JP5350625B2 - Gas supply device for drive machine - Google Patents

Gas supply device for drive machine Download PDF

Info

Publication number
JP5350625B2
JP5350625B2 JP2007328887A JP2007328887A JP5350625B2 JP 5350625 B2 JP5350625 B2 JP 5350625B2 JP 2007328887 A JP2007328887 A JP 2007328887A JP 2007328887 A JP2007328887 A JP 2007328887A JP 5350625 B2 JP5350625 B2 JP 5350625B2
Authority
JP
Japan
Prior art keywords
gas
natural gas
concentrate
methane
supply device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007328887A
Other languages
Japanese (ja)
Other versions
JP2008157457A (en
Inventor
ライナー・サコヴスキー
シュテファノ・ウルバノ
Original Assignee
エムアーエヌ・ディーゼル・エスエー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エムアーエヌ・ディーゼル・エスエー filed Critical エムアーエヌ・ディーゼル・エスエー
Publication of JP2008157457A publication Critical patent/JP2008157457A/en
Application granted granted Critical
Publication of JP5350625B2 publication Critical patent/JP5350625B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0245High pressure fuel supply systems; Rails; Pumps; Arrangement of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/06Apparatus for de-liquefying, e.g. by heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/021Control of components of the fuel supply system
    • F02D19/022Control of components of the fuel supply system to adjust the fuel pressure, temperature or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/027Determining the fuel pressure, temperature or volume flow, the fuel tank fill level or a valve position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/02Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with gaseous fuels
    • F02D19/026Measuring or estimating parameters related to the fuel supply system
    • F02D19/029Determining density, viscosity, concentration or composition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0203Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels characterised by the type of gaseous fuel
    • F02M21/0215Mixtures of gaseous fuels; Natural gas; Biogas; Mine gas; Landfill gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0221Fuel storage reservoirs, e.g. cryogenic tanks
    • F02M21/0224Secondary gaseous fuel storages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • F02M21/0218Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers
    • F02M21/0287Details on the gaseous fuel supply system, e.g. tanks, valves, pipes, pumps, rails, injectors or mixers characterised by the transition from liquid to gaseous phase ; Injection in liquid phase; Cooling and low temperature storage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C9/00Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
    • F17C9/02Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2265/00Effects achieved by gas storage or gas handling
    • F17C2265/03Treating the boil-off
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

The system has a temperature control device (22) for maintaining a methane-poor, fluid natural gas concentrate (21) of high boiling hydrocarbons at a defined temperature. The concentrate and fluid natural gas (12) extracted from a gas container are brought in direct or indirect contact with refrigerated, liquefied natural gas (11) in a vaporization device (16) in such a manner that the concentrate and the fluid natural gas except methane of the fluid natural gas vaporize in the vaporization device, where the concentrate has the defined temperature. An independent claim is also included for a method for providing a mixer of natural-boil-off-gas and forced-boil-off-gas that are burnable in an internal combustion engine.

Description

本発明は、請求項1の上位概念に基づく、内燃機関による駆動機のためのガス供給装置に関する。さらに本発明は、請求項19の上位概念に基づく、内燃機関内で燃焼可能な、自然気化ガス及び強制気化ガスから成る混合物を製造する方法に関する。   The present invention relates to a gas supply device for a drive machine by an internal combustion engine based on the superordinate concept of claim 1. The invention further relates to a method for producing a mixture of natural and forced vaporized gases combustible in an internal combustion engine according to the superordinate concept of claim 19.

燃料としての天然ガスを用いたガスタンカー又はその他の乗り物では、天然ガスを液化した状態で輸送し、その際、極低温の液化天然ガスの温度は約−162℃であり、その圧力はほぼ大気圧と等しい。輸送する極低温液化天然ガスを収容するためのガス容器は、高いコストをかけて断熱されている。それでもなお、運ばれる天然ガスがある程度暖まることは避けられない。このため極低温液化天然ガスの入ったガス容器内では、天然ガスが暖まることにより、容器内でいわゆる自然気化ガスとして気化する。不可避の気化により極低温液化天然ガスの入ったガス容器内で生じる圧力上昇に対抗するため、自然気化ガスをガス容器から取り除く。同じ原理は、極低温液化天然ガス用のガス容器を備え、ガスで稼働する定置型の駆動装置にも当てはまる。   In a gas tanker or other vehicle using natural gas as a fuel, the natural gas is transported in a liquefied state. At that time, the temperature of the cryogenic liquefied natural gas is about −162 ° C., and the pressure is almost large. Equal to atmospheric pressure. Gas containers for containing the cryogenic liquefied natural gas to be transported are insulated at high cost. Nevertheless, it is inevitable that the natural gas being transported will warm up to some extent. Therefore, in the gas container containing the cryogenic liquefied natural gas, the natural gas is warmed and vaporized as so-called natural vaporized gas in the container. In order to counter the pressure rise caused in the gas container containing the cryogenic liquefied natural gas due to unavoidable vaporization, the natural vaporized gas is removed from the gas container. The same principle applies to stationary drive units that are equipped with gas containers for cryogenic liquefied natural gas and operate on gas.

特許文献1では、極低温液化天然ガスの入ったガス容器内が暖まることにより気化する天然ガス、つまり自然気化ガスをガス消費物に供給すること、特に自然気化ガスをガスタンカーの駆動に使用するためにガスタンカーの駆動機に供給することが、既に知られている。さらにこの現況技術から、自然気化ガスの量が十分でない場合、液体の天然ガスを、極低温液化天然ガスの入ったガス容器から送り出すことができ、気化機構に供給できることが既に知られている。   In Patent Document 1, natural gas that is vaporized when the inside of a gas container containing cryogenic liquefied natural gas is heated, that is, natural vaporized gas is supplied to a gas consumer, and particularly natural vaporized gas is used for driving a gas tanker. It is already known to supply gas tanker drives for this purpose. Furthermore, it is already known from this state of the art that if the amount of natural vaporized gas is not sufficient, liquid natural gas can be delivered from a gas container containing cryogenic liquefied natural gas and supplied to the vaporization mechanism.

極低温液化天然ガスの入ったガス容器から送り出された天然ガスは、気化機構内で部分的に気化し、気化後にいわゆる強制気化ガスとして、自然気化ガスと混合することができる。その後、自然気化ガス及び強制気化ガスから成るこの混合物は、ガス消費物、特に内燃機関による駆動機に供給可能である。これまでに既知の装置では、天然ガスのうち気化しない、より沸点の高い構成要素は利用されずにガス容器内に戻される。   The natural gas sent out from the gas container containing the cryogenic liquefied natural gas is partially vaporized in the vaporization mechanism, and can be mixed with the natural vaporized gas as a so-called forced vaporized gas after vaporization. This mixture of natural vapor and forced vapor can then be supplied to a gas consumer, in particular a drive by an internal combustion engine. In previously known devices, the higher boiling components of the natural gas that do not vaporize are returned to the gas container without being utilized.

自然気化ガス及び強制気化ガスから成る混合物の組成は、様々な条件に依存して変化する。しかしながら、自然気化ガス及び強制気化ガスから成る混合物は、ある程度のアンチノック性を有している場合に限り、例えばディーゼルガスエンジン又はオットーガスエンジンのような内燃機関として形成された駆動機で燃焼させることができる。この混合物のアンチノック性の尺度として、混合物のいわゆるメタン価を用いることができ、このメタン価は、自然気化ガス及び強制気化ガスから成る混合物の、他の成分に対するメタンの量のおおよその比率を示す。任意のガス混合物のメタン価は、商慣習上の様々な機器によって確定可能である。   The composition of the mixture of natural vapor and forced vapor varies depending on various conditions. However, a mixture of natural vapor and forced vapor is burned in a drive formed as an internal combustion engine, for example a diesel gas engine or an Otto gas engine, only if it has a certain degree of antiknock properties. be able to. As a measure of the antiknock properties of this mixture, the so-called methane number of the mixture can be used, which is an approximate ratio of the amount of methane to other components of a mixture of natural and forced vapors. Show. The methane number of any gas mixture can be determined by various instruments in business practice.

内燃機関による駆動機のための、これまでに既知のガス供給装置では、アンチノック性に関して最適な、自然気化ガス及び強制気化ガスから成る混合物を準備することはできなかった。このため、最適化されたアンチノック性を備えた混合物を準備可能な、内燃機関による駆動機のためのガス供給装置が必要である。
国際公開第2005/058692A1号パンフレット
No known gas supply device for a drive by an internal combustion engine has been able to prepare a mixture of naturally vaporized gas and forced vaporized gas which is optimal with regard to antiknock properties. Therefore, there is a need for a gas supply device for a drive by an internal combustion engine that can prepare a mixture with optimized anti-knock properties.
International Publication No. 2005 / 058692A1 Pamphlet

このため本発明は、内燃機関による駆動機のための新式のガス供給装置、並びに内燃機関内で燃焼可能な、自然気化ガス及び強制気化ガスから成る混合物を準備するための新式の方法を提供するという課題に基づくものである。   The present invention therefore provides a new gas supply device for a drive by an internal combustion engine and a new method for preparing a mixture of natural and forced vapor gases combustible in an internal combustion engine. It is based on the problem.

