JP2017051892A - Gas-liquid mixer and gas-liquid mixing method - Google Patents

Gas-liquid mixer and gas-liquid mixing method Download PDF

Info

Publication number
JP2017051892A
JP2017051892A JP2015176462A JP2015176462A JP2017051892A JP 2017051892 A JP2017051892 A JP 2017051892A JP 2015176462 A JP2015176462 A JP 2015176462A JP 2015176462 A JP2015176462 A JP 2015176462A JP 2017051892 A JP2017051892 A JP 2017051892A
Authority
JP
Japan
Prior art keywords
liquid
gas
component
stored
packed bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015176462A
Other languages
Japanese (ja)
Inventor
伸二 富田
Shinji Tomita
伸二 富田
大祐 永田
Daisuke Nagata
大祐 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
Air Liquide SA
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide SA, LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical Air Liquide SA
Priority to JP2015176462A priority Critical patent/JP2017051892A/en
Priority to PCT/EP2016/070932 priority patent/WO2017042148A1/en
Priority to CN201680048548.0A priority patent/CN107921385A/en
Publication of JP2017051892A publication Critical patent/JP2017051892A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/232Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles
    • B01F23/2322Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using flow-mixing means for introducing the gases, e.g. baffles using columns, e.g. multi-staged columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4522Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through porous bodies, e.g. flat plates, blocks or cylinders, which obstruct the whole diameter of the tube

Abstract

PROBLEM TO BE SOLVED: To prepare a uniform mixture liquid from stable gas-liquid mixture, and to secure the feed of the mixture liquid in a stable condition even when there is a sudden change in characteristics such as the flow rate, pressure, or temperature of gas components or liquid components upon the gas-liquid mixture of gas components with liquid components.SOLUTION: A gas-liquid mixer comprises a top stage 10, having a gas introducer 1 and a liquid introducer 2 that introduce a gas component G and a liquid component L and a distributer 3 that distributes the gas component G and the liquid component L, a packed bed 20, and a bottom stage 30 having a mixture liquid reservoir 4 and a mixture liquid feeder 5, and has a liquid extractor T capable of extracting a part of the liquid component L stored in a liquid reservoir 3a and a flow rate adjuster V1 of the liquid component L to extract a part of the liquid component L stored in the liquid reservoir 3a, so that the liquid level height h of the liquid reservoir 3a is rapidly controlled and adjusted by an extraction amount of the liquid component L. A mixture liquid M extracted out of the bottom stage 30 is fed out by a feed-out pump 6.SELECTED DRAWING: Figure 1

Description

本発明は、気液混合装置および気液混合方法に関し、具体的には、例えば貯留用タンクに収容された液化天然ガス(以下「LNG」ということがある)の供送時において、分離した気体成分としてのボイルオフガス(以下「BOG」ということがある)と液体成分としてのLNGを気液混合する場合等に用いる気液混合装置および気液混合方法に関するものである。   The present invention relates to a gas-liquid mixing apparatus and a gas-liquid mixing method, and specifically, for example, a separated gas when a liquefied natural gas (hereinafter sometimes referred to as “LNG”) stored in a storage tank is supplied. The present invention relates to a gas-liquid mixing apparatus and a gas-liquid mixing method used for gas-liquid mixing of boil-off gas as a component (hereinafter sometimes referred to as “BOG”) and LNG as a liquid component.

天然ガス(NG)は、輸送や貯蔵の利便性などのため、液化天然ガス(LNG)として貯蔵され、これを気化した後に、主として火力発電用や都市ガス用として用いられる。貯蔵されたLNGを各地に搬送する場合、低温の液化ガスとして貯蔵タンクからタンクローリー車等に移送される。このとき、低温で貯蔵されたLNGは、貯蔵タンク内あるいは移送流路内の終端部や停留部において、その一部が気化してBOGを発生している。こうしたBOGは、環境への配慮や経済的損失を防ぐために高圧・低温条件で回収されることが好ましく、種々の回収装置が提案され、実施されている。   Natural gas (NG) is stored as liquefied natural gas (LNG) for convenience of transportation and storage, and after being vaporized, it is mainly used for thermal power generation and city gas. When transporting the stored LNG to various places, it is transferred as a low-temperature liquefied gas from the storage tank to a tank truck or the like. At this time, a part of the LNG stored at a low temperature is vaporized and generates BOG in the terminal part or the stopping part in the storage tank or in the transfer channel. Such BOG is preferably recovered under high pressure and low temperature conditions in order to prevent environmental considerations and economic loss, and various recovery devices have been proposed and implemented.

例えば、供送先端部において生成されたすべてのBOGを再液化させ、供送されるLNGの残り部分と混合する装置(およびその関連制御部)として、図6に例示するBOG再凝縮器が挙げられる(例えば、特許文献1参照)。具体的には、容器115を含む再凝縮器は、互いに干渉しない2つのゾーンからなる。収容する容器115の上部に位置する再凝縮充填物接触ゾーン111には、充填層107が配設され、そこでBOG圧縮排出路114から供送されたBOGが、LPポンプ132の排出路から取り出されたLNG122と接触し再凝縮する。収容する容器115の下部に位置する下部貯留ゾーン112は、HPポンプに対して液体維持ドラムとして働き、そこでLNGの余剰分123が、レベル制御バルブを介して最大容量の半分量以上導入される。最大容量の半分量からのLNGの余剰分は、流量制御用バイパス124を介して再凝縮器をバイパスする。ここで、108,109は仕切弁、125は保守用バイパス、126はHPポンプ流通流路、127はキックバック流路、128はLNG排出流路、129は排出LNGのHPポンプへの流路、130は封入ガス流路、133は制御流通路接続流路を示す。   For example, the BOG recondenser illustrated in FIG. 6 is an example of a device (and its associated control unit) that reliquefies all BOG generated at the delivery tip and mixes it with the rest of the delivered LNG. (See, for example, Patent Document 1). Specifically, the recondenser including the container 115 consists of two zones that do not interfere with each other. A packed bed 107 is disposed in the recondensed packing contact zone 111 located at the upper part of the container 115 to be accommodated, and the BOG fed from the BOG compression discharge path 114 is taken out from the discharge path of the LP pump 132. Contact with LNG122 and recondensate. The lower storage zone 112 located at the lower part of the containing container 115 serves as a liquid maintenance drum for the HP pump, where excess LNG 123 is introduced through the level control valve by more than half the maximum capacity. The excess of LNG from half of the maximum capacity bypasses the recondenser via the flow control bypass 124. Here, 108 and 109 are gate valves, 125 is a maintenance bypass, 126 is an HP pump flow passage, 127 is a kickback passage, 128 is an LNG discharge passage, 129 is a passage to the HP pump of the discharge LNG, Reference numeral 130 denotes an enclosed gas flow path, and 133 denotes a control flow path connection flow path.

欧州特許出願公開第2372231号明細書European Patent Application Publication No. 2372231

しかし、上記再凝縮器のような気液接触による気液混合装置や気液混合方法では、以下のような種々の課題が生じることがあった。
(i)LNGの流量は、BOGの流量に基づいて制御されるとともに、再凝縮器(リコンデンサ)下部の液面を一定に保つために、LNGの一部が当該下部液層に直接導入される。こうした条件において、BOGの流量が急激に変化した場合(例えば供送源の貯蔵タンクにLNGが充填された場合等)、それに応じて充填層上部に導入されるLNGの流量を変動させるが、充填層を経由して下部液層に流下するまでに所定の時間がかかり、その遅れ時間の後に下部液層の増量が発生する。しかしながら下部液層に直接導入されるLNGの流量は、この変動に追随することができず、液面の一時的なシフトおよびこれに伴う気液混合部の圧力変動(オーバーシュートまたはアンダーシュート)が生じることがあった。下部液層からの取出し量の変動に伴う気液混合部の圧力変動および導入LNGの流量の変動が発生した場合も同様である。
(ii)また、BOGの流量が急激に変化した場合、再凝縮器上段に導入されるLNGの流量と下部液層に導入されるLNGの流量のバランスが大きく崩れ、LNG供送用ポンプのヘッドに掛かる負荷のアンバランスによって供送量の安定性に影響を与える可能性があった。
(iii)さらに、例えばBOGの流量が急激に増加した場合、再凝縮器の上段に導入されたLNGの温度は急激に上昇し、加温されたLNGが直接下部液層に流下し、下部液層の温度が上昇する。このとき、再凝縮器の下部から取り出される混合液の供送に用いられるポンプの運転に必要なNPSH(正味吸込みヘッド)が確保できずにキャビテーションが発生し供送量の安定性に影響を与える可能性があった。BOGの温度が急激に上昇した場合においても同様である。
(iv)また、こうした課題は、気体成分としてBOGと液体成分としてLNGの場合に限らず、同一成分の気液における気体成分としてアンモニアガスと液体成分として液化アンモニアの気液混合やメタンガスと液化メタンの気液混合、あるいは複数の成分からなる灯油やナフサ(ガソリン)等の石油精製製品における気液混合、また天然ガスの熱量調整の場合に用いられる気体窒素とLNGのように異なる成分の気液混合等に用いる気液混合装置および気液混合方法に関しても同様である。
However, in the gas-liquid mixing apparatus and the gas-liquid mixing method using gas-liquid contact such as the above-mentioned recondenser, the following various problems may occur.
(I) The flow rate of LNG is controlled based on the flow rate of BOG, and a part of LNG is directly introduced into the lower liquid layer in order to keep the liquid level below the recondenser (recapacitor) constant. The Under these conditions, when the flow rate of BOG changes abruptly (for example, when the storage tank of the supply source is filled with LNG), the flow rate of LNG introduced into the upper part of the packed bed is changed accordingly. It takes a predetermined time to flow down to the lower liquid layer through the layer, and the increase in the lower liquid layer occurs after the delay time. However, the flow rate of LNG introduced directly into the lower liquid layer cannot follow this fluctuation, and there is a temporary shift of the liquid level and the accompanying pressure fluctuation (overshoot or undershoot) of the gas-liquid mixing section. It sometimes occurred. The same applies to the occurrence of fluctuations in the pressure of the gas-liquid mixing part and the flow rate of the introduced LNG due to fluctuations in the amount taken out from the lower liquid layer.
(Ii) Also, when the flow rate of BOG changes rapidly, the balance between the flow rate of LNG introduced into the upper stage of the recondenser and the flow rate of LNG introduced into the lower liquid layer is greatly disrupted, and the head of the pump for LNG delivery There was a possibility that the stability of the supply amount could be affected by the load imbalance.
(Iii) Further, for example, when the flow rate of BOG suddenly increases, the temperature of the LNG introduced into the upper stage of the recondenser rises rapidly, and the heated LNG flows down directly into the lower liquid layer. The temperature of the layer rises. At this time, NPSH (net suction head) necessary for the operation of the pump used to deliver the mixed liquid taken out from the lower part of the recondenser cannot be secured, and cavitation occurs, which affects the stability of the delivery amount. There was a possibility. The same applies when the temperature of the BOG rises rapidly.
(Iv) These problems are not limited to the case of BOG as the gas component and LNG as the liquid component, but the gas component of the same component gas-liquid mixture of ammonia gas and liquefied ammonia as liquid component or methane gas and liquefied methane Gas-liquid mixing, or gas-liquid mixing in petroleum refined products such as kerosene and naphtha (gasoline) consisting of multiple components, and gas-liquid with different components such as gaseous nitrogen and LNG used for adjusting the calorific value of natural gas The same applies to the gas-liquid mixing apparatus and the gas-liquid mixing method used for mixing and the like.

