JP4493806B2 - Liquid gas delivery equipment - Google Patents

Liquid gas delivery equipment Download PDF

Info

Publication number
JP4493806B2
JP4493806B2 JP2000196469A JP2000196469A JP4493806B2 JP 4493806 B2 JP4493806 B2 JP 4493806B2 JP 2000196469 A JP2000196469 A JP 2000196469A JP 2000196469 A JP2000196469 A JP 2000196469A JP 4493806 B2 JP4493806 B2 JP 4493806B2
Authority
JP
Japan
Prior art keywords
gas
liquefied gas
liquefied
compressed
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000196469A
Other languages
Japanese (ja)
Other versions
JP2002013699A (en
Inventor
章司 関原
浩人 平野
健治 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2000196469A priority Critical patent/JP4493806B2/en
Publication of JP2002013699A publication Critical patent/JP2002013699A/en
Application granted granted Critical
Publication of JP4493806B2 publication Critical patent/JP4493806B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Reciprocating Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Pipeline Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、液化ガスの送液設備に関し、詳しくは、ポンプ等の圧縮手段を用いて液化ガスを昇圧又は送液する際に、液化ガスの気化によるキャビーテーションを防止して効率よく液化ガスを送液することができる液化ガスの送液設備に関する。
【0002】
【従来の技術】
水や油等の液体を送液する場合、圧縮機(ポンプ)における送液流量を調節するため、圧縮機二次側から圧縮機一次側に液体を戻すための戻し配管(還水配管)を設け、該戻し配管に設けた流量調整弁を調節することにより、供給液量を調節することが一般的に行われている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の方法では、液化ガスのように容易に気化する液体を昇圧・送液しようとする場合、圧縮機一次側配管からの熱侵入や、圧縮機駆動部からの熱伝導及び流体自体の圧縮熱等により、液化ガスの一部が気化し、更には、該気化ガスによって圧縮機がキャビテーションを起こし、送液不能となったり、圧縮機自体が破損したりするおそれがあった。
【0004】
そこで、本発明は、送液時の液化ガスの気化によるキャビーテーションを防止し、効率的に液化ガスの圧縮・送液・流量制御が可能な液化ガスの送液設備を提供することを目的としている。
【0005】
【課題を解決するための手段】
上記目的を達成するため、本発明の液化ガスの送液設備における第1の構成は、液化ガスを圧縮する圧縮手段の二次側配管から一次側配管へ圧縮ガスの一部を戻すガス戻し配管を設けるとともに、該ガス戻し配管に、圧縮ガスの戻り量を制御する保圧弁と、圧縮ガスを冷却する冷却手段とを設けたことを特徴としている。
【0006】
本発明の液化ガスの送液設備における第2の構成は、液化ガスを圧縮する圧縮手段の二次側配管から一次側配管へ圧縮ガスを戻すガス戻し配管を設け、該ガス戻し配管に圧縮ガスの戻り量を制御する保圧弁を設けるとともに、圧縮機一次側配管における前記ガス戻し配管の接続点と前記圧縮手段との間に、圧縮ガス合流後の液化ガスを冷却する冷却手段を設けたことを特徴としている。
【0007】
前記圧縮される液化ガスが、液化ガス貯槽から導出したものであること、前記冷却手段が、前記液化ガス貯槽の液化ガスが有する寒冷を冷却源として用いること、前記冷却手段が、冷凍機の冷媒を冷却源として用いることを特徴としている。
【0008】
また、本発明は、前記圧縮される液化ガスが、空気分離装置から導出したものであること、圧縮ガスの送出先に、液化ガス貯槽が設けられていることを特徴としている。
【0009】
さらにまた、本発明は、前記圧縮手段がガス駆動式であることを特徴としている。
【0010】
【発明の実施の形態】
図1は、本発明の液化ガスの送液設備の第1形態例を示す系統図である。この液化ガスの送液設備は、低圧液化ガス貯槽11に貯留されている液化ガス、例えば液化炭酸ガスを圧縮機(ポンプ)12で昇圧して高圧液化ガス貯槽13に送込むための設備である。圧縮機12の二次側には、圧力変動を吸収するためのアキュムレーター14、圧力計(PT)15が設けられ、高圧液化ガス貯槽13には、貯槽内の液化炭酸ガス量を検出するための差圧計(LG)16が設けられるとともに、昇圧した液化炭酸ガスを使用する装置として、例えば、ドライアイス生成装置、洗浄装置、精製装置、あるいはこれらを適宜組合わせた液化炭酸ガス使用装置17が設けられている。
【0011】
さらに、本形態例では、前記圧力計15及び差圧計16からの信号によって圧縮機12の運転状態を、該圧縮機12の駆動源である電機モーターを介して制御するためのインバータ18が設けられている。
【0012】
そして、圧縮手段である圧縮機12には、該圧縮機12の二次側配管19から一次側配管20へ圧縮ガス(圧縮後の液化ガス及び気化ガス)の一部を戻すためのガス戻し配管21が設けられるとともに、該ガス戻し配管21には、圧縮ガスの戻り量(還流量)を制御する制御手段である保圧弁22と、圧縮ガスを冷却する冷却手段である熱交換器23とが設けられている。
【0013】
低圧液化ガス貯槽11に貯留されている液化炭酸ガスは、一次側配管20を通って圧縮機12に送液される。圧縮機12の運転が始まると、圧縮機12による液化炭酸ガスの圧縮・送液が開始され、所定圧力の液化炭酸ガスが高圧液化ガス貯槽13に貯液され始める。このとき、圧縮機12の二次側配管19内が所定の圧力以上になると、すなわち、圧縮機12で圧縮された液化ガスの圧力が、前記ガス戻し配管21に設けた保圧弁22の設定圧力以上になると、保圧弁22が開き、気化した炭酸ガスを含む液化炭酸ガスが、ガス戻し配管21を通って熱交換器23に導入され、該熱交換器23に供給される冷却媒体により所定温度に冷却されるとともに気化した炭酸ガスを再液化させて圧縮機12の一次側配管20に再供給する。
【0014】
高圧液化ガス貯槽13が満量になると、差圧計16が満量状態を検知し、インバータ18により圧縮機12の減量運転が開始される。このときも、圧縮機12の二次側配管19の圧力が保圧弁22の設定圧力以上になると、気化した炭酸ガスを含む液化炭酸ガスがガス戻し配管21を通って熱交換器23に導入され、所定温度に冷却されて気化した炭酸ガスを液化した状態で、圧縮機12の一次側配管20に再供給される。
【0015】
すなわち、圧縮機12の二次側から一次側に圧縮ガスの一部を戻して流量調節や圧力調節を行う際に、一次側に還流する圧縮ガスを熱交換器23に導入して冷却し、圧縮ガス中に含まれる炭酸ガス(気化ガス)を凝縮させるとともに、所定温度に降温してから一次側に戻すことにより、各部からの熱侵入、ポンプ駆動部からの熱伝導、液化炭酸ガス自体の圧縮熱等で液化炭酸ガスが気化した場合でも、気化ガスによって圧縮機12がキャビテーションを起こすことを防止できる。
【0016】
なお、前記圧縮機(圧縮手段)12には、遠心式、軸流式、往復式のような任意の形式のポンプを使用することができる。また、圧縮機12の制御手段として、インバータ18による電機モーターの回転制御を用いたが、抵抗制御等の他の電気的な制御手段を使用することもできる。また、ガス戻し配管21に設ける制御手段として保圧弁22を用いたが、ニードル弁等の流量調整可能な絞り部を用いてもよい。
【0017】
さらに、送液する液化ガスは、通常は、液化ガス貯槽から導出したものであるが、他の設備、例えば空気分離装置から導出したものであってもよい。液化ガスの種類も任意であり、例えば、前記液化炭酸ガスの他にも、液化酸素、液化窒素、液化アルゴン、液化天然ガス、液化水素等にも適用が可能である。また、圧縮後の液化ガスの送液先も任意である。また、ガス戻し配管21に設ける冷却手段(熱交換器)は、気化ガスを凝縮液化する凝縮器として作用するとともに、一次側に戻るガスを所定温度に冷却できるものならばよく、冷却源には、送液する液化ガスを凝縮できるものならば適当なものを使用可能であり、例えば、冷凍機で冷却したアンモニアやフロン等の冷媒であってもよく、他の適宜な低温冷媒、例えば、液化ガスが上記液化炭酸ガスの場合は、液化窒素や極低温の窒素ガス等を使用することができ、液化ガス貯槽11,13の液化ガスが有する寒冷を利用することもできる。
【0018】
図2は、本発明の第2形態例を示す系統図である。この液化ガスの送液設備は、前記第1形態例における高圧液化ガス貯槽13に代えて、螺旋状配管で構成される整流部24を使用したものである。なお、前記第1形態例の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。