この課題は、請求項1に記載のガス供給装置によって解決される。本発明によるガス供給装置は、メタンが乏しく、基本的にメタンより重くメタンより沸点の高い炭化水素から成る液体の天然ガス濃縮物を、規定の温度に保つための温度調節機構を内包し、規定の温度を有する液体の天然ガス濃縮物と極低温液化天然ガスの入ったガス容器から送り出された液体の天然ガスとを気化機構内で液体の天然ガスからほぼメタンだけが気化するように、気化機構内で直接的又は間接的に接触させることができる。   This problem is solved by the gas supply device according to claim 1. The gas supply device according to the present invention includes a temperature control mechanism for maintaining a liquid natural gas concentrate composed of hydrocarbons which are poor in methane and basically heavier than methane and higher in boiling point than methane at a specified temperature. Vaporization of the liquid natural gas concentrate having the temperature of the liquid and the liquid natural gas delivered from the gas container containing the cryogenic liquefied natural gas so that only methane is vaporized from the liquid natural gas within the vaporization mechanism. Contact can be made directly or indirectly within the mechanism.

本発明によるガス供給装置の温度調節機構によって、メタンが乏しく、基本的にメタンより沸点の高い炭化水素(エタン、プロパン、及びブタンなど)から成る液体の天然ガス濃縮物が、規定の温度に保たれる。気化機構内で、この規定の温度を有する液体の天然ガス濃縮物は、極低温液化天然ガスの入ったガス容器から送り出された液体で極低温の天然ガスと、直接的又は間接的に接触する。その際、液体の天然ガスからほぼメタンだけが気化するので、このようにして準備された強制気化ガスは、ほぼメタンだけを含んでおり、メタンより重くメタンより沸点の高い炭化水素は含まれていないも同然な程度である。このように本発明は、基本的にメタンより重くメタンより沸点の高い炭化水素から成る天然ガス濃縮物を準備すること、並びに、極低温液化天然ガスの入ったガス容器から送り出された液体の天然ガスを狙い通りに部分的に気化させるために使用することを念頭におく。その際、液体の天然ガスに含まれるメタンの気化は、気泡も液滴もほとんどなしで行われる。このようにして準備された強制気化ガスを自然気化ガスと混合することにより、アンチノック性に関して最適化された、自然気化ガス及び強制気化ガスから成る混合物ができる。   Due to the temperature control mechanism of the gas supply device according to the present invention, a liquid natural gas concentrate consisting essentially of hydrocarbons (e.g. ethane, propane and butane) which are poor in methane and have a higher boiling point than methane is maintained at a specified temperature. Be drunk. Within the vaporization mechanism, the liquid natural gas concentrate having this defined temperature is in direct or indirect contact with liquid cryogenic natural gas delivered from a gas container containing cryogenic liquefied natural gas. . At that time, since almost only methane is vaporized from the liquid natural gas, the forced vaporized gas prepared in this way contains almost only methane, and contains hydrocarbons that are heavier than methane and have a boiling point higher than methane. There is no equivalent. Thus, the present invention provides a natural gas concentrate consisting essentially of hydrocarbons heavier than methane and having a boiling point higher than methane, as well as liquid natural gas delivered from a gas container containing cryogenic liquefied natural gas. Keep in mind that it is used to partially vaporize the gas as intended. At that time, vaporization of methane contained in the liquid natural gas is performed with almost no bubbles or droplets. By mixing the forced vaporized gas thus prepared with the natural vaporized gas, a mixture composed of the natural vaporized gas and the forced vaporized gas optimized with respect to the anti-knock property can be obtained.

内燃機関による駆動機内で燃焼可能な、自然気化ガス及び強制気化ガスから成る混合物を準備するための本発明による方法は、請求項19に定義されている。   The method according to the invention for preparing a mixture of natural and forced vaporized gases combustible in a drive by an internal combustion engine is defined in claim 19.

本発明の好ましい更なる形態は、従属請求項及び以下の説明から明確になるだろう。本発明の実施例について、図面に基づき詳細に説明するが、特にそれに限定されるものではない。   Preferred further forms of the invention will become apparent from the dependent claims and the following description. Embodiments of the present invention will be described in detail with reference to the drawings, but are not particularly limited thereto.

本発明は、内燃機関として形成された駆動機のためのガス供給装置に関し、その際、燃料としての極低温液化天然ガスが容器内に収容されている。   The present invention relates to a gas supply device for a drive machine formed as an internal combustion engine, in which a cryogenic liquefied natural gas as a fuel is accommodated in a container.

以下に、本発明によるガス供給装置を図1〜図7を参照しつつ詳細に説明するが、ここで、図1〜図7はそれぞれ本発明によるガス供給装置の異なる実施例を示している。   Hereinafter, the gas supply apparatus according to the present invention will be described in detail with reference to FIGS. 1 to 7. Here, FIGS. 1 to 7 show different embodiments of the gas supply apparatus according to the present invention.

図1は、内燃機関の駆動機の本発明によるガス供給装置の第1の実施例を示しており、ここで、図1に示された駆動機は、2つのエンジン10によって準備されている。ガス供給装置1は2つのガス配管系を備えている。   FIG. 1 shows a first embodiment of a gas supply device according to the invention for a drive machine of an internal combustion engine, wherein the drive machine shown in FIG. 1 is prepared by two engines 10. The gas supply device 1 includes two gas piping systems.

第1のガス配管系を介して、いわゆる自然気化ガスをエンジン10の方に運ぶことができる。極低温液化天然ガスの入ったガス容器11内に収容された液体で極低温の天然ガス12は、液体の天然ガス12が暖まって気化することにより、極低温液化天然ガスの入ったガス容器11内で自然気化ガスを発生させ、その際、第1のガス配管系のガス配管13を介して、極低温液化天然ガスの入ったガス容器11から、自然気化ガスが排出される。ガス配管13内に接続されたコンプレッサ14を介して、自然気化ガスを内燃機関10に供給することができ、その際、コンプレッサ14の下流側に配置されたチェック弁15は、圧縮された自然気化ガスが極低温液化天然ガスの入ったガス容器11に逆流することを防止する。   A so-called naturally vaporized gas can be conveyed toward the engine 10 via the first gas piping system. The liquid cryogenic natural gas 12 contained in the gas container 11 containing the cryogenic liquefied natural gas is heated and vaporized by the liquid natural gas 12, whereby the gas container 11 containing the cryogenic liquefied natural gas is contained. The natural vaporized gas is generated inside, and the natural vaporized gas is discharged from the gas container 11 containing the cryogenic liquefied natural gas through the gas pipe 13 of the first gas piping system. Naturally vaporized gas can be supplied to the internal combustion engine 10 via the compressor 14 connected in the gas pipe 13. At this time, the check valve 15 disposed on the downstream side of the compressor 14 is compressed natural vaporized. The gas is prevented from flowing back into the gas container 11 containing the cryogenic liquefied natural gas.

自然気化ガスの量が、内燃機関10によって準備された液化ガスタンカーの駆動機用として十分でない場合、第2のガス配管系により、極低温液化天然ガスの入ったガス容器11から液体で極低温の天然ガス12を送り出すことができ、ガス供給装置の気化機構16に供給することができる。気化機構16内では、極低温液化天然ガスの入ったガス容器11から送り出された液体の天然ガスを部分的に気化させることができ、いわゆる強制気化ガスとして、混合点17を介して自然気化ガスと混合させ得る。更なるチェック弁15は、気化機構16の方に逆流することを防止する。   When the amount of the natural vaporized gas is not sufficient for the drive unit of the liquefied gas tanker prepared by the internal combustion engine 10, the second gas piping system causes the liquid from the gas container 11 containing the cryogenic liquefied natural gas to be cryogenic. Natural gas 12 can be sent out and supplied to the vaporizing mechanism 16 of the gas supply device. In the vaporization mechanism 16, the liquid natural gas sent out from the gas container 11 containing the cryogenic liquefied natural gas can be partially vaporized. Can be mixed with. A further check valve 15 prevents backflow toward the vaporization mechanism 16.

これに基づき、混合器17の下流側では、自然気化ガス及び強制気化ガスから成る混合物が形成され、この混合物を熱交換器18内で、好ましくは室温に温度調節することができ、続いてガス調節区間19又はエンジン10に供給可能である。余分な、自然気化ガス及び強制気化ガスから成る混合物は、好ましくは酸化器として形成された安全機構20内で燃焼される。   Based on this, on the downstream side of the mixer 17, a mixture of natural and forced vaporization gas is formed, which can be temperature adjusted in the heat exchanger 18, preferably to room temperature, followed by gas It can be supplied to the adjusting section 19 or the engine 10. The excess mixture of natural vapor and forced vapor is burned in a safety mechanism 20, preferably formed as an oxidizer.