本発明の目的は、気体成分と該気体成分よりも低温状態の液体成分の気液混合に際して、気体成分あるいは液体成分の流量や圧力あるいは温度等特性の急激な変動があっても、安定な気液混合による均一な混合液を作製し、安定した条件で混合液の供送を確保することができる気液混合装置および気液混合方法を提供することにある。   The object of the present invention is to provide a stable gas mixture even when there is a sudden change in characteristics such as the flow rate, pressure or temperature of the gas component or the liquid component during gas-liquid mixing of the gas component and the liquid component at a lower temperature than the gas component. An object of the present invention is to provide a gas-liquid mixing apparatus and a gas-liquid mixing method capable of producing a uniform liquid mixture by liquid mixing and ensuring the supply of the liquid mixture under stable conditions.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、以下に示す気液混合装置および気液混合方法によって上記目的を達成できることを見出し、本発明を完成するに到った。   As a result of intensive studies to solve the above problems, the present inventors have found that the above object can be achieved by the following gas-liquid mixing apparatus and gas-liquid mixing method, and have completed the present invention. .

本発明に係る気液混合装置は、気体成分が導入される気体導入部、供送された液体成分が導入される液体導入部と、導入された前記気体成分および前記液体成分がそれぞれ分配される分配部と、を有する上段部と、
前記分配部において分配された気体成分および液体成分が分散して導入され、気液接触により気体成分を液体成分に溶解または凝縮させて気液混合させる充填層と、
該充填層の下部に設けられ、気液混合された混合液が貯留される混合液貯留部と、貯留された混合液が供出される混合液供出部と、を有する下段部と、を備えるとともに、
前記分配部において、導入された前記液体成分を貯留する液体貯留部と、該液体貯留部の底部に設けられ貯留された液体成分を分配する複数の液体分配用孔部と、貯留された液体成分と非接触に前記上段部空間と前記充填層上部空間を前記気体成分が流通する複数の気体分配用管部と、該液体貯留部の液面高さを検知する液面計と、該液面高さを調整する液面調整部と、を有し、
前記液面調整部が、前記液体貯留部に貯留された液体成分の一部の取り出し可能な液体抜取部と該液体成分の流量調整部を有し、前記液体貯留部の液面高さが、該液体成分の取り出し量によって制御・調整されることを特徴とする。
In the gas-liquid mixing device according to the present invention, a gas introduction part into which a gas component is introduced, a liquid introduction part into which a supplied liquid component is introduced, and the introduced gas component and liquid component are respectively distributed. An upper part having a distribution part;
The gas component and the liquid component distributed in the distribution unit are introduced in a dispersed manner, and the gas component is dissolved or condensed by gas-liquid contact to dissolve or condense the gas component and gas-liquid mixing,
A lower stage portion provided at a lower portion of the packed bed and having a mixed liquid storage portion for storing a mixed liquid that has been gas-liquid mixed and a mixed liquid supply portion for discharging the stored mixed liquid; ,
In the distribution unit, a liquid storage unit for storing the introduced liquid component, a plurality of liquid distribution holes provided at the bottom of the liquid storage unit for distributing the stored liquid component, and the stored liquid component A plurality of gas distribution pipe parts through which the gas component flows through the upper part space and the packed bed upper space in a non-contact manner, a liquid level gauge for detecting the liquid level of the liquid storage part, and the liquid level A liquid level adjustment unit for adjusting the height,
The liquid level adjustment unit has a liquid extraction unit from which a part of the liquid component stored in the liquid storage unit can be taken out and a flow rate adjustment unit of the liquid component, and the liquid level of the liquid storage unit is It is controlled and adjusted according to the amount of the liquid component taken out.

また、本発明は、供送された気体成分と液体成分を、充填層を用いて気液接触させ、該気体成分を該液体成分に溶解または凝縮させて気液混合する気液混合方法であって、以下の工程
(1)前記充填層の上流段において、導入された前記気体成分および前記液体成分が、それぞれ分配部によって分配され、
(2)分配された気体成分および液体成分が分散して導入された前記充填層において、気液混合され、
(3)前記充填層の下流段において、気液混合された混合液が貯留され、貯留された混合液が供出されるとともに、
(4)前記分配部において、導入された前記液体成分が、液体貯留部に貯留され、貯留された液体成分が該液体貯留部の底部に設けられた複数の液体分配用孔部によって分配されて前記充填層に導入されるとともに、導入された前記気体成分が、前記液体貯留部に近接して設けられた複数の気体分配用管部を介して貯留された液体成分と非接触に前記上流段の空間から前記充填層に導入され、
(5)前記液体貯留部に貯留された液体成分の一部が取り出され、該液体貯留部の液面高さが、該液体成分の取り出し量によって制御・調整されることを特徴とする。
In addition, the present invention is a gas-liquid mixing method in which a gas component and a liquid component supplied are brought into gas-liquid contact using a packed bed, and the gas component is dissolved or condensed in the liquid component to be gas-liquid mixed. Then, in the following step (1), in the upstream stage of the packed bed, the introduced gas component and the liquid component are respectively distributed by the distribution unit,
(2) In the packed bed in which the distributed gas component and liquid component are dispersedly introduced, gas-liquid mixing is performed;
(3) In the downstream stage of the packed bed, the gas-liquid mixed liquid mixture is stored, and the stored liquid mixture is supplied,
(4) In the distribution unit, the introduced liquid component is stored in the liquid storage unit, and the stored liquid component is distributed by a plurality of liquid distribution holes provided at the bottom of the liquid storage unit. The upstream stage is introduced into the packed bed, and the introduced gas component is in non-contact with the liquid component stored via a plurality of gas distribution pipe portions provided in proximity to the liquid storage portion. Is introduced into the packed bed from the space of
(5) A part of the liquid component stored in the liquid storage part is taken out, and the liquid level of the liquid storage part is controlled and adjusted by the amount of the liquid component taken out.

上記のように、充填層を用いて気液接触させ、均一な混合液を作製し、安定した特性(圧力・温度等)で取り出すことは、供送される気体成分あるいは液体成分の流量や特性が変動する場合においては、非常に難しい場合がある。本発明者は、充填層の上段(上流段)において、導入された液体成分を、所定の液面高さを有するように貯留可能な分配部を配設するとともに、貯留された液体成分の一部を取り出して、その取り出し量を調整することによって迅速に液体貯留部の液面高さを制御・調整することができる。具体的には、例えば液体分配用孔部とは別に、常に所定量を抜取り可能な液体抜取部を設け、気体成分が増加(減少)した場合、抜取り量を直ちに減少(増加)させることによって、液面高さを上昇(低下)させ充填層に供給する液体成分を迅速に増量(減量)することができる。これによって、充填部における気液混合条件を安定化させ、気体成分の流量や圧力あるいは温度等特性の急激な変動があっても、均一な混合液を作製し、安定した条件での混合液の供送を確保することができる気液混合装置および気液混合方法を提供すること可能となった。また、従前の課題であった液面の一時的なシフトおよびこれに伴う気液混合部の圧力変動を防ぐことができる。と同時に、例えば気体成分BOGと液体成分LNGの場合、気体成分より低温状態の液体成分の気液混合となり、BOG流量の急激な増加に伴う混合されるLNGの温度上昇を緩和することができ、安定的に均一な混合液を作製することが可能となった。なお、気体窒素とLNGのように低温の気体窒素とこれより高温状態のLNGの気液混合の場合には、気体窒素の温度上昇を緩和することができる。   As mentioned above, using a packed bed to make gas-liquid contact, producing a uniform mixed liquid, and taking it out with stable characteristics (pressure, temperature, etc.), the flow rate and characteristics of the delivered gas component or liquid component It can be very difficult when fluctuates. The inventor arranges a distribution unit capable of storing the introduced liquid component so as to have a predetermined liquid level height in the upper stage (upstream stage) of the packed bed, and also provides one of the stored liquid components. The liquid level of the liquid storage part can be quickly controlled and adjusted by taking out the part and adjusting the take-out amount. Specifically, for example, apart from the liquid distribution hole, a liquid extraction part that can always extract a predetermined amount is provided, and when the gas component increases (decreases), the extraction amount is immediately decreased (increased), It is possible to increase (decrease) the liquid component supplied to the packed bed by increasing (decreasing) the liquid surface height. This stabilizes the gas-liquid mixing conditions in the filling section, and even if there is a sudden change in characteristics such as the flow rate, pressure, or temperature of the gas component, a uniform mixed liquid is produced. It has become possible to provide a gas-liquid mixing apparatus and a gas-liquid mixing method that can ensure the delivery. Moreover, the temporary shift of the liquid level and the accompanying pressure fluctuation of the gas-liquid mixing part, which were the conventional problems, can be prevented. At the same time, for example, in the case of the gas component BOG and the liquid component LNG, it becomes gas-liquid mixing of the liquid component at a lower temperature than the gas component, and the temperature rise of the mixed LNG due to a rapid increase in the BOG flow rate can be mitigated, It became possible to produce a uniform mixed solution stably. In addition, in the case of gas-liquid mixing of low temperature gaseous nitrogen and higher temperature LNG like gaseous nitrogen and LNG, the temperature rise of gaseous nitrogen can be relieved.

本発明は、供送された気体成分が導入される気体導入部と、供送された液体成分が導入される液体導入部と、導入された前記気体成分および前記液体成分がそれぞれ分配される分配部と、を有する上段部と、
前記分配部において分配された気体成分および液体成分が分散して導入され、気液接触により気体成分を液体成分に溶解または凝縮させて気液混合させる充填層と、
該充填層の下部に設けられ、気液混合された混合液が貯留される混合液貯留部と、貯留された混合液が供出される混合液供出部と、を有する下段部と、を備えるとともに、
前記分配部において、導入された前記液体成分を貯留する液体貯留部と、該液体貯留部の底部に設けられ貯留された液体成分を分配する複数の液体分配用孔部と、貯留された液体成分と非接触に前記上段部空間と前記充填層上部空間を前記気体成分が流通する複数の気体分配用管部と、該液体貯留部の液面高さを検知する液面計と、該液面高さを調整する液面調整部と、を有し、
前記液面調整部が、液体貯留部に貯留された液体成分の一部の取り出し可能な液体抜取部と、該取り出し量の流量調整部と、取り出された液体成分の一部を再度前記液体貯留部に還流する還流部と、該還流液の流量調整部を有し、前記液体貯留部の液面高さが、該液体成分の取り出し量および還流される液体成分の還流流量によって制御・調整されることを特徴とする。
The present invention provides a gas introduction part into which a supplied gas component is introduced, a liquid introduction part into which a supplied liquid component is introduced, and a distribution in which the introduced gas component and the liquid component are respectively distributed. An upper stage having a portion,
The gas component and the liquid component distributed in the distribution unit are introduced in a dispersed manner, and the gas component is dissolved or condensed by gas-liquid contact to dissolve or condense the gas component and gas-liquid mixing,
A lower stage portion provided at a lower portion of the packed bed and having a mixed liquid storage portion for storing a mixed liquid that has been gas-liquid mixed and a mixed liquid supply portion for discharging the stored mixed liquid; ,
In the distribution unit, a liquid storage unit for storing the introduced liquid component, a plurality of liquid distribution holes provided at the bottom of the liquid storage unit for distributing the stored liquid component, and the stored liquid component A plurality of gas distribution pipe parts through which the gas component flows through the upper part space and the packed bed upper space in a non-contact manner, a liquid level gauge for detecting the liquid level of the liquid storage part, and the liquid level A liquid level adjustment unit for adjusting the height,
The liquid level adjustment unit is capable of taking out a part of the liquid component stored in the liquid storage unit, a flow rate adjustment unit for the amount to be taken out, and a part of the extracted liquid component in the liquid storage again. A liquid reflux part and a flow rate adjustment part for the reflux liquid, and the liquid level of the liquid storage part is controlled and adjusted by the amount of liquid component taken out and the reflux flow rate of the liquid component to be refluxed. It is characterized by that.

