the gas-liquid contact time is determined by the flow rate (supply speed) of the gas to be processed and the filling capacity (filling height) of the biological reaction tank 3, the supply speed of the gas to be processed (hydrogen sulfide-containing gas) and the biological reaction tank 3 The filling capacity (filling height) is set according to the hydrogen sulfide concentration of the gas to be treated and the treatment capacity of the filling F. In other words, when the sulfur load of the gas to be treated (the sulfur mass per day supplied volume [kgS / m 3 / d]) increases, the filling volume (packing height) of the biological reaction tank 3 is increased. Alternatively, it can be handled by reducing the gas supply rate. In addition, since the reaction rate of sulfur-oxidizing bacteria increases when the adjusted pH of the absorbing solution is lowered, it is possible to increase the treatment capacity of the biological reaction tank 3 and shorten the required gas-liquid contact time. . Such condition setting is performed by, for example, analyzing the contents of the gas discharged from the air supply pipe 13 by the gas meter 31 and appropriately changing the supply speed of the gas to be processed and the filling height of the biological reaction tank 3 based on the result. Is possible.

好酸性硫黄酸化細菌を用いた本発明の生物脱硫では、酸性吸収液の低い硫化水素吸収性は、中性菌の7倍以上の反応速度によって塩基性吸収液と同程度にまで補償することができ、中性又は塩基性吸収液を用いる場合と同程度の処理状態に設定することができる。例えば、硫化水素0.1%程度を含有する硫化水素含有ガスの脱硫処理の場合、気液接触時間(ガスの滞留時間)が1〜5分程度となるようにガス供給速度を反応器の空塔速度に合わせて調節することにより硫黄負荷1〜2[kgS/m/d]程度の処理が可能である。この際、バイオガスの脱硫の場合は、貯水槽17における吸収液のpHを5.0程度に調整することによって、アルカリ剤の使用量は実質的に脱硫による硫酸の理論中和量となる。 In the biodesulfurization of the present invention using acidophilic sulfur-oxidizing bacteria, the low hydrogen sulfide absorptivity of the acid absorbing solution can be compensated to the same level as that of the basic absorbing solution by the reaction rate more than 7 times that of neutral bacteria. It can be set to the same processing state as when a neutral or basic absorbent is used. For example, in the case of a desulfurization treatment of a hydrogen sulfide-containing gas containing about 0.1% hydrogen sulfide, the gas supply rate is set so that the gas-liquid contact time (gas residence time) is about 1 to 5 minutes. By adjusting according to the tower speed, it is possible to treat the sulfur load about 1 to 2 [kg S / m 3 / d]. At this time, in the case of desulfurization of biogas, by adjusting the pH of the absorbent in the water storage tank 17 to about 5.0, the amount of alkali agent used is substantially the theoretical neutralization amount of sulfuric acid by desulfurization.