図1の実施例では、気化機構16内にメタンの乏しい液体の天然ガス濃縮物21が規定の量で用意されており、ここで、液体の天然ガス濃縮物21は、天然ガスの基本的に重く沸点の高い構成要素から成り、主として炭化水素であるエタン、プロパン、及びブタンから成る。このメタンの乏しい液体の天然ガス濃縮物21は、温度調節機構22によって規定の温度に保たれており、その際、気化機構16内にある規定の温度を有する液体の天然ガス濃縮物21を、極低温液化天然ガスの入ったガス容器11から送り出された液体で極低温の天然ガス12と、規則的に接触させる。その際、液体の天然ガスからほぼメタンだけが気化し、その後このメタンは、強制気化ガスとして気化機構16から排出され、混合点17において自然気化ガスと混合される。   In the embodiment of FIG. 1, a methane-poor liquid natural gas concentrate 21 is provided in the vaporizer 16 in a defined amount, where the liquid natural gas concentrate 21 is essentially a natural gas. Consists of heavy and high boiling components, mainly consisting of the hydrocarbons ethane, propane, and butane. The methane-poor liquid natural gas concentrate 21 is maintained at a specified temperature by the temperature control mechanism 22. At this time, the liquid natural gas concentrate 21 having a specified temperature in the vaporization mechanism 16 is The liquid is sent out from the gas container 11 containing the cryogenic liquefied natural gas and is regularly brought into contact with the cryogenic natural gas 12. At that time, almost only methane is vaporized from the liquid natural gas, and then this methane is discharged from the vaporization mechanism 16 as a forced vaporization gas and mixed with the natural vaporization gas at the mixing point 17.

図1の実施例では、気化機構16が、メタンの乏しい液体の天然ガス濃縮物21のための蓄積部23を備えており、その際、温度調節機構22が、蓄積部23内に位置決めされ、気化機構16内の天然ガス濃縮物21を規定の温度に保っている。この天然ガス濃縮物21と接触させる液体の天然ガス12は、極低温液化天然ガスの入ったガス容器11からポンプ24によって送り出され、第2のガス配管系の配管25を介して気化機構16に供給される。その際、チェック弁26は、ガス容器11から送り出された液体の天然ガス12がガス容器11内に逆流することを防止する。   In the embodiment of FIG. 1, the vaporization mechanism 16 comprises an accumulator 23 for a liquid natural gas concentrate 21 that is poor in methane, in which case the temperature adjustment mechanism 22 is positioned in the accumulator 23, The natural gas concentrate 21 in the vaporization mechanism 16 is maintained at a specified temperature. The liquid natural gas 12 to be brought into contact with the natural gas concentrate 21 is sent out from the gas container 11 containing the cryogenic liquefied natural gas by the pump 24 and is supplied to the vaporizing mechanism 16 through the pipe 25 of the second gas piping system. Supplied. At that time, the check valve 26 prevents the liquid natural gas 12 delivered from the gas container 11 from flowing back into the gas container 11.

温度調節機構22は、メタンの乏しい液体の天然ガス濃縮物21をほぼ一定の温度に保ち、その温度は、少なくとも天然ガス濃縮物の組成、及び気化機構16内での所望の稼働温度時に液体の天然ガス12に含まれるメタンの気化圧力に依存する。   The temperature control mechanism 22 keeps the methane-poor liquid natural gas concentrate 21 at a substantially constant temperature, which is at least the composition of the natural gas concentrate and the liquid at the desired operating temperature in the vaporization mechanism 16. It depends on the vaporization pressure of methane contained in the natural gas 12.

図1の実施例では、極低温液化天然ガスの入ったガス容器11から送り出された極低温で液体の天然ガス12が、噴射ノズル27aによって、気化機構16の蓄積部23内に用意され温度調節された天然ガス濃縮物21と直接的に接触し、つまり強い推進力で天然ガス濃縮物21内に導入される。その際、液体の天然ガスからほぼメタンだけが気化する。この天然ガスからのメタンの気化は、メタンより重くメタンより沸点の高い炭化水素が強制気化ガスに入らないように、気泡も液滴もなく行われるべきである。   In the embodiment of FIG. 1, the cryogenic liquid natural gas 12 sent out from the gas container 11 containing the cryogenic liquefied natural gas is prepared in the accumulating portion 23 of the vaporizing mechanism 16 by the injection nozzle 27a and the temperature is adjusted. The natural gas concentrate 21 is brought into direct contact, that is, introduced into the natural gas concentrate 21 with a strong driving force. At that time, only methane is vaporized from the liquid natural gas. The vaporization of methane from natural gas should be done without bubbles or droplets so that hydrocarbons heavier than methane and having a boiling point higher than methane do not enter the forced vaporization gas.

液体の天然ガスのうち気化機構16内で気化しない構成要素は、気化機構16の蓄積容器23に集められ、こうして気化機構16内に収容されたメタンの乏しい天然ガス濃縮物21の量が増える。水位調節機構28によって、気化機構16内に収容された天然ガス濃縮物21の量を監視することができ、その際、気化機構16内の天然ガス濃縮物が多すぎると、天然ガス濃縮物を、第2のガス配管系の戻り配管29を介して気化機構16から排出させ、極低温液化天然ガスの入ったガス容器11の方に運ぶ。このようにして排出された天然ガス濃縮物を極低温液化天然ガスの入ったガス容器11内に戻す前に、天然ガス濃縮物を熱交換器30内で冷却する。一方この熱交換器を介して、極低温液化天然ガスの入ったガス容器11から送り出された液体の天然ガスも、配管25を介して導かれる。図1に基づき水位調節機構28は、気化機構16の蓄積部23内の天然ガス濃縮物21の量に応じて、戻り配管29内の熱交換器30の下流側に組み込まれた弁31を開ける。   Components of the liquid natural gas that are not vaporized in the vaporization mechanism 16 are collected in the accumulation container 23 of the vaporization mechanism 16, and thus the amount of the methane-poor natural gas concentrate 21 accommodated in the vaporization mechanism 16 is increased. The amount of the natural gas concentrate 21 accommodated in the vaporization mechanism 16 can be monitored by the water level adjustment mechanism 28. If there is too much natural gas concentrate in the vaporization mechanism 16, the natural gas concentrate is removed. Then, the gas is discharged from the vaporization mechanism 16 through the return pipe 29 of the second gas piping system, and is transported toward the gas container 11 containing the cryogenic liquefied natural gas. The natural gas concentrate is cooled in the heat exchanger 30 before returning the natural gas concentrate thus discharged into the gas container 11 containing the cryogenic liquefied natural gas. On the other hand, the liquid natural gas sent out from the gas container 11 containing the cryogenic liquefied natural gas is also introduced through the pipe 25 through the heat exchanger. Based on FIG. 1, the water level adjustment mechanism 28 opens a valve 31 incorporated on the downstream side of the heat exchanger 30 in the return pipe 29 in accordance with the amount of the natural gas concentrate 21 in the accumulation unit 23 of the vaporization mechanism 16. .

圧力センサ32を介して強制気化ガスの圧力を測定することができ、その圧力に応じて配管25内に組み込まれた弁33を開閉することができる。圧力センサ32での圧力が低下すると、弁33が大きく開き、多くの液体の天然ガスが気化機構16の方に導かれる。これに対し圧力センサ32での圧力が上昇すると、弁33が強く閉じる。   The pressure of the forced vaporized gas can be measured via the pressure sensor 32, and the valve 33 incorporated in the pipe 25 can be opened and closed according to the pressure. When the pressure at the pressure sensor 32 decreases, the valve 33 opens widely, and a lot of liquid natural gas is introduced toward the vaporization mechanism 16. In contrast, when the pressure at the pressure sensor 32 increases, the valve 33 closes strongly.

図1の実施例では、ガス配管25の弁33の上流側に圧力均一化容器34が取り付けられており、その圧力変動によって補整が可能である。弁33が液体の天然ガスを、ポンプ24が送り出すより少ない量しか通過させない場合、液体の天然ガスは弁35を介して圧力均一化容器34内に送られる。圧力センサ36を介して圧力均一化容器34内の圧力が監視され、かつ充填レベルセンサ37を介して圧力均一化容器34の充填レベルが監視されており、その際、圧力均一化容器34の圧力及び/又は充填レベルが限界値を超えると、ポンプ24のスイッチが切られる。これに対し限界値を下回ると、スイッチが切られたポンプ24のスイッチを入れることができる。   In the embodiment of FIG. 1, a pressure equalizing vessel 34 is attached to the upstream side of the valve 33 of the gas pipe 25, and compensation is possible by the pressure fluctuation. If the valve 33 allows liquid natural gas to pass through less than the pump 24 delivers, the liquid natural gas is routed through the valve 35 into the pressure equalization vessel 34. The pressure in the pressure equalizing vessel 34 is monitored via the pressure sensor 36, and the filling level of the pressure equalizing vessel 34 is monitored via the filling level sensor 37. At this time, the pressure in the pressure equalizing vessel 34 is monitored. And / or when the fill level exceeds a limit value, the pump 24 is switched off. On the other hand, below the limit value, the switched pump 24 can be switched on.