【0019】
本形態例においても、第1形態例と同様に、圧縮機12の二次側から一次側に還流する圧縮ガスを熱交換器23で冷却することにより、気化ガスを凝縮させるとともに所定温度に冷却するようにしているので、圧縮機12でのキャビテーションの発生を防止できる。
【0020】
図3は、第1参考例を示す系統図である。本参考例に示す液化ガス送液設備では、前記第1形態例における圧縮機二次側配管19と一次側配管20とを接続するガス戻し配管21に代えて、圧縮機12の二次側配管19から低圧液化ガス貯槽11に、制御手段としての保圧弁32を介して圧縮ガスを還流させるガス戻し配管31を設けたものである。なお、前記第1形態例の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。
【0021】
すなわち、圧縮機12の二次側配管19内が、ガス戻し配管31に設けた保圧弁32の設定圧力以上になると、気化した炭酸ガスを含む液化炭酸ガスの一部が、二次側配管19からガス戻し配管31を通って低圧液化ガス貯槽11に戻される。したがって、気化ガスは、圧縮機12に吸入されることなく低圧液化ガス貯槽11に戻され、低圧液化ガス貯槽11内の液化炭酸ガスによって直接冷却されて再液化するので、圧縮機12に気化ガスが流入することがなく、キャビテーションの発生を防止できる。
【0022】
図4は、本発明の第形態例を示す系統図である。本形態例に示す液化ガス送液設備では、圧縮機12の駆動源に、電機モーターに代えてエア駆動のタービンを使用している。なお、前記第2形態例の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。
【0023】
すなわち、本形態例では、駆動用エア配管33から所定圧力の駆動用エアを供給し、駆動用エア配管33に設けた流量調節弁34の開度を、圧力計15及び差圧計16からの信号によって作動する電動アクチュエーター(M)35で調節し、圧縮機駆動用タービンに供給する駆動用エアの流量を調整することにより、圧縮機12の送液流量を制御するようにしている。圧縮機駆動用タービンの駆動ガスとしては、上記エア(圧縮空気)の他、窒素ガス、二酸化炭素、アルゴンガス等の各種ガスを駆動ガスとして使用することができる。
【0024】
図5は、本発明の第形態例を示す系統図である。本形態例に示す液化ガス送液設備では、圧縮機12の二次側配管19から一次側配管20へ圧縮ガスの一部を戻すためのガス戻し配管36を設けるとともに、該ガス戻し配管36に制御手段としての保圧弁37を設け、さらに、該ガス戻し配管36の接続点38と圧縮機12との間の一次側配管20に、気化ガスを凝縮させるとともに、所定温度に冷却する熱交換器39を設けたものである。なお、前記第1形態例の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。
【0025】
したがって、本形態例では、二次側配管19から圧縮機一次側に戻される圧縮ガスは、低圧液化ガス貯槽11からの液化炭酸ガスと合流してから熱交換器39に流入し、該ガス中に含まれる気化ガスが再液化される。このように圧縮ガス合流後の経路に熱交換器39を設けることにより、圧縮機12に流入する液化炭酸ガスの過冷度を一定にすることが可能となるので、圧縮機12の運転がより安定した状態となる。
【0026】
図6は、第2参考例を示す系統図である。本参考例に示す液化ガス送液設備では、前記第1参考例における圧縮機12の二次側配管19に気液分離手段40を設けて圧縮ガス中の気化ガスを積極的に分離し、分離した気化ガスのみをガス戻し配管31から低圧液化ガス貯槽11に戻すようにしたものである。これにより、気化ガスをほとんど含まない状態の液化ガスを高圧液化ガス貯槽13等に送ることができる。なお、前記第1参考例の構成要素と同一の構成要素には同一の符号を付して詳細な説明は省略する。
【0027】
このとき、還流させる気化ガスは、第1形態例のように熱交換器23で冷却して一次側配管20に戻してもよく、第形態例のように熱交換器39を備えた一次側配管20の熱交換器上流側に戻すようにしてもよい。また、気液分離手段40には、一般的な気液分離器を用いることもできるが、高圧液化ガス貯槽13を気液分離手段として利用し、該貯槽13の上部にガス戻し配管を接続することもできる。
【0028】
【実施例】
実施例1
図2に示す構成の送液設備を使用し、圧力2MPa、温度約−20℃の液化炭酸ガスを、約1.3kg/minの流量でドライアイス生成装置に送液した。なお、圧縮機には多摩精機製往復式圧縮機を、熱交換器(凝縮器)には三菱電機製冷凍機をそれぞれ使用した。ドライアイス生成装置で連続的にドライアイスを生成する運転を継続して行ったが、その間、圧縮機での異音の発生、異常振動、温度上昇及び圧縮機の破損等はなく、流量制御を含めて安定した運転を行うことができた。
【0029】
実施例2
図2に示す構成の送液設備を使用し、圧力2MPa、温度約−20℃の液化炭酸ガスを、約1.0kg/minの流量で液化炭酸ガス精製装置に送液し、精製後の液化炭酸ガスをドライアイススノー洗浄装置に供給した。なお、圧縮機にはハスケル製ダイヤフラム式圧縮機を、熱交換器(凝縮器)には三菱電機製冷凍機をそれぞれ使用した。ドライアイススノー洗浄装置を連続的に運転したが、圧縮機での異音の発生、異常振動、温度上昇及び圧縮機の破損等はなく、流量制御を含めて安定した運転を行うことができた。
【0030】
【発明の効果】
以上説明したように、本発明によれば、気化ガスによるキャビーテーションの発生を防止して安定した状態で液化ガスを送液することができ、液化ガス送液設備の運転効率向上や制御性向上等が図れる。
【図面の簡単な説明】
【図1】 本発明の液化ガスの送液設備の第1形態例を示す系統図である。
【図2】 本発明の液化ガスの送液設備の第2形態例を示す系統図である。
【図3】 第1参考例を示す系統図である。
【図4】 本発明の液化ガスの送液設備の第形態例を示す系統図である。
【図5】 本発明の液化ガスの送液設備の第形態例を示す系統図である。
【図6】 第2参考例を示す系統図である。
【符号の説明】
11…低圧液化ガス貯槽、12…圧縮機、13…高圧液化ガス貯槽、14…アキュムレーター、15…圧力計、16…差圧計、17…液化炭酸ガス使用装置、18…インバータ、19…二次側配管、20…一次側配管、21…ガス戻し配管、22…保圧弁、23…熱交換器、24…整流部、33…駆動用エア配管、34…流量調節弁、35…電動アクチュエーター、36…ガス戻し配管、37…保圧弁、38…接続
[0001]
BACKGROUND OF THE INVENTION
The present invention relates Bei liquid delivery set of the liquefied gas, particularly, when the up or feeding a liquefied gas using a compression means such as a pump, effectively prevents the cavity over station due to vaporization of the liquefied gas liquefaction feeding of the liquefied gas that can be feeding a gas-liquid setting Bei relates.
[0002]
[Prior art]
When liquid such as water or oil is sent, a return pipe (return water pipe) is provided to return the liquid from the compressor secondary side to the compressor primary side in order to adjust the liquid feed flow rate in the compressor (pump). It is generally performed to adjust the amount of supply liquid by adjusting the flow rate adjusting valve provided in the return pipe.
[0003]
[Problems to be solved by the invention]
However, in the conventional method, when trying to pressurize and send a liquid that easily vaporizes, such as liquefied gas, heat intrusion from the compressor primary side pipe, heat conduction from the compressor drive unit, and fluid itself A part of the liquefied gas is vaporized by the compression heat or the like, and furthermore, the compressor causes cavitation due to the vaporized gas, and there is a possibility that liquid feeding becomes impossible or the compressor itself is damaged.
[0004]