図2は、生物反応槽3と貯水槽17とを一体に構成した生物脱硫装置の一例を示す。この生物脱硫装置41の生物反応槽43は、充填物Fの直下に貯水用の容量を有し、この部分にpH測定器25及び曝気装置27を付設すると共に、アルカリ槽19に接続する送水管21が引き込まれている。従って、吸収液の循環は、生物反応槽43の下部から頂部に至る送液管45を通じて行われる。尚、図2中で用いられる図1と同じ符合の部材は、図1のものと同一又は同機能の部材を示す。図1の生物脱硫装置1では、充填物Fが貯水槽17から分離してしているので、硫化水素含有ガスの供給が曝気装置27による酸素供給から隔てられているが、図2の場合、曝気装置27から供給される酸素は、送気管7から供給される硫化水素含有ガスと接触・混合し得るため安全性の点で問題となるので、図2の装置の使用は、処理対象が酸素の混合を許容する場合に限定される。但し、このような一体構成であっても、区画分離又は酸素の供給制限によって硫化水素含有ガスと酸素との混合防止が成されれば、バイオガス等のメタン含有ガスの処理も可能である。   FIG. 2 shows an example of a biological desulfurization apparatus in which the biological reaction tank 3 and the water storage tank 17 are integrally formed. The biological reaction tank 43 of the biological desulfurization apparatus 41 has a capacity for storing water immediately below the packing F, and a pH measuring device 25 and an aeration device 27 are attached to this portion, and a water supply pipe connected to the alkaline tank 19 is provided. 21 is drawn. Therefore, the absorption liquid is circulated through the liquid feeding pipe 45 extending from the bottom of the biological reaction tank 43 to the top. 2 that are the same as those in FIG. 1 used in FIG. 2 are members having the same or the same functions as those in FIG. In the biological desulfurization apparatus 1 in FIG. 1, since the filler F is separated from the water tank 17, the supply of the hydrogen sulfide-containing gas is separated from the oxygen supply by the aeration apparatus 27. Since the oxygen supplied from the aeration device 27 can be brought into contact with and mixed with the hydrogen sulfide-containing gas supplied from the air supply pipe 7, there is a problem in terms of safety. Therefore, the use of the device in FIG. It is limited to the case where the mixing of is allowed. However, even in such an integrated configuration, treatment of methane-containing gas such as biogas is possible if the mixture of hydrogen sulfide-containing gas and oxygen is prevented by partition separation or oxygen supply restriction.

以下、実施例を参照して、本発明に係る生物脱硫方法及び装置について具体的に説明する。   Hereinafter, the biodesulfurization method and apparatus according to the present invention will be described in detail with reference to examples.

(充填材の調製)
pH1.5〜1.8の培養液(硫酸アンモニウム、燐酸水素カリウム、硫酸マグネシウム、塩化カリウム及び塩化ナトリウムを含む)に好酸性硫黄酸化細菌としてAcidithiobacillus thioosidansを添加して常温で浸とうして培養した。これを用いて硫黄酸化細菌の分散液を調製し、ポリプロピレン製メッシュリング型充填材(トリカルパッキン、タキロン(株)社製)を浸し、30℃に数日間保温して細菌を生育させることにより細菌を充填材表面に付着させて、硫黄酸化細菌を担持した充填材を得た。これを図1の生物脱硫装置の生物反応槽3内に保持して充填容積0.01m、充填高さ0.8mの充填物Fを構成した。
(Preparation of filler)
Acidithiobacillus thioosidans as an acidophilic sulfur-oxidizing bacterium was added to a culture solution (containing ammonium sulfate, potassium hydrogen phosphate, magnesium sulfate, potassium chloride, and sodium chloride) at pH 1.5 to 1.8, followed by immersing and culturing at room temperature. Using this, a dispersion of sulfur-oxidizing bacteria is prepared, soaked with a polypropylene mesh ring type filler (trical packing, manufactured by Takiron Co., Ltd.), and kept at 30 ° C. for several days to grow the bacteria. Bacteria were attached to the surface of the filler to obtain a filler carrying sulfur-oxidizing bacteria. This was held in the biological reaction tank 3 of the biological desulfurization apparatus of FIG. 1 to form a packing material F having a packing volume of 0.01 m 3 and a packing height of 0.8 m.

(実施例1)
図1の生物脱硫装置の貯水槽17に水50Lを収容し、HClを用いてpHを5.0に調整して吸収液を用意した。曝気装置27を作動させて、空気供給が1L/分となるように空気を吸収液に吹き込み供給した。
Example 1
50 L of water was stored in the water storage tank 17 of the biological desulfurization apparatus in FIG. 1, and the pH was adjusted to 5.0 using HCl to prepare an absorbing solution. The aeration apparatus 27 was operated, and air was blown into and supplied to the absorbing solution so that the air supply was 1 L / min.