圧力均一化容器34は、液体の天然ガス及び少量の気化された天然ガスと共に、さらに好ましくは不活性ガス、例えば窒素で満たされており、その際、圧力均一化容器34内の不活性ガスの量は、弁38、39を介して調整可能である。この場合、弁38は不活性ガスを不活性ガス系から圧力均一化容器34内に供給する。一方、弁39は不活性ガスを圧力均一化容器34から排出させる。   The pressure homogenization vessel 34 is more preferably filled with an inert gas, for example nitrogen, together with a liquid natural gas and a small amount of vaporized natural gas, in which case the inert gas in the pressure homogenization vessel 34 is filled. The amount can be adjusted via valves 38,39. In this case, the valve 38 supplies the inert gas from the inert gas system into the pressure equalizing vessel 34. On the other hand, the valve 39 discharges the inert gas from the pressure equalizing vessel 34.

熱交換器18の下流側にメタン価センサ40が配置されており、このメタン価センサ40によって、自然気化ガス及び強制気化ガスから成る混合物のメタン価を測定できる。メタン価センサ40は、当該のメタン価の実際値を調節機構41に伝える。   A methane number sensor 40 is disposed on the downstream side of the heat exchanger 18, and the methane number sensor 40 can measure the methane number of a mixture composed of natural vapor gas and forced vapor gas. The methane number sensor 40 transmits the actual value of the methane number to the adjustment mechanism 41.

調節機構41は、メタン価に関する測定された実際値及び所定の規定値に応じて、温度調節機構22に割り当てられた弁42を、すなわち温度調節機構22を、気化機構16の蓄積部23内に用意された天然ガス濃縮物21の温度が適合されるように制御する。その際、蓄積容器23内に用意された天然ガス濃縮物の温度を、温度センサ43によって監視し、この温度センサ43は、当該の実際値を調節機構41に伝える。   The adjustment mechanism 41 has the valve 42 assigned to the temperature adjustment mechanism 22, that is, the temperature adjustment mechanism 22 in the accumulation unit 23 of the vaporization mechanism 16 according to the measured actual value and the predetermined specified value regarding the methane number. The temperature of the prepared natural gas concentrate 21 is controlled to be adapted. At that time, the temperature of the natural gas concentrate prepared in the storage container 23 is monitored by the temperature sensor 43, and the temperature sensor 43 transmits the actual value to the adjustment mechanism 41.

図1によれば、気化機構16内に液滴分離器44が組み込まれており、この液滴分離器44によって、気化機構16内で気化したメタンから、すなわち強制気化ガスから、より重くより沸点の高い炭化水素から成る液滴を取り除くことができ、ここでは、図1に基づき、液滴分離器44は気化機構16の出口より下に配置されている。さらに図1では、気化機構16内で気化したメタンから気泡を取り除くため、気化機構16内に消泡器45が組み込まれている。   According to FIG. 1, a droplet separator 44 is incorporated in the vaporization mechanism 16 by means of this droplet separator 44, which is heavier and more boiling from methane vaporized in the vaporization mechanism 16, i.e. from forced vaporization gas. Droplets consisting of high hydrocarbons can be removed, here according to FIG. 1 the droplet separator 44 is arranged below the outlet of the vaporization mechanism 16. Further, in FIG. 1, a defoamer 45 is incorporated in the vaporization mechanism 16 in order to remove bubbles from the methane vaporized in the vaporization mechanism 16.

図2〜図7は、内燃機関による駆動機のための本発明によるガス供給装置の更なる実施例を示しており、ここで、無駄な繰り返しを避けるため、同じ構成要素に対しては同じ参照符号を使用し、図2〜図7の実施例に関し、図1の実施例又は相互に異なっている細部だけを取り上げつつ以下に説明する。   2-7 show a further embodiment of the gas supply device according to the invention for a drive by an internal combustion engine, where the same reference is made to the same components in order to avoid unnecessary repetition Reference is made to the embodiment of FIGS. 2-7 and will be described below with reference to the embodiment of FIG. 1 or only the details that differ from each other.

図7の実施例は、第2のガス配管系の配管25への圧力均一化容器34の結合形態のみが、図1の実施例と異なっている。   The embodiment of FIG. 7 is different from the embodiment of FIG. 1 only in the form of coupling the pressure equalizing vessel 34 to the pipe 25 of the second gas piping system.

図1の実施例では、圧力均一化容器34は1つの弁35だけを介してガス配管25に連結されている。それに対し図7の実施例では、ガス配管25と圧力均一化容器34の間に2つの弁46が接続されており、このため図7の実施例では、圧力均一化容器34は、気化機構16内で気化させる液体の天然ガス12を恒常的に貫流させていることになる。これに基づき図7の実施例では、極低温液化天然ガスの入ったガス容器11から送り出された液体の天然ガス12を、専ら圧力均一化容器34を介して気化機構16に供給可能である。これに対し図1の実施例では、極低温液化天然ガスの入ったガス容器11から送り出された天然ガス12を、圧力均一化容器34を通らずに気化機構16に供給することができる。   In the embodiment of FIG. 1, the pressure equalization vessel 34 is connected to the gas pipe 25 through only one valve 35. On the other hand, in the embodiment of FIG. 7, two valves 46 are connected between the gas pipe 25 and the pressure equalizing vessel 34. Therefore, in the embodiment of FIG. The liquid natural gas 12 to be vaporized in the inside is constantly flowing. Based on this, in the embodiment of FIG. 7, the liquid natural gas 12 sent out from the gas container 11 containing the cryogenic liquefied natural gas can be supplied to the vaporizing mechanism 16 exclusively through the pressure equalizing container 34. On the other hand, in the embodiment of FIG. 1, the natural gas 12 sent out from the gas container 11 containing the cryogenic liquefied natural gas can be supplied to the vaporizing mechanism 16 without passing through the pressure equalizing container 34.

図7では、液体の天然ガスが、圧力均一化容器34から出て、気化機構16を迂回し、極低温液化天然ガスの入ったガス容器11内に戻るために、更なる弁47を介して、圧力均一化容器34とガス配管29の間のバイパスを準備することができる。   In FIG. 7, liquid natural gas exits the pressure equalization vessel 34, bypasses the vaporization mechanism 16, and returns to the gas vessel 11 containing the cryogenic liquefied natural gas via a further valve 47. A bypass between the pressure equalizing vessel 34 and the gas pipe 29 can be prepared.

極低温液化天然ガスの入ったガス容器11から送り出された液体で極低温の天然ガス12が、噴射ノズル27aを通って下から強い推進力で、気化機構16の蓄積部23内に集められ温度調節された、メタンの乏しい天然ガス濃縮物21内に噴入されることは、図1及び図7の実施例で共通している。   The liquid cryogenic natural gas 12 sent out from the gas container 11 containing the cryogenic liquefied natural gas is collected in the accumulating portion 23 of the vaporizing mechanism 16 with a strong driving force from below through the injection nozzle 27a. Injecting into a methane-poor natural gas concentrate 21 that is conditioned is common in the embodiments of FIGS.

これに対し図2は、極低温液化天然ガスの入ったガス容器11から送り出された液体で極低温の天然ガス12を、噴霧ノズル27bによって上から天然ガス濃縮物21に吹き付けるガス供給装置の実施例を示している。他の全ての細部に関しては、図2に示される実施例は図1の実施例と一致している。   On the other hand, FIG. 2 shows an embodiment of a gas supply device in which the cryogenic natural gas 12 sent from the gas container 11 containing the cryogenic liquefied natural gas is sprayed onto the natural gas concentrate 21 from above by the spray nozzle 27b. An example is shown. For all other details, the embodiment shown in FIG. 2 is consistent with the embodiment of FIG.

図3は、図2の実施例の変形形態を示しており、図3の実施例では、本発明によるガス供給装置の気化機構16内に、少なくとも1つの充填体48が組み込まれている。図3の実施例では、図1、図2及び図7の実施例と異なり、極低温液化天然ガスの入ったガス容器11から送り出された液体の天然ガス12を、噴霧ノズル27bを介して天然ガス濃縮物21に直接的に噴霧するのではなく、まずは1つ又は各々の充填体48に噴霧し、その際、1つ又は各々の充填体48に噴霧した液体の天然ガスが、1つ又は各々の充填体48の表面で液体薄膜を形成して下に滴下し、気化機構16の蓄積部23内に収容されて温度調節された天然ガス濃縮物21と間接的に接触する。液体の天然ガスから成る液滴が天然ガス濃縮物の表面に触れるとメタンが気化し、この下から上昇するメタンが、1つ又は各々の充填体48に形成された液体薄膜を通過し、この時、気体メタン流の中で一緒に運ばれた濃縮物の小滴が、液体薄膜で分離される。   FIG. 3 shows a variant of the embodiment of FIG. 2, in which at least one filling body 48 is incorporated in the vaporization mechanism 16 of the gas supply device according to the invention. In the embodiment of FIG. 3, unlike the embodiments of FIGS. 1, 2 and 7, the liquid natural gas 12 delivered from the gas container 11 containing the cryogenic liquefied natural gas is naturally supplied via the spray nozzle 27b. Rather than spraying directly on the gas concentrate 21, first one or each filler 48 is sprayed, with one or each liquid natural gas sprayed on one or each filler 48 being one or A liquid thin film is formed on the surface of each filler 48 and dropped downward, and is indirectly contacted with the temperature-controlled natural gas concentrate 21 accommodated in the accumulation portion 23 of the vaporization mechanism 16. When a droplet of liquid natural gas touches the surface of the natural gas concentrate, methane evaporates, and the methane rising from below passes through the liquid film formed on one or each of the packing bodies 48, Sometimes the droplets of concentrate carried together in the gaseous methane stream are separated by a liquid film.