The present invention aims to provide a liquid feed equipment of liquefied vaporized prevent cavity over station by the gas, efficiently compressed and liquid feed-rate control of the liquefied gas can be liquefied gas during feeding It is said.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, the first configuration of the liquefied gas delivery system of the present invention is a gas return pipe for returning a part of the compressed gas from the secondary pipe to the primary pipe of the compression means for compressing the liquefied gas. And a pressure holding valve for controlling the return amount of the compressed gas and a cooling means for cooling the compressed gas are provided in the gas return pipe.
[0006]
The second configuration of the liquefied gas delivery system according to the present invention includes a gas return pipe for returning the compressed gas from the secondary side pipe of the compression means for compressing the liquefied gas to the primary side pipe, and the compressed gas is provided in the gas return pipe. A pressure holding valve for controlling the return amount of the compressor is provided, and a cooling means for cooling the liquefied gas after joining the compressed gas is provided between the connecting point of the gas return pipe in the compressor primary side pipe and the compression means. It is characterized by.
[0007]
The liquefied gas to be compressed is derived from a liquefied gas storage tank, the cooling means uses a chill of the liquefied gas in the liquefied gas storage tank as a cooling source, and the cooling means is a refrigerant of a refrigerator. Is used as a cooling source .
[0008]
Further, the present invention is characterized in that the liquefied gas to be compressed is derived from an air separation device, and a liquefied gas storage tank is provided at a destination of the compressed gas .
[0009]
Furthermore, the present invention is characterized in that before Symbol compression means is a gas-driven.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a system diagram showing a first embodiment of the liquefied gas delivery system of the present invention. This liquefied gas supply facility is a facility for boosting a liquefied gas stored in the low-pressure liquefied gas storage tank 11, for example, liquefied carbon dioxide gas by a compressor (pump) 12 and sending it to the high-pressure liquefied gas storage tank 13. . An accumulator 14 and a pressure gauge (PT) 15 for absorbing pressure fluctuation are provided on the secondary side of the compressor 12, and the high-pressure liquefied gas storage tank 13 detects the amount of liquefied carbon dioxide in the storage tank. As an apparatus that uses the pressure-increased liquefied carbon dioxide, for example, a dry ice generating device, a cleaning device, a purifying device, or a liquefied carbon dioxide using device 17 that appropriately combines them is used. Is provided.
[0011]
Furthermore, in this embodiment, an inverter 18 is provided for controlling the operating state of the compressor 12 via an electric motor that is a drive source of the compressor 12 by signals from the pressure gauge 15 and the differential pressure gauge 16. ing.
[0012]
A gas return pipe for returning a part of the compressed gas (compressed liquefied gas and vaporized gas) from the secondary side pipe 19 of the compressor 12 to the primary side pipe 20 is provided to the compressor 12 as the compression means. 21 is provided, and the gas return pipe 21 includes a pressure holding valve 22 which is a control means for controlling the return amount (recirculation amount) of the compressed gas, and a heat exchanger 23 which is a cooling means for cooling the compressed gas. Is provided.
[0013]