ポンプ9を駆動させて、貯水槽17の吸収液(温度:30℃)を3L/分の速度で生物反応槽3に供給して、撒水ノズル11から充填物Fへの撒水を開始した。充填物F全体が吸収液で充分に濡れたのを確認した後、バイオガスを想定した硫化水素含有ガス(硫化水素濃度:0.1質量%、CO:30質量%、アルゴン:69.1質量%)を送気管7から6L/分の速度(硫黄負荷:1kgS/m/d)で生物反応槽3に供給した。硫化水素含有ガスは、上方に向かって充填物F中を通過し、この際に、充填物Fの表面上で吸収液と気液接触した。充填物Fから落下する吸収液は貯水槽17に還流させた。この状態で硫化水素含有ガスの供給を8時間継続して生物脱硫を行い、この間、送気管13から排出されるガスの硫化水素濃度をガス検知管で定期的に測定すると共に、貯水槽17の吸収液のpHを測定して、pHが低下したらアルカリ槽19の水酸化ナトリウム水溶液を添加して吸収液のpHが5.0で一定となるように調節した。 The pump 9 was driven, and the absorbing liquid (temperature: 30 ° C.) of the water storage tank 17 was supplied to the biological reaction tank 3 at a rate of 3 L / min, and water pouring from the water pouring nozzle 11 to the filler F was started. After confirming that the entire filling F was sufficiently wetted with the absorbing solution, a hydrogen sulfide-containing gas (hydrogen sulfide concentration: 0.1% by mass, CO 2 : 30% by mass, argon: 69.1 assuming biogas) Mass%) was supplied to the biological reaction tank 3 from the air supply pipe 7 at a rate of 6 L / min (sulfur load: 1 kgS / m 3 / d). The hydrogen sulfide-containing gas passed through the filler F upward, and in this case, the hydrogen sulfide-containing gas was in gas-liquid contact with the absorbing liquid on the surface of the filler F. The absorbing liquid falling from the filling F was refluxed to the water storage tank 17. In this state, the supply of the hydrogen sulfide-containing gas is continued for 8 hours to perform biological desulfurization. During this period, the hydrogen sulfide concentration of the gas discharged from the air supply pipe 13 is periodically measured by the gas detection pipe, The pH of the absorbing solution was measured, and when the pH decreased, an aqueous sodium hydroxide solution in the alkali bath 19 was added to adjust the absorbing solution to a constant pH of 5.0.

生物脱硫間の排出ガスの残留硫化水素濃度は60ppmであり、これから算出される硫化水素除去率は94%であった。また、この間に吸収液のpH調整に使用した水酸化ナトリウム量は34mmol/hであった。この量は、硫化水素除去率から計算される生物脱硫による硫酸の理論中和量に相当する。   The residual hydrogen sulfide concentration of the exhaust gas during the biological desulfurization was 60 ppm, and the hydrogen sulfide removal rate calculated from this was 94%. During this time, the amount of sodium hydroxide used to adjust the pH of the absorbent was 34 mmol / h. This amount corresponds to the theoretical neutralization amount of sulfuric acid by biological desulfurization calculated from the hydrogen sulfide removal rate.

(実施例2)
貯水槽17の吸収液のpHを常時6.0に調整したこと以外は実施例1と同様にして生物脱硫を行った。この結果、送気管13から排出されるガスの残留硫化水素濃度は50ppmであり、これから算出される硫化水素除去率は95%であった。また、この間に吸収液のpH調整に使用した水酸化ナトリウム量は70mmol/hであった。この量は、硫化水素除去率から計算される生物脱硫による硫酸の理論中和量の2倍に相当する。
(Example 2)
Biodesulfurization was performed in the same manner as in Example 1 except that the pH of the absorbent in the water storage tank 17 was constantly adjusted to 6.0. As a result, the residual hydrogen sulfide concentration of the gas discharged from the air pipe 13 was 50 ppm, and the hydrogen sulfide removal rate calculated from this was 95%. During this time, the amount of sodium hydroxide used for adjusting the pH of the absorbent was 70 mmol / h. This amount corresponds to twice the theoretical neutralization amount of sulfuric acid by biological desulfurization calculated from the hydrogen sulfide removal rate.