本発明によるガス供給装置の更なる様態を図4に示しており、図4の実施例では、極低温液化天然ガスの入ったガス容器11から送り出された液体で極低温の天然ガス12は噴霧ノズル27bを介して、また、蓄積部23内で温度調節されたメタンの乏しい天然ガス濃縮物21は噴霧ノズル49を介して、気化機構16内に位置決めされた1つ又は各々の充填体48に噴霧される。このように、気化機構の蓄積部23内に収容されて温度調節された天然ガス濃縮物21を、気化機構16の蓄積部23からポンプ50によって送り出すことができ、回転運動又は循環の意味において、噴霧ノズル49の方に運ぶことができる。図4に基づき、噴霧ノズル49へと導く循環配管51内には、調節機構41によって制御される弁52が組み込まれている。さらに循環配管51では、温度調節された天然ガス濃縮物の温度を噴霧ノズル49の直前で検知するために、温度センサ53が配置されている。   A further embodiment of the gas supply apparatus according to the present invention is shown in FIG. 4, and in the embodiment of FIG. 4, the liquid cryogenic natural gas 12 delivered from the gas container 11 containing cryogenic liquefied natural gas is sprayed. The methane-poor natural gas concentrate 21, temperature-controlled in the accumulator 23, is delivered to one or each of the fillers 48 positioned in the vaporization mechanism 16 via the nozzle 27 b and via the spray nozzle 49. Sprayed. Thus, the natural gas concentrate 21 accommodated in the accumulation part 23 of the vaporization mechanism and temperature-controlled can be sent out from the accumulation part 23 of the vaporization mechanism 16 by the pump 50, and in the meaning of rotational motion or circulation, It can be carried toward the spray nozzle 49. Based on FIG. 4, a valve 52 controlled by the adjusting mechanism 41 is incorporated in a circulation pipe 51 that leads to the spray nozzle 49. Further, in the circulation pipe 51, a temperature sensor 53 is disposed in order to detect the temperature of the temperature-adjusted natural gas concentrate immediately before the spray nozzle 49.

これにより図4の実施例では、噴霧ノズルを介して、一方では部分的に気化する液体の天然ガス12が、他方ではメタンの乏しい温度調節された天然ガス濃縮物21が、上から1つ又は各々の充填体48に噴霧される。その際、1つ又は各々の充填体48の表面に形成される液体薄膜中で熱伝導が行われ、これにより気化したメタンは上に流れ、その一方で天然ガス濃縮物21及び天然ガス12のうち気化しない構成要素は下に滴下し、気化機構16内の1つ又は各々の充填体48より下の蓄積部23内に収容される。   Thus, in the embodiment of FIG. 4, either a partially vaporized liquid natural gas 12, on the one hand, or a methane-poor temperature-controlled natural gas concentrate 21, from the top, via the spray nozzle, Each filler 48 is sprayed. In doing so, heat conduction takes place in the liquid film formed on the surface of one or each of the packings 48, whereby the vaporized methane flows upward, while the natural gas concentrate 21 and the natural gas 12. Among them, the components that do not evaporate are dropped downward, and are accommodated in the accumulation unit 23 below one or each filler 48 in the vaporization mechanism 16.

これに対する代替案として図4の実施例では、部分的に気化される液体の天然ガス及び温度調節された天然ガス濃縮物によって、1つ又は各々の充填体48の表面の互いに分離した領域を噴霧してもよく、その際、1つ又は各々の充填体内の暖かさの異なる領域間で熱伝導が行われ、1つ又は各々の充填体48の範囲内では極低温の液体の天然ガスが温度調節された天然ガス濃縮物と混合することはない。この場合の混合は、蓄積部23内に用意された濃縮物の表面部分でようやく行われる。   As an alternative to this, in the embodiment of FIG. 4, the vaporized liquid natural gas and the temperature-regulated natural gas concentrate are sprayed on one or each separate area of the surface of each packing 48. In this case, heat conduction takes place between regions of different warmth in one or each filling, and within one or each filling 48 the cryogenic liquid natural gas has a temperature. It does not mix with the conditioned natural gas concentrate. In this case, the mixing is finally performed on the surface portion of the concentrate prepared in the storage unit 23.

本発明によるガス供給装置の更なる実施形態を図5に示しており、図5の実施例は、基本的に図4の実施例に相応している。しかし図5の実施例では、上述の実施例とは異なり温度調節機構22が、メタンの乏しい天然ガス濃縮物を気化機構16の蓄積部23内で温度調節するようには形成されておらず、図5の実施例の温度調節機構22は、反対にメタンの乏しい天然ガス濃縮物21を蓄積容器23の外で、すなわち気化機構16の外で温度調節する。このため循環配管51内に、図5では熱交換器として形成されている温度調節機構22が組み込まれている。   A further embodiment of the gas supply device according to the invention is shown in FIG. 5 and the example of FIG. 5 basically corresponds to the example of FIG. However, in the embodiment of FIG. 5, unlike the above-described embodiment, the temperature adjustment mechanism 22 is not formed to adjust the temperature of the methane-poor natural gas concentrate in the accumulation unit 23 of the vaporization mechanism 16, The temperature adjustment mechanism 22 of the embodiment of FIG. 5 conversely adjusts the temperature of the methane-poor natural gas concentrate 21 outside the storage vessel 23, ie outside the vaporization mechanism 16. For this reason, the temperature adjustment mechanism 22 formed as a heat exchanger in FIG. 5 is incorporated in the circulation pipe 51.

天然ガス濃縮物21が、暖められる際に熱交換器22内部で気化しないように、ポンプ50及び弁52を介して循環配管51内では、気化機構16内で支配的であるより高い圧力を調整することができる。この場合、暖められ、かつ圧力をかけられた天然ガス濃縮物21は、気化機構16内に入る際に圧力が緩み、その際に更なるメタンが遊離する。これによりガス供給装置の効率は明らかに向上する。   In order to prevent the natural gas concentrate 21 from being vaporized inside the heat exchanger 22 when it is warmed, a higher pressure that is dominant in the vaporization mechanism 16 is adjusted in the circulation pipe 51 via the pump 50 and the valve 52. can do. In this case, the warmed and pressurized natural gas concentrate 21 relaxes when entering the vaporization mechanism 16 and further methane is liberated at that time. This clearly improves the efficiency of the gas supply device.

本発明によるガス供給装置の更なる実施形態を図6に示している。図6の実施例では、図1及び図7の実施例と同じ様に、極低温液化天然ガスの入ったガス容器11から送り出された極低温の天然ガス12を、噴霧ノズル27を介して下から、気化機構16の蓄積部23内に収容されて温度調節されたメタンの乏しい天然ガス濃縮物21に噴霧する。1つ又は各々の充填体48には、温度調節されたメタンの乏しい天然ガス濃縮物21だけが、噴霧ノズル49を介してもたらされる。蓄積部23内で温度調節機構22を介して温度調節されたメタンの乏しい天然ガス濃縮物は、1つ又は各々の充填体48にもたらす前に冷やされるため、噴霧する前に熱交換器54を通って、1つ又は各々の充填体48に導かれる。   A further embodiment of the gas supply device according to the invention is shown in FIG. In the embodiment of FIG. 6, the cryogenic natural gas 12 sent out from the gas container 11 containing the cryogenic liquefied natural gas is passed through the spray nozzle 27 in the same manner as the embodiment of FIGS. 1 and 7. Then, it is sprayed on the natural gas concentrate 21 poor in methane housed in the accumulation part 23 of the vaporization mechanism 16 and controlled in temperature. Only one or each temperature-regulated methane-poor natural gas concentrate 21 is provided to the one or each packing 48 via a spray nozzle 49. The methane-poor natural gas concentrate temperature controlled through the temperature control mechanism 22 in the accumulator 23 is cooled before being delivered to one or each of the packings 48, so that the heat exchanger 54 is turned on before spraying. Through to one or each filler 48.