The liquefied carbon dioxide gas stored in the low-pressure liquefied gas storage tank 11 is sent to the compressor 12 through the primary side pipe 20. When the operation of the compressor 12 starts, the compressor 12 starts to compress and feed the liquefied carbon dioxide gas, and the liquefied carbon dioxide gas having a predetermined pressure starts to be stored in the high-pressure liquefied gas storage tank 13. At this time, when the pressure in the secondary side pipe 19 of the compressor 12 becomes equal to or higher than a predetermined pressure, that is, the pressure of the liquefied gas compressed by the compressor 12 is the set pressure of the pressure holding valve 22 provided in the gas return pipe 21. When the pressure is reached, the pressure holding valve 22 is opened, and the liquefied carbon dioxide gas containing the vaporized carbon dioxide gas is introduced into the heat exchanger 23 through the gas return pipe 21, and the predetermined temperature is applied by the cooling medium supplied to the heat exchanger 23. The carbon dioxide gas that has been cooled and vaporized is re-liquefied and re-supplied to the primary side pipe 20 of the compressor 12.
[0014]
When the high-pressure liquefied gas storage tank 13 becomes full, the differential pressure gauge 16 detects a full state, and the inverter 18 starts a reduction operation of the compressor 12. Also at this time, when the pressure of the secondary side pipe 19 of the compressor 12 becomes equal to or higher than the set pressure of the pressure keeping valve 22, liquefied carbon dioxide gas including vaporized carbon dioxide gas is introduced into the heat exchanger 23 through the gas return pipe 21. The carbon dioxide gas that has been cooled to a predetermined temperature and vaporized is liquefied, and then re-supplied to the primary side pipe 20 of the compressor 12.
[0015]
That is, when a part of the compressed gas is returned from the secondary side to the primary side of the compressor 12 to perform flow rate adjustment or pressure adjustment, the compressed gas refluxed to the primary side is introduced into the heat exchanger 23 and cooled, By condensing carbon dioxide gas (vaporized gas) contained in the compressed gas and returning to the primary side after cooling down to a predetermined temperature, heat intrusion from each part, heat conduction from the pump drive part, liquefied carbon dioxide gas itself Even when the liquefied carbon dioxide gas is vaporized by compression heat or the like, it is possible to prevent the compressor 12 from causing cavitation due to the vaporized gas.
[0016]
The compressor (compression means) 12 may be any type of pump such as a centrifugal type, an axial flow type, or a reciprocating type. Moreover, although the rotation control of the electric motor by the inverter 18 was used as the control means of the compressor 12, other electrical control means such as resistance control can be used. Further, although the pressure holding valve 22 is used as the control means provided in the gas return pipe 21, a throttle portion capable of adjusting the flow rate such as a needle valve may be used.
[0017]
Further, the liquefied gas to be sent is usually derived from the liquefied gas storage tank, but may be derived from other equipment such as an air separation device. The kind of liquefied gas is also arbitrary, and for example, it can be applied to liquefied oxygen, liquefied nitrogen, liquefied argon, liquefied natural gas, liquefied hydrogen and the like in addition to the liquefied carbon dioxide gas. In addition, the destination of the liquefied gas after compression is arbitrary. Also, the cooling means (heat exchanger) provided in the gas return pipe 21 may be any means that acts as a condenser for condensing and liquefying the vaporized gas and can cool the gas returning to the primary side to a predetermined temperature. Any suitable one can be used as long as it can condense the liquefied gas to be sent, for example, it may be a refrigerant such as ammonia or flon cooled by a refrigerator, or other appropriate low-temperature refrigerant, for example, liquefaction. When the gas is the liquefied carbon dioxide gas, liquefied nitrogen, cryogenic nitrogen gas, or the like can be used, and the coldness of the liquefied gas in the liquefied gas storage tanks 11 and 13 can also be used.
[0018]
FIG. 2 is a system diagram showing a second embodiment of the present invention. This liquefied gas supply facility uses a rectifying unit 24 constituted by a spiral pipe in place of the high-pressure liquefied gas storage tank 13 in the first embodiment. In addition, the same code | symbol is attached | subjected to the component same as the component of the said 1st form example, and detailed description is abbreviate | omitted.
[0019]
Also in the present embodiment, similarly to the first embodiment, the vaporized gas is condensed and cooled to a predetermined temperature by cooling the compressed gas refluxed from the secondary side to the primary side of the compressor 12 by the heat exchanger 23. Therefore, the occurrence of cavitation in the compressor 12 can be prevented.
[0020]
FIG. 3 is a system diagram showing a first reference example. In the liquefied gas delivery system shown in this reference example, the secondary side piping of the compressor 12 is used instead of the gas return piping 21 that connects the compressor secondary side piping 19 and the primary side piping 20 in the first embodiment. The low pressure liquefied gas storage tank 19 is provided with a gas return pipe 31 for recirculating the compressed gas through a pressure holding valve 32 as a control means. In addition, the same code | symbol is attached | subjected to the component same as the component of the said 1st form example, and detailed description is abbreviate | omitted.
[0021]
That is, when the inside of the secondary side pipe 19 of the compressor 12 becomes equal to or higher than the set pressure of the pressure holding valve 32 provided in the gas return pipe 31, a part of the liquefied carbon dioxide gas including the vaporized carbon dioxide gas is converted into the secondary side pipe 19. Is returned to the low-pressure liquefied gas storage tank 11 through the gas return pipe 31. Therefore, the vaporized gas is returned to the low-pressure liquefied gas storage tank 11 without being sucked into the compressor 12 and is directly cooled and reliquefied by the liquefied carbon dioxide gas in the low-pressure liquefied gas storage tank 11. Can prevent cavitation from occurring.
[0022]
FIG. 4 is a system diagram showing a third embodiment of the present invention. In the liquefied gas delivery system shown in this embodiment, an air-driven turbine is used as the drive source of the compressor 12 instead of the electric motor. In addition, the same code | symbol is attached | subjected to the component same as the component of the said 2nd example, and detailed description is abbreviate | omitted.
[0023]
That is, in this embodiment, driving air having a predetermined pressure is supplied from the driving air pipe 33, and the opening degree of the flow control valve 34 provided in the driving air pipe 33 is determined from the signals from the pressure gauge 15 and the differential pressure gauge 16. The liquid feed flow rate of the compressor 12 is controlled by adjusting the flow rate of the drive air supplied to the turbine for driving the compressor by adjusting with the electric actuator (M) 35 operated by the above. As a driving gas for the compressor driving turbine, various gases such as nitrogen gas, carbon dioxide, and argon gas can be used as the driving gas in addition to the air (compressed air).
[0024]
FIG. 5 is a system diagram showing a fourth embodiment of the present invention. In the liquefied gas supply facility shown in this embodiment, a gas return pipe 36 for returning a part of the compressed gas from the secondary side pipe 19 of the compressor 12 to the primary side pipe 20 is provided, and the gas return pipe 36 is provided with the gas return pipe 36. A heat exchanger that is provided with a pressure holding valve 37 as a control means, and further condenses the vaporized gas in the primary side pipe 20 between the connection point 38 of the gas return pipe 36 and the compressor 12 and cools it to a predetermined temperature. 39 is provided. In addition, the same code | symbol is attached | subjected to the component same as the component of the said 1st form example, and detailed description is abbreviate | omitted.
[0025]
Therefore, in this embodiment, the compressed gas returned from the secondary side pipe 19 to the compressor primary side merges with the liquefied carbon dioxide gas from the low-pressure liquefied gas storage tank 11 and then flows into the heat exchanger 39, The vaporized gas contained in is reliquefied. By providing the heat exchanger 39 in the path after the compressed gas joining in this way, it becomes possible to make the degree of supercooling of the liquefied carbon dioxide gas flowing into the compressor 12 constant. It will be in a stable state.
[0026]
FIG. 6 is a system diagram showing a second reference example. In the liquefied gas delivery facility shown in the present reference example, gas-liquid separation means 40 is provided in the secondary side pipe 19 of the compressor 12 in the first reference example to actively separate the vaporized gas in the compressed gas and separate it. Only the vaporized gas is returned from the gas return pipe 31 to the low-pressure liquefied gas storage tank 11. Thereby, the liquefied gas in the state which hardly contains vaporized gas can be sent to the high pressure liquefied gas storage tank 13 grade | etc.,. In addition, the same code | symbol is attached | subjected to the component same as the component of the said 1st reference example, and detailed description is abbreviate | omitted.
[0027]
At this time, the vaporized gas to be refluxed may be cooled by the heat exchanger 23 as in the first embodiment and returned to the primary side pipe 20, or the primary side provided with the heat exchanger 39 as in the fourth embodiment. You may make it return to the heat exchanger upstream of the piping 20. FIG. The gas-liquid separation means 40 may be a general gas-liquid separator, but the high-pressure liquefied gas storage tank 13 is used as the gas-liquid separation means, and a gas return pipe is connected to the upper part of the storage tank 13. You can also.
[0028]
【Example】
Example 1
Using the liquid feeding equipment having the configuration shown in FIG. 2, liquefied carbon dioxide gas having a pressure of 2 MPa and a temperature of about −20 ° C. was fed to the dry ice generator at a flow rate of about 1.3 kg / min. A reciprocating compressor made by Tama Seiki was used as the compressor, and a Mitsubishi Electric refrigerator was used as the heat exchanger (condenser). While the dry ice generator continuously operated to generate dry ice, there was no abnormal noise in the compressor, abnormal vibration, temperature rise, compressor damage, etc. In addition, stable operation was possible.
[0029]
Example 2
2 is used, and liquefied carbon dioxide gas at a pressure of 2 MPa and a temperature of about −20 ° C. is sent to a liquefied carbon dioxide gas purifier at a flow rate of about 1.0 kg / min. Carbon dioxide was supplied to the dry ice snow cleaning device. The compressor used was a Haskell diaphragm compressor, and the heat exchanger (condenser) was a Mitsubishi Electric refrigerator. Although the dry ice snow cleaning device was operated continuously, there was no abnormal noise in the compressor, abnormal vibration, temperature rise, compressor damage, etc., and stable operation including flow rate control was possible. .
[0030]
【The invention's effect】
As described above, according to the present invention, it is possible to feed liquefied gas in a stable state by preventing the occurrence of cavitation due to vaporized gas, and improve the operation efficiency and controllability of the liquefied gas feed equipment. Etc.
[Brief description of the drawings]
FIG. 1 is a system diagram showing a first embodiment of a liquefied gas delivery system according to the present invention.
FIG. 2 is a system diagram showing a second embodiment of the liquefied gas delivery system of the present invention.
FIG. 3 is a system diagram showing a first reference example.
FIG. 4 is a system diagram showing a third embodiment of the liquefied gas delivery system of the present invention.
FIG. 5 is a system diagram showing a fourth embodiment of the liquefied gas delivery facility of the present invention.
FIG. 6 is a system diagram showing a second reference example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Low pressure liquefied gas storage tank, 12 ... Compressor, 13 ... High pressure liquefied gas storage tank, 14 ... Accumulator, 15 ... Pressure gauge, 16 ... Differential pressure gauge, 17 ... Liquefied carbon dioxide use apparatus, 18 ... Inverter, 19 ... Secondary side piping 20 ... primary pipe, 21 ... gas return pipe, 22 ... minimum pressure valve, 23 ... heat exchanger, 24 ... rectifying unit, 3 3 ... air pipe drive, 34 ... flow control valve, 35 ... electric actuator, 36 ... Gas return pipe, 37 ... Pressure holding valve, 38 ... Connection

Claims (8)

液化ガスを圧縮する圧縮手段の二次側配管から一次側配管へ圧縮ガスの一部を戻すガス戻し配管を設けるとともに、該ガス戻し配管に、圧縮ガスの戻り量を制御する保圧弁と、圧縮ガスを冷却する冷却手段とを設けたことを特徴とする液化ガスの送液設備。A gas return pipe for returning a part of the compressed gas from the secondary side pipe of the compression means for compressing the liquefied gas to the primary side pipe is provided, and a pressure holding valve for controlling the return amount of the compressed gas is provided in the gas return pipe, and the compression A liquefied gas liquid supply facility comprising a cooling means for cooling the gas. 液化ガスを圧縮する圧縮手段の二次側配管から一次側配管へ圧縮ガスを戻すガス戻し配管を設け、該ガス戻し配管に圧縮ガスの戻り量を制御する保圧弁を設けるとともに、圧縮機一次側配管における前記ガス戻し配管の接続点と前記圧縮手段との間に、圧縮ガス合流後の液化ガスを冷却する冷却手段を設けたことを特徴とする液化ガスの送液設備。A gas return pipe for returning the compressed gas from the secondary side pipe of the compression means for compressing the liquefied gas to the primary side pipe is provided, a pressure holding valve for controlling the return amount of the compressed gas is provided in the gas return pipe, and the compressor primary side A liquefied gas feeding facility characterized in that a cooling means for cooling the liquefied gas after merging the compressed gases is provided between a connection point of the gas return pipe in the pipe and the compressing means. 前記圧縮される液化ガスが、液化ガス貯槽から導出したものであることを特徴とする請求項1又は2記載の液化ガスの送液設備。  The liquefied gas feeding equipment according to claim 1 or 2, wherein the compressed liquefied gas is derived from a liquefied gas storage tank. 前記冷却手段は、前記液化ガス貯槽の液化ガスが有する寒冷を冷却源として用いることを特徴とする請求項3記載の液化ガスの送液設備。  4. The liquefied gas liquid feeding equipment according to claim 3, wherein the cooling means uses, as a cooling source, coldness of the liquefied gas in the liquefied gas storage tank. 前記冷却手段は、冷凍機の冷媒を冷却源として用いることを特徴とする請求項1又は2記載の液化ガスの送液設備。  The liquefied gas liquid feeding equipment according to claim 1, wherein the cooling means uses a refrigerant of a refrigerator as a cooling source. 前記圧縮される液化ガスが、空気分離装置から導出したものであることを特徴とする請求項1又は2記載の液化ガスの送液設備。  The liquefied gas feeding equipment according to claim 1 or 2, wherein the compressed liquefied gas is derived from an air separation device. 圧縮ガスの送出先に、液化ガス貯槽が設けられていることを特徴とする請求項1又は2記載の液化ガスの送液設備。  The liquefied gas supply facility according to claim 1 or 2, wherein a liquefied gas storage tank is provided at a delivery destination of the compressed gas. 前記圧縮手段がガス駆動式であることを特徴とする請求項1又は2記載の液化ガスの送液設備。  3. The liquefied gas delivery system according to claim 1, wherein the compression means is a gas drive type.
JP2000196469A 2000-06-29 2000-06-29 Liquid gas delivery equipment Expired - Lifetime JP4493806B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000196469A JP4493806B2 (en) 2000-06-29 2000-06-29 Liquid gas delivery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000196469A JP4493806B2 (en) 2000-06-29 2000-06-29 Liquid gas delivery equipment

Publications (2)

Publication Number Publication Date
JP2002013699A JP2002013699A (en) 2002-01-18
JP4493806B2 true JP4493806B2 (en) 2010-06-30

Family

ID=18694958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000196469A Expired - Lifetime JP4493806B2 (en) 2000-06-29 2000-06-29 Liquid gas delivery equipment

Country Status (1)

Country Link
JP (1) JP4493806B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506299A (en) * 2011-10-20 2012-06-20 秦皇岛首秦金属材料有限公司 Method for reducing running pressure of common compressed air pipe network

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10205130A1 (en) * 2002-02-07 2003-08-28 Air Liquide Gmbh Process for the uninterrupted provision of liquid, supercooled carbon dioxide at constant pressure above 40 bar and supply system
CN1629533B (en) * 2003-12-16 2010-04-14 金隆铜业有限公司 Fluid delivery method for preventing pipe fouling and clogging
GB2416390B (en) * 2004-07-16 2006-07-26 Statoil Asa LCD Offshore Transport System
DE102006061251B4 (en) * 2006-12-22 2010-11-11 Man Diesel & Turbo Se Gas supply system for a drive
JP5187202B2 (en) * 2009-01-16 2013-04-24 Jfeスチール株式会社 Liquefied gas shipping apparatus and shipping method
JP5800620B2 (en) * 2011-07-25 2015-10-28 日本エア・リキード株式会社 Low temperature substance transfer device and low temperature liquefied gas supply system using the same
KR101333943B1 (en) 2011-11-14 2013-11-27 한국가스공사 Prevent device to surging of compressor
US20140352330A1 (en) * 2013-05-30 2014-12-04 Hyundai Heavy Industries Co., Ltd. Liquefied gas treatment system
CN109915731B (en) * 2019-04-02 2024-01-26 中国石油工程建设有限公司 Pressure protection system and method for large-drop liquefied petroleum gas pipeline
CN110131515B (en) * 2019-06-21 2024-02-02 太仓阳净环保科技有限公司 Pressure maintaining method and device for hot miscellaneous fluid continuous flow high-pressure pipeline
JP2022148446A (en) * 2021-03-24 2022-10-06 大陽日酸株式会社 Liquefied carbon dioxide supply device and dry ice blast cleaning system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228600A (en) * 1985-07-29 1987-02-06 Iwatani & Co Fixed volume of liquefied gas supply device
JP2000218647A (en) * 1999-02-03 2000-08-08 Showa Denko Kk Device for supplying forming agent to resin foam molding machine and manufacture of resin foam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6228600A (en) * 1985-07-29 1987-02-06 Iwatani & Co Fixed volume of liquefied gas supply device
JP2000218647A (en) * 1999-02-03 2000-08-08 Showa Denko Kk Device for supplying forming agent to resin foam molding machine and manufacture of resin foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102506299A (en) * 2011-10-20 2012-06-20 秦皇岛首秦金属材料有限公司 Method for reducing running pressure of common compressed air pipe network
CN102506299B (en) * 2011-10-20 2014-04-02 秦皇岛首秦金属材料有限公司 Method for reducing running pressure of common compressed air pipe network

Also Published As

Publication number Publication date
JP2002013699A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
KR102242784B1 (en) Device for recovering vapours from a cryogenic tank
JP5046998B2 (en) Liquefied gas storage facility and ship or marine structure using the same
US7637109B2 (en) Power generation system including a gas generator combined with a liquified natural gas supply
JP4493806B2 (en) Liquid gas delivery equipment
JP5737894B2 (en) Boil-off gas reliquefaction equipment
JP2006194440A (en) Compression-evaporating system for liquefied gas
US20050217281A1 (en) Method for the reliquefaction of gas
JP4544885B2 (en) Gas reliquefaction apparatus and gas reliquefaction method
EP1913117A1 (en) Lng bog reliquefaction apparatus
JP3586501B2 (en) Cryogenic liquid and boil-off gas processing method and apparatus
CN108369058B (en) System and method for treating vaporized gas from cryogenic liquid
JP2010025152A (en) Natural gas treatment facility and liquefied natural gas carrier
JP2019510943A (en) A system for processing the gas resulting from the evaporation of cryogenic liquid and supplying pressurized gas to a gas engine
JP6204609B2 (en) Ship
EP2397668A2 (en) Method and system for periodic cooling, storing, and heating of atmospheric gas
JP5169107B2 (en) Liquefied gas storage reliquefaction device and operation method thereof
JP4579921B2 (en) Backup gas supply method and arrangement by evaporation of cryogenic liquid
JP4044353B2 (en) Refrigerant gas recovery method and apparatus for low-source refrigeration cycle
US10030610B2 (en) Fuel system for an engine
US11828224B1 (en) Electrical power producing device
TWI746977B (en) Gas liquefaction method and gas liquefaction device
KR101908570B1 (en) System and Method of Boil-Off Gas Reliquefaction for Vessel
JPH06123553A (en) Method and device for separating air incorporating power generation equipment utilizing cold of liquefied natural gas
JP2961072B2 (en) Oxygen and nitrogen liquefaction equipment
KR101908571B1 (en) System of Boil-Off Gas Reliquefaction for Vessel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090714

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100330

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100407

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4493806

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250