(参考例)
貯水槽17の吸収液のpHを常時7.0に調整したこと以外は実施例1と同様にして生物脱硫を行った。この結果、送気管13から排出されるガスの残留硫化水素濃度は30ppmであり、これから算出される硫化水素除去率は97%であった。また、この間に吸収液のpH調整に使用した水酸化ナトリウム量は400mmol/hであった。この量は、硫化水素除去率から計算される生物脱硫による硫酸の理論中和量の12倍に相当する。
(Reference example)
Biodesulfurization was performed in the same manner as in Example 1 except that the pH of the absorbent in the water storage tank 17 was constantly adjusted to 7.0. As a result, the residual hydrogen sulfide concentration of the gas discharged from the air supply pipe 13 was 30 ppm, and the hydrogen sulfide removal rate calculated from this was 97%. During this period, the amount of sodium hydroxide used for adjusting the pH of the absorbent was 400 mmol / h. This amount corresponds to 12 times the theoretical neutralization amount of sulfuric acid by biological desulfurization calculated from the hydrogen sulfide removal rate.

(比較例1)
前述の充填材の調製において使用する硫黄酸化細菌分散液を、中性菌(Thiobacillus thioparus)を液体培地(チオ硫酸ナトリウム、燐酸水素カリウム、蓚酸マグネシウム、燐酸水素カリウム、塩化アンモニウムを添加した海水)で培養したものに変更したこと以外は同様にして、硫黄酸化細菌を担持した充填材を調製した。これを図1の生物脱硫装置の生物反応槽3に保持して充填物Fを構成した。
(Comparative Example 1)
The sulfur-oxidizing bacterial dispersion used in the preparation of the above-mentioned filler is neutralized with Thiobacillus thioparus in a liquid medium (seawater supplemented with sodium thiosulfate, potassium hydrogen phosphate, magnesium oxalate, potassium hydrogen phosphate, ammonium chloride). A filler carrying sulfur-oxidizing bacteria was prepared in the same manner except that it was changed to a cultured one. This was held in the biological reaction tank 3 of the biological desulfurization apparatus of FIG.

貯水槽17の吸収液を常時pH7.5に調整したこと以外は実施例1と同様にして生物脱硫を行った。この結果、送気管13から排出されるガスの残留硫化水素濃度は30ppmであり、これから算出される硫化水素除去率は97%であった。また、この間に吸収液のpH調整に使用した水酸化ナトリウム量は2000mmolであった。この量は、硫化水素除去率から計算される生物脱硫による硫酸の理論中和量の40倍に相当する。   Biodesulfurization was performed in the same manner as in Example 1 except that the absorption liquid in the water storage tank 17 was constantly adjusted to pH 7.5. As a result, the residual hydrogen sulfide concentration of the gas discharged from the air supply pipe 13 was 30 ppm, and the hydrogen sulfide removal rate calculated from this was 97%. During this time, the amount of sodium hydroxide used to adjust the pH of the absorbent was 2000 mmol. This amount corresponds to 40 times the theoretical neutralization amount of sulfuric acid by biological desulfurization calculated from the hydrogen sulfide removal rate.

(実施例3)
生物反応槽3に供給した硫化水素含有ガスを、石炭ガス化によるガス(水分:50質量%、硫化水素濃度:500ppmv-dry、CO濃度:20wt%-dry、CO濃度:25%-dry、硫化カルボニル:10ppmv、水素:50%-dry)に変更し、送気管7から1L/分の速度(硫黄負荷:0.1kgS/m/d)で供給したこと以外は実施例1と同様に生物脱硫を行った。この結果、送気管13から排出されるガスの残留硫化水素濃度から算出される硫化水素除去率は、99%であった。また、この間に吸収液のpH調整に使用した水酸化ナトリウム量は6mmol/hであった。この量は、硫化水素除去率から計算される生物脱硫による硫酸の理論中和量の2.3倍に相当する。
(Example 3)
The hydrogen sulfide-containing gas supplied to the bioreactor 3, the gas by coal gasification (water: 50 wt%, hydrogen sulfide concentration: 500 ppmv-dry, CO concentration: 20 wt% -dry, CO 2 concentration: 25% -dry, Carbonyl sulfide: 10 ppmv, hydrogen: 50% -dry), and the same as Example 1 except that it was supplied from the air pipe 7 at a rate of 1 L / min (sulfur load: 0.1 kgS / m 3 / d) Biodesulfurization was performed. As a result, the hydrogen sulfide removal rate calculated from the residual hydrogen sulfide concentration of the gas discharged from the air supply pipe 13 was 99%. During this time, the amount of sodium hydroxide used to adjust the pH of the absorbent was 6 mmol / h. This amount corresponds to 2.3 times the theoretical neutralization amount of sulfuric acid by biological desulfurization calculated from the hydrogen sulfide removal rate.

(実施例4)
貯水槽17の吸収液のpHを常時6.0に調整したこと以外は実施例3と同様にして石炭ガス化燃料の生物脱硫を行った。この結果、送気管13から排出されるガスの残留硫化水素濃度から算出される硫化水素除去率は、99%であった。また、この間に吸収液のpH調整に使用した水酸化ナトリウム量は40mmol/hであった。この量は、硫化水素除去率から計算される生物脱硫による硫酸の理論中和量の15倍に相当する。
Example 4
Coal gasification fuel was biodesulfurized in the same manner as in Example 3 except that the pH of the absorbent in the water storage tank 17 was constantly adjusted to 6.0. As a result, the hydrogen sulfide removal rate calculated from the residual hydrogen sulfide concentration of the gas discharged from the air supply pipe 13 was 99%. During this time, the amount of sodium hydroxide used to adjust the pH of the absorbent was 40 mmol / h. This amount corresponds to 15 times the theoretical neutralization amount of sulfuric acid by biological desulfurization calculated from the hydrogen sulfide removal rate.

本発明に係る生物脱硫装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the biodesulfurization apparatus which concerns on this invention. 本発明に係る生物脱硫装置の他の例を示す概略構成図である。It is a schematic block diagram which shows the other example of the biological desulfurization apparatus which concerns on this invention.

符号の説明Explanation of symbols

1,43 生物脱硫装置、 3 生物反応槽、 F 充填物
5 送液管、 7 送気管、 9、23 ポンプ、 11 撒水ノズル
17 貯水槽、 19 アルカリ槽、 25 pH測定器
27 曝気装置、 29 温度調節装置
DESCRIPTION OF SYMBOLS 1,43 Biological desulfurization apparatus, 3 Biological reaction tank, F Filling 5 Liquid feeding pipe, 7 Air feeding pipe, 9, 23 Pump, 11 Flooding nozzle 17 Water storage tank, 19 Alkaline tank, 25 pH measuring device 27 Aeration apparatus, 29 Temperature Adjusting device

Claims (12)

水を主体とする吸収液のpHを7未満に調整するpH調整手段と、
前記吸収液を硫化水素含有ガスに気液接触させて硫化水素を前記吸収液に吸収させる気液接触手段と、
前記吸収液に吸収される硫化水素を酸化するための好酸性の硫黄酸化細菌と
を有する生物脱硫装置。
PH adjusting means for adjusting the pH of the absorbent mainly composed of water to less than 7,
Gas-liquid contact means for bringing the absorption liquid into gas-liquid contact with the hydrogen sulfide-containing gas and absorbing the hydrogen sulfide into the absorption liquid;
A biological desulfurization apparatus comprising an acidophilic sulfur-oxidizing bacterium for oxidizing hydrogen sulfide absorbed by the absorption liquid.
前記硫黄酸化細菌は、前記気液接触手段上に配設される請求項1記載の生物脱硫装置。   The biodesulfurization apparatus according to claim 1, wherein the sulfur-oxidizing bacteria are disposed on the gas-liquid contact means. 前記気液接触手段は、前記吸収液及び前記硫化水素含有ガスの通過が可能なように充填物を保持する生物反応部と、前記吸収液及び前記硫化水素含有ガスを前記生物反応部の前記充填物に供給する供給手段とを有し、前記硫黄酸化細菌は、前記充填物に担持される請求項1又は2に記載の生物脱硫装置。   The gas-liquid contact means includes a biological reaction section that holds a packing so that the absorption liquid and the hydrogen sulfide-containing gas can pass, and the absorption liquid and the hydrogen sulfide-containing gas are filled in the biological reaction section. The biological desulfurization apparatus according to claim 1, further comprising a supply unit configured to supply the product, wherein the sulfur-oxidizing bacteria are carried on the packing. 前記pH調整手段は、前記生物反応部に供給される吸収液のpHを5以下に調整する請求項1〜3の何れかに記載の生物脱硫装置。   The biological desulfurization apparatus according to any one of claims 1 to 3, wherein the pH adjusting means adjusts the pH of the absorbent supplied to the biological reaction unit to 5 or less. 前記充填物は、臨界表面張力が40dyne/cm以下の素材で構成され、液体及び気体が内部を通過可能で、比表面積が10cm/cm以上である請求項3〜4の何れかに記載の生物脱硫装置。 The filling, the critical surface tension is composed of the following materials 40 dyne / cm, the liquid and gas can pass through the interior, a specific surface area according to any one of claims 3-4 is 10 cm 2 / cm 3 or more Biological desulfurization equipment. 前記硫黄酸化細菌又は前記吸収液に酸素を供給する手段と、前記硫黄酸化細菌を25〜35℃の温度に維持するための加熱装置とを有する請求項1〜5の何れかに記載の生物脱硫装置。   The biodesulfurization according to any one of claims 1 to 5, comprising means for supplying oxygen to the sulfur-oxidizing bacteria or the absorbing solution, and a heating device for maintaining the sulfur-oxidizing bacteria at a temperature of 25 to 35 ° C. apparatus. 水を主体とする吸収液のpHを7未満に調整し、前記吸収液を硫化水素含有ガスに気液接触させて硫化水素を前記吸収液に吸収させ、前記吸収液に吸収される硫化水素を好酸性の硫黄酸化細菌によって酸化する生物脱硫方法。   Adjusting the pH of the absorption liquid mainly composed of water to less than 7, making the absorption liquid gas-liquid contact with a hydrogen sulfide-containing gas to absorb hydrogen sulfide in the absorption liquid, and absorbing hydrogen sulfide absorbed in the absorption liquid Biological desulfurization method that oxidizes by acidophilic sulfur-oxidizing bacteria. 前記硫黄酸化細菌による酸化は、前記気液接触と実質的に同じ場において進行する請求項7記載の生物脱硫方法。   The biodesulfurization method according to claim 7, wherein the oxidation by the sulfur-oxidizing bacteria proceeds in substantially the same field as the gas-liquid contact. 前記硫黄酸化細菌を充填物に担持し、前記吸収液及び前記硫化水素含有ガスが前記充填物中を通過可能なように保持して前記吸収液及び前記硫化水素含有ガスを前記充填物に供給することによって前記充填物上で気液接触する請求項7又は8記載の生物脱硫方法。   The sulfur-oxidizing bacteria are supported on a packing, and the absorption liquid and the hydrogen sulfide-containing gas are held so as to pass through the packing, and the absorption liquid and the hydrogen sulfide-containing gas are supplied to the packing. The biodesulfurization method according to claim 7 or 8, wherein the gas-liquid contact is performed on the filler. 前記吸収液のpHは5以下に調整される請求項7〜9の何れかに記載の生物脱硫方法。   The biological desulfurization method according to any one of claims 7 to 9, wherein the pH of the absorption liquid is adjusted to 5 or less. 前記硫黄酸化細菌は、充填物の表面に担持され、前記充填物は、臨界表面張力が40dyne/cm以下の素材で構成され、液体及び気体が内部を通過可能で、比表面積が10cm/cm以上である請求項7〜10の何れかに記載の生物脱硫方法。 The sulfur-oxidizing bacteria are supported on the surface of a packing, and the packing is made of a material having a critical surface tension of 40 dyne / cm or less, allows liquid and gas to pass through the inside, and has a specific surface area of 10 cm 2 / cm. The biodesulfurization method according to any one of claims 7 to 10, which is 3 or more. 前記硫黄酸化細菌又は前記吸収液に酸素を供給し、前記硫黄酸化細菌を25〜35℃の温度に維持する請求項7〜11の何れかに記載の生物脱硫方法。   The biodesulfurization method according to any one of claims 7 to 11, wherein oxygen is supplied to the sulfur-oxidizing bacterium or the absorbing solution, and the sulfur-oxidizing bacterium is maintained at a temperature of 25 to 35 ° C.
JP2008189892A 2008-07-23 2008-07-23 Biological desulfurization method and biological desulfurization apparatus Pending JP2010022977A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008189892A JP2010022977A (en) 2008-07-23 2008-07-23 Biological desulfurization method and biological desulfurization apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008189892A JP2010022977A (en) 2008-07-23 2008-07-23 Biological desulfurization method and biological desulfurization apparatus

Publications (1)

Publication Number Publication Date
JP2010022977A true JP2010022977A (en) 2010-02-04

Family

ID=41729321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008189892A Pending JP2010022977A (en) 2008-07-23 2008-07-23 Biological desulfurization method and biological desulfurization apparatus

Country Status (1)

Country Link
JP (1) JP2010022977A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102476893A (en) * 2010-11-30 2012-05-30 中国科学院过程工程研究所 Biological desulphurization processing reactor, biological desulphurization processing system, and processing method
JP2012179517A (en) * 2011-02-28 2012-09-20 Osaka Gas Co Ltd Water-retaining body for water-spray type cleaning apparatus, water-spray type cleaning apparatus, and method for operating the same
CN106268285A (en) * 2015-05-26 2017-01-04 北京化工大学 A kind of simultaneous removing carbon dioxide and the system and device of hydrogen sulfide gas and method
CN108211672A (en) * 2018-03-16 2018-06-29 山东省科学院能源研究所 Zinc cation desulfurizer and method based on acidophilia biological desulphurization bacterium
CN110040912A (en) * 2019-05-08 2019-07-23 苏州金桨节能与环保科技有限公司 A kind of cultivation method and its application of targeted microorganisms

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234322A (en) * 1992-02-24 1993-09-10 Meidensha Corp Method and apparatus for waste water processing using sulfuric bacteria
JPH07327671A (en) * 1994-06-03 1995-12-19 Kobe Steel Ltd High-activity activator for sulfur-containing malodorous substance-decomposing microorganism, biological deodorization and ph adjuster
JPH08243346A (en) * 1995-03-14 1996-09-24 Mitsubishi Heavy Ind Ltd Treatment of malodorous gas
JP2003062421A (en) * 2001-08-23 2003-03-04 Mitsubishi Heavy Ind Ltd Biological desulfurization equipment
JP2003305328A (en) * 2001-11-02 2003-10-28 Jfe Engineering Kk Desulfurization equipment for digestion gas and desulfurization method
JP2006036961A (en) * 2004-07-28 2006-02-09 Mitsui Eng & Shipbuild Co Ltd Biological desulfurization process
JP2008012489A (en) * 2006-07-07 2008-01-24 Mitsui Eng & Shipbuild Co Ltd Biological desulfurization method
JP2008094985A (en) * 2006-10-12 2008-04-24 Mitsui Eng & Shipbuild Co Ltd Organism desulfurization method and organism desulfurization apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05234322A (en) * 1992-02-24 1993-09-10 Meidensha Corp Method and apparatus for waste water processing using sulfuric bacteria
JPH07327671A (en) * 1994-06-03 1995-12-19 Kobe Steel Ltd High-activity activator for sulfur-containing malodorous substance-decomposing microorganism, biological deodorization and ph adjuster
JPH08243346A (en) * 1995-03-14 1996-09-24 Mitsubishi Heavy Ind Ltd Treatment of malodorous gas
JP2003062421A (en) * 2001-08-23 2003-03-04 Mitsubishi Heavy Ind Ltd Biological desulfurization equipment
JP2003305328A (en) * 2001-11-02 2003-10-28 Jfe Engineering Kk Desulfurization equipment for digestion gas and desulfurization method
JP2006036961A (en) * 2004-07-28 2006-02-09 Mitsui Eng & Shipbuild Co Ltd Biological desulfurization process
JP2008012489A (en) * 2006-07-07 2008-01-24 Mitsui Eng & Shipbuild Co Ltd Biological desulfurization method
JP2008094985A (en) * 2006-10-12 2008-04-24 Mitsui Eng & Shipbuild Co Ltd Organism desulfurization method and organism desulfurization apparatus

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102476893A (en) * 2010-11-30 2012-05-30 中国科学院过程工程研究所 Biological desulphurization processing reactor, biological desulphurization processing system, and processing method
CN102476893B (en) * 2010-11-30 2013-07-31 中国科学院过程工程研究所 Biological desulphurization processing reactor, biological desulphurization processing system, and processing method
JP2012179517A (en) * 2011-02-28 2012-09-20 Osaka Gas Co Ltd Water-retaining body for water-spray type cleaning apparatus, water-spray type cleaning apparatus, and method for operating the same
CN106268285A (en) * 2015-05-26 2017-01-04 北京化工大学 A kind of simultaneous removing carbon dioxide and the system and device of hydrogen sulfide gas and method
CN108211672A (en) * 2018-03-16 2018-06-29 山东省科学院能源研究所 Zinc cation desulfurizer and method based on acidophilia biological desulphurization bacterium
CN108211672B (en) * 2018-03-16 2024-01-26 山东省科学院能源研究所 Biological washing desulfurization device and method based on acidophilic biological desulfurization bacteria
CN110040912A (en) * 2019-05-08 2019-07-23 苏州金桨节能与环保科技有限公司 A kind of cultivation method and its application of targeted microorganisms

Similar Documents

Publication Publication Date Title
Syed et al. Removal of hydrogen sulfide from gas streams using biological processes• a review
Krayzelova et al. Microaeration for hydrogen sulfide removal during anaerobic treatment: a review
CN106310890B (en) A kind of method of bioanalysis removing sour gas
van Houten et al. Thermophilic sulphate and sulphite reduction in lab‐scale gas‐lift reactors using H2 and CO2 as energy and carbon source
RU2161529C1 (en) Method of biologically removing sulfide
Rodero et al. Biogas purification and upgrading technologies
JPS62149324A (en) Removal of hydrogen sulfide
JP2010022977A (en) Biological desulfurization method and biological desulfurization apparatus
Ghimire et al. Technologies for removal of hydrogen sulfide (H2S) from biogas
JP2011189286A (en) Water treatment system for organic wastewater
CN103254957A (en) Device and method for removing hydrogen sulfide out of methane by utilizing collagenous fiber/polyester composite material to load Fe(III)
CN101948704B (en) Integral methane biological desulfurizer
JP2010029746A (en) Biological desulfurization method and apparatus
JP2007038169A (en) Method and apparatus for removing acid gas
Ou et al. Removal of hydrogen sulfide from biogas using a bubbling tank fed with aerated wastewater
JP4862314B2 (en) Method and apparatus for desulfurization of gas containing hydrogen sulfide
JP2010116516A (en) Method and apparatus for purifying energy gas
JP5098121B2 (en) Method for desulfurization of hydrogen sulfide-containing gas
KR20120078554A (en) Apparatus equipped a rotary porous desulfurization disk and method for treatment of gases containing hydrogen sulfide
JP4563621B2 (en) Nitrate nitrogen biochemical removal equipment
JP2010024294A (en) Biological desulfurization apparatus and biological desulfurization method
CN109908717A (en) Gas circulating type biology bubble tower biogas/natural gas biological desulfurization method
Duangmanee Micro-aeration for hydrogen sulfide removal from biogas
JP2004002509A (en) Method for desulfurizing fermentation gas and apparatus therefor
CN205730824U (en) A kind of device utilizing microorganism directly to remove hydrogen sulfide in methane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121204