既に何度も実施されたように、極低温液化天然ガスの入ったガス容器11から送り出された極低温の天然ガス12を気化機構16に供給し、その際、この天然ガスと温度調節された天然ガス濃縮物21とが規則的に接触する。極低温の天然ガス12の温度は熱交換器30の後で約−144℃で、温度調節された天然ガス濃縮物21の温度は約−80℃である。その際、天然ガス濃縮物が適切な組成である場合、気化機構16内の圧力が約6.5bar(絶対値)を超えないことが保証される。ここで、気化機構16の稼働には、温度調節機構22の加熱手段の凍結防止は、約−80℃までで十分である。   As already implemented many times, the cryogenic natural gas 12 sent out from the gas container 11 containing the cryogenic liquefied natural gas is supplied to the vaporizing mechanism 16, and the temperature of the natural gas and the natural gas is adjusted at that time. The natural gas concentrate 21 comes into regular contact. The temperature of the cryogenic natural gas 12 is about −144 ° C. after the heat exchanger 30, and the temperature of the temperature-regulated natural gas concentrate 21 is about −80 ° C. In so doing, it is ensured that the pressure in the vaporization mechanism 16 does not exceed about 6.5 bar (absolute value) if the natural gas concentrate is of the proper composition. Here, up to about −80 ° C. is sufficient for preventing the freezing of the heating means of the temperature adjusting mechanism 22 for the operation of the vaporizing mechanism 16.

本発明によるガス供給装置の上述した実施形態の特徴を、部分的又は完全に組み合わせた実施形態も考えられる。そして図2〜図6の実施例の場合においても、図7の実施例と同じ様に、極低温液化天然ガスの入ったガス容器11から送り出された天然ガス12が圧力均一化容器を恒常的に貫流するように、圧力均一化容器34をガス配管25に結合してもよい。   Embodiments in which the features of the above-described embodiments of the gas supply device according to the invention are partially or completely combined are also conceivable. In the case of the embodiment of FIGS. 2 to 6, as in the embodiment of FIG. 7, the natural gas 12 sent out from the gas container 11 containing the cryogenic liquefied natural gas makes the pressure equalizing container constant. The pressure equalizing vessel 34 may be coupled to the gas pipe 25 so as to flow through the gas pipe 25.

図5及び図6を組み合わせて、外にある熱交換器だけを使用することも考えられる。循環する天然ガス濃縮物21が、供給された液体の天然ガス12に熱放出することによって、気化機構16内の温度が上昇し、同時に外にある熱交換器22での温度差が拡大する。これにより、両方ともガス供給装置の性能は向上する。   It is also conceivable to combine FIGS. 5 and 6 and use only the external heat exchanger. The circulating natural gas concentrate 21 releases heat to the supplied liquid natural gas 12, whereby the temperature in the vaporization mechanism 16 rises and at the same time the temperature difference in the heat exchanger 22 outside increases. Thereby, the performance of the gas supply device is improved in both cases.

本発明の第1の実施例に基づく、内燃機関による駆動機のためのガス供給装置を示す図である。It is a figure which shows the gas supply apparatus for the drive machines by an internal combustion engine based on 1st Example of this invention. 本発明の第2の実施例に基づく、内燃機関による駆動機のためのガス供給装置を示す図である。It is a figure which shows the gas supply apparatus for the drive machines by an internal combustion engine based on 2nd Example of this invention. 本発明の第3の実施例に基づく、内燃機関による駆動機のためのガス供給装置を示す図である。It is a figure which shows the gas supply apparatus for the drive machines by an internal combustion engine based on the 3rd Example of this invention. 本発明の第4の実施例に基づく、内燃機関による駆動機のためのガス供給装置を示す図である。It is a figure which shows the gas supply apparatus for the drive machines by an internal combustion engine based on the 4th Example of this invention. 本発明の第5の実施例に基づく、内燃機関による駆動機のためのガス供給装置を示す図である。It is a figure which shows the gas supply apparatus for the drive machines by an internal combustion engine based on the 5th Example of this invention. 本発明の第6の実施例に基づく、内燃機関による駆動機のためのガス供給装置を示す図である。It is a figure which shows the gas supply apparatus for the drive machines by an internal combustion engine based on the 6th Example of this invention. 本発明の第7の実施例に基づく、内燃機関による駆動機のためのガス供給装置を示す図である。It is a figure which shows the gas supply apparatus for the drive machines by an internal combustion engine based on the 7th Example of this invention.

符号の説明Explanation of symbols

10 内燃機関
11 極低温液化天然ガスの入ったガス容器
12 液体の天然ガス
13 ガス配管
14 コンプレッサ
15 チェック弁
16 気化機構
17 混合点
18 熱変換器
19 ガス調節区間
20 安全機構
21 天然ガス濃縮物
22 温度調節機構
23 蓄積部
24 ポンプ
25 極低温の液体の天然ガスのための配管
26 チェック弁
27a 噴射ノズル
27b 噴霧ノズル
28 水位調節機構
29 戻り配管
30 熱交換器
31 弁
32 圧力センサ
33 弁
34 圧力均一化容器
35 弁
36 圧力センサ
37 充填レベルセンサ
38 弁
39 弁
40 メタン価センサ
41 調節機構
42 弁
43 温度センサ
44 液滴分離器
45 消泡器
46 弁
47 弁
48 充填体
49 噴霧ノズル
50 ポンプ
51 天然ガス濃縮物のための配管
52 弁
53 温度センサ
54 熱交換器
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 11 Gas container containing cryogenic liquefied natural gas 12 Liquid natural gas 13 Gas piping 14 Compressor 15 Check valve 16 Vaporization mechanism 17 Mixing point 18 Heat converter 19 Gas control area 20 Safety mechanism 21 Natural gas concentrate 22 Temperature control mechanism 23 Accumulator 24 Pump 25 Pipe for cryogenic liquid natural gas 26 Check valve 27a Injection nozzle 27b Spray nozzle 28 Water level adjustment mechanism 29 Return pipe 30 Heat exchanger 31 Valve 32 Pressure sensor 33 Valve 34 Uniform pressure Vessel 35 Valve 36 Pressure sensor 37 Filling level sensor 38 Valve 39 Valve 40 Methane number sensor 41 Control mechanism 42 Valve 43 Temperature sensor 44 Droplet separator 45 Defoamer 46 Valve 47 Valve 48 Filler 49 Spray nozzle 50 Pump 51 Natural Piping for gas concentrate 52 Valve 53 Degree sensor 54 heat exchanger

Claims (17)