また、本発明は、供送された気体成分と液体成分を、充填層を用いて気液接触させ、該気体成分を該液体成分に溶解または凝縮させて気液混合する気液混合方法であって、以下の工程
(1)前記充填層の上流段において、導入された前記気体成分および前記液体成分が、それぞれ分配部によって分配され、
(2)分配された気体成分および液体成分が分散して導入された前記充填層において、気液混合され、
(3)前記充填層の下流段において、気液混合された混合液が貯留され、貯留された混合液が供出されるとともに、
(4)前記分配部において、導入された前記液体成分が、液体貯留部に貯留され、貯留された液体成分が該液体貯留部の底部に設けられた複数の液体分配用孔部によって分配されて前記充填層に導入されるとともに、導入された前記気体成分が、前記液体貯留部に近接して設けられた複数の気体分配用管部を介して貯留された液体成分と非接触に前記上流段の空間から前記充填層に導入され、
(5)前記液体貯留部に貯留された液体成分の一部が取り出されるとともに、取り出された液体成分の一部が再度液体貯留部に還流され、該液体貯留部の液面高さが、該液体成分の取り出し量および還流される液体成分の還流流量によって制御・調整されることを特徴とする。
In addition, the present invention is a gas-liquid mixing method in which a gas component and a liquid component supplied are brought into gas-liquid contact using a packed bed, and the gas component is dissolved or condensed in the liquid component to be gas-liquid mixed. Then, in the following step (1), in the upstream stage of the packed bed, the introduced gas component and the liquid component are respectively distributed by the distribution unit,
(2) In the packed bed in which the distributed gas component and liquid component are dispersedly introduced, gas-liquid mixing is performed;
(3) In the downstream stage of the packed bed, the gas-liquid mixed liquid mixture is stored, and the stored liquid mixture is supplied,
(4) In the distribution unit, the introduced liquid component is stored in the liquid storage unit, and the stored liquid component is distributed by a plurality of liquid distribution holes provided at the bottom of the liquid storage unit. The upstream stage is introduced into the packed bed, and the introduced gas component is in non-contact with the liquid component stored via a plurality of gas distribution pipe portions provided in proximity to the liquid storage portion. Is introduced into the packed bed from the space of
(5) A part of the liquid component stored in the liquid storage part is taken out, and a part of the taken out liquid component is recirculated to the liquid storage part, and the liquid level of the liquid storage part is It is characterized by being controlled and adjusted by the amount of liquid component taken out and the reflux flow rate of the liquid component to be refluxed.

上記のように、液体貯留部に貯留された液体成分の一部を取り出すことによって、液体貯留部の液面高さは迅速に調整することができる。一方、取り出された液体成分は、当該気液混合装置から供出される混合液に添加することができるとともに、気液混合装置に供送される原料液体成分として使用することができる。本発明は、さらに、これを液体貯留部に還流させることによって、その液面高さの調整幅を拡大し導入される気体成分の急激な変動に対する高い緩衝機能を得ることが可能となった。   As described above, by removing a part of the liquid component stored in the liquid storage part, the liquid level of the liquid storage part can be quickly adjusted. On the other hand, the taken-out liquid component can be added to the liquid mixture supplied from the gas-liquid mixing apparatus and can be used as a raw material liquid component supplied to the gas-liquid mixing apparatus. Furthermore, the present invention makes it possible to obtain a high buffering function against abrupt fluctuations in the introduced gas component by expanding the adjustment range of the liquid surface height by returning it to the liquid reservoir.

本発明に係る気液混合装置の第1構成例を示す概略図Schematic which shows the 1st structural example of the gas-liquid mixing apparatus which concerns on this invention. 本発明に係る気液混合装置の第2構成例を示す概略図Schematic which shows the 2nd structural example of the gas-liquid mixing apparatus which concerns on this invention. 本発明に係る気液混合装置の第3構成例を示す概略図Schematic which shows the 3rd structural example of the gas-liquid mixing apparatus which concerns on this invention. 本発明に係る気液混合装置を用いた装置内圧力変動緩衝機能の検証結果を例示する説明図Explanatory drawing which illustrates the verification result of the apparatus internal pressure fluctuation buffer function using the gas-liquid mixing apparatus according to the present invention 本発明に係る気液混合装置を用いた装置内圧力変動緩衝機能の検証結果を例示する説明図Explanatory drawing which illustrates the verification result of the apparatus internal pressure fluctuation buffer function using the gas-liquid mixing apparatus according to the present invention 従来技術に係る気液混合装置としてBOG再凝縮器を例示する概略図Schematic illustrating a BOG recondenser as a gas-liquid mixing device according to the prior art

<本発明に係る気液混合装置の基本構成例>
本発明に係る気液混合装置(以下「本装置」という)の基本構成例(第1構成例)の概要を、図1(A)に示し、本装置を構成する分配器3は、図1(B)に例示する。本装置は、気体成分Gと液体成分Lが導入される気体導入部1と液体導入部2と導入された気体成分Gと液体成分Lを分配する分配部3を有する上段部10と、充填層20と、混合液貯留部4と混合液供出部5を有する下段部30と、を備えるとともに、分配部3において、導入された液体成分を貯留する液体貯留部3aと、液体貯留部3aの底部に設けられ貯留された液体成分を分配する複数の液体分配用孔部3bと、貯留された液体成分と非接触に上段部空間10aと充填層上部空間20aを気体成分が流通する複数の気体分配用管部3cと、液体貯留部3aの液面高さhを検知する液面計(図示せず)と、液面高さhを調整する液面調整部と、を有する。本装置第1構成例は、当該液面調整部が、液体貯留部3aに貯留された液体成分Lの一部の取り出し可能な液体抜取部Tと液体成分Lの流量調整部V1を有することを特徴とする。下段部30から取り出された混合液Mは、供出ポンプ6によって供出される。以下、本発明の実施の形態について、図面を参照しながら説明する。
<Basic configuration example of gas-liquid mixing apparatus according to the present invention>
An outline of a basic configuration example (first configuration example) of a gas-liquid mixing apparatus (hereinafter referred to as “this device”) according to the present invention is shown in FIG. 1 (A), and a distributor 3 constituting this device is shown in FIG. Illustrated in (B). The apparatus includes a gas introduction unit 1 into which a gas component G and a liquid component L are introduced, a liquid introduction unit 2, an upper stage unit 10 having a distribution unit 3 that distributes the introduced gas component G and the liquid component L, and a packed bed. 20, a lower stage portion 30 having a mixed liquid storage portion 4 and a mixed liquid supply portion 5, a liquid storage portion 3 a for storing the introduced liquid component in the distribution portion 3, and a bottom portion of the liquid storage portion 3 a A plurality of liquid distribution holes 3b for distributing the stored liquid components and a plurality of gas distributions in which the gas components circulate in the upper stage space 10a and the packed bed upper space 20a in non-contact with the stored liquid components And a liquid level meter (not shown) for detecting the liquid level height h of the liquid storage unit 3a, and a liquid level adjusting unit for adjusting the liquid level height h. In the first configuration example of the apparatus, the liquid level adjustment unit includes a liquid extraction unit T that can partially extract the liquid component L stored in the liquid storage unit 3a and a flow rate adjustment unit V1 of the liquid component L. Features. The liquid mixture M taken out from the lower stage 30 is delivered by the delivery pump 6. Hereinafter, embodiments of the present invention will be described with reference to the drawings.

液体貯留部3aに貯留された液体成分Lの一部が取り出され、液体成分Lの取り出し量によって、液体貯留部3aの液面高さhが迅速に制御・調整されることによって、気体成分Gまたは液体成分Lの特性の過渡的な変化が生じた場合であっても、液面の一時的なシフトおよびこれに伴う気液混合部(特に充填層20)の圧力変動を防ぐことができる。このとき、常に液体成分Lの取り出しを行い、取り出し量の基準値に対して上下限値の範囲内に増減させることによって制御する方法、あるいは取り出し量なしを基準として気体成分Gの増加に伴う液体成分Lの増量に対応して取り出し量を減少させることによって制御する方法等使用するプロセスによって設定することが好ましい。   A part of the liquid component L stored in the liquid storage part 3a is taken out, and the liquid level height h of the liquid storage part 3a is rapidly controlled and adjusted by the amount of liquid component L taken out, so that the gas component G Alternatively, even when a transient change in the characteristics of the liquid component L occurs, it is possible to prevent a temporary shift of the liquid level and the accompanying pressure fluctuation of the gas-liquid mixing part (particularly the packed bed 20). At this time, the liquid component L is always taken out and controlled by increasing / decreasing it within the range of the upper and lower limit values with respect to the reference value of the extraction amount, or the liquid accompanying the increase in the gas component G on the basis of no extraction amount It is preferable to set according to the process to be used, such as a method of controlling by reducing the extraction amount corresponding to the increase of the component L.

液面調整機能として、液体抜取部Tと流量調整部V1を備えた装置であって、液体成分Lの取り出し量を制御することによって、液面高さhが調整される。液体貯留部3aに液面計(図示せず)以外の部材を設けることなく、液面高さhの調整機能を確保することができるとともに、取り出された液体成分Lの活用を図ることができる。例えば、抜き取られた液体成分Lは、流量調整部V1によって流量調整され、図中の実線に示す液体抜取部Tを介して混合液供出部5を流通する混合液Mに添加することによって、異なる成分の気液混合の場合において供出される混合液Mの液温および純度を調整することができる。また、抜き取られた液体成分Lの一部を、図中上部破線に示すように、還流液Rとして液体導入部2を流通する液体成分Lに添加することによって、本装置に導入される液体成分Lの導入量を調整するとともに、液体貯留部3の液面高さhを調整することができる。なお、抜き取られた液体成分Lの一部を、さらに、図中下部破線に示すように、下段液体導入部Sを介して混合液貯留部4に添加することによって、混合液Mの液温および純度を調整することができる。   As a liquid level adjustment function, the apparatus includes a liquid extraction unit T and a flow rate adjustment unit V1, and the liquid level height h is adjusted by controlling the extraction amount of the liquid component L. Without providing a member other than a liquid level gauge (not shown) in the liquid reservoir 3a, the function of adjusting the liquid level height h can be secured, and the extracted liquid component L can be utilized. . For example, the extracted liquid component L is flow-adjusted by the flow adjusting unit V1, and differs by adding to the mixed liquid M flowing through the mixed liquid supply unit 5 via the liquid extracting unit T shown by the solid line in the figure. In the case of gas-liquid mixing of components, the liquid temperature and purity of the mixed liquid M to be delivered can be adjusted. In addition, as shown by the upper broken line in the drawing, a part of the extracted liquid component L is added to the liquid component L flowing through the liquid introducing portion 2 as a reflux liquid R, thereby introducing the liquid component introduced into the apparatus. While adjusting the amount of L introduced, the liquid level height h of the liquid reservoir 3 can be adjusted. In addition, as shown in the lower broken line in the figure, a part of the extracted liquid component L is further added to the mixed liquid storage section 4 via the lower liquid introducing section S, so that the liquid temperature of the mixed liquid M and Purity can be adjusted.

上段部10に導入される気体成分Gと液体成分Lは、気液接触により気体成分を液体成分に溶解または凝縮させて混合液が作製可能な気体成分と液体成分の組合せをいう。具体的には、同一物質(成分)の気体とこれが液化した液体成分、および異なる組成あるいは異なる物質の気体成分と低温状態の液体成分の組合せを挙げることができる。例えば、同一成分としてアンモニアガスと液化アンモニアの場合やメタンガスと液化メタンの場合等、あるいは複数の成分からなる灯油やナフサ(ガソリン)等の石油精製製品の気体成分と液体成分や気体成分がBOGと液体成分としてLNGの場合等が挙げられる。後者の場合、気体成分と液体成分で組成が異なるが、気液混合によって同一の液相物質を形成する。また、天然ガスの熱量調整の場合に用いられる気体窒素とLNGのように成分が異なる場合が挙げられる。以下、具体例として、BOGとLNGの場合について説明するが、これに限定されるものではない。   The gas component G and the liquid component L introduced into the upper stage part 10 refer to a combination of a gas component and a liquid component that can be prepared by dissolving or condensing the gas component into the liquid component by gas-liquid contact. Specific examples include a gas of the same substance (component) and a liquid component in which the gas is liquefied, and a combination of a gas component of a different composition or a different substance and a liquid component in a low temperature state. For example, in the case of ammonia gas and liquefied ammonia as the same component, in the case of methane gas and liquefied methane, etc., or the gas component and the liquid component or gas component of petroleum refined products such as kerosene and naphtha (gasoline) consisting of a plurality of components Examples of the liquid component include LNG. In the latter case, the composition is different between the gas component and the liquid component, but the same liquid phase substance is formed by gas-liquid mixing. Moreover, the case where components differ like gaseous nitrogen and LNG used in the case of calorie | heat amount adjustment of natural gas is mentioned. Hereinafter, the case of BOG and LNG will be described as a specific example, but the present invention is not limited to this.

本装置において、上段部10に導入された気体成分Gと液体成分Lは、上段部10においては直接的な気液接触を図ることなく、分配部3によって、それぞれ個別に均等に分散されて、充填層20に導入される。このとき、上段部10は、液体成分Lの蒸散を防止できる温度条件および気液接触が行われる充填層20と同一の圧力条件とすることが好ましい。例えばBOGとLNGの気液混合の場合は、LNGの貯蔵条件に近い低温高圧条件(例えば約−150℃,約6MPa)とすることによって、LNGの安定化とBOGの一部の液化を図り、充填層20での気液混合の効率化を図ることができる。また、導入される気体成分Gと液体成分Lの流量は、取り出される混合液Mの所望の流量によって設定される。   In this apparatus, the gas component G and the liquid component L introduced into the upper stage portion 10 are individually and evenly dispersed by the distribution unit 3 without direct gas-liquid contact in the upper stage portion 10. It is introduced into the packed bed 20. At this time, it is preferable that the upper stage portion 10 has a temperature condition that can prevent the liquid component L from evaporating and a pressure condition that is the same as that of the packed bed 20 in which gas-liquid contact is performed. For example, in the case of gas-liquid mixing of BOG and LNG, the low temperature and high pressure conditions (for example, about −150 ° C., about 6 MPa) close to the storage conditions for LNG are used to stabilize LNG and to partially liquefy BOG. The efficiency of gas-liquid mixing in the packed bed 20 can be improved. Further, the flow rates of the introduced gas component G and liquid component L are set according to a desired flow rate of the liquid mixture M to be taken out.

上段部10に設けられた分配器3は、図1(B)に例示するように、導入された液体成分Lを貯留する液体貯留部3aと、液体貯留部3aの底部に設けられた複数の液体分配用孔部3bと、導入された気体成分Gが貯留された液体成分Lと非接触に上段部空間10aと充填層20の上部空間20aを流通する複数の気体分配用管部3cと、液体貯留部3aの液面高さを検知する液面計(図示せず)と、を有する。液体貯留部3aに貯留された液体成分Lは、液体貯留部3aの底部に均等に分布された複数の液体分配用孔部3bによって、均等に分配されて充填層20に流下する。このとき、液体貯留部3aの液面高さhが一定に制御された場合には、分配された液体成分Lは、ほぼ同一の落下速度で充填層20に導入され、安定な気液混合による均一な混合液Mを作製することができる。一方気体成分Gは、気体分配用管部3cを介して貯留された液体成分Lと直接接触することなく上段部空間10aから充填層の上部空間20aに流通する。このとき、気体成分Gを均等に分配するためには、複数の気体分配管部3cを、分配器3の図1(B)の横断面(液体貯留部3aの底面)に対して均等に分布させることが好ましい。   As illustrated in FIG. 1B, the distributor 3 provided in the upper stage portion 10 includes a liquid storage portion 3a for storing the introduced liquid component L and a plurality of portions provided at the bottom of the liquid storage portion 3a. A plurality of gas distribution pipe portions 3c that flow through the upper space 10a and the upper space 20a of the packed bed 20 in a non-contact manner with the liquid distribution holes 3b and the liquid component L in which the introduced gas component G is stored; A liquid level gauge (not shown) for detecting the liquid level of the liquid storage unit 3a. The liquid component L stored in the liquid storage part 3a is evenly distributed and flows down to the packed bed 20 by the plurality of liquid distribution holes 3b distributed evenly at the bottom of the liquid storage part 3a. At this time, when the liquid level height h of the liquid storage part 3a is controlled to be constant, the distributed liquid component L is introduced into the packed bed 20 at substantially the same falling speed, and stable gas-liquid mixing is performed. A uniform mixed solution M can be produced. On the other hand, the gas component G flows from the upper space 10a to the upper space 20a of the packed bed without directly contacting the liquid component L stored via the gas distribution pipe 3c. At this time, in order to distribute the gas component G evenly, the plurality of gas distribution pipe portions 3c are evenly distributed with respect to the cross section (the bottom surface of the liquid storage portion 3a) of FIG. It is preferable to make it.

〔液面調整機能について〕
液体貯留部3aの液面高さhは、導入される液体成分Lの流量(Li)と液体分配用孔部3bから流下する液体成分Lの単位時間当りの総量(Ld)および流量調整部V1によって調整され液体抜取部Tを介して抜き取られた液体成分Lの流量によって決定される。このとき、Liの急激な増加に対する液面の一時的なシフトは、温度・圧力・両成分の流量のバランスにおいて、既述のように気液混合条件の変化を招来する。本装置は、液面上昇を防止するために、液体貯留部3aに設けられた液体抜取部Tを介して液体成分Lの一部が取り出され、液体成分Lの取り出し量によって、液体貯留部3aの液面高さhが迅速に制御・調整されることによって、充填層20での気液混合条件を図り、安定に気液混合された混合液Mを確保することができる。
[About liquid level adjustment function]
The liquid level height h of the liquid reservoir 3a is determined by the flow rate (Li) of the introduced liquid component L, the total amount (Ld) per unit time of the liquid component L flowing down from the liquid distribution hole 3b, and the flow rate adjusting unit V1. Determined by the flow rate of the liquid component L extracted through the liquid extraction portion T. At this time, a temporary shift of the liquid level with respect to a rapid increase in Li causes a change in gas-liquid mixing conditions as described above in the balance of temperature, pressure, and flow rates of both components. In this apparatus, in order to prevent the liquid level from rising, a part of the liquid component L is taken out via the liquid extraction part T provided in the liquid storage part 3a. By quickly controlling and adjusting the liquid level height h, the gas-liquid mixing conditions in the packed bed 20 can be achieved, and the mixed liquid M that is stably gas-liquid mixed can be secured.

〔充填層について〕
充填層20は、上部から均等に分配された液体成分Lと気体成分Gがより長い時間、より広い面積で気液接触を行うことが好ましい。そのため、充填層20を形成する充填剤として、液体成分Lが内部に十分に浸透し、一時的に滞留する多孔性の非吸着性物質が好ましい。具体的には、シリカ・アルミナ系やゼオライト系の多孔性材料、あるいは低温条件においては金属製の規則充填物または不規則充填物等を挙げることができる。また、充填層20は、粒状あるいは細粉化された充填剤からなる流動層あるいはハニカム形状等の微小流通路を有する固定層を形成することによって、圧力損失の小さな状態で効率よく気液接触を行うことができる。このとき、充填層20に導入された低温状態の液体成分Lが、充填層20内を移動し充填剤の表層および充填剤間に形成される液膜において気体成分Gと接触することによって、同一成分の場合には気体成分Gを溶解させて、異なる成分の非溶解性の気体成分Gの場合には液化させて、均質な混合液Mを作製することができる。充填層20は、液体成分Lに気体成分Gが溶解・混合し易い条件として液体成分Lの沸点よりも数〜数十℃低温であることが好ましい。
[About packed bed]
In the packed bed 20, it is preferable that the liquid component L and the gas component G that are evenly distributed from the upper part make gas-liquid contact in a wider area for a longer time. Therefore, a porous non-adsorbing substance in which the liquid component L sufficiently permeates inside and temporarily stays is preferable as the filler forming the packed bed 20. Specific examples include silica / alumina-based or zeolite-based porous materials, or metal regular packing or irregular packing under low temperature conditions. In addition, the packed bed 20 is formed of a fluidized bed made of granular or finely packed filler or a fixed layer having a micro-flow passage such as a honeycomb shape, thereby enabling efficient gas-liquid contact with a small pressure loss. It can be carried out. At this time, the liquid component L in the low temperature state introduced into the packed bed 20 moves in the packed bed 20 and comes into contact with the gas component G in the liquid film formed between the surface layer of the filler and the filler. In the case of a component, the gas component G can be dissolved, and in the case of a non-soluble gas component G of a different component, it can be liquefied to produce a homogeneous mixed solution M. The packed bed 20 is preferably several to several tens of degrees C lower than the boiling point of the liquid component L as a condition that the gas component G is easily dissolved and mixed in the liquid component L.

<本発明に係る気液混合方法>
本発明に係る気液混合方法(以下「本方法」という)は、以下の工程を形成する。導入される気体成分あるいは液体成分の特性の急激な変動があっても、安定な気液混合による均一な混合液を作製し、安定した条件での混合液の供送を確保することができる。上記本装置を用いた場合を例に説明する。
(1)気体成分および液体成分の導入と分配
充填層20の上流段(上段部10)において、導入された気体成分Gおよび液体成分Lが、それぞれ分配部3によって分配される。具体的な分散機能は、工程(4)に後述する。
(2)気体成分および液体成分の混合
分配された気体成分Gおよび液体成分Lが分散して導入された充填層20において、気液混合され、混合液Mが作製される。具体的には、例えば多孔性の充填剤から形成される充填層20に導入された低温状態の液体成分Lが、充填層20内を移動し充填剤の表層および充填剤間に形成される液膜において気体成分Gと接触することによって、同一成分の場合には気体成分Gを溶解させ、異なる成分の非溶解性の気体成分Gの場合は液化させて混合液Mが作製される。
(3)混合液の供出
充填層20の下流段(下段部30)において、気液混合された混合液Mが貯留され、貯留された混合液Mが順次供出される。このとき、下段部30の混合液貯留部4上空間において、充填層20から流下する混合液Mは混合液貯留部4に貯留された混合液Mから蒸散する気体成分Gと向流接触し、該気体成分Gの溶解または混合が生じる。混合液貯留部4に貯留される混合液Mの濃縮度を維持することができる。
(4)分散部における気体成分および液体成分の分配機能
分配部3において、導入された液体成分Lが、液体貯留部3aに貯留され、貯留された液体成分Lが液体貯留部3aの底部に設けられた複数の液体分配用孔部3bによって分配されて充填層20に導入されるとともに、導入された気体成分Lが、液体貯留部3aに近接して設けられた複数の気体分配用管部3cを介して貯留された液体成分Lと非接触に上流段10の空間10aから上部空間20aを介して充填層20に導入される。気体成分Gおよび液体成分Lが均等に分配されることによって、均質な気液接触が行われ、均一な混合液Mを作製することができる。
(5)分散部における液体成分の貯留および貯留部の液面高さの調整
液体貯留部3aの液面高さhは、液体貯留部3aに貯留された液体成分Lの一部が取り出され、該液体成分Lの取り出し量によって制御・調整される。基本的には、一定の液面高さhoを確保するように制御・調整される。ただし、急激な特性変動が生じた場合には、過渡的な充填層20内の圧力変動が生じないように、短時間での液面高さhを基準となる液面高さhoからズレた高さに制御・調整されることがある。
<Gas-liquid mixing method according to the present invention>
The gas-liquid mixing method according to the present invention (hereinafter referred to as “the present method”) forms the following steps. Even if there is a sudden change in the characteristics of the introduced gas component or liquid component, it is possible to produce a uniform mixed solution by stable gas-liquid mixing and ensure the supply of the mixed solution under stable conditions. A case where the present apparatus is used will be described as an example.
(1) Introduction of gas component and liquid component In the upstream stage (upper stage part 10) of the distribution packed bed 20, the introduced gas component G and liquid component L are distributed by the distribution part 3, respectively. A specific distribution function will be described later in step (4).
(2) Mixing and distributing the gas component and liquid component In the packed bed 20 into which the distributed gas component G and liquid component L are dispersed and introduced, gas-liquid mixing is performed to produce a mixed solution M. Specifically, for example, a liquid component L in a low-temperature state introduced into the packed bed 20 formed of a porous filler moves through the packed bed 20 and is formed between the surface layer of the filler and the filler. By contacting the gas component G in the membrane, the gas component G is dissolved in the case of the same component, and in the case of the insoluble gas component G of a different component, it is liquefied to produce a mixed solution M.
(3) Delivery of mixed liquid In the downstream stage (lower stage part 30) of the packed bed 20, the mixed liquid M that has been gas-liquid mixed is stored, and the stored mixed liquid M is sequentially delivered. At this time, in the space above the mixed liquid reservoir 4 in the lower stage 30, the mixed liquid M flowing down from the packed bed 20 is in countercurrent contact with the gas component G that evaporates from the mixed liquid M stored in the mixed liquid reservoir 4. Dissolution or mixing of the gaseous component G occurs. The concentration of the liquid mixture M stored in the liquid mixture storage unit 4 can be maintained.
(4) In the distribution function distribution unit 3 for the gas component and the liquid component in the dispersion unit, the introduced liquid component L is stored in the liquid storage unit 3a, and the stored liquid component L is provided at the bottom of the liquid storage unit 3a. A plurality of gas distribution pipe portions 3c provided in the vicinity of the liquid storage portion 3a while being introduced into the packed bed 20 by being distributed by the plurality of liquid distribution hole portions 3b. Is introduced from the space 10a of the upstream stage 10 into the packed bed 20 via the upper space 20a in a non-contact manner with the liquid component L stored via the. By evenly distributing the gas component G and the liquid component L, uniform gas-liquid contact is performed, and a uniform mixed solution M can be produced.
(5) Liquid component storage in the dispersion part and adjustment of the liquid surface height of the storage part The liquid surface height h of the liquid storage part 3a is obtained by extracting a part of the liquid component L stored in the liquid storage part 3a, It is controlled and adjusted according to the amount of liquid component L taken out. Basically, it is controlled and adjusted so as to ensure a constant liquid level height ho. However, when a sudden characteristic change occurs, the liquid level height h in a short time is deviated from the reference liquid level height ho so as not to cause a transient pressure fluctuation in the packed bed 20. May be controlled and adjusted to height.

<本装置の他の構成例>
本装置の他の構成例として、上記第1構成例を基本とし、液体貯留部3aに貯留された液体成分Lの一部の取り出し可能な液体抜取部Tと、該取り出し量を調整する流量調整部V1と、取り出された液体成分Lの一部を再度液体貯留部3aに還流する還流部Rと、該還流液の流量調整部V2を有する構成によって液面高さhの調整が機能する装置の概要を、図2に示す(第2構成例)。液体貯留部3aに貯留された液体成分の一部が取り出され、液体貯留部3aの液面高さhが、該液体成分Lの取り出し量および還流される液体成分(還流液R)の還流流量によって調整・制御されることによって、気体成分Gまたは液体成分Lの特性の過渡的な変化が生じた場合であっても、液面の一時的なシフトおよびこれに伴う気液混合部(充填層20)の圧力変動を防ぐことができる。本装置第2構成例では、液体抜取部Tから取り出された液体成分Lを、下段液体導入部Sを介して混合液貯留部4に添加し、その流量を流量調整部V3によって調整する構成を有することによって、混合液Mの液温および純度を調整することができる。
<Other configuration examples of the apparatus>
As another configuration example of the present apparatus, the first configuration example is basically used, and a part of the liquid component L stored in the liquid storage unit 3a can be extracted, and the flow rate adjustment for adjusting the extraction amount An apparatus in which the adjustment of the liquid level height h functions by the configuration including the part V1, the reflux part R that recirculates a part of the extracted liquid component L to the liquid storage part 3a, and the flow rate adjustment part V2 of the reflux liquid. FIG. 2 shows an outline of (second configuration example). A part of the liquid component stored in the liquid storage part 3a is taken out, and the liquid level height h of the liquid storage part 3a is determined so that the extraction amount of the liquid component L and the reflux flow rate of the liquid component to be refluxed (reflux liquid R). Even if a transient change in the characteristics of the gas component G or the liquid component L occurs due to the adjustment and control by the above, the liquid level temporarily shifts and the gas-liquid mixing section (packed bed) associated therewith 20) pressure fluctuation can be prevented. In the second configuration example of the apparatus, the liquid component L extracted from the liquid extraction unit T is added to the mixed liquid storage unit 4 via the lower liquid introduction unit S, and the flow rate is adjusted by the flow rate adjustment unit V3. By having it, the liquid temperature and purity of the liquid mixture M can be adjusted.

〔本装置第2構成例を用いた気液混合方法〕
本装置第2構成例を用いた場合には、上記本装置第1構成例用いた気液混合方法を基本として、以下の工程を形成する。なお、共通する内容については略する場合がある。
(1)気体成分および液体成分の導入と分配
充填層20の上流段(上段部10)において、導入された気体成分Gおよび液体成分Lが、それぞれ分配部3によって分配される。
(2)気体成分および液体成分の混合
分配された気体成分Gおよび液体成分Lが分散して導入された充填層20において、気液混合され、混合液Mが作製される。
(3)混合液の供出
充填層20の下流段(下段部30)において、気液混合された混合液Mが貯留され、貯留された混合液Mが順次供出される。
(4)分散部における気体成分および液体成分の分配機能
分配部3において、導入された液体成分Lが、液体貯留部3aに貯留され、貯留された液体成分Lが液体貯留部3aの底部に設けられた複数の液体分配用孔部3bによって分配されて充填層20に導入されるとともに、導入された気体成分Lが、液体貯留部3aに近接して設けられた複数の気体分配用管部3cを介して貯留された液体成分Lと非接触に上流段10の空間10aから上部空間20aを介して充填層20に導入される。
(5)分散部における液体成分の貯留および貯留部の液面高さの調整
液体貯留部3aの液面高さhは、液体貯留部3aに貯留された液体成分Lの一部が取り出されるとともに、取り出された液体成分Lの一部が、再度液体貯留部3aに還流され、液体成分Lの取り出し量および還流される液体成分の還流流量によって制御・調整される。
[Gas-liquid mixing method using the second configuration example of this apparatus]
When the second configuration example of the apparatus is used, the following steps are formed on the basis of the gas-liquid mixing method using the first configuration example of the apparatus. Common contents may be omitted.
(1) Introduction of gas component and liquid component In the upstream stage (upper stage part 10) of the distribution packed bed 20, the introduced gas component G and liquid component L are distributed by the distribution part 3, respectively.
(2) Mixing and distributing the gas component and liquid component In the packed bed 20 into which the distributed gas component G and liquid component L are dispersed and introduced, gas-liquid mixing is performed to produce a mixed solution M.
(3) Delivery of mixed liquid In the downstream stage (lower stage part 30) of the packed bed 20, the mixed liquid M that has been gas-liquid mixed is stored, and the stored mixed liquid M is sequentially delivered.
(4) In the distribution function distribution unit 3 for the gas component and the liquid component in the dispersion unit, the introduced liquid component L is stored in the liquid storage unit 3a, and the stored liquid component L is provided at the bottom of the liquid storage unit 3a. A plurality of gas distribution pipe portions 3c provided in the vicinity of the liquid storage portion 3a while being introduced into the packed bed 20 by being distributed by the plurality of liquid distribution hole portions 3b. Is introduced from the space 10a of the upstream stage 10 into the packed bed 20 via the upper space 20a in a non-contact manner with the liquid component L stored via the.
(5) Storage of liquid component in the dispersion part and adjustment of the liquid surface height of the storage part The liquid surface height h of the liquid storage part 3a is obtained while a part of the liquid component L stored in the liquid storage part 3a is taken out. A part of the extracted liquid component L is recirculated to the liquid storage unit 3a again, and is controlled and adjusted by the amount of liquid component L extracted and the recirculation flow rate of the liquid component to be recirculated.

<本装置の第3構成例>
本装置の第3の構成例として、上記第1構成例を基本とし、分配部3において、液体成分Lを貯留する液体貯留部3aにおける液面高さhおよび導入された気体成分Gと液体成分Lの特性情報を指標として、液体貯留部3aの液面高さhを制御・調整することを特徴とする装置の概要を、図3(A)〜(E)に例示する。後述するように、液体貯留部3aの液面高さhは、導入された気体成分Gと液体成分Lの特性、具体的には圧力・温度・組成・流量によって変動し、安定な気液混合の障害となることがある。本装置は、図3(A),(B)のように、こうした液面の変動を防止するために、液面調整部3dを設けるとともに、その原因となる気体成分Gと液体成分Lの特性情報(圧力・温度・組成・流量)を指標として、液面高さhの調整量を制御することによって、充填層20での気液混合条件を図り、安定に気液混合された混合液Mを確保することができる。
<Third configuration example of the apparatus>
The third configuration example of the present apparatus is based on the first configuration example described above, and in the distribution unit 3, the liquid level height h and the introduced gas component G and liquid component in the liquid storage unit 3a that stores the liquid component L are provided. 3A to 3E illustrate an outline of an apparatus that controls and adjusts the liquid level height h of the liquid reservoir 3a using the L characteristic information as an index. As will be described later, the liquid level height h of the liquid reservoir 3a varies depending on the characteristics of the introduced gas component G and liquid component L, specifically, pressure, temperature, composition, and flow rate, and stable gas-liquid mixing. May become an obstacle. As shown in FIGS. 3 (A) and 3 (B), this apparatus is provided with a liquid level adjusting unit 3d in order to prevent such fluctuations in the liquid level, and the characteristics of the gas component G and liquid component L that cause it. Using the information (pressure, temperature, composition, flow rate) as an index, the amount of adjustment of the liquid level height h is controlled, so that the gas-liquid mixing conditions in the packed bed 20 are achieved, and the mixed liquid M is stably mixed. Can be secured.

具体的に、気体成分GがBOG、液体成分LがLNGの場合を例に説明する。例えば貯蔵タンクへの新規移送されたLNGの導入時における一時的なBOGの発生した場合、一時的に本装置に導入されるBOGの流量が増加し、圧力および温度が上昇し、組成の変動が生じる。このとき、BOGの流量の増加に伴い、本装置に導入されるLNGが増加し、液体貯留部3aの液面高さhは上昇する。と同時に、充填層20の内部圧力が上昇し、気液混合条件が変化する。また、温度の高いBOGの流量増加に伴い液体成分Lが加温されて液体貯留部3aに増量した状態で存在し、BOGの流量が元に戻った状態においても加温された液体成分Lが充填層20に供給され、充填層20の内部温度が上昇し、気液混合条件が変化する。ここで、過渡的な変動が充填層20における気液混合条件に与える影響は、一般に温度>圧力>流量>組成と推察される。しかし、本装置においては各要素について、以下のように影響を低減することができる。
(a)温度条件の過渡的な変化について
本装置に導入される気体成分Gの過渡的な変化は、上段部10から分配部3aを通過することによって大幅に緩和され、充填層20に導入される。特に気体成分Gは、比較的熱容量が小さいことから分配部3aにおける緩衝機能は高い。一方、液体成分Lは、比較的熱容量が大きく比較的安定性が高い。また気体成分Gの過渡的な変化、特に加温された気体成分Gとの接触に伴い加温・増量された場合、液体貯留部3aの液面高さhの調整によって液体貯留部3aでの増量を防止することによって過渡的な変化は大幅に緩和される。
(b)圧力条件の過渡的な変化について
液体成分L自体は比較的圧縮率が小さく安定性が高い。一方、気体成分Gは圧縮率が大きく充填層20における気液混合効率に対する影響が大きい。本装置は、上段部10とこれに繋がる充填層20の境界に液体貯留部3aが配設され、上段部10から充填層20へ流通する気体成分Gおよび液体成分Lのヘッドを構成する液体貯留部3aの液面高さhを調整することによって、充填層20における気体成分Gの圧力の過渡的な変化を緩衝する機能を働かせることができる。
(c)流量条件の過渡的な変化について
気体成分Gは、充填層20が流れの律速条件となることから、流量の過渡的な変化に対する影響は比較的少なく、充填層20内部での液体成分Lとの十分な気液接触時間(面積)が確保されていれば、充填層20での影響が緩和されて気液混合条件に与える影響は比較的少ない。一方、液体成分Lの充填層20への導入量(流量)は、液体貯留部3aの液面高さhに依存することから、その調整・制御が重要となる。本装置は、液面高さhが上昇しないようにあるいは上昇した液面を迅速に低下させることによって、充填層20における気液混合条件の過渡的な変動を緩和・防止し、安定に気液混合を行うことができる。
(d)組成条件の過渡的な変化について
導入される気体成分Gの組成が急激に変化した場合、元の組成自体および変化の状態によって影響が変動するが、現象として上記(a)または(b)の変化が生じた場合と同様の影響が生じると考えられる。従って、液面高さhを調整・制御することによって、充填層20における気液混合条件の過渡的な変動を緩和・防止し、安定に気液混合を行うことができる。
Specifically, the case where the gas component G is BOG and the liquid component L is LNG will be described as an example. For example, if a temporary BOG occurs during the introduction of a newly transferred LNG to the storage tank, the flow rate of the BOG that is temporarily introduced into the apparatus will increase, the pressure and temperature will rise, and the composition will vary. Arise. At this time, as the flow rate of BOG increases, LNG introduced into the apparatus increases, and the liquid level height h of the liquid reservoir 3a increases. At the same time, the internal pressure of the packed bed 20 increases and the gas-liquid mixing conditions change. In addition, the liquid component L is present in a state where the liquid component L is heated and increased in the liquid storage unit 3a with an increase in the flow rate of the high-temperature BOG, and the heated liquid component L is present even when the BOG flow rate is restored. Supplied to the packed bed 20, the internal temperature of the packed bed 20 rises, and the gas-liquid mixing conditions change. Here, the influence of the transient fluctuation on the gas-liquid mixing condition in the packed bed 20 is generally assumed to be temperature>pressure> flow rate> composition. However, in this apparatus, the influence of each element can be reduced as follows.
(A) About the transient change of the temperature condition The transient change of the gas component G introduced into the present apparatus is greatly mitigated by passing through the distribution part 3a from the upper stage part 10, and is introduced into the packed bed 20. The In particular, since the gas component G has a relatively small heat capacity, the buffering function in the distribution unit 3a is high. On the other hand, the liquid component L has a relatively large heat capacity and a relatively high stability. In addition, when the gas component G is heated and increased in accordance with a transitional change of the gas component G, particularly with the heated gas component G, the liquid level in the liquid reservoir 3a is adjusted by adjusting the liquid level height h of the liquid reservoir 3a. By preventing the increase, transient changes are greatly mitigated.
(B) About a transient change in pressure conditions The liquid component L itself has a relatively small compressibility and high stability. On the other hand, the gas component G has a large compressibility and has a great influence on the gas-liquid mixing efficiency in the packed bed 20. In this apparatus, a liquid reservoir 3a is disposed at the boundary between the upper stage portion 10 and the packed bed 20 connected thereto, and the liquid reservoir constituting the head of the gas component G and the liquid component L flowing from the upper stage portion 10 to the packed bed 20 is provided. By adjusting the liquid level height h of the part 3a, the function of buffering a transient change in the pressure of the gas component G in the packed bed 20 can be activated.
(C) About the transient change of the flow rate condition The gas component G has a relatively limited influence on the transient change of the flow rate because the packed bed 20 becomes the rate-limiting condition of the flow, and the liquid component inside the packed bed 20 If a sufficient gas-liquid contact time (area) with L is secured, the influence on the packed bed 20 is mitigated and the influence on the gas-liquid mixing conditions is relatively small. On the other hand, since the introduction amount (flow rate) of the liquid component L to the packed bed 20 depends on the liquid level height h of the liquid reservoir 3a, the adjustment / control is important. This apparatus reduces or prevents transient fluctuations in the gas-liquid mixing conditions in the packed bed 20 by preventing the liquid level height h from increasing or by rapidly lowering the raised liquid level, thereby stably stabilizing the gas liquid. Mixing can be performed.
(D) When the composition of the gas component G to be introduced is changed abruptly with respect to the transient change in the composition conditions, the influence varies depending on the original composition itself and the state of the change. ) Is considered to have the same effect. Therefore, by adjusting and controlling the liquid level height h, transient fluctuations in the gas-liquid mixing conditions in the packed bed 20 can be mitigated / prevented, and gas-liquid mixing can be performed stably.

気液混合条件を管理するこうした機能を確保するため、本装置において、気体導入部1と液体導入部2に各成分の流量測定器を配設するとともに、上段部10あるいは充填層20の上部に圧力計および温度計(図示せず)を備えることが好ましい。制御部(図示せず)によって、各計器の出力(PIC)を基に液面調整部3dの制動量が演算され、液面の高さhが調整される。気体成分Gおよび液体成分Lの特性の変化に対応し、気液混合条件の過渡的な変動を緩和・防止し、安定に気液混合を行うことができる。   In order to ensure such a function for managing the gas-liquid mixing conditions, in this apparatus, a flow rate measuring device for each component is provided in the gas introduction part 1 and the liquid introduction part 2 and is provided above the upper stage part 10 or the packed bed 20. A pressure gauge and a thermometer (not shown) are preferably provided. A control unit (not shown) calculates the braking amount of the liquid level adjusting unit 3d based on the output (PIC) of each meter, and adjusts the height h of the liquid level. Corresponding to changes in the characteristics of the gas component G and the liquid component L, transient fluctuations in the gas-liquid mixing conditions can be mitigated and prevented, and gas-liquid mixing can be performed stably.

具体的な液面調整部3dの構成は、気体成分Gあるいは液体成分Lの種類および特性によって選択することが好ましいが、本装置において適用可能な構成を、図3(C)〜(E)に例示する。無論こうした構成に限定されるものではない。
図3(C)は、上部からの気体Go(例えば不活性ガス)の導入・排出によって圧力調整可能な所定の容積を有し、液体貯留部3aに貯留する液体成分Lと連通する空間を備えた液面調整部3eを例示する。気体Goの導入量は調整バルブVoによって調整され、該空間への液体成分Lの引き込み・吐き出しによって液面高さhを調整することができる。なお、液面調整部3eにおいて、気体Goの導入に代え、減圧手段と接続し、該空間の真空度を調整することも可能である。
図3(D)は、液体貯留部3aに貯留する液体成分Lと連通し、液体成分Lが充当される空間を有するとともに、上部から該空間の圧縮・膨張を担うピストンBoが備えられた液面調整部3fを例示する。該ピストンBoの移動によって液体貯留部3aに押し出す液量あるいは吸引する液量が調整され、液面高さhを調整することができる。
図3(E)は、液体貯留部3aに貯留する液体成分Lと連通し、液体成分Lが充当されるジャバラ構造の空間を有するとともに、該空間の圧縮・膨張を担うピストンBoが備えられた液面調整部3gを例示する。該ピストンBoの移動によって液体貯留部3aに押し出す液量あるいは吸引する液量が調整され、液面高さhを調整することができる。
The specific configuration of the liquid level adjustment unit 3d is preferably selected according to the type and characteristics of the gas component G or the liquid component L, but the configurations applicable to this apparatus are shown in FIGS. Illustrate. Of course, it is not limited to such a configuration.
FIG. 3C has a predetermined volume whose pressure can be adjusted by introducing and discharging a gas Go (for example, inert gas) from above, and includes a space communicating with the liquid component L stored in the liquid storage portion 3a. The liquid level adjustment part 3e is illustrated. The introduction amount of the gas Go is adjusted by the adjusting valve Vo, and the liquid level height h can be adjusted by drawing and discharging the liquid component L into the space. In addition, in the liquid level adjustment part 3e, it replaces with introduction | transduction of gas Go and it is also possible to connect with pressure reduction means and to adjust the vacuum degree of this space.
FIG. 3 (D) shows a liquid that is connected to the liquid component L stored in the liquid storage portion 3a, has a space to which the liquid component L is applied, and includes a piston Bo that is responsible for compression / expansion of the space from above. The surface adjustment part 3f is illustrated. By moving the piston Bo, the amount of liquid pushed out to the liquid reservoir 3a or the amount of liquid to be sucked is adjusted, and the liquid level height h can be adjusted.
3 (E) is provided with a piston Bo that communicates with the liquid component L stored in the liquid storage portion 3a, has a bellows structure space to which the liquid component L is applied, and is responsible for compression / expansion of the space. The liquid level adjustment part 3g is illustrated. By moving the piston Bo, the amount of liquid pushed out to the liquid reservoir 3a or the amount of liquid to be sucked is adjusted, and the liquid level height h can be adjusted.

<液面高さ調整機能の有効性の検証>
本装置の優れた機能を検証した。具体的には、上記第1構成例に係る本装置を用い、導入される気体成分Gの流量の急激な増減に伴う充填層20の圧力変動、および液面高さhの調整(取り出し流量の調整)による過渡的な圧力変動の緩衝機能を検証した。
<Verification of the effectiveness of the liquid level adjustment function>
The excellent function of this device was verified. Specifically, by using the apparatus according to the first configuration example, the pressure fluctuation of the packed bed 20 accompanying the rapid increase / decrease in the flow rate of the introduced gas component G, and the adjustment of the liquid level height h (removal flow rate) The buffer function of transient pressure fluctuation by adjustment) was verified.

〔検証条件〕
気体成分G(BOG相当)としてメタン100%(メタンガス:温度25℃)、液体成分L(LNG相当)としてメタン100%(液化メタン:温度−160℃)を用い、混合液Mとして液化メタンを取り出す場合において、常に液化メタンの取り出しを行い、その取り出し量(バイパス流量)の増減によって液面高さhを調整する条件で検証した。メタンガス導入量の急激な増減、これに対応した液化メタンの増減,このときの液化メタンの取り出し量の増減による充填層20へ導入される液化メタンの増減の相違、および液化メタンの取り出しの有無による充填層20の圧力の増減の相違をシミュレーションして検証した。
[Verification conditions]
Using 100% methane (methane gas: temperature 25 ° C.) as the gas component G (equivalent to BOG), 100% methane (liquefied methane: temperature −160 ° C.) as the liquid component L (equivalent to LNG), and taking out liquefied methane as the mixed solution M In some cases, liquefied methane was always taken out and verified under the condition that the liquid level height h was adjusted by increasing / decreasing the take-out amount (bypass flow rate). Abrupt increase / decrease in the amount of methane gas introduced, increase / decrease in liquefied methane corresponding to this, difference in increase / decrease in liquefied methane introduced into the packed bed 20 due to increase / decrease in extraction amount of liquefied methane at this time, and presence / absence of extraction of liquefied methane The difference in increase / decrease in the pressure of the packed bed 20 was verified by simulation.

〔検証結果〕
BOGを急激に増減させた場合を設定して検証した結果、以下のように、液面高さhを調整することによって、気液混合条件の過渡的な変動に対する本装置の優れた緩和・防止機能を確認することができた。
(i)BOGが急激に増加する場合
図4(A)に例示するように、BOG(メタンガス)の流量が増加した場合、これに対応(例えば比例制御)してLNG(液化メタン)の流量が増加する。このとき、液体貯留部3aに貯留された液化メタンの一部が取り出され、バイパス流量を減少させることにより充填層20へのLNGの供給量をより迅速に増加させることができる。応答遅れが生じるが、取り出し(バイパス)を全く行わない場合と比較して、充填層20へ導入される液化メタンの流量の安定性が高く、図4(B)に例示するように、充填層20内の圧力上昇を大幅に抑えることができることが確認できた。具体的には、バイパスがない場合に比べて圧力変動幅が1.77barから1.16barに抑えられている(−34%)。また、圧力擾乱の継続時間が20分から10分に短縮された(ここで擾乱の継続時間としては、圧力が9.2barに戻るのに要する時間とした)。
(ii)BOGが急激に減少する場合
図5(A)に例示するように、BOGの流量が減少した場合、これに対応してLNGの流量を減少させるとともに、バイパス流量を一時的に増加させることにより、充填層20へのLNGの供給量をより迅速に増加させることができる。バイパス流量を全く流さない場合と比較して、充填層20へ導入される液化メタンの流量の安定性が高く、図5(B)に例示するように、充填層20内の圧力上昇を大幅に抑えることができることが確認できた。具体的には、バイパスがない場合に比べて圧力の変動が2.46barから1.47barに抑えられ(−40%)、圧力擾乱の継続時間は33分から13分に抑えられた。
〔inspection result〕
As a result of setting and verifying the case where BOG is suddenly increased / decreased, excellent mitigation / prevention of this device against transient fluctuation of gas-liquid mixing conditions by adjusting the liquid level height h as follows: I was able to confirm the function.
(I) When BOG increases rapidly As illustrated in FIG. 4A, when the flow rate of BOG (methane gas) increases, the flow rate of LNG (liquefied methane) corresponds to this (for example, proportional control). To increase. At this time, a part of the liquefied methane stored in the liquid storage unit 3a is taken out, and the supply amount of LNG to the packed bed 20 can be increased more quickly by decreasing the bypass flow rate. Although the response delay occurs, the flow rate of the liquefied methane introduced into the packed bed 20 is more stable than when no extraction (bypass) is performed. As illustrated in FIG. It was confirmed that the pressure increase within 20 could be significantly suppressed. Specifically, the pressure fluctuation range is suppressed from 1.77 bar to 1.16 bar (−34%) as compared with the case where there is no bypass. Also, the duration of the pressure disturbance was reduced from 20 minutes to 10 minutes (here, the duration of the disturbance was the time required for the pressure to return to 9.2 bar).
(Ii) When BOG suddenly decreases As illustrated in FIG. 5A, when the BOG flow rate decreases, the LNG flow rate is decreased correspondingly and the bypass flow rate is temporarily increased. As a result, the amount of LNG supplied to the packed bed 20 can be increased more quickly. Compared with the case where no bypass flow rate is flown at all, the flow rate of liquefied methane introduced into the packed bed 20 is more stable, and as shown in FIG. It was confirmed that it could be suppressed. Specifically, the pressure fluctuation was suppressed from 2.46 bar to 1.47 bar (−40%) and the duration of the pressure disturbance was suppressed from 33 minutes to 13 minutes compared to the case without bypass.

1 気体導入部
2 液体導入部
3 分配器
3a 液体貯留部
3b 液体分配用孔部
3c 気体分配用管部
4 混合液貯留部
5 混合液貯留部
6 供出ポンプ
10 上段部
10a 上段部空間
20 充填層
20a 充填層の上部空間
30 下段部
G 気体成分
h 液面高さ
L 液体成分
M 混合液
R 還流液
S 下段液体導入部
T 液体抜取部
V1 流量調整部
DESCRIPTION OF SYMBOLS 1 Gas introduction part 2 Liquid introduction part 3 Distributor 3a Liquid storage part 3b Liquid distribution hole 3c Gas distribution pipe part 4 Mixed liquid storage part 5 Mixed liquid storage part 6 Delivery pump 10 Upper stage part 10a Upper stage space 20 Packing layer 20a Upper space 30 of packed bed Lower stage G Gas component h Liquid level height L Liquid component M Mixed liquid R Reflux liquid S Lower liquid introduction part T Liquid extraction part V1 Flow rate adjustment part

Claims (4)

供送された気体成分が導入される気体導入部と、供送された液体成分が導入される液体導入部と、導入された前記気体成分および前記液体成分がそれぞれ分配される分配部と、を有する上段部と、
前記分配部において分配された気体成分および液体成分が分散して導入され、気液接触により気体成分を液体成分に溶解または凝縮させて気液混合させる充填層と、
該充填層の下部に設けられ、気液混合された混合液が貯留される混合液貯留部と、貯留された混合液が供出される混合液供出部と、を有する下段部と、を備えるとともに、
前記分配部において、導入された前記液体成分を貯留する液体貯留部と、該液体貯留部の底部に設けられ貯留された液体成分を分配する複数の液体分配用孔部と、貯留された液体成分と非接触に前記上段部空間と前記充填層上部空間を前記気体成分が流通する複数の気体分配用管部と、該液体貯留部の液面高さを検知する液面計と、該液面高さを調整する液面調整部と、を有し、
前記液面調整部が、前記液体貯留部に貯留された液体成分の一部の取り出し可能な液体抜取部と該液体成分の流量調整部を有し、前記液体貯留部の液面高さが、該液体成分の取り出し量によって制御・調整されることを特徴とする気液混合装置。
A gas introduction part into which the delivered gas component is introduced, a liquid introduction part into which the delivered liquid component is introduced, and a distribution part into which the introduced gas component and the liquid component are respectively distributed. An upper stage having,
The gas component and the liquid component distributed in the distribution unit are introduced in a dispersed manner, and the gas component is dissolved or condensed by gas-liquid contact to dissolve or condense the gas component and gas-liquid mixing,
A lower stage portion provided at a lower portion of the packed bed and having a mixed liquid storage portion for storing a mixed liquid that has been gas-liquid mixed and a mixed liquid supply portion for discharging the stored mixed liquid; ,
In the distribution unit, a liquid storage unit for storing the introduced liquid component, a plurality of liquid distribution holes provided at the bottom of the liquid storage unit for distributing the stored liquid component, and the stored liquid component A plurality of gas distribution pipe parts through which the gas component flows through the upper part space and the packed bed upper space in a non-contact manner, a liquid level gauge for detecting the liquid level of the liquid storage part, and the liquid level A liquid level adjustment unit for adjusting the height,
The liquid level adjustment unit has a liquid extraction unit from which a part of the liquid component stored in the liquid storage unit can be taken out and a flow rate adjustment unit of the liquid component, and the liquid level of the liquid storage unit is A gas-liquid mixing device controlled and adjusted according to the amount of liquid component taken out.
供送された気体成分が導入される気体導入部と、供送された液体成分が導入される液体導入部と、導入された前記気体成分および前記液体成分がそれぞれ分配される分配部と、を有する上段部と、
前記分配部において分配された気体成分および液体成分が分散して導入され、気液接触により気体成分を液体成分に溶解または凝縮させて気液混合させる充填層と、
該充填層の下部に設けられ、気液混合された混合液が貯留される混合液貯留部と、貯留された混合液が供出される混合液供出部と、を有する下段部と、を備えるとともに、
前記分配部において、導入された前記液体成分を貯留する液体貯留部と、該液体貯留部の底部に設けられ貯留された液体成分を分配する複数の液体分配用孔部と、貯留された液体成分と非接触に前記上段部空間と前記充填層上部空間を前記気体成分が流通する複数の気体分配用管部と、該液体貯留部の液面高さを検知する液面計と、該液面高さを調整する液面調整部と、を有し、
前記液面調整部が、前記液体貯留部に貯留された液体成分の一部の取り出し可能な液体抜取部と、該液体成分の流量調整部と、該取り出し量の流量調整部と、取り出された液体成分の一部を再度前記液体貯留部に還流する還流部と、該還流液の流量調整部を有し、前記液体貯留部の液面高さが、該液体成分の取り出し量および還流される液体成分の還流流量によって制御・調整されることを特徴とする気液混合装置。
A gas introduction part into which the delivered gas component is introduced, a liquid introduction part into which the delivered liquid component is introduced, and a distribution part into which the introduced gas component and the liquid component are respectively distributed. An upper stage having,
The gas component and the liquid component distributed in the distribution unit are introduced in a dispersed manner, and the gas component is dissolved or condensed by gas-liquid contact to dissolve or condense the gas component and gas-liquid mixing,
A lower stage portion provided at a lower portion of the packed bed and having a mixed liquid storage portion for storing a mixed liquid that has been gas-liquid mixed and a mixed liquid supply portion for discharging the stored mixed liquid; ,
In the distribution unit, a liquid storage unit for storing the introduced liquid component, a plurality of liquid distribution holes provided at the bottom of the liquid storage unit for distributing the stored liquid component, and the stored liquid component A plurality of gas distribution pipe parts through which the gas component flows through the upper part space and the packed bed upper space in a non-contact manner, a liquid level gauge for detecting the liquid level of the liquid storage part, and the liquid level A liquid level adjustment unit for adjusting the height,
The liquid level adjustment unit has been extracted from a liquid extraction unit from which a part of the liquid component stored in the liquid storage unit can be extracted, a flow rate adjustment unit of the liquid component, and a flow rate adjustment unit of the extraction amount A reflux unit that recirculates a part of the liquid component to the liquid storage unit again, and a flow rate adjustment unit for the reflux liquid, and the liquid level of the liquid storage unit is recirculated and returned to the liquid component A gas-liquid mixing device controlled and adjusted by a reflux flow rate of a liquid component.
供送された気体成分と液体成分を、充填層を用いて気液接触させ、該気体成分を該液体成分に溶解または凝縮させて気液混合する気液混合方法であって、以下の工程
(1)前記充填層の上流段において、導入された前記気体成分および前記液体成分が、それぞれ分配部によって分配され、
(2)分配された気体成分および液体成分が分散して導入された前記充填層において、気液混合され、
(3)前記充填層の下流段において、気液混合された混合液が貯留され、貯留された混合液が供出されるとともに、
(4)前記分配部において、導入された前記液体成分が、液体貯留部に貯留され、貯留された液体成分が該液体貯留部の底部に設けられた複数の液体分配用孔部によって分配されて前記充填層に導入されるとともに、導入された前記気体成分が、前記液体貯留部に近接して設けられた複数の気体分配用管部を介して貯留された液体成分と非接触に前記上流段の空間から前記充填層に導入され、
(5)前記液体貯留部に貯留された液体成分の一部が取り出され、該液体貯留部の液面高さが、該液体成分の取り出し量によって制御・調整されることを特徴とする記載の気液混合方法。
A gas-liquid mixing method in which a supplied gas component and a liquid component are brought into gas-liquid contact using a packed bed, and the gas component is dissolved or condensed in the liquid component to be gas-liquid mixed. 1) In the upstream stage of the packed bed, the introduced gas component and liquid component are each distributed by a distributor,
(2) In the packed bed in which the distributed gas component and liquid component are dispersedly introduced, gas-liquid mixing is performed;
(3) In the downstream stage of the packed bed, the gas-liquid mixed liquid mixture is stored, and the stored liquid mixture is supplied,
(4) In the distribution unit, the introduced liquid component is stored in the liquid storage unit, and the stored liquid component is distributed by a plurality of liquid distribution holes provided at the bottom of the liquid storage unit. The upstream stage is introduced into the packed bed, and the introduced gas component is in non-contact with the liquid component stored via a plurality of gas distribution pipe portions provided in proximity to the liquid storage portion. Is introduced into the packed bed from the space of
(5) A part of the liquid component stored in the liquid storage part is taken out, and a liquid surface height of the liquid storage part is controlled / adjusted by an amount of the liquid component taken out. Gas-liquid mixing method.
供送された気体成分と液体成分を、充填層を用いて気液接触させ、該気体成分を該液体成分に溶解または凝縮させて気液混合する気液混合方法であって、以下の工程
(1)前記充填層の上流段において、導入された前記気体成分および前記液体成分が、それぞれ分配部によって分配され、
(2)分配された気体成分および液体成分が分散して導入された前記充填層において、気液混合され、
(3)前記充填層の下流段において、気液混合された混合液が貯留され、貯留された混合液が供出されるとともに、
(4)前記分配部において、導入された前記液体成分が、液体貯留部に貯留され、貯留された液体成分が該液体貯留部の底部に設けられた複数の液体分配用孔部によって分配されて前記充填層に導入されるとともに、導入された前記気体成分が、前記液体貯留部に近接して設けられた複数の気体分配用管部を介して貯留された液体成分と非接触に前記上流段の空間から前記充填層に導入され、
(5)前記液体貯留部に貯留された液体成分の一部が取り出されるとともに、取り出された液体成分の一部が再度液体貯留部に還流され、該液体貯留部の液面高さが、該液体成分の取り出し量および還流される液体成分の還流流量によって制御・調整されることを特徴とする気液混合方法。
A gas-liquid mixing method in which a supplied gas component and a liquid component are brought into gas-liquid contact using a packed bed, and the gas component is dissolved or condensed in the liquid component to be gas-liquid mixed. 1) In the upstream stage of the packed bed, the introduced gas component and liquid component are each distributed by a distributor,
(2) In the packed bed in which the distributed gas component and liquid component are dispersedly introduced, gas-liquid mixing is performed;
(3) In the downstream stage of the packed bed, the gas-liquid mixed liquid mixture is stored, and the stored liquid mixture is supplied,
(4) In the distribution unit, the introduced liquid component is stored in the liquid storage unit, and the stored liquid component is distributed by a plurality of liquid distribution holes provided at the bottom of the liquid storage unit. The upstream stage is introduced into the packed bed, and the introduced gas component is in non-contact with the liquid component stored via a plurality of gas distribution pipe portions provided in proximity to the liquid storage portion. Is introduced into the packed bed from the space of
(5) A part of the liquid component stored in the liquid storage part is taken out, and a part of the taken out liquid component is recirculated to the liquid storage part, and the liquid level of the liquid storage part is A gas-liquid mixing method characterized by being controlled and adjusted by the amount of liquid component taken out and the reflux flow rate of the liquid component to be refluxed.
JP2015176462A 2015-09-08 2015-09-08 Gas-liquid mixer and gas-liquid mixing method Pending JP2017051892A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015176462A JP2017051892A (en) 2015-09-08 2015-09-08 Gas-liquid mixer and gas-liquid mixing method
PCT/EP2016/070932 WO2017042148A1 (en) 2015-09-08 2016-09-06 Gas-liquid mixing apparatus and gas-liquid mixing method
CN201680048548.0A CN107921385A (en) 2015-09-08 2016-09-06 Liqiud-gas mixing device and gas-liquid mixing processes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015176462A JP2017051892A (en) 2015-09-08 2015-09-08 Gas-liquid mixer and gas-liquid mixing method

Publications (1)

Publication Number Publication Date
JP2017051892A true JP2017051892A (en) 2017-03-16

Family

ID=56958883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015176462A Pending JP2017051892A (en) 2015-09-08 2015-09-08 Gas-liquid mixer and gas-liquid mixing method

Country Status (3)

Country Link
JP (1) JP2017051892A (en)
CN (1) CN107921385A (en)
WO (1) WO2017042148A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022160154A1 (en) * 2021-01-28 2022-08-04 王志猛 Gas-liquid mixing and filling device and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102933A (en) * 1983-11-11 1985-06-07 Daicel Chem Ind Ltd Downward parallel flow packing type reactor
JPS62114643A (en) * 1985-11-07 1987-05-26 モ−ビル オイル コ−ポレ−ション Reactor equipped with recycle liquid distributor and its use
JPH10174862A (en) * 1996-12-17 1998-06-30 Hitachi Ltd Continuous reaction device
JP2000355570A (en) * 1999-04-16 2000-12-26 Nippon Shokubai Co Ltd Method for preventing polymerization of easily polymerizable compound
US20020081248A1 (en) * 2000-12-21 2002-06-27 Institut Francais Du Petrole Device for separate injection and homogeneous distribution of two fluids
US20080034769A1 (en) * 2006-08-11 2008-02-14 Gerald E. Engdahl Boil-off gas condensing assembly for use with liquid storage tanks
JP3174372U (en) * 2009-02-13 2012-03-22 ナンジン カレッジ オブ ケミカル テクノロジー New packed tower
JP2012110825A (en) * 2010-11-24 2012-06-14 Matsui Machine Ltd Distillation column and method for assembling the same
JP2012179517A (en) * 2011-02-28 2012-09-20 Osaka Gas Co Ltd Water-retaining body for water-spray type cleaning apparatus, water-spray type cleaning apparatus, and method for operating the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937051A (en) * 1985-11-07 1990-06-26 Mobil Oil Corporation Catalytic reactor with liquid recycle
FR2875715B1 (en) * 2004-09-28 2006-11-17 Inst Francais Du Petrole FIXED CATALYST BED REACTOR HAVING FLOW DERIVATION MEANS ACROSS THE BED

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60102933A (en) * 1983-11-11 1985-06-07 Daicel Chem Ind Ltd Downward parallel flow packing type reactor
JPS62114643A (en) * 1985-11-07 1987-05-26 モ−ビル オイル コ−ポレ−ション Reactor equipped with recycle liquid distributor and its use
JPH10174862A (en) * 1996-12-17 1998-06-30 Hitachi Ltd Continuous reaction device
JP2000355570A (en) * 1999-04-16 2000-12-26 Nippon Shokubai Co Ltd Method for preventing polymerization of easily polymerizable compound
US20020081248A1 (en) * 2000-12-21 2002-06-27 Institut Francais Du Petrole Device for separate injection and homogeneous distribution of two fluids
US20080034769A1 (en) * 2006-08-11 2008-02-14 Gerald E. Engdahl Boil-off gas condensing assembly for use with liquid storage tanks
JP3174372U (en) * 2009-02-13 2012-03-22 ナンジン カレッジ オブ ケミカル テクノロジー New packed tower
JP2012110825A (en) * 2010-11-24 2012-06-14 Matsui Machine Ltd Distillation column and method for assembling the same
JP2012179517A (en) * 2011-02-28 2012-09-20 Osaka Gas Co Ltd Water-retaining body for water-spray type cleaning apparatus, water-spray type cleaning apparatus, and method for operating the same

Also Published As

Publication number Publication date
CN107921385A (en) 2018-04-17
WO2017042148A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
US20180128092A1 (en) System and apparatus for creating a liquid carbon dioxide fracturing fluid
AU2014261287B2 (en) Method and device for replenshing a supply of cryogenic liquid, notably of liquefied natural gas
US20130255953A1 (en) Method and apparatus for preparing fracturing fluids
JP5350625B2 (en) Gas supply device for drive machine
US9939110B2 (en) Transport of natural gas through solution in liquid hydrocarbon at ambient temperature
KR101616315B1 (en) Apparatus for reducing VOC
JP2010511127A (en) Regasification of LNG
JP2018521283A (en) Method and system for treating a liquid natural gas stream at an LNG import terminal
CN112672954B (en) Ship fuel supply system and method
JP2017051892A (en) Gas-liquid mixer and gas-liquid mixing method
AU780237B2 (en) Plant for transferring a gas into a liquid
Campestrini et al. Solubilities of solid n‐alkanes in methane: Data analysis and models assessment
KR101826685B1 (en) Vaporization Reducing System and Method of Liquid Cargo
JP5106144B2 (en) Natural gas supply system and natural gas supply method
AU2011247224B2 (en) Method and equipment for rapidly filling a downstream tank with cryogenic liquid from an upstream store
JP2016147997A (en) Heat amount control system for liquefied gas shipping facility
JP5507304B2 (en) Vaporized gas production system
JP2016191024A (en) Gas control device, combustion system and program
KR101330305B1 (en) Apparatus for operating l.n.g. and method thereof
JP6430805B2 (en) Apparatus and method for supplying liquid fuel gas
JP2014224204A (en) Gas production method and gas production facility
JP2002038170A (en) Method for producing town gas
JP2009138958A (en) Mixed gas supply device and its composition variation suppressing method
US20070095210A1 (en) Direct injection and vaporization of ammonia
KR20150111006A (en) System and method for supplying fuel

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20151014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180403

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20180403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191008