JP2003305328A - Desulfurization equipment for digestion gas and desulfurization method - Google Patents

Desulfurization equipment for digestion gas and desulfurization method

Info

Publication number
JP2003305328A
JP2003305328A JP2002319388A JP2002319388A JP2003305328A JP 2003305328 A JP2003305328 A JP 2003305328A JP 2002319388 A JP2002319388 A JP 2002319388A JP 2002319388 A JP2002319388 A JP 2002319388A JP 2003305328 A JP2003305328 A JP 2003305328A
Authority
JP
Japan
Prior art keywords
gas
reaction tower
water
digestion gas
digestion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002319388A
Other languages
Japanese (ja)
Other versions
JP3750648B2 (en
JP2003305328A5 (en
Inventor
Kazumi Fukuda
一美 福田
Katsuo Kumazaki
勝雄 隈崎
Yasuhiko Hashimoto
恭彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2002319388A priority Critical patent/JP3750648B2/en
Publication of JP2003305328A publication Critical patent/JP2003305328A/en
Publication of JP2003305328A5 publication Critical patent/JP2003305328A5/ja
Application granted granted Critical
Publication of JP3750648B2 publication Critical patent/JP3750648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M47/00Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
    • C12M47/18Gas cleaning, e.g. scrubbers; Separation of different gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Gas Separation By Absorption (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide desulfurization equipment for digestion gas easier in maintenance and control than before and capable of being efficiently operated at a low cost, and a desulfurization method using the same. <P>SOLUTION: The desulfurization equipment for digestion gas is equipped with a reaction column 3 receiving the digestion gas 1 produced by the methane fermentation of organic waste and packed with a filler 2 having microorganisms bonded thereto, an air supply means 4 for supplying air to the digestion gas before introduced into the reaction column and a spray nozzle 6 for sprinkling water 5 over the digestion gas after introduced. The filler comprises a synthetic resin body having a specific gravity of 0.9-1.05 and voids of 80-95% as a volume ratio and is charged on perforated plate-like support member 7 provided in the reaction column 3 without being fixed to the support member 7. In this case, it is preferable to downwardly provide a digestion gas introducing port 13 to the top part of the reaction column. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、消化ガスの脱硫装
置及び脱硫方法に係わり、詳しくは、有機性廃棄物を発
酵処理して得た消化ガスを別の設備で燃料ガスとして利
用するにあたり、該消化ガスに含有され、燃焼に有害な
硫化水素を消化ガスから除去する技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a digestion gas desulfurization apparatus and a desulfurization method, and more specifically, in utilizing digestion gas obtained by fermenting an organic waste as fuel gas in another facility, The present invention relates to a technique for removing hydrogen sulfide contained in the digestive gas and harmful to combustion from the digestive gas.

【0002】[0002]

【従来の技術】比較的水分の多い有機性廃棄物の処理に
は、現在、メタン発酵処理が多用されている。このメタ
ン発酵処理は、有機性廃棄物を含む水スラリーを消化槽
と称する反応容器に供給し、適温(30〜60℃)に加
熱して所定時間保持し、有機性廃棄物からガスを発生さ
せて、回収するものである。その際、発生するガス中の
成分は、メタンガスが60〜70容量%及び二酸化炭素
が30〜40容量%である。また、不純物として、通常
100〜3000ppmの硫化水素ガスも含まれてい
る。
2. Description of the Related Art At present, methane fermentation treatment is widely used for treating organic waste having a relatively high water content. In this methane fermentation treatment, a water slurry containing organic waste is supplied to a reaction vessel called a digestion tank, heated to an appropriate temperature (30 to 60 ° C) and held for a predetermined time to generate gas from the organic waste. And collect it. At that time, the components in the generated gas are 60 to 70% by volume of methane gas and 30 to 40% by volume of carbon dioxide. Further, hydrogen sulfide gas of 100 to 3000 ppm is usually contained as an impurity.

【0003】ところで、このガスは、通常「消化ガス」
と呼ばれ、燃料ガスとして利用される。例えば、発電用
のガスエンジン、ガスタービン、燃料電池等、温水や蒸
気を製造するボイラー等の燃料である。そして、硫化水
素が混入していると燃焼によって硫黄酸化物が生成する
ので、いずれの用途でも、エンジン等の機械部分を腐食
させたり、あるいは排ガス中の硫黄酸化物濃度を高くす
るという問題が起きる。そのため、硫化水素を低減させ
てから利用する必要がある。
By the way, this gas is usually "digestion gas".
Is used as fuel gas. For example, it is a fuel for a gas engine for power generation, a gas turbine, a fuel cell, a boiler for producing hot water or steam, and the like. Then, when hydrogen sulfide is mixed, sulfur oxides are generated by combustion, so in any application, there is a problem of corroding mechanical parts such as engines or increasing the concentration of sulfur oxides in exhaust gas. . Therefore, it is necessary to reduce hydrogen sulfide before use.

【0004】この硫化水素の低減には、従来より、酸化
鉄等の吸着剤を用いて吸着除去する乾式の脱硫装置や、
アルカリや次亜塩素酸ナトリウム等の酸化剤を水溶液と
して用いるスクラバー処理による湿式の脱硫装置が利用
されてきた。ところが、これらの装置は、吸着剤や薬剤
の使用量が嵩み、ランニングコストを押し上げるので、
経済的には好ましいものでなかった。そこで、特開平2
−26615号公報には、反応装置(塔)に充填材を層
状に充填し、該充填材の表面に硫黄酸化細菌(以下、微
生物という)を主とする生物膜を形成し、その充填層に
被処理ガス(つまり、前記消化ガス)を通しながら、微
生物の働きに必要な水を該充填層の上部から散布する装
置を用いて、微生物学的に硫化水素を酸化除去する技術
が提案されている。
In order to reduce this hydrogen sulfide, conventionally, a dry desulfurization apparatus for adsorbing and removing using an adsorbent such as iron oxide,
Wet desulfurization equipment by scrubber treatment using an oxidizing agent such as alkali or sodium hypochlorite as an aqueous solution has been used. However, these devices increase the running cost because the amount of adsorbent and chemicals used increases.
It was not economically favorable. Therefore, JP-A-2
JP-A-26615 discloses that a reactor (tower) is packed with a packing material in layers, and a biofilm mainly containing sulfur-oxidizing bacteria (hereinafter referred to as a microorganism) is formed on the surface of the packing material, and the packing layer is packed in the packing layer. There has been proposed a technique for microbiologically oxidizing and removing hydrogen sulfide by using a device for spraying water necessary for the action of microorganisms from the upper part of the packed bed while passing the gas to be treated (that is, the digestive gas). There is.

【0005】しかしながら、この脱硫技術においては、
以下のような問題点が指摘され、それら問題点は、円滑
で且つ安定した操業を行う上での障害になっている。
However, in this desulfurization technique,
The following problems have been pointed out, and these problems are obstacles to smooth and stable operation.

【0006】(1)充填材は、塔内で固定されていた
り、比重が1よりも大きい(例えば1.1以上)ものを
使用しているが、その場合、生物膜が肥大化し、充填材
の空隙が閉塞してきても十分に洗浄することができな
い。
(1) The packing material is fixed in the tower or has a specific gravity of more than 1 (for example, 1.1 or more). In that case, the biofilm is enlarged and the packing material is increased. Even if the voids are closed, they cannot be washed sufficiently.

【0007】(2)処理する消化ガスは、充填材が形成
する層の下方から上方に、所謂「上向き流」で流すのが
一般的であるが、この場合、充填層の下部や、充填層を
支える多孔板状の支持部材(例えば、スクリーン、ネッ
ト等)に、生物膜や除去された硫化水素が酸化されてで
きる単体硫黄が集中して蓄積し、洗浄の頻度が多くな
る。また、上記スクリーンは、閉塞し易いが、洗浄時に
流動しないので、洗浄ができず、最悪の場合には、運転
の停止という状態に陥る。
(2) The digestion gas to be treated is generally flowed from below to above the layer formed by the filler in a so-called "upstream flow". In this case, the lower part of the packed bed and the packed bed are treated. The elemental sulfur formed by the biofilm and the removed hydrogen sulfide being oxidized is concentrated and accumulated on the support member (for example, a screen, a net, etc.) in the shape of a porous plate that supports the cleaning, so that the frequency of cleaning increases. Further, although the screen is easily clogged, it does not flow during cleaning, so cleaning cannot be performed, and in the worst case, the operation is stopped.

【0008】(3)硫化水素が除去され、生物によって
酸化されると、循環水のpHが低下してくるため、水の
pHの調整に使用されるアルカリの注入量が増える。
(3) When hydrogen sulfide is removed and oxidized by organisms, the pH of the circulating water is lowered, so that the injection amount of alkali used for adjusting the pH of the water is increased.

【0009】(4)反応塔から排出された消化ガスの酸
素濃度を少なくとも500ppm程度になるように、反
応塔へ導入する消化ガスへ添加する空気の量を調整する
と、微生物の酸化活性が低下し、処理が不十分になる可
能性もある。
(4) When the amount of air added to the digestion gas introduced into the reaction tower is adjusted so that the oxygen concentration of the digestion gas discharged from the reaction tower is at least about 500 ppm, the oxidative activity of microorganisms is lowered. There is a possibility that the processing will be insufficient.

【0010】(5)反応塔から排出された消化ガスの酸
素濃度をある値に調整しようとしても、最適な酸素濃度
は、温度、流入するガス成分等によって異なるので、精
度の良い調整ができない。
(5) Even if an attempt is made to adjust the oxygen concentration of the digestion gas discharged from the reaction tower to a certain value, the optimum oxygen concentration varies depending on the temperature, inflowing gas components, etc., and therefore cannot be adjusted accurately.

【0011】[0011]

【発明が解決しようとする課題】本発明は、かかる事情
に鑑み、装置の維持管理が従来より容易で、且つ効率良
く、低コストで操業が行える消化ガスの脱硫装置及び脱
硫方法を提供することを目的としている。
In view of the above circumstances, the present invention provides a desulfurization apparatus and a desulfurization method for a digestive gas, in which the maintenance of the apparatus is easier, more efficient, and more cost-effective than before. It is an object.

【0012】[0012]

【課題を解決するための手段】発明者は、上記目的を達
成するため、消化ガスの脱硫装置には生物脱硫が適して
いることを認識し、従来技術の問題点を解消することに
鋭意努力し、その成果を本発明として具現化した。
In order to achieve the above object, the inventor has recognized that biological desulfurization is suitable for a desulfurization apparatus for digestive gas, and made earnest efforts to solve the problems of the prior art. Then, the result was embodied as the present invention.

【0013】すなわち、本発明は、有機性廃棄物をメタ
ン発酵させて発生した消化ガスが導入され、微生物が付
着する充填材を充填した反応塔と、該反応塔へ導入前の
該消化ガスに空気を供給する空気供給手段と、導入後の
消化ガスに水を散布するスプレーノズルとを備えた消化
ガスの脱硫装置において、前記充填材は、比重が0.9
〜1.05で、且つ容積率で80〜95%の空隙を有す
る合成樹脂体とし、反応塔内に設けた多孔板状支持部材
の上に固定せずに充填させてなることを特徴とする消化
ガスの脱硫装置である。
That is, according to the present invention, a digestion gas generated by methane fermentation of an organic waste is introduced into a reaction tower filled with a filler to which microorganisms adhere, and the digestion gas before introduction into the reaction tower. In a digestive gas desulfurization apparatus comprising an air supply means for supplying air and a spray nozzle for spraying water on the digested gas after introduction, the filler has a specific gravity of 0.9.
It is characterized in that it is a synthetic resin body having voids of ˜1.05 and a volume ratio of 80 to 95%, and is filled without being fixed on the perforated plate-shaped support member provided in the reaction tower. It is a digester gas desulfurizer.

【0014】この場合、前記反応塔の頂部に、前記消化
ガスの導入口を下向きに設けたり、前記反応塔内を流通
する消化ガスの圧力損失を測定するセンサと、その測定
値が入力され、予め記憶させてある圧力損失の閾値を超
えたら、前記消化ガスの反応塔への導入停止を指令する
信号及び/又は警報を出力する演算器とを備えたり、あ
るいは前記反応塔の塔壁、循環水配管又は底部の循環水
溜まりに、加熱装置を設けるのが良い。
In this case, a sensor for measuring the pressure loss of the digestive gas flowing through the reaction tower or a sensor for measuring the pressure loss of the digestive gas is provided at the top of the reaction tower, and the measured value is input. When a pre-stored threshold value of pressure loss is exceeded, a signal output from the digestion gas to the reaction tower and / or a calculator for outputting an alarm is provided, or the wall of the reaction tower, circulation. A heating device is preferably provided in the water pipe or the circulating water pool at the bottom.

【0015】また、本発明は、微生物が付着する充填材
を充填した反応塔内へ、有機性廃棄物をメタン発酵させ
て発生した消化ガスを、空気を添加してから導入し、水
を散布して消化ガスが含有する硫化水素を洗浄、除去す
る消化ガスの脱硫方法において、散布する水の一部を反
応塔内で循環させると共に、その循環水のpHを測定
し、そのpHが1〜6になるように、新水の補給で調整
することを特徴とする消化ガスの脱硫方法である。
Further, according to the present invention, a digestion gas generated by methane-fermenting an organic waste is introduced into the reaction tower filled with a packing material to which microorganisms adhere, after adding air, and water is sprayed. In the method of desulfurizing digestion gas for cleaning and removing hydrogen sulfide contained in the digestion gas, a part of the water to be sprayed is circulated in the reaction tower, and the pH of the circulating water is measured. It is a method for desulfurizing digestive gas, which is characterized by adjusting the supply of fresh water so as to be 6.

【0016】この場合、前記新水及び/又は前記散布す
る水に、前記メタン発酵した消化ガスの冷却で発生する
凝縮水及び/又は発酵後の残液を脱水して得た処理水を
用いたり、あるいは、前記新水及び/又は前記散布する
水に、前記微生物の付着を促進する薬剤を添加するのが
良い。さらに、本発明では、前記反応塔から排出された
消化ガスの酸素濃度を測定し、その測定値が所定の目標
値になるように、反応塔へ導入前に添加する前記空気の
量を自動調整すると共に、同時に該消化ガスの硫化水素
濃度も測定し、その測定値に応じて前記酸素濃度の目標
値を自動的に変更するのが良い。加えて、前記反応塔へ
導入前の有機性廃棄物をメタン発酵させて発生した消化
ガスの流量を予め測定し、その測定値に対して一定割合
となる空気を前記消化ガスに添加してから、前記反応塔
内へ導入しても良い。
In this case, the fresh water and / or the water to be sprayed may be condensed water generated by cooling the digested gas subjected to methane fermentation and / or treated water obtained by dehydrating residual liquid after fermentation. Alternatively, it is preferable to add a chemical that promotes the adhesion of the microorganisms to the fresh water and / or the sprayed water. Furthermore, in the present invention, the oxygen concentration of the digestion gas discharged from the reaction tower is measured, and the amount of the air added before introduction into the reaction tower is automatically adjusted so that the measured value becomes a predetermined target value. At the same time, it is preferable that the concentration of hydrogen sulfide in the digested gas is also measured and the target value of the oxygen concentration is automatically changed according to the measured value. In addition, the flow rate of the digestive gas generated by methane fermentation of the organic waste before introduction into the reaction tower is measured in advance, and a certain proportion of air relative to the measured value is added to the digestive gas. Alternatively, it may be introduced into the reaction tower.

【0017】さらに加えて、前記したいずれかの消化ガ
スの脱硫方法を実施して、前記微生物及び/又は硫化水
素が酸化されてできた単体硫黄の成長で充填材の空隙が
閉塞してきたら、前記反応塔内に充填材の充填高さ以上
の高さまで水を張り、下部から空気を吹き込んで該充填
材を水中で浮動させ、空気の上昇流で微生物や単体硫黄
を剥離させて洗浄し、ドレンとして反応塔より流出させ
るのが好ましい。また、本発明では、前記充填材の空隙
の洗浄を行うタイミングを、反応塔の圧力損失の値で判
断するのが良い。
In addition, if any of the above-mentioned digestion gas desulfurization methods is carried out and the voids of the packing material are clogged by the growth of elemental sulfur formed by the oxidation of the microorganisms and / or hydrogen sulfide, Water is filled in the reaction tower to a height higher than the filling height of the packing material, and air is blown from the bottom to float the packing material in the water, and microorganisms and elemental sulfur are separated by the upward flow of air to wash and drain. It is preferable to flow out from the reaction tower. Further, in the present invention, it is preferable to judge the timing of cleaning the voids of the filler by the value of the pressure loss in the reaction tower.

【0018】本発明によれば、充填材の空隙が閉塞して
きても、容易、且つ十分に洗浄できるようになる。ま
た、pHの調整に、消化ガスからの凝縮水を用いるよう
にし、運転するpHの範囲を1〜6と広くすることで、
アルカリ補給を行わずに操業できるばかりでなく、定期
的な自動洗浄によって、1年以上の長期にわたり清掃
(メンテナンス)を行うことなく、99%以上の硫化水
素の除去率を達成することができる。すなわち、消化ガ
スの脱硫装置を、高硫黄除去率、安定処理、低コスト処
理及び省作業で運転できるようになる。
According to the present invention, even if the voids of the filling material are closed, it becomes possible to easily and sufficiently clean them. In addition, by using condensed water from the digestion gas to adjust the pH and widening the operating pH range to 1 to 6,
Not only can it operate without alkali replenishment, but periodic automatic cleaning can achieve a hydrogen sulfide removal rate of 99% or more without cleaning (maintenance) for a long period of one year or more. That is, the digestion gas desulfurization device can be operated with a high sulfur removal rate, a stable treatment, a low cost treatment, and labor saving.

【0019】[0019]

【発明の実施の形態】以下、発明をなすに至った経緯を
まじえ、本発明の実施の形態を説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below, including the background of the invention.

【0020】まず、発明者は、前記した問題点(1)
「生物膜が肥大化し、充填材の空隙が閉塞してきても、
十分に洗浄することができない」の解消について検討し
た。そして、図1に例示するように、有機性廃棄物をメ
タン発酵させて発生した消化ガス1が導入され、微生物
が付着する充填材2を充填した反応塔3と、該反応塔3
へ導入前の該消化ガス1に空気15を供給する空気供給
手段(ブロア)4と、導入後の消化ガス1に上方より水
5を散布するスプレーノズル6とを備えた消化ガスの脱
硫装置において、反応塔3に充填する充填材2を、多孔
板状支持部材7の上に固定せず、単に層状に載置して使
用するようにした。従来、充填材2は反応塔3内に水を
張って洗浄していたが、このようにすると、水中へ下方
より別途洗浄用空気20を吹き込めば、充填材2が容易
に流動し、生物膜や単体硫黄の剥離を促進して洗浄を十
分にできるからである。
First, the inventor has the above-mentioned problem (1).
"Even if the biofilm swells and the voids in the filler block,
We could not solve this problem. " Then, as illustrated in FIG. 1, a digestion gas 1 generated by methane fermentation of organic waste is introduced, and a reaction tower 3 filled with a filler 2 to which microorganisms adhere, and the reaction tower 3
In the digestion gas desulfurization apparatus, which is equipped with an air supply means (blower) 4 for supplying air 15 to the digestion gas 1 before introduction into the digestion gas 1 and a spray nozzle 6 for spraying water 5 onto the digestion gas 1 after introduction from above. The filler 2 to be filled in the reaction tower 3 was not fixed on the perforated plate-shaped support member 7, but simply placed in layers and used. Conventionally, the packing material 2 was washed by pouring water into the reaction tower 3. However, in this way, if the cleaning air 20 is separately blown into the water from below, the packing material 2 easily flows and the biofilm is formed. This is because the peeling of the sulfur and elemental sulfur can be promoted and the cleaning can be sufficiently performed.

【0021】そこで、発明者は、そのような流動を行わ
せるために適切な充填材2について鋭意研究し、図2に
形状の一例を示すように、比重が0.9〜1.05で、
且つ容積率で80〜95%の空隙8を有する合成樹脂体
9とすることにした。ここで、空隙8とは、合成樹脂体
の外形に対して樹脂の占めない容積部分(隙間)をい
う。充填材の比重が0.9未満では、充填材が水に完全
に浮いてしまい短時間での洗浄が不十分になるし、1.
05超えでは重くて流動しなくなるからである。また、
容積率で80〜95%の空隙8を有するようにしたの
は、微生物が付着する表面積を大きくするためであり、
少なくとも80%の容積率が必要で、95%を超える
と、強度や寿命に不安があるので、95%を上限とし
た。なお、この充填材2の材質は、合成樹脂であれば如
何なる種類のものでも良いが、発明者の試行によれば、
ポリプロピレンが最も好ましかった。また、洗浄用空気
20の吹き込み量については、本発明では特に限定しな
いことにする。充填材2の水中での流動が生じさえすれ
ば良いからである。さらに、本発明では、洗浄で充填材
2より剥離した微生物や単体硫黄は、ドレン10として
反応塔3より流出させるのが好ましい。
Therefore, the inventor diligently studied a suitable filler 2 for causing such a flow, and as shown in an example of the shape in FIG. 2, the specific gravity is 0.9 to 1.05,
In addition, the synthetic resin body 9 having the voids 8 of 80 to 95% in volume ratio is decided. Here, the void 8 refers to a volume portion (gap) not occupied by the resin with respect to the outer shape of the synthetic resin body. If the specific gravity of the filler is less than 0.9, the filler completely floats on the water and cleaning in a short time becomes insufficient.
If it exceeds 05, it will be heavy and will not flow. Also,
The reason why the voids 8 have a volume ratio of 80 to 95% is to increase the surface area to which microorganisms adhere,
A volume ratio of at least 80% is required, and if it exceeds 95%, there is concern about strength and life, so 95% was made the upper limit. The material of the filler 2 may be any kind of synthetic resin, but according to the inventors' trial,
Polypropylene was the most preferred. The amount of the cleaning air 20 blown in is not particularly limited in the present invention. This is because it is sufficient that the filler 2 flows in water. Further, in the present invention, it is preferable that the microorganisms and elemental sulfur separated from the packing material 2 by washing are allowed to flow out from the reaction tower 3 as the drain 10.

【0022】加えて、発明者は、充填材2の空隙8に付
着し、該空隙を閉塞する微生物等を洗浄するタイミング
についても検討を行い、反応塔3内を流通する消化ガス
の圧力損失の値で判断することを考えた。そのため、本
発明では、図1に示したように、反応塔3に、その圧力
損失を測定するセンサ11及び11'と、その測定値が
入力され、11〜11'の間の差圧が予め記憶させてあ
る圧力損失の閾値を超えたら、消化ガスの反応塔3への
導入停止を指令する信号及び/又は警報を出力する演算
器とを備えるようにした。なお、閾値は、過去のデータ
や試験操業によって適切な値を定めれば良い。また、演
算器には、前記圧力損失の値に応じて、空気供給手段
4、ドレンバルブ、流出バルブ、反応塔底部の空気バル
ブへ制御信号や警報を出力するようにすることが好まし
い。
In addition, the present inventor also examined the timing of cleaning microorganisms and the like that adhere to the voids 8 of the packing material 2 and block the voids, and check the pressure loss of the digestive gas flowing in the reaction tower 3. I thought about judging by the value. Therefore, in the present invention, as shown in FIG. 1, the sensors 11 and 11 ′ for measuring the pressure loss and the measured value are input to the reaction tower 3, and the differential pressure between 11 and 11 ′ is previously set. When the stored threshold value of the pressure loss is exceeded, a calculator for outputting a signal and / or an alarm for instructing to stop the introduction of the digestion gas into the reaction tower 3 is provided. It should be noted that the threshold may be set to an appropriate value according to past data and test operation. Further, it is preferable that the arithmetic unit outputs a control signal or an alarm to the air supply unit 4, the drain valve, the outflow valve, and the air valve at the bottom of the reaction column according to the value of the pressure loss.

【0023】洗浄は、一例として以下のような操作を順
次行うことで可能となる。 1段階 空気15の流入を止める 2段階 消化ガスの流入を止め、ガス流入弁27は開け
たまま、ガス流出弁28を閉じる 3段階 循環水ポンプ22を止め、循環水弁32を閉じ
る 4段階 補給水を流入させ、反応塔3全体を水で満た
す。中に残っていたガスはガス流入弁27を通って上流
側1の方向に押し出される 5段階 反応塔3の中が水で満たされたら、ガス流入弁
を閉じ、放風弁34を開く 6段階 空気を供給し、中の充填材2を流動させ、充填
材の表面や空隙に蓄積した生物膜や単体硫黄を剥離させ
る 7段階 一定時間経過後(通常、数分程度)、放風弁3
4を閉じ、ガス流通弁27を開き、その後ポンプ22を
運転すると共に、剥離した生物膜等も排出される。水の
排出に伴い、ガス流入弁27を通して、消化ガスがパー
ジされる 8段階 反応塔3の中の液位があるレベル(充填材2よ
り下、通常の運転レベル)にまで下がったら、排水を止
め、循環水排出弁31を閉じ、循環水弁32を開く 9段階 ポンプ22を運転し、ガス流出弁28を開いて
通常処理に戻る 次に、前記した問題点(2)「充填層の下部や、充填層
を支える多孔板状の支持部材(例えば、スクリーン、ネ
ット等)7に、生物膜や除去された硫化水素が酸化され
てできる単体硫黄が集中して蓄積し、洗浄の頻度が多く
なる。また、上記スクリーンは、閉塞し易いが、洗浄時
に流動しないので、洗浄ができず、最悪の場合には、運
転の停止という状態に陥る」については、反応塔3へ導
入する消化ガス1を従来の上向流に代え、下向流とする
ことで解消した。つまり、反応塔の頂部に、消化ガスの
導入口13を下向きに設けたのである。これにより、従
来は洗浄できなかった多孔板状支持部材7の閉塞する危
険を回避することができるようになった。また、散布さ
れる水5の働きで、生物膜が全充填材にまんべんなく形
成され、さらに、反応で形成される単体硫黄も充填材の
全体に蓄積されるようになるので、充填材2が有効に使
用でき、結果として、洗浄の頻度を少なくすることにも
なる。
The washing can be performed, for example, by sequentially performing the following operations. 1st stage 2nd stage to stop the inflow of air 15 3rd stage to stop the inflow of digestion gas, close the gas outflow valve 28 while keeping the gas inflow valve 27 open 4th stage to stop the circulating water pump 22 and close the circulating water valve 32 Water is introduced to fill the entire reaction tower 3 with water. The gas remaining therein is pushed out in the direction of the upstream side 1 through the gas inflow valve 27. When the reaction tower 3 is filled with water, the gas inflow valve is closed and the blowoff valve 34 is opened. 7 stages of supplying air and flowing the filler 2 inside to remove biofilm and elemental sulfur accumulated on the surface and voids of the filler After a certain period of time (usually about several minutes), the blowoff valve 3
4 is closed, the gas flow valve 27 is opened, and then the pump 22 is operated, and the separated biofilm and the like are also discharged. When the liquid level in the 8-stage reaction column 3 where the digestion gas is purged is lowered to a certain level (below the packing material 2, normal operation level) through the gas inflow valve 27 as the water is discharged, drainage is performed. Stop, close the circulating water discharge valve 31 and open the circulating water valve 32 Operate the pump 22 and open the gas outflow valve 28 to return to normal processing Next, the above-mentioned problem (2) "lower part of packed bed" In addition, the porous film-shaped support member (eg, screen, net, etc.) 7 that supports the packed bed accumulates the biofilm and the elemental sulfur formed by the oxidization of the removed hydrogen sulfide, and accumulates it frequently. The screen is easily clogged, but it does not flow during cleaning, so cleaning cannot be performed, and in the worst case, operation is stopped. ” Instead of conventional upward flow, It was eliminated in the Rukoto. That is, the digestion gas inlet 13 was provided downward at the top of the reaction tower. This makes it possible to avoid the risk of blockage of the perforated plate-shaped support member 7, which could not be conventionally cleaned. In addition, since the biological film is uniformly formed on all the fillers by the action of the water 5 that is sprayed, and the elemental sulfur that is formed by the reaction is also accumulated in the entire fillers, the filler 2 is effective. Can be used as a result, resulting in less frequent cleaning.

【0024】引き続いて、発明者は、前記問題点(3)
「水のpHを調整する場合のアルカリの注入量が増え
る」の解消についても検討を行った。
Subsequently, the inventor has found the above problem (3).
We also examined how to eliminate "the amount of alkali injected increases when adjusting the pH of water".

【0025】問題点(3)に対しては、発明者は、硫化
水素を微量酸素の存在下で酸化する微生物の活動は、p
Hが1程度まで低下しても十分な活性を有することを発
見した。従って、その活動は、硫化水素の酸化による循
環水のpHの低下を許容し、アルカリを加えてpHを上
げずに運転し続けることで対応できる。ここで、水のp
Hは、循環水の管路中にpH計29を設置して連続測定
する。測定位置は、反応塔内へ散布する前や反応塔下部
からの抜き出した後等、適宜選択すれば良い。ただし、
極端なpHの低下を防ぐため、新水を補給して循環水の
一部を適宜入れ替えることもできる。このようにすれ
ば、アルカリの薬品代を省くことができるだけでなく、
スケールや単体硫黄によって充填剤が閉塞する速さを大
幅に小さくし、該充填剤の洗浄頻度を少なくすることが
できる。水のpH計を設置して連続測定する。測定位置
は反応塔内へ散布する前や反応塔下部からの抜き出した
後等、適宜選択すれば良い。この場合、新水を得ること
が困難な場所や、水道料金を節約するために、メタン発
酵で発生する消化ガスが、自然にあるいは強制的に冷却
されて凝縮してくる水分(凝縮水)を使用したり、消化
液を脱水し、それを水処理して固形分を取り除き、SS
(浮遊物質濃度)を100mg/リットル以下(これを
処理水という)にして使用するようにすることが好まし
い。ここで、固形分を取り除くのは、充填材の空隙8の
閉塞を予防するためである。また、この処理水は、散布
する水として用いてもよい。なお、補給用の新水及び/
又は散布する水に、生物膜の形成促進のための薬剤、例
えば微生物の活動を促進させる薬剤としてカリウム,
燐,窒素を含む栄養剤を加えることが望ましい。
Regarding the problem (3), the inventor has found that the activity of a microorganism that oxidizes hydrogen sulfide in the presence of a trace amount of oxygen is p
It was discovered that H has a sufficient activity even when it is reduced to about 1. Therefore, the activity can be dealt with by allowing the pH of the circulating water to decrease due to the oxidation of hydrogen sulfide and continuing the operation without increasing the pH by adding an alkali. Where p of water
H is continuously measured by installing a pH meter 29 in the circulating water pipe. The measurement position may be appropriately selected before spraying into the reaction tower, after withdrawal from the lower part of the reaction tower, and the like. However,
In order to prevent an extreme decrease in pH, fresh water may be replenished and a part of the circulating water may be replaced appropriately. In this way, not only can you save the cost of alkali chemicals,
It is possible to significantly reduce the speed at which the filler is clogged with scale or elemental sulfur, and to reduce the cleaning frequency of the filler. A water pH meter is installed for continuous measurement. The measurement position may be appropriately selected before spraying into the reaction tower, after withdrawal from the lower part of the reaction tower, or the like. In this case, in order to save water costs and places where it is difficult to obtain fresh water, the digestive gas generated in methane fermentation is cooled naturally or forcibly and the condensed water is condensed. Use or dehydrate digestive juice, water-treat it to remove solids,
It is preferable that the (suspended substance concentration) is 100 mg / liter or less (this is referred to as treated water) before use. Here, the solid content is removed to prevent clogging of the void 8 of the filler. Further, this treated water may be used as water to be sprayed. In addition, new water for replenishment and /
Alternatively, an agent for accelerating the formation of a biofilm in the sprayed water, for example, potassium as an agent for accelerating the activity of microorganisms,
It is desirable to add nutrients containing phosphorus and nitrogen.

【0026】さらに引き続き、発明者は、前記問題点
(4)「反応塔から排出された消化ガスの酸素濃度を少
なくとも500ppm程度にするように、反応塔へ導入
する消化ガスへ添加する空気の量を調整すると、微生物
の酸化活性が低下し、処理が不十分になる」及び問題点
(5)「反応塔から排出された消化ガスの酸素濃度をあ
る値に調整しようとしても、最適な酸素濃度は、温度、
流入するガス成分等によって異なるので、精度の良い調
整ができない」についても検討を行った。
Further, the inventor has further described the above problem (4) "the amount of air added to the digestion gas introduced into the reaction tower so that the oxygen concentration of the digestion gas discharged from the reaction tower is at least about 500 ppm. Is adjusted, the oxidative activity of the microorganisms will be reduced and the treatment will be insufficient. ”(5)“ If you try to adjust the oxygen concentration of the digestion gas discharged from the reaction tower to a certain value, the optimum oxygen concentration Is the temperature,
Since it depends on the inflowing gas component, etc., it is not possible to adjust it with high precision. "

【0027】そして、問題点(4)は、図3に示すよう
に、反応塔3から排出された消化ガス1の酸素濃度を酸
素濃度計16で計測し、その測定値が所定の目標値にな
るように、反応塔へ導入前に添加する空気の量を自動調
整する演算器18を設けることで、問題点(5)は、同
時に硫化水素濃度計17で硫化水素濃度も測定し、その
測定値に応じて前記酸素濃度の目標値を前記演算器18
で自動的に変更することで解決した。具体的には、反応
塔3で処理された後の消化ガス1の目標酸素濃度(反応
塔の出口で、例えば、0.5vol%程度)を予め定
め、その数値になるように、反応塔3の入り側で混入さ
せる空気の量を流量調節弁24の開度を調節してフィー
ドバック制御すると共に、その設定する目標値を高めに
することで、反応塔3内での消化ガス1の酸化処理を安
定させるのである。なお、本発明では、前記目標酸素濃
度は、消化ガス1が含有するH2S濃度によって異なる
ので、特に限定しない。つまり、そもそも脱硫装置の目
的は硫化水素を除去することなので、反応塔3内で処理
した後の消化ガス1の硫化水素濃度を連続自動計測し、
その数値を基に目標酸素濃度の設定値を変更し、より最
適な精度の良い安定運転を行えるようにしたのである。
The problem (4) is, as shown in FIG. 3, that the oxygen concentration of the digestion gas 1 discharged from the reaction tower 3 is measured by the oxygen concentration meter 16, and the measured value becomes a predetermined target value. As described above, the problem (5) is that the hydrogen sulfide concentration meter 17 measures the hydrogen sulfide concentration at the same time by providing the arithmetic unit 18 that automatically adjusts the amount of air added before introduction into the reaction tower. The target value of the oxygen concentration according to the value
It was solved by automatically changing with. Specifically, the target oxygen concentration of the digestion gas 1 after being treated in the reaction tower 3 (at the outlet of the reaction tower, for example, about 0.5 vol%) is determined in advance, and the reaction tower 3 The amount of air mixed in on the inlet side is controlled by feedback by adjusting the opening of the flow rate control valve 24, and the target value to be set is increased, whereby the digestion gas 1 in the reaction tower 3 is oxidized. Stabilizes. In the present invention, the target oxygen concentration is not particularly limited because it depends on the H 2 S concentration contained in the digestion gas 1. That is, since the purpose of the desulfurization device is to remove hydrogen sulfide in the first place, the hydrogen sulfide concentration of the digestion gas 1 after being treated in the reaction tower 3 is continuously and automatically measured,
The target oxygen concentration set value was changed based on the numerical value so that stable operation with more optimal accuracy could be performed.

【0028】また、発明者は、何らかの理由(ガスの発
生量が少ない小規模プラントで、且つ反応塔の上流側に
ガス流量を調節する、例えばガスホルダやガスブロアを
設置できない場合)で、反応塔へ導入する消化ガスの流
量が大きく変動し、それを調整することが不可能である
場合についても検討を行った。この場合、消化ガスの流
量が少ないこともあり、前記したフィードバック制御で
は、応答が遅く、うまく硫化水素濃度を低減できないこ
とがあるからである。そのような場合には、図4に示す
ように、反応塔3の出口側で測定する消化ガス1のH2
S濃度や酸素濃度は単なる監視用とし、反応塔3へ導入
する消化ガスの流量を消化ガス流量計25により連続測
定し、その一定割合(好ましくは1〜4vol%)に相
当する空気を該消化ガスに添加するフィードフォワード
制御の方が精度が高くなるので、このことも本発明に加
えることにした。なお、空気の添加量を測定値に対して
1〜4vol%の範囲としたのは、1vol%未満では
少な過ぎて微生物の酸化活性が低下する恐れがあり、4
vol%超えても効果の向上は期待できないからであ
る。
For some reason (in a small-scale plant where a small amount of gas is generated and the gas flow rate is adjusted upstream of the reaction tower, for example, when a gas holder or a gas blower cannot be installed), the inventor enters the reaction tower. We also examined the case where the flow rate of the digestion gas to be introduced fluctuates greatly and it is impossible to adjust it. In this case, the flow rate of the digestion gas may be small, and the feedback control described above may result in a slow response and the hydrogen sulfide concentration may not be successfully reduced. In such a case, as shown in FIG. 4, H 2 of the digestion gas 1 measured at the outlet side of the reaction tower 3 is measured.
The S concentration and the oxygen concentration are merely for monitoring, the flow rate of the digestion gas introduced into the reaction tower 3 is continuously measured by the digestion gas flow meter 25, and the air corresponding to a certain ratio (preferably 1 to 4 vol%) is digested. This is also added to the present invention because the feedforward control added to the gas is more accurate. It should be noted that the amount of air added was set in the range of 1 to 4 vol% with respect to the measured value, because if it is less than 1 vol%, the oxidative activity of the microorganisms may be lowered and the oxidative activity of the microorganism may decrease.
This is because the effect cannot be expected to be improved even if it exceeds vol%.

【0029】また、その際の空気流量の調節は、空気供
給手段(ブロア)4の回転数制御、吐出弁及び放風弁の
開度調整等が考えられるが、本発明では特に限定しな
い。さらに、添加する空気の割合の設定値は、反応塔出
口の消化ガスのH2S濃度、酸素濃度によって調整する
ことが好ましい。
The air flow rate at that time may be controlled by controlling the number of revolutions of the air supply means (blower) 4, adjusting the openings of the discharge valve and the blow-off valve, but the present invention is not limited thereto. Further, the set value of the ratio of the air to be added is preferably adjusted by the H 2 S concentration and oxygen concentration of the digestion gas at the outlet of the reaction tower.

【0030】さらに加えて、本発明では、処理を円滑に
行うため、反応塔3を循環する水の温度を微生物活動に
最適な温度に保つように制御することも配慮した。具体
的には、循環水の温度を15〜40℃に保つことが好ま
しい。図1に示すように、反応塔の底部の循環水溜まり
26に加熱装置14(具体的には、電熱ヒータ等)を設
けても良い。また、該加熱装置14は、反応塔3の塔壁
又は循環水配管に設けても良い。なお、温度を15〜4
0℃としたのは、15℃未満では、微生物の活性が低下
するため、40℃超えでは微生物の活性に変化がなく、
加えた熱が無駄になるためである。
In addition, in the present invention, in order to carry out the treatment smoothly, it was considered that the temperature of the water circulating in the reaction tower 3 is controlled to be kept at the optimum temperature for the microbial activity. Specifically, it is preferable to keep the temperature of the circulating water at 15 to 40 ° C. As shown in FIG. 1, a heating device 14 (specifically, an electric heater or the like) may be provided in the circulating water pool 26 at the bottom of the reaction tower. The heating device 14 may be provided on the tower wall of the reaction tower 3 or on the circulating water pipe. In addition, the temperature is 15 to 4
The temperature was set to 0 ° C. Below 15 ° C., the activity of microorganisms decreases, so above 40 ° C., there is no change in the activity of microorganisms.
This is because the applied heat is wasted.

【0031】[0031]

【実施例1】畜産ふん尿をメタン発酵させて発生した消
化ガスを脱硫処理するのに、本発明に係る脱硫装置及び
脱硫方法を適用した。つまり、図1に示した装置を用
い、700m3(標準状態)/日、硫化水素濃度2000
〜3000ppmの消化ガス1を、図2に示したポリプ
ロピレン製で直径10cm、高さ3cmのリブ付き中空
円盤(比重:1.0、空隙率85%)からなる充填材2
を充填した反応塔3に、該塔の頂部に設けた導入口13
より下向きに供給した。消化ガス1に添加する空気15
は、反応塔から抜け出た消化ガスの目標酸素濃度が0.
5vol%になるように、消化ガス1に対して体積比で
1〜4%の範囲で調整した。
Example 1 The desulfurization apparatus and the desulfurization method according to the present invention were applied to desulfurize digestive gas generated by subjecting livestock manure to methane fermentation. That is, using the apparatus shown in FIG. 1, 700 m 3 (standard state) / day, hydrogen sulfide concentration of 2000
Digestion gas 1 of up to 3,000 ppm, a filler 2 made of polypropylene shown in FIG. 2 and made of a ribbed hollow disk (specific gravity: 1.0, porosity 85%) having a diameter of 10 cm and a height of 3 cm.
Introducing port 13 provided at the top of the reaction column 3 filled with
Feed more downward. Air added to digestion gas 1 15
Has a target oxygen concentration of 0.
The volume ratio to the digestion gas 1 was adjusted to 1 to 4% so as to be 5 vol%.

【0032】なお、反応塔内の充填材の充填高さは2.
5〜3.0mとし,そこを通過するガスの流速は、空塔
速度で25〜30m/hr,消化ガスの滞留時間にして
0.1時間とした。消化ガス1に噴霧する水5は、消化
ガスの冷却によって発生する凝縮水に窒素,燐,カリウ
ムを含む液体肥料を添加して使用し、反応塔3の下部に
設けた水溜めに電熱ヒータ14を設けて加熱し、水温3
0±2℃に調節すると共に、pHが5になるように、苛
性ソーダの補給で調整した。また、操業中には、反応塔
3に設けたセンサ11からの圧力情報に基づき、充填材
2の洗浄タイミングを判定し、具体的には、圧力計11
〜11'の間の差圧が200mmAqに達したら、自動
的に切り換わって洗浄工程に入ることで、事前洗浄によ
り充填材2の空隙8が付着物で閉塞するのを完全に予防
した。
The filling height of the packing material in the reaction tower is 2.
The flow velocity of the gas passing therethrough was 25 to 30 m / hr at the superficial velocity, and the digestion gas retention time was 0.1 hour. The water 5 sprayed on the digestion gas 1 is used by adding liquid fertilizer containing nitrogen, phosphorus, and potassium to condensed water generated by cooling the digestion gas, and using an electric heater 14 in a water reservoir provided at the bottom of the reaction tower 3. Water temperature 3
The pH was adjusted to 0 ± 2 ° C., and the pH was adjusted to 5 by supplementing with caustic soda. Further, during the operation, the cleaning timing of the filling material 2 is determined based on the pressure information from the sensor 11 provided in the reaction tower 3, and specifically, the pressure gauge 11
When the pressure difference between ˜11 ′ reached 200 mmAq, the cleaning process was automatically switched to completely prevent the voids 8 of the filler 2 from being clogged with deposits by the pre-cleaning.

【0033】また,図3に示すように、反応塔3の出口
側で消化ガス1のH2S濃度を連続計測(H2S濃度計1
7によって)し、その値をもとに目標酸素濃度を設定
し、その目標値と酸素濃度計16による計測値のずれか
ら、流量調節弁24の開度を調節した。なお、ガスブロ
ア12の停止時には、空気供給手段(ブロア)4は停止
し、前記演算器18は働かないようにした。
Further, as shown in FIG. 3, the H 2 S concentration of the digestion gas 1 is continuously measured at the outlet side of the reaction tower 3 (H 2 S concentration meter 1
7), the target oxygen concentration was set based on this value, and the opening degree of the flow control valve 24 was adjusted based on the difference between the target value and the measurement value of the oxygen concentration meter 16. When the gas blower 12 is stopped, the air supply means (blower) 4 is stopped and the arithmetic unit 18 is disabled.

【0034】その結果、消化ガス中の硫化水素は、目標
値の500ppm以下を十分満足する10ppm以下と
なり、除去率で99%を達成できた。さらに、処理ガス
の硫化水素濃度を自動計測し、その数値をもとに目標酸
素濃度を0.05〜0.5vol%の範囲でその都度設
定して、より安定し、且つ少ない酸素残留濃度で運転す
ることができた。なお、この際に、循環水を反応塔内へ
散布する前で循環水のpHを測定し、その値が2.0を
下回るときに、循環水中へ新水を供給することで、循環
水のpHを2.0〜2.5に制御した。
As a result, the hydrogen sulfide content in the digestion gas was 10 ppm or less, which was sufficient to satisfy the target value of 500 ppm or less, and the removal rate of 99% was achieved. Furthermore, the hydrogen sulfide concentration of the processing gas is automatically measured, and the target oxygen concentration is set within the range of 0.05 to 0.5 vol% each time based on the value, making it more stable and with a small residual oxygen concentration. I was able to drive. At this time, the pH of the circulating water is measured before the circulating water is sprayed into the reaction tower, and when the value is below 2.0, fresh water is supplied into the circulating water to supply the circulating water. The pH was controlled at 2.0-2.5.

【0035】[0035]

【実施例2】また、小規模の畜産糞尿メタン発酵施設か
ら発生した消化ガスを脱硫処理するのに、本発明に係る
脱硫装置及び脱硫方法を適用した。つまり、図1に示し
た装置に図4に示した制御系を取り付けたものである。
処理する消化ガスの量は、100m3(標準状態)/日、
2S濃度は1000〜2000ppmであった。その
他の運転方法は、実施例1で説明した内容と同じであ
る。ただし、図4に示す空気流量調整弁24の開度は、
空気流量計23の流量が、消化ガスの流量25に対して
X%になるようにした。そのXは、0〜4vol%の範
囲で、出口消化ガスのH2S濃度17および酸素濃度1
6の連続測定値をもとに、演算器18で演算して算出す
るようにした。
Example 2 In addition, the desulfurization apparatus and the desulfurization method according to the present invention were applied to desulfurize digestive gas generated from a small-scale livestock manure methane fermentation facility. That is, the control system shown in FIG. 4 is attached to the apparatus shown in FIG.
The amount of digestion gas to be processed is 100 m 3 (standard condition) / day,
The H 2 S concentration was 1000 to 2000 ppm. The other operating methods are the same as those described in the first embodiment. However, the opening degree of the air flow rate adjusting valve 24 shown in FIG.
The flow rate of the air flow meter 23 was set to be X% with respect to the digestion gas flow rate of 25. The X is in the range of 0 to 4 vol% and the H 2 S concentration of the outlet digestion gas is 17 and the oxygen concentration is 1
Based on the continuous measurement values of 6, the calculator 18 calculates and calculates.

【0036】このメタン発酵施設では、脱硫装置に流入
する消化ガス量は、平均量に対して±50%以上と変動
が大きかったため、前記図3で説明したフィードバック
制御では、応答性が悪かったが、図4で説明したフィー
ドフォワード制御にすることで、さらに確実な制御がで
き、処理ガスのH2S濃度を10ppm以下に安定して
保つことができた。なお、この際の循環水のpHは1.
3〜1.7であった。
In this methane fermentation facility, the amount of digestive gas flowing into the desulfurization unit fluctuated by ± 50% or more with respect to the average amount, so that the feedback control described with reference to FIG. 3 had a poor response. By performing the feedforward control described in FIG. 4, more reliable control was possible, and the H 2 S concentration of the processing gas could be stably maintained at 10 ppm or less. The pH of the circulating water at this time is 1.
It was 3 to 1.7.

【0037】[0037]

【発明の効果】以上述べたように、本発明により、装置
の維持管理が従来より容易で、且つ効率良く、低コスト
で消化ガスの脱硫が行えるようになる。その結果、この
消化ガスは、燃料ガスとして有効に利用できる。
As described above, according to the present invention, it becomes possible to perform desulfurization of digestive gas more easily and efficiently than before in the maintenance of the apparatus and at low cost. As a result, this digestion gas can be effectively used as fuel gas.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る消化ガスの脱硫装置及び脱硫方法
を説明するフロー図である。
FIG. 1 is a flow chart illustrating a desulfurization apparatus and a desulfurization method for digestive gas according to the present invention.

【図2】本発明に係る消化ガスの脱硫装置で使用する充
填材の一形状を示す斜視図である。
FIG. 2 is a perspective view showing a shape of a filler used in the digestion gas desulfurization apparatus according to the present invention.

【図3】消化ガスのH2S濃度を反応塔で低減するフィ
ードバック制御を説明する図である。
FIG. 3 is a diagram illustrating feedback control for reducing the H 2 S concentration of digestion gas in a reaction tower.

【図4】消化ガスのH2S濃度を反応塔で低減するフィ
ードフォワード制御を説明する図である。
FIG. 4 is a diagram illustrating feedforward control for reducing the H 2 S concentration of digestion gas in a reaction tower.

【符号の説明】[Explanation of symbols]

1 消化ガス 2 充填材 3 反応塔 4 空気供給手段(ブロア) 5 水 6 スプレーノズル 7 多孔板状支持部材(スクリーン等) 8 空隙 9 合成樹脂体 10 ドレン 11、11' センサ(圧力計等) 13 導入口 14 加熱装置 15 空気 16 酸素濃度計 17 H2S濃度計 18 演算器 19 サンプリング口 20 洗浄用空気 21 薬剤(栄養剤) 22 循環ポンプ 23 空気流量計 24 空気流量調節弁 25 消化ガス流量計 26 循環水溜まり 27 ガス流入弁 28 ガス流出弁 29 pH計 30 排出水 31循環水排出弁 32 循環水弁 33 補給水 34 放風弁1 Digestion Gas 2 Filler 3 Reaction Tower 4 Air Supply Means (Blower) 5 Water 6 Spray Nozzle 7 Perforated Plate Support Member (Screen etc.) 8 Void 9 Synthetic Resin Body 10 Drain 11, 11 'Sensor (Pressure Gauge etc.) 13 Inlet 14 Heating device 15 Air 16 Oxygen concentration meter 17 H 2 S concentration meter 18 Computing device 19 Sampling port 20 Cleaning air 21 Chemicals (nutrients) 22 Circulation pump 23 Air flow meter 24 Air flow control valve 25 Digestion gas flow meter 26 Circulating Water Reservoir 27 Gas Inflow Valve 28 Gas Outflow Valve 29 pH Meter 30 Discharge Water 31 Circulating Water Discharge Valve 32 Circulating Water Valve 33 Makeup Water 34 Blowoff Valve

───────────────────────────────────────────────────── フロントページの続き (72)発明者 橋本 恭彦 東京都千代田区内幸町2丁目2番3号 川 崎製鉄株式会社内 Fターム(参考) 4B029 AA05 AA21 BB01 CC02 CC10 4B065 AC20 BB02 BB40 BC41 BC50 BD50 CA56 4D020 AA04 BA23 BC06 BC10 CB13 CB17 CB25 CC09 DA01 DA02 DB03 DB04 DB08 4D059 AA01 BA15 CA07    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Yasuhiko Hashimoto             2-3-2 Uchisaiwaicho, Chiyoda-ku, Tokyo             Saki Steel Co., Ltd. F-term (reference) 4B029 AA05 AA21 BB01 CC02 CC10                 4B065 AC20 BB02 BB40 BC41 BC50                       BD50 CA56                 4D020 AA04 BA23 BC06 BC10 CB13                       CB17 CB25 CC09 DA01 DA02                       DB03 DB04 DB08                 4D059 AA01 BA15 CA07

Claims (11)

【特許請求の範囲】[Claims] 【請求項1】 有機性廃棄物をメタン発酵させて発生し
た消化ガスが導入され、微生物が付着する充填材を充填
した反応塔と、該反応塔へ導入前の消化ガスに空気を供
給する空気供給手段と、導入後の消化ガスに水を散布す
るスプレーノズルとを備えた消化ガスの脱硫装置におい
て、 前記充填材は、比重が0.9〜1.05で、且つ容積率
で80〜95%の空隙を有する合成樹脂体とし、反応塔
内に設けた多孔板状支持部材の上に固定せずに充填され
てなることを特徴とする消化ガスの脱硫装置。
1. A reaction tower in which a digestion gas generated by methane fermentation of an organic waste is introduced and a packing material to which microorganisms adhere is filled, and air for supplying air to the digestion gas before introduction into the reaction tower. In a digestive gas desulfurization apparatus including a supply unit and a spray nozzle that sprays water on the digested gas after introduction, the filler has a specific gravity of 0.9 to 1.05 and a volume ratio of 80 to 95. % Of a synthetic resin body having voids, which is filled without being fixed on a perforated plate-shaped support member provided in a reaction tower.
【請求項2】 前記反応塔の頂部に、前記消化ガスの導
入口を下向きに設けることを特徴とする請求項1記載の
消化ガスの脱硫装置。
2. The digestion gas desulfurization apparatus according to claim 1, wherein the digestion gas inlet is provided downward at the top of the reaction tower.
【請求項3】 前記反応塔内を流通する消化ガスの圧力
損失を測定するセンサと、その測定値が入力され、予め
記憶させてある圧力損失の閾値を超えたら、前記消化ガ
スの反応塔への導入停止を指令する信号及び/又は警報
を出力する演算器とを備えたことを特徴とする請求項1
又は2記載の消化ガスの脱硫装置。
3. A sensor for measuring the pressure loss of the digestive gas flowing in the reaction tower, and when the measured value is inputted and exceeds a pre-stored pressure loss threshold value, the digestion gas is sent to the reaction tower. And a computing unit that outputs a signal and / or an alarm for instructing to stop the introduction of the gas.
Alternatively, the digestion gas desulfurization apparatus according to item 2.
【請求項4】 前記反応塔の塔壁、循環水配管又は底部
の循環水溜まりに、加熱装置を設けたことを特徴とする
請求項1〜3のいずれかに記載の消化ガスの脱硫装置。
4. The desulfurization apparatus for digestive gas according to claim 1, wherein a heating device is provided in the tower wall of the reaction tower, the circulating water pipe, or the circulating water pool at the bottom.
【請求項5】 微生物が付着する充填材を充填した反応
塔内へ、有機性廃棄物をメタン発酵させて発生した消化
ガスを、空気を添加してから導入し、水を散布して消化
ガスが含有する硫化水素を洗浄、除去する消化ガスの脱
硫方法において、 散布する水の一部を反応塔内で循環させると共に、その
循環水のpHを測定し、そのpHが1〜6になるよう
に、新水の補給で調整することを特徴とする消化ガスの
脱硫方法。
5. A digestion gas generated by methane-fermenting an organic waste into a reaction tower filled with a filler to which microorganisms adhere is introduced after adding air, and water is sprayed to digest the digestion gas. In the method of desulfurization of digestion gas for cleaning and removing hydrogen sulfide contained in, while part of the water to be sprayed is circulated in the reaction tower, the pH of the circulating water is measured so that the pH becomes 1 to 6. In addition, a method for desulfurizing digestive gas, which is characterized by adjusting the supply of fresh water.
【請求項6】 前記新水及び/又は前記散布する水に、
前記メタン発酵した消化ガスの冷却で発生する凝縮水及
び/又は発酵後の残液を脱水して得た処理水を用いるこ
とを特徴とする請求項5記載の消化ガスの脱硫方法。
6. The fresh water and / or the water to be sprayed,
The desulfurization method of digestive gas according to claim 5, wherein condensed water generated by cooling the digested gas subjected to methane fermentation and / or treated water obtained by dehydrating the residual liquid after fermentation is used.
【請求項7】 前記新水及び/又は前記散布する水に、
前記微生物の付着を促進する薬剤を添加することを特徴
とする請求項5又は6記載の消化ガスの脱硫方法。
7. The fresh water and / or the water to be sprayed,
7. The method for desulfurizing digestive gas according to claim 5, wherein a chemical that promotes adhesion of the microorganisms is added.
【請求項8】 前記反応塔から排出された消化ガスの酸
素濃度を測定し、その測定値が所定の目標値になるよう
に、反応塔への導入前に添加する前記空気の量を自動調
整すると共に、同時に該消化ガスの硫化水素濃度も測定
し、その測定値に応じて前記酸素濃度の目標値を自動的
に変更することを特徴とする請求項5〜7のいずれかに
記載の消化ガスの脱硫方法。
8. The oxygen concentration of the digestion gas discharged from the reaction tower is measured, and the amount of the air added before introduction into the reaction tower is automatically adjusted so that the measured value becomes a predetermined target value. At the same time, the hydrogen sulfide concentration of the digestion gas is also measured, and the target value of the oxygen concentration is automatically changed according to the measured value, and the digestion according to any one of claims 5 to 7. Gas desulfurization method.
【請求項9】 前記反応塔へ導入前の有機性廃棄物をメ
タン発酵させて発生した消化ガスの流量を予め測定し、
その測定値に対して一定割合となる空気を該消化ガスに
添加してから、前記反応塔内へ導入することを特徴とす
る請求項5〜7のいずれかに記載の消化ガスの脱硫方
法。
9. The flow rate of digestive gas generated by methane fermentation of the organic waste before being introduced into the reaction tower is measured in advance,
The desulfurization method of a digestive gas according to any one of claims 5 to 7, wherein air having a fixed ratio to the measured value is added to the digestive gas and then introduced into the reaction tower.
【請求項10】 請求項5〜9のいずれか記載の消化ガ
スの脱硫方法を実施して、前記微生物及び/又は硫化水
素が酸化されてできた単体硫黄の成長で充填材の空隙が
閉塞してきたら、前記反応塔内に充填材の充填高さ以上
の高さまで水を張り、下部から空気を吹き込んで該充填
材を水中で浮動させ、空気の上昇流で微生物や単体硫黄
を剥離させて洗浄し、ドレンとして反応塔より流出させ
ることを特徴とする請求項5〜9のいずれかに記載の消
化ガスの脱硫方法。
10. The method for desulfurizing digestive gas according to any one of claims 5 to 9, wherein pores of the filler are blocked by growth of elemental sulfur formed by oxidation of the microorganisms and / or hydrogen sulfide. Then, water is poured into the reaction tower to a height not less than the filling height of the packing material, air is blown from the lower part to float the packing material in water, and microorganisms and elemental sulfur are separated by the rising flow of air to wash. The drainage gas desulfurization method according to any one of claims 5 to 9, wherein the drainage gas is discharged as drain from the reaction tower.
【請求項11】 前記充填材の洗浄を行うタイミング
を、反応塔の圧力損失の値で判断することを特徴とする
請求項10記載の消化ガスの脱硫方法。
11. The method for desulfurizing a digestive gas according to claim 10, wherein the timing of cleaning the packing material is determined by the value of the pressure loss in the reaction tower.
JP2002319388A 2001-11-02 2002-11-01 Digestion gas desulfurization apparatus and desulfurization method Expired - Lifetime JP3750648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002319388A JP3750648B2 (en) 2001-11-02 2002-11-01 Digestion gas desulfurization apparatus and desulfurization method

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2001337290 2001-11-02
JP2001-337290 2001-11-02
JP2002-33548 2002-02-12
JP2002033548 2002-02-12
JP2002319388A JP3750648B2 (en) 2001-11-02 2002-11-01 Digestion gas desulfurization apparatus and desulfurization method

Publications (3)

Publication Number Publication Date
JP2003305328A true JP2003305328A (en) 2003-10-28
JP2003305328A5 JP2003305328A5 (en) 2005-06-16
JP3750648B2 JP3750648B2 (en) 2006-03-01

Family

ID=29407480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002319388A Expired - Lifetime JP3750648B2 (en) 2001-11-02 2002-11-01 Digestion gas desulfurization apparatus and desulfurization method

Country Status (1)

Country Link
JP (1) JP3750648B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037074A (en) * 2004-06-04 2006-02-09 Applikations- & Technikzentrum Fuer Energieverfahrens- Umwelt- & Stroemungstechnik Method for removing sulfur compound from biogas
JP2007268408A (en) * 2006-03-31 2007-10-18 Kurita Water Ind Ltd Gas pretreatment apparatus and washing method of gas pretreatment apparatus
KR100851529B1 (en) * 2007-10-12 2008-08-11 금호산업주식회사 Organic waste treatment apparatus
JP2008208355A (en) * 2007-01-30 2008-09-11 Toshiba Corp Apparatus for biodesulfurization of biogas
JP2009126982A (en) * 2007-11-27 2009-06-11 Jfe Engineering Corp Biological desulfurizer for digestion gas
JP2009299048A (en) * 2008-05-13 2009-12-24 Nippon Sharyo Seizo Kaisha Ltd Method and apparatus for desulfurizing fuel gas
JP2010022977A (en) * 2008-07-23 2010-02-04 Ihi Corp Biological desulfurization method and biological desulfurization apparatus
JP2010215735A (en) * 2009-03-13 2010-09-30 Yanmar Co Ltd Desulfurizer
JP2011188827A (en) * 2010-03-15 2011-09-29 Yanmar Co Ltd Apparatus for testing desulfurization
CN102676257A (en) * 2011-03-15 2012-09-19 株式会社东芝 Biodesulfurization device for methane and cleaning method thereof
JP2013543729A (en) * 2010-11-09 2013-12-09 ハー マジェスティー ザ クイーン イン ライト オブ カナダ, アズ リプリゼンテッド バイ ザ ミニスター オブ アグリカルチャー アンド アグリ−フード Biooxidation of hydrogen sulfide in a psychrophilic anaerobic degradation bioreactor exposed to microaerobic conditions
JP2014148575A (en) * 2013-01-31 2014-08-21 Kobelco Eco-Solutions Co Ltd Cleaning method of absorption tower, and digestion gas purification apparatus
JP2015116514A (en) * 2013-12-17 2015-06-25 荏原実業株式会社 Device and method for biological desulfurization
JP2015221431A (en) * 2015-05-28 2015-12-10 荏原実業株式会社 Biological desulfurizer and desulfurization method of biogas
CN107008106A (en) * 2016-01-27 2017-08-04 Aws有限公司 Apparatus and method for making gas and liquid formation contact
CN113750772A (en) * 2021-08-12 2021-12-07 华能国际电力股份有限公司营口电厂 Energy-saving system applied to oxidation fan and operation method thereof
CN114225673A (en) * 2021-12-09 2022-03-25 常州大学 Waste gas treatment device and method for acrylic acid production wastewater treatment plant

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102174670B1 (en) * 2014-10-10 2020-11-13 정동수 Wastewater treatment system improving T-N quality of effluent water through pre-treatment of reducing nitrogen in returning water from dehydration process at the digestion tank of community sewage disposal plant

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149324A (en) * 1985-11-29 1987-07-03 イムハウゼン−ヘミ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Removal of hydrogen sulfide
JPH0226615A (en) * 1988-07-12 1990-01-29 Fuso Yunitetsuku Kk Desulfurization apparatus for digester gas
JPH0430020U (en) * 1990-07-05 1992-03-11
JPH0672617U (en) * 1992-07-23 1994-10-11 荏原インフィルコ株式会社 Upflow filtration device with integrated deodorization device
JPH08196860A (en) * 1995-01-30 1996-08-06 Dia Tec Kk Deodorizing device
JPH1015583A (en) * 1996-07-08 1998-01-20 Clean Tec Kk Method and apparatus for biologically deodorizing anaerobic treatment tank in sewage treatment apparatus
JPH1099642A (en) * 1996-10-02 1998-04-21 Hitachi Ltd Gas cleaning device
JP2000000426A (en) * 1998-06-15 2000-01-07 Ebara Corp Biological treatment of waste gas and device therefor
JP2000024451A (en) * 1998-07-13 2000-01-25 Sumitomo Heavy Ind Ltd Packed-bed type biological deodorizer and its cleaning
JP2001232142A (en) * 2000-02-21 2001-08-28 Ebara Corp Biological deodorizing method
JP2003311121A (en) * 2002-04-24 2003-11-05 Kurita Water Ind Ltd Biological deodorizing apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62149324A (en) * 1985-11-29 1987-07-03 イムハウゼン−ヘミ−・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツング Removal of hydrogen sulfide
JPH0226615A (en) * 1988-07-12 1990-01-29 Fuso Yunitetsuku Kk Desulfurization apparatus for digester gas
JPH0430020U (en) * 1990-07-05 1992-03-11
JPH0672617U (en) * 1992-07-23 1994-10-11 荏原インフィルコ株式会社 Upflow filtration device with integrated deodorization device
JPH08196860A (en) * 1995-01-30 1996-08-06 Dia Tec Kk Deodorizing device
JPH1015583A (en) * 1996-07-08 1998-01-20 Clean Tec Kk Method and apparatus for biologically deodorizing anaerobic treatment tank in sewage treatment apparatus
JPH1099642A (en) * 1996-10-02 1998-04-21 Hitachi Ltd Gas cleaning device
JP2000000426A (en) * 1998-06-15 2000-01-07 Ebara Corp Biological treatment of waste gas and device therefor
JP2000024451A (en) * 1998-07-13 2000-01-25 Sumitomo Heavy Ind Ltd Packed-bed type biological deodorizer and its cleaning
JP2001232142A (en) * 2000-02-21 2001-08-28 Ebara Corp Biological deodorizing method
JP2003311121A (en) * 2002-04-24 2003-11-05 Kurita Water Ind Ltd Biological deodorizing apparatus

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006037074A (en) * 2004-06-04 2006-02-09 Applikations- & Technikzentrum Fuer Energieverfahrens- Umwelt- & Stroemungstechnik Method for removing sulfur compound from biogas
JP2007268408A (en) * 2006-03-31 2007-10-18 Kurita Water Ind Ltd Gas pretreatment apparatus and washing method of gas pretreatment apparatus
JP2008208355A (en) * 2007-01-30 2008-09-11 Toshiba Corp Apparatus for biodesulfurization of biogas
KR100851529B1 (en) * 2007-10-12 2008-08-11 금호산업주식회사 Organic waste treatment apparatus
JP2009126982A (en) * 2007-11-27 2009-06-11 Jfe Engineering Corp Biological desulfurizer for digestion gas
JP2009299048A (en) * 2008-05-13 2009-12-24 Nippon Sharyo Seizo Kaisha Ltd Method and apparatus for desulfurizing fuel gas
JP2010022977A (en) * 2008-07-23 2010-02-04 Ihi Corp Biological desulfurization method and biological desulfurization apparatus
JP2010215735A (en) * 2009-03-13 2010-09-30 Yanmar Co Ltd Desulfurizer
JP2011188827A (en) * 2010-03-15 2011-09-29 Yanmar Co Ltd Apparatus for testing desulfurization
JP2013543729A (en) * 2010-11-09 2013-12-09 ハー マジェスティー ザ クイーン イン ライト オブ カナダ, アズ リプリゼンテッド バイ ザ ミニスター オブ アグリカルチャー アンド アグリ−フード Biooxidation of hydrogen sulfide in a psychrophilic anaerobic degradation bioreactor exposed to microaerobic conditions
CN102676257A (en) * 2011-03-15 2012-09-19 株式会社东芝 Biodesulfurization device for methane and cleaning method thereof
JP2012193252A (en) * 2011-03-15 2012-10-11 Toshiba Corp Biodesulfurization device of biogas and cleaning method of the same
CN102676257B (en) * 2011-03-15 2015-08-12 株式会社东芝 The bio-desulfurization device of biogas and purging method thereof
JP2014148575A (en) * 2013-01-31 2014-08-21 Kobelco Eco-Solutions Co Ltd Cleaning method of absorption tower, and digestion gas purification apparatus
JP2015116514A (en) * 2013-12-17 2015-06-25 荏原実業株式会社 Device and method for biological desulfurization
JP2015221431A (en) * 2015-05-28 2015-12-10 荏原実業株式会社 Biological desulfurizer and desulfurization method of biogas
CN107008106A (en) * 2016-01-27 2017-08-04 Aws有限公司 Apparatus and method for making gas and liquid formation contact
CN113750772A (en) * 2021-08-12 2021-12-07 华能国际电力股份有限公司营口电厂 Energy-saving system applied to oxidation fan and operation method thereof
CN114225673A (en) * 2021-12-09 2022-03-25 常州大学 Waste gas treatment device and method for acrylic acid production wastewater treatment plant

Also Published As

Publication number Publication date
JP3750648B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
JP2003305328A (en) Desulfurization equipment for digestion gas and desulfurization method
US20100261266A1 (en) Biological desulfurization apparatus
JP2011189286A (en) Water treatment system for organic wastewater
JP5117209B2 (en) Biogas biodesulfurization equipment
JP2003305328A5 (en)
JP5064338B2 (en) Wastewater treatment equipment
CN107961653A (en) Improved process and system for flue gas desulfurization by double-alkali method
JP5072587B2 (en) Biological desulfurization equipment
CN109107359B (en) Biogas biological desulfurization system
JP2009154156A (en) Anaerobic water treatment apparatus
CN107337279A (en) One kind is based on SBBR wastewater efficients processing unit and method
JP4557851B2 (en) Anaerobic water treatment device
JP2000061491A (en) Anaerobic water treatment equipment
JP5300898B2 (en) Organic wastewater treatment equipment
JP2006043705A (en) Anaerobic water treatment apparatus
JP4358174B2 (en) Anaerobic water treatment device
JP2006143781A (en) Biogas purification system
JP2009190006A (en) Organism desulfurization apparatus
CN212357164U (en) Biogas biological desulfurization equipment for anaerobic fermentation of kitchen waste
CN109126410A (en) A kind of biological desulfurization process for biogas
CN111808646A (en) Intelligent biological desulphurization device
JP2010215735A (en) Desulfurizer
CN207158910U (en) One kind is based on SBBR wastewater efficient processing units
CN207755960U (en) Improved system for flue gas desulfurization by double-alkali method
US8440084B2 (en) Washable anaerobic digester with fixed biofilm

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040917

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20040917

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20041025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051128

R150 Certificate of patent or registration of utility model

Ref document number: 3750648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131216

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

EXPY Cancellation because of completion of term
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371