内燃機関による駆動機のためのガス供給装置であって、極低温液化天然ガスの入ったガス容器内が暖まることにより該容器内で気化する天然ガスを、自然気化ガスとして駆動機の方に運ぶ第1のガス配管系と、前記自然気化ガスの量が前記駆動機のために十分でない場合に、液体の天然ガスを、前記極低温液化天然ガスの入った前記ガス容器から送り出して、前記ガス供給装置の構成要素である気化機構に供給し、部分的に気化させることにより強制気化ガスとして、自然気化ガス及び強制気化ガスから成る混合物を前記駆動機の方に運ぶため、前記自然気化ガスと混合させる第2のガス配管系と、を備えており、前記第1のガス配管系と前記第2のガス配管系とは、自然気化ガス及び強制気化ガスを混合させる混合点(17)において接続されているガス供給装置において、基本的にメタンより重くメタンより沸点の高い炭化水素から成る、メタンの乏しい液体の天然ガス濃縮物(21)を規定の温度に保つための温度調節機構(22)を含んでなり、かつ、前記混合点(17)の下流に、混合物のメタン価を測定するメタン価センサ(40)であって、測定された実際値を、メタンの乏しい液体の天然ガス濃縮物の温度を適合させるために前記実際値に応じて前記温度調節機構(22)を調節する調節機構(41)に伝えるメタン価センサ(40)を含んでなり、規定の温度を有する液体の天然ガス濃縮物(21)と、極低温液化天然ガスの入った前記ガス容器(11)から送り出された液体の天然ガス(12)とを、前記気化機構(16)内で液体の天然ガスからほぼメタンだけが気化するように、前記気化機構(16)内で直接的又は間接的に接触させ得ることを特徴とするガス供給装置。 A gas supply device for a drive unit by an internal combustion engine, which transports natural gas that is vaporized in the container containing the cryogenic liquefied natural gas as natural vaporized gas toward the drive unit When the first gas piping system and the amount of the natural vaporized gas are not sufficient for the driver, liquid natural gas is delivered from the gas container containing the cryogenic liquefied natural gas, and the gas was supplied to the gas mechanism which is a component of the supply device, as a forced vaporized gas by partially vaporized, to carry a mixture of natural gas for vaporization and forced vaporized gas toward said driving machine, wherein the natural gas for vaporization A second gas piping system to be mixed with the first gas piping system and the second gas piping system at a mixing point (17) for mixing natural vaporized gas and forced vaporized gas. Connection Temperature control mechanism (22) for maintaining a methane-poor liquid natural gas concentrate (21) consisting essentially of hydrocarbons heavier than methane and having a boiling point higher than methane And a methane number sensor (40) for measuring the methane number of the mixture downstream of the mixing point (17), wherein the measured actual value is converted into a natural gas concentrate of a methane-poor liquid. A methane number sensor (40) that communicates to an adjustment mechanism (41) that adjusts the temperature adjustment mechanism (22) according to the actual value to adapt the temperature of the liquid natural gas having a defined temperature The concentrate (21) and the liquid natural gas (12) sent out from the gas container (11) containing the cryogenic liquefied natural gas are substantially converted into methane from the liquid natural gas in the vaporization mechanism (16). As injury vaporized, the gas supply apparatus characterized by capable of directly or indirectly contact with said vaporizing mechanism (16). 前記温度調節機構(22)が、メタンの乏しい液体の天然ガス濃縮物を所定の温度に保ち、その際、前記温度が少なくともガス混合物の組成と、気化機構(16)の所望の稼働温度時に液体の天然ガス内に含まれるメタンの気化圧力と、に依存していることを特徴とする請求項1に記載のガス供給装置。   The temperature regulating mechanism (22) keeps the methane-poor liquid natural gas concentrate at a predetermined temperature, wherein the temperature is liquid at least at the composition of the gas mixture and the desired operating temperature of the vaporization mechanism (16). The gas supply device according to claim 1, wherein the gas supply device depends on a vaporization pressure of methane contained in the natural gas. 液体の天然ガスのうち前記気化機構(16)内で気化しない構成要素が、前記天然ガス濃縮物に供給され得ることを特徴とする請求項1又は2に記載のガス供給装置。   3. Gas supply device according to claim 1 or 2, characterized in that components of liquid natural gas that do not evaporate in the vaporization mechanism (16) can be supplied to the natural gas concentrate. 前記気化機構(16)内で気化したメタンから、すなわち強制気化ガスから、メタンより重くメタンより沸点の高い炭化水素から成る液滴を取り除くため、前記気化機構(16)が液滴分離器(44)を内包し、該液滴分離器(44)が前記気化機構(16)の出口より下側に配置されていることを特徴とする請求項1〜3のいずれか一項に記載のガス供給装置。   In order to remove droplets made of hydrocarbons heavier than methane and having a boiling point higher than methane from methane vaporized in the vaporization mechanism (16), that is, forced vaporization gas, the vaporization mechanism (16) is operated by a droplet separator (44). The gas supply according to any one of claims 1 to 3, wherein the droplet separator (44) is disposed below the outlet of the vaporization mechanism (16). apparatus. 前記気化機構(16)が、メタンの乏しい液体の天然ガス濃縮物のための蓄積部(23)を有しており、その際、極低温液化天然ガスの入った前記ガス容器(11)から送り出された液体の天然ガスを、前記蓄積部(23)内に集められた天然ガス濃縮物と直接的に接触させ得ることを特徴とする請求項1〜4のいずれか一項に記載のガス供給装置。   The vaporization mechanism (16) has an accumulator (23) for liquid natural gas concentrate poor in methane, at which time it is delivered from the gas container (11) containing cryogenic liquefied natural gas. Gas supply according to any one of claims 1 to 4, characterized in that the liquid natural gas thus obtained can be brought into direct contact with the natural gas concentrate collected in the accumulator (23). apparatus. 極低温液化天然ガスの入った前記ガス容器(11)から送り出された液体の天然ガスを、前記蓄積部(23)内に集められた規定の温度を有する天然ガス濃縮物内に強い推進力で噴入するため、前記気化機構(16)が噴射ノズル(27a)を内包していることを特徴とする請求項5に記載のガス供給装置。   Liquid natural gas sent out from the gas container (11) containing cryogenic liquefied natural gas is collected in the accumulator (23) with a strong driving force in the natural gas concentrate having a specified temperature. 6. The gas supply device according to claim 5, wherein the vaporizing mechanism (16) contains an injection nozzle (27a) for injection. 極低温液化天然ガスの入った前記ガス容器(11)から送り出された液体の天然ガスを、噴霧ノズル(27b)を介して、前記気化機構(16)の蓄積部(23)内に集められた天然ガス濃縮物に、上側及び/又は下側から吹き付け得ることを特徴とする請求項5又は6に記載のガス供給装置。   The liquid natural gas sent out from the gas container (11) containing the cryogenic liquefied natural gas was collected in the accumulation part (23) of the vaporization mechanism (16) via the spray nozzle (27b). The gas supply device according to claim 5 or 6, wherein the natural gas concentrate can be sprayed from the upper side and / or the lower side. 前記蓄積部(23)内の天然ガス濃縮物の量をほぼ一定に保つため、前記気化機構(16)の蓄積部(23)に水位調節機構(28)が組み込まれており、前記蓄積部(23)内の天然ガス濃縮物が多すぎると、前記水位調節機構(28)が余分な天然ガス濃縮物を、該天然ガス濃縮物の冷却後に、極低温液化天然ガスの入った前記ガス容器(11)内に戻すことを特徴とする請求項5〜7のいずれか一項に記載のガス供給装置。   In order to keep the amount of the natural gas concentrate in the accumulator (23) substantially constant, a water level adjusting mechanism (28) is incorporated in the accumulator (23) of the vaporization mechanism (16), and the accumulator ( 23) If there is too much natural gas concentrate in the gas level, the water level adjustment mechanism (28) removes excess natural gas concentrate after the natural gas concentrate has cooled, and the gas container containing cryogenic liquefied natural gas ( 11) The gas supply device according to any one of claims 5 to 7, wherein the gas supply device is returned to the inside. 前記気化機構(16)が、少なくとも1つの充填体(48)を有することを特徴とする請求項1〜8のいずれか一項に記載のガス供給装置。   The gas supply device according to any one of claims 1 to 8, wherein the vaporization mechanism (16) has at least one filler (48). 極低温液化天然ガスの入った前記ガス容器(11)から送り出された天然ガスを、噴霧ノズル(27b)を介して、1つ又は各々の充填体(48)に吹き付けることができ、1つ又は各々の前記充填体(48)の表面に、吹き付けられた天然ガスが液体薄膜を形成し、そこから天然ガス濃縮物と間接的に接触させ得ることを特徴とする請求項9に記載のガス供給装置。   Natural gas delivered from the gas container (11) containing cryogenic liquefied natural gas can be sprayed to one or each filler (48) via a spray nozzle (27b). 10. Gas supply according to claim 9, characterized in that the sprayed natural gas forms a liquid film on the surface of each said filling body (48) from which it can be indirectly contacted with the natural gas concentrate. apparatus. 極低温液化天然ガスの入った前記ガス容器(11)から送り出された液体の天然ガス及び天然ガス濃縮物を、異なる噴霧ノズル(27b、49)を介して、1つ又は各々の前記充填体(48)に吹き付け得ることを特徴とする請求項9に記載のガス供給装置。   Liquid natural gas and natural gas concentrate delivered from the gas container (11) containing cryogenic liquefied natural gas are passed through different spray nozzles (27b, 49) to one or each of the fillers ( 48) The gas supply device according to claim 9, wherein the gas supply device can be sprayed onto the gas 48). 前記気化機構(16)内で気化したメタンから、すなわち強制気化ガスから気泡を取り除くため、前記気化機構(16)が消泡器(45)を内包していることを特徴とする請求項1〜11のいずれか一項に記載のガス供給装置。   2. The defoamer (45) is included in the vaporization mechanism (16) to remove bubbles from methane vaporized in the vaporization mechanism (16), that is, forced vaporization gas. The gas supply device according to any one of 11. 特に前記駆動機(10)に供給可能な自然気化ガスの量に応じて、極低温液化天然ガスの入った前記ガス容器(11)から送り出して前記気化機構(16)内で部分的に気化すべき液体の天然ガスの量を調整するための調節機構を含んでなることを特徴とする請求項1〜12のいずれか一項に記載のガス供給装置。   In particular, depending on the amount of natural vaporized gas that can be supplied to the drive unit (10), the gas is sent from the gas container (11) containing cryogenic liquefied natural gas and partially vaporized in the vaporization mechanism (16). The gas supply device according to any one of claims 1 to 12, further comprising an adjustment mechanism for adjusting an amount of natural gas to be liquid. 液体の天然ガスを、極低温液化天然ガスの入った前記ガス容器(11)からポンプ(24)を介して送り出し、前記気化機構(16)に供給することができ、さらに、前記ポンプ(24)を介して、前記気化機構(16)内で支配的な圧力が調整可能であることを特徴とする請求項1〜13のいずれか一項に記載のガス供給装置。   Liquid natural gas can be sent out from the gas container (11) containing cryogenic liquefied natural gas via a pump (24) and supplied to the vaporization mechanism (16), and the pump (24) 14. The gas supply device according to claim 1, wherein the pressure prevailing in the vaporization mechanism (16) can be adjusted via a gas. 極低温液化天然ガスの入った前記ガス容器(11)と前記気化機構(16)との間に接続された、圧力変動を均一化するための圧力均一化容器(34)を含んでなることを特徴とする請求項1〜14のいずれか一項に記載のガス供給装置。   A pressure equalizing vessel (34) for homogenizing pressure fluctuations connected between the gas vessel (11) containing cryogenic liquefied natural gas and the vaporization mechanism (16); The gas supply device according to claim 1, wherein the gas supply device is a gas supply device. 自然気化ガス及び強制気化ガスを混合させる混合点(17)の下流側に、前記駆動機(10)に供給する混合物の温度調節をするための熱交換器(18)が配置されており、さらに、前記熱交換器(18)の下流側で、メタン価センサが混合物のメタン価を測定することを特徴とする請求項1〜15のいずれか一項に記載のガス供給装置。   A heat exchanger (18) for adjusting the temperature of the mixture supplied to the drive unit (10) is disposed downstream of the mixing point (17) where the natural vapor gas and the forced vapor gas are mixed. The gas supply device according to any one of claims 1 to 15, wherein a methane number sensor measures the methane number of the mixture downstream of the heat exchanger (18). 余分な、自然気化ガス及び強制気化ガスから成る混合物を排出するため、前記熱交換器(18)と前記駆動機(10)の間に、安全機構(20)が接続されていることを特徴とする請求項16に記載のガス供給装置。   A safety mechanism (20) is connected between the heat exchanger (18) and the drive unit (10) in order to discharge an excessive mixture of natural vapor gas and forced vapor gas. The gas supply device according to claim 16.
JP2007328887A 2006-12-22 2007-12-20 Gas supply device for drive machine Expired - Fee Related JP5350625B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006061251.5 2006-12-22
DE102006061251A DE102006061251B4 (en) 2006-12-22 2006-12-22 Gas supply system for a drive

Publications (2)

Publication Number Publication Date
JP2008157457A JP2008157457A (en) 2008-07-10
JP5350625B2 true JP5350625B2 (en) 2013-11-27

Family

ID=38951512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007328887A Expired - Fee Related JP5350625B2 (en) 2006-12-22 2007-12-20 Gas supply device for drive machine

Country Status (5)

Country Link
JP (1) JP5350625B2 (en)
KR (1) KR101471196B1 (en)
CN (1) CN101265859B (en)
DE (1) DE102006061251B4 (en)
FI (1) FI123625B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007042158A1 (en) * 2007-09-05 2009-03-12 Man Diesel Se Gas supply system for a gas-fueled internal combustion engine
CN101629085A (en) * 2008-09-24 2010-01-20 何巨堂 Method for designing driving system for circulating hydrogen compressor of hydrocarbon hydrogenation device
US20140060110A1 (en) * 2011-03-11 2014-03-06 Daewoo Shipbuilding & Marine Engineering Co., Ltd. Fuel supply system for marine structure having reliquefaction apparatus and high-pressure natural gas injection engine
GB2497952A (en) 2011-12-22 2013-07-03 Dearman Engine Company Ltd Cryogenic engine system
CN103511127B (en) * 2012-06-25 2016-01-13 U&S株式会社 Engine of boat and ship Liquefied Natural Gas fuel supply system
KR101386543B1 (en) * 2012-10-24 2014-04-18 대우조선해양 주식회사 System for treating boil-off gas for a ship
KR102011860B1 (en) * 2012-10-24 2019-08-20 대우조선해양 주식회사 System and method for supplying fuel gas for a ship
KR102011861B1 (en) * 2012-10-24 2019-08-20 대우조선해양 주식회사 System and method for supplying fuel gas for a ship
DE102012024717A1 (en) 2012-12-18 2014-06-18 Daimler Ag Vehicle has liquefied petroleum gas tank for accommodating liquefied petroleum gas as fuel for internal combustion engine of vehicle and overpressure discharge line for discharging vaporized gas, which is connected with gas tank
KR101316552B1 (en) * 2012-12-18 2013-10-15 현대중공업 주식회사 Lng fuel gas supply system of high pressure and low pressure dual-fuel engine
CN104595063B (en) * 2015-01-28 2016-10-12 江苏科技大学 Liquified natural gas gasification system based on double fuel engine of boat and ship cooling water heat
JP6459750B2 (en) * 2015-04-27 2019-01-30 株式会社Ihi Fuel gas supply system
CN107062222A (en) * 2017-05-24 2017-08-18 江苏师范大学 A kind of miniature boiler burner
EP4015892B1 (en) * 2020-12-17 2024-07-24 Cryostar SAS System and method for vaporizing a cryogenic gas-liquid mixture

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110996A (en) * 1977-05-02 1978-09-05 Phillips Petroleum Company Method and apparatus for recovering vapor
JPS56116995A (en) * 1980-02-19 1981-09-14 Hitachi Ltd Control device for liquefied gas fuel supply plant
JPH0412372Y2 (en) * 1986-01-29 1992-03-25
JP2564824Y2 (en) * 1992-05-14 1998-03-11 石川島播磨重工業株式会社 BOG cooling system from LNG
NO176454C (en) * 1993-01-29 1995-04-05 Kvaerner Moss Tech As Methods and plants for utilizing and providing fuel gas, respectively
JP2000146090A (en) * 1998-11-06 2000-05-26 Kobe Steel Ltd Air temperature type carburator for low temperature liquefied gas
JP4493806B2 (en) * 2000-06-29 2010-06-30 大陽日酸株式会社 Liquid gas delivery equipment
JP4024996B2 (en) * 2000-07-28 2007-12-19 大阪瓦斯株式会社 City gas production method
GB0120661D0 (en) * 2001-08-24 2001-10-17 Cryostar France Sa Natural gas supply apparatus
FR2837783B1 (en) * 2002-03-26 2004-05-28 Alstom PLANT FOR THE SUPPLY OF GAS FUEL TO AN ENERGY PRODUCTION ASSEMBLY OF A LIQUEFIED GAS TRANSPORT VESSEL
JP4194325B2 (en) * 2002-09-09 2008-12-10 Ihiプラント建設株式会社 Method and apparatus for reducing calorific value of high calorific value LNG
JP2004298769A (en) * 2003-03-31 2004-10-28 Jgc Corp Gas phase reaction apparatus
FI118680B (en) * 2003-12-18 2008-02-15 Waertsilae Finland Oy A gas supply arrangement in a craft and a method for controlling gas pressure in a craft gas supply arrangement
FI118681B (en) * 2004-03-17 2008-02-15 Waertsilae Finland Oy Gas supply arrangement for a watercraft and method for producing gas in a watercraft
FR2879261B1 (en) * 2004-12-10 2007-04-13 Alstom Sa INSTALLATION FOR THE DELIVERY OF GASEOUS FUEL TO AN ENERGY PRODUCTION ASSEMBLY OF A LIQUEFIED GAS TRANSPORT VESSEL
JP4275061B2 (en) * 2004-12-22 2009-06-10 三菱重工業株式会社 Fuel supply apparatus and LNG ship equipped with the same
GB0501335D0 (en) * 2005-01-21 2005-03-02 Cryostar France Sa Natural gas supply method and apparatus
JP4394038B2 (en) * 2005-05-30 2010-01-06 東京瓦斯株式会社 Gas separation device, gas separation method, and gas engine cogeneration system

Also Published As

Publication number Publication date
FI20070977A (en) 2008-06-23
FI123625B (en) 2013-08-30
DE102006061251A1 (en) 2008-07-03
JP2008157457A (en) 2008-07-10
KR20080059078A (en) 2008-06-26
CN101265859A (en) 2008-09-17
FI20070977A0 (en) 2007-12-13
CN101265859B (en) 2012-06-06
KR101471196B1 (en) 2014-12-09
DE102006061251B4 (en) 2010-11-11

Similar Documents

Publication Publication Date Title
JP5350625B2 (en) Gas supply device for drive machine
JP4922269B2 (en) Gas supply device for an internal combustion engine driven by gaseous fuel
KR101784602B1 (en) Regasification System of liquefied Gas and Ship Having the Same
US20210041066A1 (en) Multi-Vessel Fluid Storage and Delivery System
US7497180B2 (en) Gas supply arrangement of a marine vessel and method of providing gas in a gas supply arrangement of a marine vessel
JP4843602B2 (en) Ship gas supply device and gas supply method in ship
EP2932148B1 (en) Method of starting gas delivery from a liquefied gas fuel system to a gas operated engine
KR20100035223A (en) Fuel gas supply system for lng carrier using duel fuel diesel electric propulsion engine
CN104955727B (en) Natural-gas fuel supply system, ship, the method to engine supply natural-gas fuel
KR20070104423A (en) Natural gas supply method and apparatus
US10816140B2 (en) Method of an apparatus for treating boil-off gas for the purpose of supplying at least an engine
US20130232997A1 (en) Economizer biasing valve for cryogenic fluids
JP4194325B2 (en) Method and apparatus for reducing calorific value of high calorific value LNG
JP4194324B2 (en) Method and apparatus for reducing calorific value of high calorific value LNG
JP2004069029A (en) Filling system of liquefied petroleum gas
KR101934046B1 (en) Liquified fuel gas propulsion ship and fuel supplying method thereof
NO339027B1 (en) System and method for conditioning pressure in an LNG tank
JP2005030434A (en) Liquefied gas filler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110408

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110419

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20110719

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120417

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120420

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130529

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20130606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130822

R150 Certificate of patent or registration of utility model

Ref document number: 5350625

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees