JP5736930B2 - Semiconductor light emitting device - Google Patents
Semiconductor light emitting device Download PDFInfo
- Publication number
- JP5736930B2 JP5736930B2 JP2011092711A JP2011092711A JP5736930B2 JP 5736930 B2 JP5736930 B2 JP 5736930B2 JP 2011092711 A JP2011092711 A JP 2011092711A JP 2011092711 A JP2011092711 A JP 2011092711A JP 5736930 B2 JP5736930 B2 JP 5736930B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- semiconductor layer
- region
- layer
- light emitting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 300
- 150000004767 nitrides Chemical class 0.000 claims description 29
- 230000002093 peripheral effect Effects 0.000 claims description 7
- 239000010410 layer Substances 0.000 description 247
- 239000000758 substrate Substances 0.000 description 66
- 239000010408 film Substances 0.000 description 28
- 239000012790 adhesive layer Substances 0.000 description 20
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 17
- 238000000605 extraction Methods 0.000 description 14
- 229910002601 GaN Inorganic materials 0.000 description 13
- 239000010931 gold Substances 0.000 description 13
- 230000001681 protective effect Effects 0.000 description 13
- 239000000463 material Substances 0.000 description 12
- 238000009792 diffusion process Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 229910018885 Pt—Au Inorganic materials 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 230000005496 eutectics Effects 0.000 description 7
- 230000017525 heat dissipation Effects 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 229910052737 gold Inorganic materials 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- 229910052718 tin Inorganic materials 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 229910008484 TiSi Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000031700 light absorption Effects 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910052719 titanium Inorganic materials 0.000 description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 3
- -1 InGaN Inorganic materials 0.000 description 3
- 229910002846 Pt–Sn Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000020169 heat generation Effects 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 229910052738 indium Inorganic materials 0.000 description 3
- 238000003475 lamination Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 238000007747 plating Methods 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 3
- 229910010271 silicon carbide Inorganic materials 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- 238000003892 spreading Methods 0.000 description 3
- 230000007480 spreading Effects 0.000 description 3
- 229910002704 AlGaN Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000002019 doping agent Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910000962 AlSiC Inorganic materials 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- 229910020068 MgAl Inorganic materials 0.000 description 1
- 229910018879 Pt—Pd Inorganic materials 0.000 description 1
- 229910019836 RhO Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910004349 Ti-Al Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910004692 Ti—Al Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Led Devices (AREA)
Description
本発明は、半導体発光素子に関する。 The present invention relates to a semiconductor light emitting device.
発光層を挟んで導電型の異なる半導体層を有する半導体発光素子において、光取り出し効率向上に関する技術が知られている。従来技術として、垂直構造の窒化ガリウム系LED素子において、発光層及びp型窒化ガリウム層の下面に形成されたp電極表面を凹凸状のプロフィールにすることにより、発光層で発光する光の一部がp電極に吸収または散乱されて消滅することを最小化することや、LED素子の最上部に形成されたn型ボンディングパッドの下面にn型反射電極を形成することにより、光取り出し効率を向上させることが開示されている。さらに、n型反射電極とn型窒化ガリウム層との界面にn型透明電極を備え、電流拡散現象を向上させることもできる(例えば、特許文献1参照)。 In a semiconductor light emitting device having semiconductor layers of different conductivity types with a light emitting layer interposed therebetween, a technique for improving light extraction efficiency is known. As a conventional technique, in a vertical structure gallium nitride-based LED element, a part of light emitted from the light-emitting layer is formed by forming a p-electrode surface formed on the lower surface of the light-emitting layer and the p-type gallium nitride layer into an uneven profile. Light extraction efficiency is improved by minimizing the absorption or scattering of light by being absorbed or scattered by the p-electrode and forming the n-type reflective electrode on the lower surface of the n-type bonding pad formed on the top of the LED element Is disclosed. Furthermore, an n-type transparent electrode can be provided at the interface between the n-type reflective electrode and the n-type gallium nitride layer to improve the current diffusion phenomenon (see, for example, Patent Document 1).
しかしながら、電極は、反射率の高い金属を用い、形状を凹凸状にしたとしても、金属には光吸収作用があり、反射を繰り返すたびに吸収される光があることが懸念される。 However, even if the electrode is made of a highly reflective metal and has an uneven shape, the metal has a light absorbing action, and there is a concern that there is light that is absorbed every time reflection is repeated.
また、発光層からの光は、電極だけでなく、半導体層自体にも吸収されることを考慮すると、半導体層は積層方向への厚みが薄いほど光取り出しに有効である。しかし、半導体層を薄くすると、横方向への電流拡散効果が低下する。 In addition, considering that light from the light emitting layer is absorbed not only by the electrode but also by the semiconductor layer itself, the thinner the semiconductor layer in the stacking direction, the more effective the light extraction. However, when the semiconductor layer is thinned, the current spreading effect in the lateral direction is reduced.
そこで、本発明はこのような問題を解決するためになされたものである。本発明の目的は、光取り出し効率が向上した半導体発光素子を提供することにある。 Therefore, the present invention has been made to solve such problems. An object of the present invention is to provide a semiconductor light emitting device with improved light extraction efficiency.
本発明によれば、前記課題は次の手段により解決される。 According to the present invention, the above problem is solved by the following means.
本発明に係る半導体発光素子は、半導体層と、前記半導体層の上面に配置された第1電 極と、前記半導体層の下面に配置された第2電極と、を備える半導体発光素子であって、前記半導体層の上面は第1領域と、前記第1領域よりも前記半導体層の厚みが厚い第2領 域とを有し、前記第1電極はパッド電極と、前記パッド電極から延伸する補助電極と、を備え、前記第1電極は前記第2領域上にあり、前記第2領域は、前記補助電極に沿った部分と、前記補助電極に沿った部分から前記補助電極と異なる方向に延伸する複数の部分と、を有する。これにより、電流拡散効果を有し、且つ光取り出し効率が向上した半導体発光素子とすることができる。 A semiconductor light emitting device according to the present invention is a semiconductor light emitting device comprising a semiconductor layer, a first electrode disposed on an upper surface of the semiconductor layer, and a second electrode disposed on a lower surface of the semiconductor layer. The upper surface of the semiconductor layer has a first region and a second region in which the semiconductor layer is thicker than the first region, and the first electrode is a pad electrode and an auxiliary extending from the pad electrode. comprising an electrode, wherein the first electrode is on said second region, said second region, said a portion along the auxiliary electrode, extending from along said auxiliary electrode portion in a direction different from the auxiliary electrode A plurality of parts . As a result, a semiconductor light emitting device having a current spreading effect and improved light extraction efficiency can be obtained.
また、前記半導体発光素子は、前記第2領域が複数あり、互いに連結されていることが好ましい。これにより、電流拡散効果をさらに向上させることができる。 The semiconductor light emitting device preferably includes a plurality of the second regions and is connected to each other. Thereby, the current spreading effect can be further improved.
また、前記半導体発光素子は、前記複数の部分は、前記補助電極に沿った部分に対して垂直であることが好ましい。これにより、電極部分以外へ効率良く電流拡散させることができる。 In the semiconductor light emitting device, the plurality of portions are preferably perpendicular to a portion along the auxiliary electrode. As a result, current can be efficiently diffused to portions other than the electrode portion.
また、前記半導体発光素子は、前記第2領域が複数あり、ストライプ状に配列していることが好ましい。これにより、第2領域以外の部分、すなわち第1領域では半導体層が薄いため、発光層からの光の吸収を抑制し、効率良く光を取り出すことができる。 The semiconductor light emitting device preferably includes a plurality of the second regions and is arranged in a stripe shape. Thereby, since the semiconductor layer is thin in a portion other than the second region, that is, in the first region, absorption of light from the light emitting layer can be suppressed and light can be extracted efficiently.
また、前記半導体発光素子は、前記半導体層の上面は、粗面であることが好ましい。これにより、光取り出し効率をさらに向上させるとともに、半導体層と電極との密着性を向上させることができる。 In the semiconductor light emitting device, the upper surface of the semiconductor layer is preferably a rough surface. Thereby, the light extraction efficiency can be further improved, and the adhesion between the semiconductor layer and the electrode can be improved.
また、前記半導体発光素子は、前記半導体層は、p型とn型の窒化物半導体層を有し、前記第2領域は、前記n型窒化物半導体層上に設けられていることが好ましい。これにより、低電圧な半導体発光素子とすることができる。
また、前記複数の部分は、前記半導体層の周縁部に達しないことが好ましい。
また、前記複数の部分の長手方向の長さは、30〜50μmであることが好ましい。
また、前記複数の部分の長手方向の長さは、100〜200μmであることが好ましい。
In the semiconductor light emitting device, the semiconductor layer preferably includes p-type and n-type nitride semiconductor layers, and the second region is provided on the n-type nitride semiconductor layer. Thereby, it can be set as a low voltage semiconductor light emitting element.
Further, it is preferable that the plurality of portions do not reach the peripheral edge of the semiconductor layer.
Moreover, it is preferable that the length of the said several part in the longitudinal direction is 30-50 micrometers.
Moreover, it is preferable that the length of the said some part in the longitudinal direction is 100-200 micrometers.
本発明の半導体発光素子によれば、光取り出し効率が向上した半導体発光素子を提供することができる。 According to the semiconductor light emitting device of the present invention, a semiconductor light emitting device with improved light extraction efficiency can be provided.
本発明を実施するための形態を、以下に図面を参照しながら説明する。ただし、以下に示す実施形態は、本発明の技術思想を具体化するための半導体発光素子やその製造方法を例示するものであって、本発明を以下に限定するものではない。 A mode for carrying out the present invention will be described below with reference to the drawings. However, the embodiment described below exemplifies a semiconductor light emitting device and a method for manufacturing the same for embodying the technical idea of the present invention, and does not limit the present invention.
また、本明細書は特許請求の範囲に示される部材を、実施形態の部材に特定されるものでは決してない。実施形態に記載されている構成部品の寸法、材質、形状、その相対的配置等は、特に特定的な記載がない限りは、本発明の範囲をそれのみに限定する趣旨ではなく、単なる説明に過ぎない。なお、各図面が示す部材の大きさや位置関係等は、説明を明確にするため誇張していることがある。さらに、以下の説明において、同一の名称、符号については同一もしくは同質の部材を示しており、詳細な説明を適宜省略する。さらに、本発明を構成する各要素は、複数の要素を同一の部材で構成して一の部材で複数の要素を兼用する様態としても良いし、逆に一の部材の機能を複数の部材で分担して実現することもできる。
また、本明細書において、層上などでいう「上」とは、必ずしも上面に接触して形成される場合に限られず、離間して上方に形成される場合も含んでおり、部材と部材との間に介在する部材が存在する場合も包含する意味で使用する。
In addition, in the present specification, the members shown in the claims are not limited to the members of the embodiments. The dimensions, materials, shapes, relative arrangements, and the like of the component parts described in the embodiments are not intended to limit the scope of the present invention only to the description unless otherwise specified. Not too much. Note that the size, positional relationship, and the like of the members shown in each drawing may be exaggerated for clarity of explanation. Furthermore, in the following description, the same name and symbol indicate the same or the same members, and detailed description thereof will be omitted as appropriate. Furthermore, each element constituting the present invention may be configured such that a plurality of elements are constituted by the same member and the plurality of elements are shared by one member, and conversely the function of one member is constituted by a plurality of members. It can also be realized by sharing.
Further, in this specification, the term “upper” on a layer or the like is not necessarily limited to the case where it is formed in contact with the upper surface, but includes the case where it is formed on the upper side while being separated. It is used in the meaning including the case where there is a member interposed between them.
<第一の実施形態>
第一の実施形態について図面を用いて詳述する。図1は、第一の実施形態に係る半導体発光素子の電極と第1領域、第2領域を示す概略平面図である。図2、3は、第一の実施形態に係る半導体発光素子の概略断面図であり、図2は、図1のA−A’における断面図を、図3は図1のB−B’における断面図をそれぞれ示す。
<First embodiment>
The first embodiment will be described in detail with reference to the drawings. FIG. 1 is a schematic plan view showing an electrode, a first region, and a second region of the semiconductor light emitting device according to the first embodiment. 2 and 3 are schematic cross-sectional views of the semiconductor light emitting device according to the first embodiment. FIG. 2 is a cross-sectional view taken along the line AA ′ in FIG. 1, and FIG. 3 is a cross-sectional view taken along the line BB ′ in FIG. Cross-sectional views are shown respectively.
第一の実施形態に係る半導体発光素子100は、支持台103と、この支持台103の上方に位置する半導体層12と、半導体層12を上下に狭む第1電極15と第2電極16と、により主に構成される。また、支持台103は、支持基板104及び接着層105が、この順に積層されて固定される。一方、半導体層12は、発光層113と、この発光層113を挟んで積層された第1導電型半導体層111であるn型半導体層と、第2導電型半導体層112であるp型半導体層とを有する。半導体発光素子100では、第2導電型半導体層112、発光層113、第1導電型半導体層111が、この順に積層して半導体層12を構成しており、半導体層12の上方側に位置する第1導電型半導体層111側が、発光層113からの出射光の主発光面側、すなわち光取り出し側となる。 The semiconductor light emitting device 100 according to the first embodiment includes a support base 103, a semiconductor layer 12 positioned above the support base 103, a first electrode 15 and a second electrode 16 that vertically narrow the semiconductor layer 12. , Mainly composed. The support base 103 is fixed by laminating the support substrate 104 and the adhesive layer 105 in this order. On the other hand, the semiconductor layer 12 includes a light emitting layer 113, an n-type semiconductor layer that is a first conductive semiconductor layer 111 and a p-type semiconductor layer that is a second conductive semiconductor layer 112 stacked with the light emitting layer 113 interposed therebetween. And have. In the semiconductor light emitting device 100, the second conductive semiconductor layer 112, the light emitting layer 113, and the first conductive semiconductor layer 111 are stacked in this order to form the semiconductor layer 12, and are positioned above the semiconductor layer 12. The first conductivity type semiconductor layer 111 side is a main light emitting surface side of light emitted from the light emitting layer 113, that is, a light extraction side.
第1電極15及び第2電極16はそれぞれ、第1導電型半導体層111及び第2導電型半導体層112に電力を供給する。具体的に、n型半導体層には、第1電極15であるn電極が形成され、電力供給可能となる。同様に、p型半導体層の主面の一部に第2電極16であるp電極が形成される。 The first electrode 15 and the second electrode 16 supply power to the first conductive semiconductor layer 111 and the second conductive semiconductor layer 112, respectively. Specifically, an n-electrode that is the first electrode 15 is formed in the n-type semiconductor layer, and power can be supplied. Similarly, a p-electrode that is the second electrode 16 is formed on a part of the main surface of the p-type semiconductor layer.
第1電極15及び第2電極16は、半導体層12を平面視した際に相互に重なり合わないように配置されている。すなわち、半導体層12を挟んで第1電極15と対向する領域に第2電極16の一部又は全体が配置されないように配置されている。このため第2電極16は、隣接する第2電極16との離間領域を保護膜107で積層して絶縁される。 The first electrode 15 and the second electrode 16 are arranged so as not to overlap each other when the semiconductor layer 12 is viewed in plan. In other words, the second electrode 16 is arranged not to be partly or entirely arranged in a region facing the first electrode 15 with the semiconductor layer 12 interposed therebetween. For this reason, the second electrode 16 is insulated by laminating a region separated from the adjacent second electrode 16 with the protective film 107.
半導体発光素子100の光取り出し側からの平面視において、主に第1導電型半導体層111上の第1電極15の形成パターンが図示されている。第1電極15は、正方形状の半導体層12上面に形成された、一対の線状の電極の延伸部である補助電極11と、各補助電極11の一部に重なるように配置された、外部電源と接続可能なパッド電極10とで構成される。本発明の明細書において、パッド電極が形成される半導体層側を上面とする。 In the plan view from the light extraction side of the semiconductor light emitting device 100, the formation pattern of the first electrode 15 on the first conductivity type semiconductor layer 111 is mainly illustrated. The first electrode 15 is formed on the upper surface of the square semiconductor layer 12, the auxiliary electrode 11 that is an extension part of a pair of linear electrodes, and an external electrode disposed so as to overlap a part of each auxiliary electrode 11. It is comprised by the pad electrode 10 which can be connected with a power supply. In the specification of the present invention, the semiconductor layer side on which the pad electrode is formed is the upper surface.
半導体発光素子100の平面図には、正方形状の半導体層12上に、一対の線状の補助電極11が平行に配置され、その上に一対のパッド電極10が対角して配置される。一対のパッド電極10及び補助電極11は、半導体層12の対角線を結んだ中心を基準にして略点対称に配置されており、互いに交差することなく離間されており、離間距離は実質的に等間隔である。補助電極11の形状は枝分かれしていない線状であって、細長い一続き状に形成されている。このように、外部からの電力供給領域を対称に配置することで、半導体層12の全面への電流拡散を効率的に実現できる。また、電極の一部が離間されること、好ましくは交差、屈曲部を有さないことで、その外部電源との接続部や、交差、屈曲部の各部における電流、発熱の集中を抑制し、電流密度の均一性と放熱機能の向上が図れる。 In the plan view of the semiconductor light emitting device 100, a pair of linear auxiliary electrodes 11 are arranged in parallel on a square semiconductor layer 12, and a pair of pad electrodes 10 are arranged diagonally thereon. The pair of pad electrodes 10 and the auxiliary electrode 11 are arranged substantially symmetrically with respect to the center connecting the diagonal lines of the semiconductor layer 12 and are separated from each other without crossing each other. It is an interval. The shape of the auxiliary electrode 11 is an unbranched line, and is formed in an elongated continuous shape. Thus, by arranging the external power supply regions symmetrically, current diffusion to the entire surface of the semiconductor layer 12 can be efficiently realized. In addition, it is possible to suppress concentration of current and heat generation at each part of the connection part with the external power supply, and the intersection and the bent part, preferably by having a part of the electrode separated, preferably having no intersection and a bent part. The uniformity of current density and the heat dissipation function can be improved.
第一の実施形態では、一対の平行な補助電極11にそれぞれ一つのパッド電極10を設けているが、一つの補助電極11上あるいは半導体層12上に複数のパッド電極10を設ける形態でもよく、例えば、補助電極11と同様に機能するように、半導体層12上において直線状に配置できる他、ジグザグ状等に配列してもよい。 In the first embodiment, one pad electrode 10 is provided for each of the pair of parallel auxiliary electrodes 11, but a plurality of pad electrodes 10 may be provided on one auxiliary electrode 11 or the semiconductor layer 12. For example, in addition to being arranged linearly on the semiconductor layer 12 so as to function similarly to the auxiliary electrode 11, it may be arranged in a zigzag shape or the like.
補助電極11の延伸程度は上記の範囲に限定されず、上面視で補助電極11を半導体層12の一辺に相当する長さでもって設けてもよい。補助電極11が半導体層12の周縁に達するまで延伸した電極配置により、交差部を有さずして半導体層12に対する補助電極11の配置割合を一層増大させることができるため、電流の偏在を抑制しつつ電流注入でき、発光効率が高まる。 The extent of extension of the auxiliary electrode 11 is not limited to the above range, and the auxiliary electrode 11 may be provided with a length corresponding to one side of the semiconductor layer 12 in a top view. The electrode arrangement extended until the auxiliary electrode 11 reaches the peripheral edge of the semiconductor layer 12 can further increase the arrangement ratio of the auxiliary electrode 11 with respect to the semiconductor layer 12 without having an intersection, thereby suppressing the uneven distribution of current. However, the current can be injected, and the luminous efficiency is increased.
第1導電型半導体層111の上面は、第1領域14と、第1領域14よりも半導体層12の厚みが厚い第2領域13と、を備える。第2領域13の厚みは一定でなくてもよく、また第2領域13上には、パッド電極10と補助電極11とを有する第1電極15が設けられる。第2領域13は上面視で補助電極11に沿ったものと、補助電極11から異なる方向に延伸することにより補助電極11から露出するものと、を有する。第2領域13が上面視で補助電極11に沿うとは、補助電極11の外縁形状とほぼ同じ形状を有し、また補助電極11の外縁から露出していてもよい。また、本発明において、補助電極11と異なる方向に延伸して補助電極11から露出する第2領域13を、「延出部」と記載することがある。本実施形態では、上面視において補助電極11に対して垂直な複数の延出部がストライプ状に形成されており、それぞれ半導体層12の周縁部に達している。 The upper surface of the first conductivity type semiconductor layer 111 includes a first region 14 and a second region 13 in which the semiconductor layer 12 is thicker than the first region 14. The thickness of the second region 13 may not be constant, and the first electrode 15 having the pad electrode 10 and the auxiliary electrode 11 is provided on the second region 13. The second region 13 includes a portion along the auxiliary electrode 11 in a top view and a portion exposed from the auxiliary electrode 11 by extending in a different direction from the auxiliary electrode 11. The fact that the second region 13 is along the auxiliary electrode 11 in a top view has substantially the same shape as the outer edge shape of the auxiliary electrode 11 and may be exposed from the outer edge of the auxiliary electrode 11. In the present invention, the second region 13 that extends in a direction different from the auxiliary electrode 11 and is exposed from the auxiliary electrode 11 may be referred to as an “extension portion”. In the present embodiment, a plurality of extending portions perpendicular to the auxiliary electrode 11 in a top view are formed in a stripe shape, and reach the peripheral portion of the semiconductor layer 12.
上面視における延出部の幅は3〜20μm、好ましくは5〜10μmであるが、特に限定されないことに加え、また延出部自体又は延出部先端は四角形状、三角形状、円状、輪形状、波状等、任意の形状にすることができる。また、上面視における第1領域14の幅や形状も延出部と同様に特に限定されず、補助電極11の延伸方向に沿って長方形状になるような、一つの長い形状としてもよい。さらに、延出部が複数ある場合は、離れた位置における延出部同士が互いに連結してもよく、このとき、延出部の形状が、上面視でストライプ状、ひし形、六角形、同心円状等にすることも可能である。ストライプ形状であれば、パッド電極や補助電極に対して垂直または、垂直以外の角度を有して斜めに配置されてもよい。垂直以外の角度で斜めに配置される場合は、略点対称である2つのパッド電極10の距離が近くなるような角度の配置であると好ましい。 The width of the extension part in the top view is 3 to 20 μm, preferably 5 to 10 μm, but is not particularly limited, and the extension part itself or the tip of the extension part is square, triangular, circular, or circular Any shape such as a shape or a wave shape can be used. Further, the width and shape of the first region 14 in a top view are not particularly limited as in the extended portion, and may be one long shape that is rectangular along the extending direction of the auxiliary electrode 11. Furthermore, when there are a plurality of extending portions, the extending portions at distant positions may be connected to each other, and at this time, the shape of the extending portion is a stripe, rhombus, hexagon, concentric circle in top view It is also possible to make them equal. As long as it has a stripe shape, it may be arranged perpendicularly to the pad electrode or auxiliary electrode or obliquely with an angle other than perpendicular. When arranged obliquely at an angle other than vertical, it is preferable that the angle be such that the distance between the two pad electrodes 10 that are substantially point-symmetric is close.
第2電極16からの電流は、半導体層12の厚さが厚いほど横方向に拡散されて第1電極15へ行き届く。延出部は第1領域14よりも半導体層12が厚いため、延出部が近傍にある第1電極15で電流が密になることを抑制し、電圧が下がる。一方、第1電極15の周囲に第1領域14が形成された場合、第1領域14が延出部よりも半導体層12が薄いため、発光層113からの光が半導体層12で吸収されるのを抑制することができ、光の取り出し効率が向上する。このように、電流拡散効果を有する延出部と、発光層からの光吸収抑制効果を有する第1領域14をストライプ状などとして近接して配置することにより、半導体層12全体に効率良く電流を拡散させることができるとともに、光取り出し効率を向上させることができる。また、パッド電極10を中心とするその近傍と、補助電極11の近傍は、導電部材を介して外部電源から電流が半導体発光素子100へと供給されるため、必然的に電流密度が大きく、発光強度が特に強い。そのため、第1電極15の周囲においては、本発明の効果がより発揮される。 The current from the second electrode 16 is diffused in the lateral direction and reaches the first electrode 15 as the thickness of the semiconductor layer 12 increases. Since the semiconductor layer 12 is thicker in the extension part than in the first region 14, the current is prevented from becoming dense at the first electrode 15 in the vicinity of the extension part, and the voltage is lowered. On the other hand, when the first region 14 is formed around the first electrode 15, the light from the light emitting layer 113 is absorbed by the semiconductor layer 12 because the semiconductor region 12 is thinner than the extending portion of the first region 14. The light extraction efficiency is improved. As described above, by arranging the extending portion having the current diffusion effect and the first region 14 having the effect of suppressing the light absorption from the light emitting layer in the vicinity of the stripe shape, the current can be efficiently supplied to the entire semiconductor layer 12. While being able to diffuse, light extraction efficiency can be improved. In addition, the vicinity of the pad electrode 10 and the vicinity of the auxiliary electrode 11 are inevitably high in current density because current is supplied from the external power source to the semiconductor light emitting element 100 through the conductive member. The strength is particularly strong. Therefore, the effect of the present invention is more exhibited around the first electrode 15.
半導体層12の上面において、第2領域13、第1領域14を形成する半導体層12の側面は垂直又は垂直以外の角度を有していてもよい。また、半導体層12の上面は、第2領域13、第1領域14にかかわらず表面が微細な凹凸を有する粗面であってもよい。これにより、半導体層12と電極15との密着性が向上するとともに、光取り出し効率がさらに向上する。 On the upper surface of the semiconductor layer 12, the side surfaces of the semiconductor layer 12 forming the second region 13 and the first region 14 may be vertical or have an angle other than vertical. Further, the upper surface of the semiconductor layer 12 may be a rough surface having fine irregularities on the surface regardless of the second region 13 and the first region 14. Thereby, the adhesiveness between the semiconductor layer 12 and the electrode 15 is improved, and the light extraction efficiency is further improved.
また、半導体発光素子100において、半導体層12がp型窒化物半導体層とn型窒化物半導体層を有し、第1領域14及び第2領域13がn型窒化物半導体層上に形成される場合は、n型窒化物半導体層がp型窒化物半導体層よりも電気抵抗が小さく電圧上昇が抑えられるため、より低電圧な半導体発光素子とすることができる。 In the semiconductor light emitting device 100, the semiconductor layer 12 includes a p-type nitride semiconductor layer and an n-type nitride semiconductor layer, and the first region 14 and the second region 13 are formed on the n-type nitride semiconductor layer. In this case, since the n-type nitride semiconductor layer has a smaller electrical resistance than the p-type nitride semiconductor layer and suppresses a voltage rise, a lower-voltage semiconductor light emitting element can be obtained.
<第二の実施形態>
次に、第二の実施形態に係る半導体発光素子について説明する。図4は、第二の実施形態に係る半導体発光素子の電極と第1領域、第2領域を示す概略平面図である。図5は、第二の実施形態に係る半導体発光素子の電極と第1領域、第2領域を示す概略断面図であり、図4のC−C’における断面図を示す。第二の実施形態に係る半導体発光素子200は、パッド電極20と補助電極21とが第2領域23と第1領域24上に設けられる以外は、第一の実施形態と実質的に同様である。
<Second Embodiment>
Next, the semiconductor light emitting device according to the second embodiment will be described. FIG. 4 is a schematic plan view showing an electrode, a first region, and a second region of the semiconductor light emitting device according to the second embodiment. FIG. 5 is a schematic cross-sectional view showing the electrodes, the first region, and the second region of the semiconductor light emitting device according to the second embodiment, and shows a cross-sectional view taken along the line CC ′ of FIG. The semiconductor light emitting device 200 according to the second embodiment is substantially the same as the first embodiment except that the pad electrode 20 and the auxiliary electrode 21 are provided on the second region 23 and the first region 24. .
第二の実施形態に係る半導体発光素子200は、半導体層22上にパッド電極20と補助電極21からなる電極25を有し、電極25が第2領域23上だけでなく第1領域24上にも設けられる。これにより第2領域23側面にも電極25が形成され、電極との接触面積が大きくなりコンタクト抵抗を下げることができる。また、電極25の断面形状は、第2領域23と第1領域24と同様に上面が凹凸でもよいし、平坦であってもよい。 The semiconductor light emitting device 200 according to the second embodiment includes an electrode 25 including a pad electrode 20 and an auxiliary electrode 21 on a semiconductor layer 22, and the electrode 25 is not only on the second region 23 but also on the first region 24. Is also provided. As a result, the electrode 25 is also formed on the side surface of the second region 23, the contact area with the electrode is increased, and the contact resistance can be lowered. Further, the cross-sectional shape of the electrode 25 may be uneven or flat as in the second region 23 and the first region 24.
<第三の実施形態>
次に、第三の実施形態に係る半導体発光素子について説明する。図6は、第三の実施形態に係る半導体発光素子の電極と第1領域、第2領域を示す概略平面図である。第三の実施形態に係る半導体発光素子300は、電極35の構造が相違している以外は、第一の実施形態と実質的に同様である。
<Third embodiment>
Next, a semiconductor light emitting device according to a third embodiment will be described. FIG. 6 is a schematic plan view showing the electrodes, the first region, and the second region of the semiconductor light emitting device according to the third embodiment. The semiconductor light emitting device 300 according to the third embodiment is substantially the same as the first embodiment except that the structure of the electrode 35 is different.
第三の実施形態に係る半導体発光素子300は、半導体層32上に、パッド電極30とそのパッド電極30から延伸する補助電極31とからなる電極35を有する。
半導体発光素子300は、半導体層32上に3本の平行な補助電極31を有し、外側の2本の補助電極31に重なるようにそれぞれ一つのパッド電極30が設けられる。3本の平行な補助電極31のうち、内側の補助電極31と、外側の各々のパッド電極30との間で、これらを連結する補助電極を備えることができる。パッド電極30が延伸方向の異なる複数の補助電極31の交点に位置する場合は、複数の補助電極31の交点とパッド電極30とを離間させた際に生じ得る、交点とパッド電極30との間への電流集中を緩和し、発熱等の問題を効果的に回避することができる。このように、補助電極31は交差、分岐することにより、パッド電極30や補助電極31を連結させることができ、電極面積を増やすと共に電流分布を均一化できる。また、補助電極は十字状に交差して、交点部分に電流が集中する事態を回避することもできる。
The semiconductor light emitting device 300 according to the third embodiment has an electrode 35 including a pad electrode 30 and an auxiliary electrode 31 extending from the pad electrode 30 on the semiconductor layer 32.
The semiconductor light emitting device 300 has three parallel auxiliary electrodes 31 on the semiconductor layer 32, and one pad electrode 30 is provided so as to overlap the two outer auxiliary electrodes 31. Of the three parallel auxiliary electrodes 31, an auxiliary electrode that connects the inner auxiliary electrode 31 and the outer pad electrode 30 can be provided. When the pad electrode 30 is located at the intersection of the plurality of auxiliary electrodes 31 having different extending directions, the intersection between the intersection and the pad electrode 30 that may occur when the intersection of the plurality of auxiliary electrodes 31 and the pad electrode 30 are separated from each other. The current concentration in the can be relaxed and problems such as heat generation can be effectively avoided. As described above, the auxiliary electrode 31 intersects and branches to connect the pad electrode 30 and the auxiliary electrode 31, thereby increasing the electrode area and making the current distribution uniform. In addition, it is possible to avoid a situation in which the auxiliary electrodes intersect in a cross shape and current concentrates at the intersection.
補助電極31は、交差、分岐、屈曲することにより半導体層32の上面視形状と相似関係に縮小された、すなわち略正方形状に連結した形状や、補助電極31の隅部が略直角に屈曲した折曲部を有する形状や、その他補助電極31によって半導体層32が包囲された領域をもつ形状とすることができる。ただし、補助電極31による上記のような包囲領域では電極近傍領域で電流が集中して発光強度が高くなり、その部分で蓄熱が多くなる。したがって、補助電極31による包囲領域がない半導体発光素子の方が、電流均一性、発光均一性を実現でき、かつ放熱性に優れており、大電流下にあっても高い耐性を有するので好ましい。 The auxiliary electrode 31 is reduced in a similar relationship to the top view shape of the semiconductor layer 32 by crossing, branching, or bending, that is, a shape connected in a substantially square shape, or a corner of the auxiliary electrode 31 is bent at a substantially right angle. A shape having a bent portion or a shape having a region where the semiconductor layer 32 is surrounded by the auxiliary electrode 31 can be used. However, in the surrounding region by the auxiliary electrode 31 as described above, current concentrates in the vicinity of the electrode and the light emission intensity increases, and heat storage increases in that portion. Therefore, a semiconductor light emitting device having no surrounding region by the auxiliary electrode 31 is preferable because it can realize current uniformity and light emission uniformity, is excellent in heat dissipation, and has high resistance even under a large current.
<第四の実施形態>
次に、第四の実施形態に係る半導体発光素子について説明する。図7は、第四の実施形態に係る半導体発光素子の電極と第1領域、第2領域を示す概略平面図である。第四の実施形態に係る半導体発光素子400は、半導体層42上面の第2領域43及び第1領域44の形状及び配置が相違している以外は、第三の実施形態と実質的に同様である。
<Fourth embodiment>
Next, a semiconductor light emitting element according to a fourth embodiment will be described. FIG. 7 is a schematic plan view showing the electrodes, the first region, and the second region of the semiconductor light emitting device according to the fourth embodiment. The semiconductor light emitting device 400 according to the fourth embodiment is substantially the same as the third embodiment except that the shape and arrangement of the second region 43 and the first region 44 on the upper surface of the semiconductor layer 42 are different. is there.
第四の実施形態に係る半導体発光素子400は、電極45の周囲にのみ、第2領域43からなる延出部を設ける。延出部は、電極45の全周囲に設けてもよいし、電極45の周囲の一部に設けてもよい。延出部の形状、幅、大きさ等は特に限定されず、これら全てが同一である必要もない。パッド電極40を中心とするその近傍と、補助電極41の近傍は、導電部材を介して外部電源から電流が半導体発光素子400へと供給されるため、必然的に電流密度が大きく、発光強度が特に強い。そのため、延出部と第1領域44とを電極45の周囲に配置することで、電流を半導体層42全体へ効率良く拡散させ、かつ発光層からの光の吸収を抑制するという効果がより発揮される。 The semiconductor light emitting device 400 according to the fourth embodiment is provided with an extending portion including the second region 43 only around the electrode 45. The extending portion may be provided all around the electrode 45 or may be provided on a part of the periphery of the electrode 45. The shape, width, size, and the like of the extending portion are not particularly limited, and all of them need not be the same. In the vicinity of the pad electrode 40 and the vicinity of the auxiliary electrode 41, current is supplied from the external power source to the semiconductor light emitting element 400 via the conductive member, so that the current density is inevitably high and the light emission intensity is high. Especially strong. Therefore, by arranging the extending portion and the first region 44 around the electrode 45, the effect of efficiently diffusing the current to the entire semiconductor layer 42 and suppressing the absorption of light from the light emitting layer is more exhibited. Is done.
第四の実施形態において延出部は長方形状であるが、上面視において、延出部の長手方向の長さは、30〜50μmが好ましい。これにより、電流拡散のための延出部があることに加え、半導体層42の薄い第1領域44の面積は増えるので、半導体層に吸収される光が低減し、発光効率が向上する。すなわち、上面視における延出部の面積を小さくすれば、より高出力な半導体発光素子とすることができる。 In the fourth embodiment, the extending portion has a rectangular shape, but the length in the longitudinal direction of the extending portion is preferably 30 to 50 μm in top view. Thereby, in addition to the extension part for current diffusion, the area of the thin first region 44 of the semiconductor layer 42 increases, so that the light absorbed by the semiconductor layer is reduced and the light emission efficiency is improved. That is, if the area of the extended portion in the top view is reduced, a semiconductor light emitting device with higher output can be obtained.
<第五の実施形態>
次に、第五の実施形態に係る半導体発光素子について説明する。図8は、第五の実施形態に係る半導体発光素子の電極と第1領域、第2領域を示す概略平面図である。第五の実施形態に係る半導体発光素子500は、半導体層52上面の第2領域53と第1領域54の形状及び配置が相違している以外は、第三又は第四の実施形態と実質的に同様である。
<Fifth embodiment>
Next, a semiconductor light emitting element according to a fifth embodiment will be described. FIG. 8 is a schematic plan view showing the electrodes, the first region, and the second region of the semiconductor light emitting device according to the fifth embodiment. The semiconductor light emitting device 500 according to the fifth embodiment is substantially the same as the third or fourth embodiment except that the shape and arrangement of the second region 53 and the first region 54 on the upper surface of the semiconductor layer 52 are different. The same as above.
第五の実施形態に係る半導体発光素子500は、電極55の周囲にのみ、第2領域53からなる延出部を設ける。延出部は、3本の平行な補助電極51それぞれの周囲に複数設けられ、それぞれ連結されない程度の大きさを有している。補助電極51の延伸方向末端では、放射状に延出部が設けられている。このように、延出部や第1領域54は、半導体層52で電流密度が大きく発光強度の強い部分に任意の形状や大きさで設けることができ、電流拡散及び半導体層の光吸収抑制を調整することが可能である。 The semiconductor light emitting device 500 according to the fifth embodiment is provided with an extending portion including the second region 53 only around the electrode 55. A plurality of extending portions are provided around each of the three parallel auxiliary electrodes 51 and have a size that is not connected to each other. At the end in the extending direction of the auxiliary electrode 51, radially extending portions are provided. As described above, the extending portion and the first region 54 can be provided in an arbitrary shape and size in a portion where the current density is large and the emission intensity is strong in the semiconductor layer 52, thereby suppressing current diffusion and light absorption suppression of the semiconductor layer. It is possible to adjust.
第五の実施形態において延出部は長方形状であるが、上面視において、延出部の長手方向の長さは、100〜200μmが好ましい。これにより、半導体層52が薄い第1領域54をできるだけ大きな面積で確保しつつ、延出部は第1電極55から遠い位置まで形成されるので、電圧上昇を抑制し、かつ発光効率が向上する。すなわち、上面視における延出部の面積を大きくすれば、より低電圧な半導体発光素子とすることができる。 In the fifth embodiment, the extending portion has a rectangular shape, but the length in the longitudinal direction of the extending portion is preferably 100 to 200 μm in top view. As a result, the extended portion is formed far from the first electrode 55 while securing the first region 54 with a thin semiconductor layer 52 as much as possible, so that the voltage rise is suppressed and the light emission efficiency is improved. . That is, if the area of the extended portion in the top view is increased, a semiconductor light emitting element with a lower voltage can be obtained.
<第六の実施形態>
次に、第六の実施形態に係る半導体発光素子について説明する。図9は、第六の実施形態に係る半導体発光素子の電極と第1領域、第2領域を示す概略平面図である。第六の実施形態に係る半導体発光素子600は、半導体層62上面の電極65、第2領域63と第1領域64の形状及び配置が相違している以外は、第四又は第五の実施形態と実質的に同様である。
<Sixth embodiment>
Next, a semiconductor light emitting element according to a sixth embodiment will be described. FIG. 9 is a schematic plan view showing the electrodes, the first region, and the second region of the semiconductor light emitting device according to the sixth embodiment. The semiconductor light emitting device 600 according to the sixth embodiment is similar to the fourth or fifth embodiment except that the shape and arrangement of the electrode 65 on the upper surface of the semiconductor layer 62, the second region 63, and the first region 64 are different. And substantially the same.
第六の実施形態に係る半導体発光素子600は、半導体層62の周縁部に設けられた複数のパッド電極60から、半導体層62の中央領域の方向に補助電極61が延伸している。それぞれの補助電極61は、中央領域においてその先端側が隣り合う方向で対向するように配置されている。第2領域63からなる延出部は、パッド電極60と補助電極61の周囲に設けられる。略長方形である延出部は、補助電極61の周囲においては、その長方形の長手方向が補助電極61の延伸方向に対して略垂直になるように配置されている。このように、補助電極が曲がっている形状であっても、延出部は、半導体層62で電流密度が大きく発光強度の強い部分に任意の形状や大きさ、角度を持って設けることができる。 In the semiconductor light emitting device 600 according to the sixth embodiment, the auxiliary electrode 61 extends from the plurality of pad electrodes 60 provided at the peripheral portion of the semiconductor layer 62 in the direction of the central region of the semiconductor layer 62. Each auxiliary electrode 61 is arranged so that the tip end faces in the central region in the adjacent direction. The extending portion composed of the second region 63 is provided around the pad electrode 60 and the auxiliary electrode 61. The extending portion that is substantially rectangular is arranged around the auxiliary electrode 61 such that the longitudinal direction of the rectangle is substantially perpendicular to the extending direction of the auxiliary electrode 61. Thus, even if the auxiliary electrode has a bent shape, the extended portion can be provided in the semiconductor layer 62 at a portion where the current density is large and the emission intensity is strong with an arbitrary shape, size, and angle. .
<第七の実施形態>
次に、第七の実施形態に係る半導体発光素子について説明する。図10は、第七の実施形態に係る半導体発光素子の電極と第1領域、第2領域を示す概略平面図である。第七の実施形態に係る半導体発光素子700は、半導体層72上面の電極75、第2領域73と第1領域74の形状及び配置が相違している以外は、第四〜六の実施形態と実質的に同様である。
<Seventh embodiment>
Next, a semiconductor light emitting element according to a seventh embodiment will be described. FIG. 10 is a schematic plan view showing the electrodes, the first region, and the second region of the semiconductor light emitting device according to the seventh embodiment. The semiconductor light emitting device 700 according to the seventh embodiment is the same as the fourth to sixth embodiments except that the shape and arrangement of the electrode 75 on the upper surface of the semiconductor layer 72, the second region 73, and the first region 74 are different. It is substantially the same.
第七の実施形態に係る半導体発光素子700は、半導体層72の中央領域に設けられた複数のパッド電極70から、補助電極71が四方に延伸している。第2領域73からなる延出部と第1領域74は、パッド電極70と補助電極71の周囲に設けられる。略長方形である延出部は、補助電極71の周囲においては、その長方形の長手方向が補助電極71の延伸方向に対して略垂直になるように配置されている。また、パッド電極70と、補助電極71の延伸部末端では、延出部が放射状に設けられる。このように、延出部は、複数の補助電極71がパッド電極70から放射状若しくはそれぞれが別方向に延伸していても、半導体層72で電流密度が大きく発光強度の強い部分に任意の形状や大きさ、角度を持って設けることができる。 In the semiconductor light emitting device 700 according to the seventh embodiment, the auxiliary electrode 71 extends in all directions from the plurality of pad electrodes 70 provided in the central region of the semiconductor layer 72. The extending portion including the second region 73 and the first region 74 are provided around the pad electrode 70 and the auxiliary electrode 71. The extending portion that is substantially rectangular is arranged around the auxiliary electrode 71 such that the longitudinal direction of the rectangle is substantially perpendicular to the extending direction of the auxiliary electrode 71. In addition, extending portions are provided radially at the ends of the extending portions of the pad electrode 70 and the auxiliary electrode 71. As described above, the extending portion has an arbitrary shape or a portion of the semiconductor layer 72 where the current density is large and the light emission intensity is strong even when the plurality of auxiliary electrodes 71 are radially extended from the pad electrode 70 or are extended in different directions. It can be provided with a size and an angle.
以下、本実施形態の製造方法及び各構成について詳述する。 Hereafter, the manufacturing method and each structure of this embodiment are explained in full detail.
(半導体層)
発光層を有する半導体層は、当該分野で公知の方法及び構造を有して作製されるいかなる半導体構造であってもよい。成長基板上に第2導電型半導体層、発光層、第1導電型半導体層を有する半導体構造を形成する。成長基板は、半導体層である窒化物半導体をエピタキシャル成長させることができる基板であればよく、成長基板の大きさや厚さ等は特に限定されない。この成長基板としては、C面、R面、及びA面のいずれかを主面とするサファイアやスピネル(MgAl2O4)のような絶縁性基板、また炭化珪素(6H、4H、3C)、シリコン、ZnS、ZnO、Si、GaAsが挙げられる。また、GaNやAlN等の窒化物半導体基板を用いることもできる。
(Semiconductor layer)
The semiconductor layer having the light emitting layer may be any semiconductor structure manufactured using a method and structure known in the art. A semiconductor structure having a second conductivity type semiconductor layer, a light emitting layer, and a first conductivity type semiconductor layer is formed on the growth substrate. The growth substrate may be any substrate that can epitaxially grow a nitride semiconductor that is a semiconductor layer, and the size and thickness of the growth substrate are not particularly limited. As this growth substrate, an insulating substrate such as sapphire or spinel (MgAl 2 O 4 ) whose main surface is any one of the C-plane, R-plane, and A-plane, silicon carbide (6H, 4H, 3C), Examples include silicon, ZnS, ZnO, Si, and GaAs. A nitride semiconductor substrate such as GaN or AlN can also be used.
本発明の半導体層は、上記に限らず、pn接合、p−i−n構造、MIS構造等種々の発光構造を用いることができる。窒化物半導体に限らず、GaAs系、InP系、例えばInGaAs、GaP半導体、等の他の材料、波長の発光素子にも適用できる。 The semiconductor layer of the present invention is not limited to the above, and various light emitting structures such as a pn junction, a pin structure, and a MIS structure can be used. The present invention is not limited to nitride semiconductors but can be applied to other materials such as GaAs-based and InP-based materials such as InGaAs and GaP semiconductors and light-emitting elements having wavelengths.
成長基板上に、半導体層として、n型窒化物半導体層、発光層、p型窒化物半導体層を順に積層する。この時、成長基板の材料によっては、半導体構造との間に、低温成長バッファ層、例えば1〜3nmのAlxGa1−xN(0≦x≦1)、その他、高温成長の層、例えば0.5〜4μmのAlxGa1−xN(0≦x<1)等の下地層を介していても良い。n型、p型の窒化物半導体層は、例えばAlxGayIn1−x−yN(0≦x≦1、0≦y≦1、x+y≦1)の組成式で表されるものを用いることができ、その他III,IV族元素の一部をそれぞれ、B置換、P,As,Sb等で置換しても良い。例えば、n型半導体層には、GaNのコンタクト層、InGaN/GaNの多層膜構造、p型半導体層には、GaNのコンタクト層、AlGaN,InGaN,GaNの単層、多層膜構造を用いて構成することができる。このように種々の組成、ドーパント量の単層、多層構造を1つ、複数有して、各機能(コンタクト、クラッド)の層を設けることができる。各導電型の半導体層は、適宜ドーパントを用いて所望の導電型の層とし、例えばp型、n型の窒化物半導体では、それぞれMg,Si等を用いる。各導電型層の一部に、絶縁性、半絶縁性の領域、層、又は逆導電型の領域、層を有していても良い。 On the growth substrate, an n-type nitride semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer are sequentially stacked as semiconductor layers. At this time, depending on the material of the growth substrate, a low-temperature growth buffer layer, for example, 1 to 3 nm of Al x Ga 1-x N (0 ≦ x ≦ 1), or other high-temperature growth layer, for example, between the semiconductor structure and the semiconductor structure. An under layer such as 0.5 to 4 μm of Al x Ga 1-x N (0 ≦ x <1) may be interposed. The n-type and p-type nitride semiconductor layers are, for example, those represented by a composition formula of Al x Ga y In 1-xy N (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, x + y ≦ 1). Some of the other group III and IV elements may be substituted with B substitution, P, As, Sb, etc., respectively. For example, a GaN contact layer and an InGaN / GaN multilayer structure are used for the n-type semiconductor layer, and a GaN contact layer, a single layer of AlGaN, InGaN, and GaN and a multilayer structure are used for the p-type semiconductor layer. can do. As described above, a single layer or a multilayer structure having various compositions and dopant amounts can be provided, and a layer of each function (contact, clad) can be provided. Each conductive type semiconductor layer is formed into a desired conductive type layer using an appropriate dopant. For example, in p-type and n-type nitride semiconductors, Mg, Si, or the like is used. A part of each conductivity type layer may have an insulating or semi-insulating region or layer, or a region or layer having a reverse conductivity type.
また、本発明に用いる発光層は、例えば、AlaInbGa1−a−bN(0≦a≦1、0≦b≦1、a+b≦1)からなる井戸層と、AlcIndGa1−c−dN(0≦c≦1、0≦d≦1、c+d≦1)からなる障壁層とを含む量子井戸構造を有する。活性層に用いられる窒化物半導体は、ノンドープ、n型不純物ドープ、p型不純物ドープのいずれでもよいが、好ましくは、ノンドープもしくは、又はn型不純物ドープの窒化物半導体を用いることにより発光素子を高出力化することができる。井戸層にAlを含ませることで、GaNのバンドギャップエネルギーである波長365nmより短い波長を得ることができる。活性層から放出する光の波長は、発光素子の目的、用途等に応じて360nm〜650nm付近、好ましくは380nm〜560nmの波長とする。 The light emitting layer used in the present invention includes, for example, a well layer made of Al a In b Ga 1-ab N (0 ≦ a ≦ 1, 0 ≦ b ≦ 1, a + b ≦ 1), and Al c In d. A quantum well structure including a barrier layer made of Ga 1-c-d N (0 ≦ c ≦ 1, 0 ≦ d ≦ 1, c + d ≦ 1). The nitride semiconductor used for the active layer may be any of non-doped, n-type impurity doped, and p-type impurity doped. However, it is preferable to increase the light emitting element by using a non-doped or n-type impurity doped nitride semiconductor. Can be output. By including Al in the well layer, a wavelength shorter than the wavelength 365 nm which is the band gap energy of GaN can be obtained. The wavelength of light emitted from the active layer is approximately 360 to 650 nm, preferably 380 to 560 nm, depending on the purpose and application of the light-emitting element.
井戸層の組成はInGaNが、可視光・近紫外域に好適に用いられ、その時の障壁層の
組成は、GaN、InGaNが良い。井戸層の膜厚は、好ましくは1nm以上30nm以
下であり、1つの井戸層の単一量子井戸、障壁層等を介した複数の井戸層の多重量子井戸
構造とできる。
The composition of the well layer is preferably InGaN, and the composition of the barrier layer at that time is preferably GaN or InGaN. The thickness of the well layer is preferably 1 nm or more and 30 nm or less, and can be a multiple quantum well structure of a plurality of well layers through a single quantum well, a barrier layer, or the like of one well layer.
(第2電極)
第2導電型半導体層の表面にRh、Ag、Ni、Au、Ti、Al、Pt等からなる第2電極をパターン形成する。第2電極は、光反射側であるため、反射構造を有すること、具体的には反射率の高い、反射層を有すること、特に第2導電型半導体層接触側に有することが好ましい。その他に、光透過する薄膜の密着層を介して、例えば密着層/反射層の順に積層した多層構造とすることもできる。具体的な第2電極としては、半導体層側からAg/Ni/Ti/Ptとできる。また、第2電極は、上面から見て、第1電極が形成される領域を除く窒化物半導体層のほぼ全領域に形成されると、電流注入の発光領域を大きくでき、好ましい。また平面視において、第1及び第2の電極が、発光層を挟んで重なる領域を有すれば、電極へと吸収され光損失を招くため、ずらすのがよい。
(Second electrode)
A second electrode made of Rh, Ag, Ni, Au, Ti, Al, Pt or the like is patterned on the surface of the second conductivity type semiconductor layer. Since the second electrode is on the light reflecting side, it is preferable to have a reflecting structure, specifically, to have a reflective layer with high reflectivity, particularly on the second conductive type semiconductor layer contact side. In addition, a multilayer structure in which, for example, an adhesive layer / a reflective layer are stacked in order through an adhesive layer of a light-transmitting thin film may be used. A specific second electrode can be Ag / Ni / Ti / Pt from the semiconductor layer side. In addition, it is preferable that the second electrode be formed in almost the entire region of the nitride semiconductor layer excluding the region where the first electrode is formed as viewed from above, because the light emitting region for current injection can be increased. Further, in plan view, if the first and second electrodes have a region overlapping with the light emitting layer interposed therebetween, the first electrode and the second electrode are absorbed into the electrode and cause optical loss, so that they should be shifted.
(保護膜)
半導体発光素子の周辺部等を保護するために、保護膜を設けても良い。第2導電型半導体層上に設ける場合は、その第2電極から露出した領域に形成され、互いに隣接若しくは離間して設けられる。これに限らず、第2電極の一部を覆うように設けることもできる。この保護膜を絶縁膜として、第2導電型半導体層の表面上に選択的に設けられた第2電極から半導体層に導通されている。絶縁性の保護膜として、具体的な材料としては、SiO2、Nb2O5、Al2O3、ZrO2、TiO2等の酸化膜や、AlN、SiN等の窒化膜の、単層膜または多層膜を用いることができる。さらに、保護膜にAl、Ag、Rh等の高反射率の金属膜を被覆してもよい。さらにSiO2/Ti/Ptのように、第二電極の多層構造の一部を絶縁膜の接着層側に設けてもよい。
(Protective film)
A protective film may be provided to protect the periphery of the semiconductor light emitting element. When provided on the second conductivity type semiconductor layer, it is formed in a region exposed from the second electrode, and is provided adjacent to or spaced apart from each other. Not only this but it can also provide so that a part of 2nd electrode may be covered. Using this protective film as an insulating film, the second electrode selectively provided on the surface of the second conductivity type semiconductor layer is electrically connected to the semiconductor layer. As an insulating protective film, specific materials include a single layer film of an oxide film such as SiO 2 , Nb 2 O 5 , Al 2 O 3 , ZrO 2 , or TiO 2 , or a nitride film such as AlN or SiN. Alternatively, a multilayer film can be used. Further, the protective film may be coated with a highly reflective metal film such as Al, Ag, and Rh. Furthermore, a part of the multilayer structure of the second electrode may be provided on the adhesive layer side of the insulating film, such as SiO 2 / Ti / Pt.
(半導体層側接着層)
次に、第2電極上に、貼り合わせ時に合金化させるための半導体層側接着層を形成する。半導体層側接着層は、Au、Sn、Pd、Inからなる群から選ばれる少なくとも1つを含有する合金から形成される。半導体層側接着層は密着層、バリア層、共晶層からなる3層構造が好ましい。密着層は、Ni、Ti、RhO、W、Moからなる群から選ばれる少なくとも一を含有する。バリア層は、Pt、Ti、Pd、TiN、W、Mo、WN、Auからなる群から選ばれる少なくとも一を含有する。共晶層は、Au、Sn、Pd、Inからなる群より選ばれる少なくとも一を含有する。また、半導体層側接着層の膜厚は5μm以下とする。例えば、Ti/Pt/Au/Sn/Auを用いることができ、また保護膜に第2電極の多層構造の一部を設ける場合は、密着層を省略し、Pt/Au/Sn/Auとすることもできる。
(Semiconductor layer side adhesive layer)
Next, a semiconductor layer side adhesive layer for alloying at the time of bonding is formed on the second electrode. The semiconductor layer side adhesive layer is formed of an alloy containing at least one selected from the group consisting of Au, Sn, Pd, and In. The semiconductor layer side adhesive layer preferably has a three-layer structure including an adhesion layer, a barrier layer, and a eutectic layer. The adhesion layer contains at least one selected from the group consisting of Ni, Ti, RhO, W, and Mo. The barrier layer contains at least one selected from the group consisting of Pt, Ti, Pd, TiN, W, Mo, WN, and Au. The eutectic layer contains at least one selected from the group consisting of Au, Sn, Pd, and In. The film thickness of the semiconductor layer side adhesive layer is 5 μm or less. For example, Ti / Pt / Au / Sn / Au can be used. When a part of the multilayer structure of the second electrode is provided on the protective film, the adhesion layer is omitted and Pt / Au / Sn / Au is used. You can also.
(支持基板)
他方、支持基板を用意する。支持基板は、主に、Si基板の他、GaAsの半導体基板、Cu、Ge、Niの金属材料、Cu−Wの複合材料等の導電性基板が挙げられる。加えて、Cu−Mo、AlSiC、AlN、SiC、Cu−ダイヤ等の金属とセラミックの複合体等も利用できる。例えば、Cu−W、Cu−Moの一般式をCuxW100−x(0≦x≦30)、CuxMo100−x(0≦x≦50)のようにそれぞれ示すことができる。またSiを用いる利点は安価でチップ化がしやすい点である。支持基板の好ましい膜厚としては50〜500μmである。支持基板の膜厚をこの範囲に設定することで放熱性が良くなる。一方で、支持基板に導電性基板を使用すれば、基板側からの電力供給が可能になる他、高い静電耐圧及び放熱性に優れた素子とできる。また、通常は、Si、Cu(Cu−W)等の不透光性の材料で、それと半導体層との間、例えば電極、若しくは半導体層内に反射構造を設ける構造として、放熱性、発光特性に優れ好ましい。また、メッキにより、窒化物半導体層上にメッキ部材を形成して、支持基板、支持基板との間の接着部を形成することもできる。また、支持基板を設けない素子でも良く、発光装置の載置部、基台上に直接実装されても良く、メッキによる金属部材等を半導体層上に設ける形態でも良い。
(Support substrate)
On the other hand, a support substrate is prepared. The support substrate mainly includes a conductive substrate such as a Si substrate, a GaAs semiconductor substrate, a Cu, Ge, Ni metal material, or a Cu—W composite material. In addition, a composite of a metal and a ceramic such as Cu—Mo, AlSiC, AlN, SiC, and Cu—diamond can be used. For example, general formulas of Cu-W and Cu-Mo can be shown as Cu x W 100-x (0 ≦ x ≦ 30) and Cu x Mo 100-x (0 ≦ x ≦ 50), respectively. The advantage of using Si is that it is inexpensive and easy to chip. A preferable film thickness of the support substrate is 50 to 500 μm. Heat dissipation is improved by setting the film thickness of the support substrate within this range. On the other hand, if a conductive substrate is used as the support substrate, power can be supplied from the substrate side, and an element having high electrostatic withstand voltage and heat dissipation can be obtained. Moreover, it is usually an opaque material such as Si, Cu (Cu—W), and a structure in which a reflective structure is provided between the semiconductor layer and the semiconductor layer, for example, an electrode or a semiconductor layer. Excellent and preferable. Alternatively, a plating member can be formed on the nitride semiconductor layer by plating to form a support substrate and an adhesive portion between the support substrate. Further, an element without a support substrate may be used, and the element may be directly mounted on the mounting portion or base of the light emitting device, or a metal member or the like by plating may be provided on the semiconductor layer.
また、光取り出し側に対向する半導体層の反射側、例えば支持基板の上面或いは下面
や、上述した窒化物半導体層の表面(ここでは第2導電型半導体層の表面)に、分布型ブラッグ反射膜(distributed Bragg reflector:DBR)等、屈折率の異なる材料が周期的に交互に積層された多層薄膜を形成することもできる。多層薄膜は例えば誘電体多層膜、GaN/AlGaNの半導体から構成されて、半導体層内、その表面、例えば保護膜等に、単独若しくは反射用の電極と共に形成されて、反射構造を設けることができる。
Also, a distributed Bragg reflection film on the reflection side of the semiconductor layer facing the light extraction side, for example, the upper surface or the lower surface of the support substrate, or the surface of the nitride semiconductor layer described above (here, the surface of the second conductivity type semiconductor layer). It is also possible to form a multilayer thin film in which materials having different refractive indexes, such as (Distributed Bragg reflector: DBR), are laminated alternately and periodically. The multilayer thin film is composed of, for example, a dielectric multilayer film or a semiconductor of GaN / AlGaN, and can be formed alone or together with a reflective electrode on the surface of the semiconductor layer, such as a protective film, to provide a reflective structure. .
(貼り合わせ工程)
そして、半導体層側接着層の表面と支持基板側接着層の表面を対向させ、支持基板を加熱圧接により窒化物半導体層側の第2電極上に貼り合わせる。この加熱圧接は、プレスをしながら150℃以上の熱を加えて行われる。これにより接着層を介して半導体層側と支持基板側が接合される。
(Lamination process)
Then, the surface of the semiconductor layer side adhesive layer and the surface of the support substrate side adhesive layer are opposed to each other, and the support substrate is bonded to the second electrode on the nitride semiconductor layer side by heating and pressure welding. This heating and pressure welding is performed by applying heat of 150 ° C. or higher while pressing. Thereby, the semiconductor layer side and the support substrate side are bonded via the adhesive layer.
この支持基板の表面に対しても支持基板側接着層を形成することが好ましい。また、支持基板側接着層には密着層、バリア層、共晶層からなる3層構造を用いることが好ましい。支持基板側接着層は、例えばTi−Pt−Au、Ti−Pt−Sn、Ti−Pt−Pd又はTi−Pt−AuSn、W−Pt−Sn、RhO−Pt−Sn、RhO−Pt−Au、RhO−Pt−(Au、Sn)等の金属膜から形成される。 It is preferable to form a support substrate side adhesive layer also on the surface of this support substrate. Further, it is preferable to use a three-layer structure including an adhesion layer, a barrier layer, and a eutectic layer for the support substrate side adhesive layer. The support substrate side adhesive layer is, for example, Ti—Pt—Au, Ti—Pt—Sn, Ti—Pt—Pd or Ti—Pt—AuSn, W—Pt—Sn, RhO—Pt—Sn, RhO—Pt—Au, It is formed from a metal film such as RhO—Pt— (Au, Sn).
貼り合わせにおいて共晶させるには支持基板側と窒化物半導体側との接着面にそれぞれ密着層、バリア層、共晶層とを備えていることが好ましく、それが設けられる材料(基板、半導体)に応じて、適宜接着層、その各層の材料を形成する。貼り合わせ後には第2電極/Ti−Pt−AuSn−Pt−Ti/支持基板、その他に第2電極/RhO−Pt−AuSn−Pt−Ti/支持基板、第2電極/Ti−Pt−PdSn−Pt−Ti/支持基板や、第2電極/Ti−Pt−AuSn−Pt−RhO/支持基板や、第2電極/Ti−Pt−Au−AuSn−Pt−TiSi2/支持基板や、Ti/Pt/AuSn/PdSn/Pt/TiSi2/支持基板や、Pt/AuSn/PdSn/Pt/TiSi2/支持基板(保護膜がSiO2/Ti/Ptの場合)となる。このように、貼り合わせの表面金属は支持基板側と窒化物半導体素子側が異なると、低温で共晶が可能で、共晶後の融点が上がるため好ましい。 For eutectic bonding, it is preferable to provide an adhesion layer, a barrier layer, and a eutectic layer on the bonding surface between the support substrate side and the nitride semiconductor side, respectively, and materials (substrate, semiconductor) on which the layers are provided The adhesive layer and the material of each layer are formed as appropriate. After bonding, the second electrode / Ti-Pt-AuSn-Pt-Ti / support substrate, the second electrode / RhO-Pt-AuSn-Pt-Ti / support substrate, and the second electrode / Ti-Pt-PdSn- Pt—Ti / support substrate, second electrode / Ti—Pt—AuSn—Pt—RhO / support substrate, second electrode / Ti—Pt—Au—AuSn—Pt—TiSi 2 / support substrate, Ti / Pt / AuSn / PdSn / Pt / TiSi 2 / support substrate and Pt / AuSn / PdSn / Pt / TiSi 2 / support substrate (when the protective film is SiO 2 / Ti / Pt). Thus, when the surface metal of the bonding is different between the support substrate side and the nitride semiconductor element side, it is preferable because eutectic is possible at a low temperature and the melting point after eutectic is increased.
(成長基板除去工程)
その後、成長基板を除去して、半導体層を露出させる。成長基板は、成長基板側からエキシマレーザやフェムト秒レーザ等を照射して剥離・除去する(Laser Lift Off:LLO)か、又は研削によって取り除かれる。成長基板を除去後、露出した窒化物半導体の表面をCMP(ケミカル・メカニカル・ポリッシュ)処理することで所望の膜である第1導電型半導体層を露出させる。このとき、半導体発光素子の光に対し吸収率の高い下地層、例えば高温成長したGaN層を除去、あるいは膜厚を低減することによって、例えば紫外領域の発光波長を持つLEDにおいても吸収の影響を低減することができる。この処理によりダメージ層の除去や窒化物半導体層の厚みを調整、表面の面粗さの調整ができる。
(Growth substrate removal process)
Thereafter, the growth substrate is removed to expose the semiconductor layer. The growth substrate is peeled and removed by irradiating an excimer laser, a femtosecond laser, or the like from the growth substrate side (Laser Lift Off: LLO), or removed by grinding. After removing the growth substrate, the exposed surface of the nitride semiconductor is subjected to a CMP (Chemical Mechanical Polish) process to expose the first conductive semiconductor layer which is a desired film. At this time, by removing the base layer having a high absorptance with respect to the light of the semiconductor light emitting element, for example, a GaN layer grown at a high temperature, or reducing the film thickness, for example, an LED having an emission wavelength in the ultraviolet region has an effect of absorption. Can be reduced. By this treatment, the damage layer can be removed, the thickness of the nitride semiconductor layer can be adjusted, and the surface roughness can be adjusted.
(半導体層の分割)
さらに、チップ状に半導体層を分割する。具体的には、RIE等で外周エッチングを行い、外周の半導体層を除去して分離し、保護膜を露出させる。
(Division of semiconductor layers)
Further, the semiconductor layer is divided into chips. Specifically, the outer peripheral etching is performed by RIE or the like, and the outer semiconductor layer is removed and separated to expose the protective film.
(第1領域、第2領域の形成)
そして、半導体層上面に第1領域、第2領域からなる凹凸構造を形成する。第1導電型半導体層の上面にフォトリソグラフィーにより所定のパターンを有するレジストマスクを形成する。レジストマスクにより、第1導電型半導体層を0.5〜2μm、好ましくは0.5〜1μmRIEする。このとき、RIEに限らずウェットエッチング等で第1領域、第2領域からなる凹凸構造を形成してもよく、また、電極直下に位置する第1導電型半導体層にも凹凸構造を形成してもよい。
(Formation of first region and second region)
And the uneven structure which consists of a 1st area | region and a 2nd area | region is formed in a semiconductor layer upper surface. A resist mask having a predetermined pattern is formed on the upper surface of the first conductivity type semiconductor layer by photolithography. The first conductive semiconductor layer is RIE by 0.5 to 2 μm, preferably 0.5 to 1 μm, using a resist mask. At this time, the concavo-convex structure including the first region and the second region may be formed not only by RIE but also by wet etching or the like, and the concavo-convex structure is also formed in the first conductivity type semiconductor layer located immediately below the electrode. Also good.
さらにまた、第1導電型半導体層上面の第1領域、第2領域について、TMAH(水酸化テトラメチルアンモニウム)溶液により異方性エッチングを行う。この処理により、第1領域、第2領域の表面が粗面になり、第1導電型半導体層上に形成される第1電極との密着性及び光取り出し効率が向上する。 Furthermore, anisotropic etching is performed with a TMAH (tetramethylammonium hydroxide) solution on the first region and the second region on the upper surface of the first conductivity type semiconductor layer. By this treatment, the surfaces of the first region and the second region become rough, and the adhesion with the first electrode formed on the first conductivity type semiconductor layer and the light extraction efficiency are improved.
(第1電極)
次いで、第1導電型半導体層の上面に、上記に記した配置構成を満足するよう第1電極が形成される。すなわち、第1電極は、半導体層の上面からの平面視において、発光層を挟んで位置する第2電極の形成領域と重畳領域を持たないようにずれて配置される。この構造により、半導体層の積層方向において、その中心軸を異とする双方の電極間を、キャリアが立体的に移動するため、面内拡散が促進される結果、内部量子効率を高められる。
(First electrode)
Next, a first electrode is formed on the upper surface of the first conductivity type semiconductor layer so as to satisfy the arrangement configuration described above. In other words, the first electrode is arranged so as not to have an overlapping region with the formation region of the second electrode located across the light emitting layer in plan view from the upper surface of the semiconductor layer. With this structure, in the stacking direction of the semiconductor layer, carriers move three-dimensionally between both electrodes having different central axes, so that in-plane diffusion is promoted, resulting in an increase in internal quantum efficiency.
第1電極は、具体的には、積層順に、Ti−Au、Ti−Al等のように、第1導電型半導体層とのオーミック用と密着用としてのTi層(第1層)とパッド用のパッド層(第2層)として金、Al、白金族の構成、また、オーミック用の第一層(例えば、W、Mo、Tiが第1導電型半導体層とのオーミック接触に好ましい)と、パッド用の第2層との間にバリア層として、高融点金属層(W、Mo、白金族)を設ける構造、例えばW−Pt−Au、Ti−Rh−Pt−Au、が用いられる。n型窒化物半導体の反射性電極として、Al、その合金を用いること、透光性電極としてITO等の導電性酸化物をもちいることもできる。実施の形態において、第1電極にn電極を構成する場合、積層順にTi−Al−Ni−Au、W−Al−W−Pt−Au、Al−Pt−Au、Ti−Pt−Au等が用いられる。また、第1電極は膜厚を0.1〜1.5μmとする。 Specifically, the first electrode is for the ohmic contact with the first conductivity type semiconductor layer and the Ti layer (first layer) for the pad and the pad, such as Ti—Au, Ti—Al, etc., in the order of lamination. As a pad layer (second layer) of gold, Al, platinum group, and a first layer for ohmic (for example, W, Mo, Ti are preferable for ohmic contact with the first conductivity type semiconductor layer), A structure in which a refractory metal layer (W, Mo, platinum group) is provided as a barrier layer between the second layer for pads, for example, W—Pt—Au, Ti—Rh—Pt—Au is used. Al or an alloy thereof can be used as the reflective electrode of the n-type nitride semiconductor, and a conductive oxide such as ITO can be used as the translucent electrode. In the embodiment, when an n-electrode is formed as the first electrode, Ti—Al—Ni—Au, W—Al—W—Pt—Au, Al—Pt—Au, Ti—Pt—Au, etc. are used in the order of lamination. It is done. The first electrode has a thickness of 0.1 to 1.5 μm.
(チップ分割)
続いて、支持基板及び接着層からなる支持台において、半導体発光素子の境界領域におけるダイシング位置でもってダイシングすることにより、チップ化された半導体発光素子を得られる。
(Chip division)
Subsequently, dicing is performed at a dicing position in a boundary region of the semiconductor light emitting element on a support base composed of a support substrate and an adhesive layer, thereby obtaining a semiconductor light emitting element in a chip form.
(透光性導電層)
また、各電極との半導体層間に電流拡散を促す拡散層を備えることもできる。拡散層としては、各電極よりも幅広、大面積で設けられて拡散機能を有し、透光性であることで光の出射(第1電極側)、反射(第2電極側)の機能を低下させないものが良く、例えば透光性導電層が採用できる。導電層は、露出した半導体層のほぼ全面に形成されることにより、電流を半導体層全体に均一に広げることができる。透光性導電層は、具体的には、ITO、ZnO、In2O3、SnO2等、Zn、In、Snの酸化物を含む透光性導電層を形成することが望ましく、好ましくはITOを使用する。あるいはNi等のその他の金属を薄膜、酸化物、窒化物、それらの化合物、複合材料としたものでもよい。
(Translucent conductive layer)
A diffusion layer that promotes current diffusion can also be provided between the semiconductor layers with each electrode. The diffusion layer is wider than each electrode, has a large area, has a diffusion function, and is translucent so that it can emit light (on the first electrode side) and reflect (on the second electrode side). What does not reduce is good, for example, a translucent conductive layer can be employed. The conductive layer is formed on almost the entire surface of the exposed semiconductor layer, whereby current can be spread uniformly over the entire semiconductor layer. Specifically, the translucent conductive layer is desirably formed of a translucent conductive layer containing an oxide of Zn, In, Sn, such as ITO, ZnO, In 2 O 3 , SnO 2 , preferably ITO Is used. Alternatively, other metals such as Ni may be used as thin films, oxides, nitrides, compounds thereof, and composite materials.
(配線構造)
上記の構造を有する半導体発光素子において、接着層を導電性とし、かつ支持基板をSiC等の導電性の基板とすれば、第2電極の一方の主面を第2導電型半導体層に接触させ、第2電極の他方の主面側から外部接続できる。すなわち、第2電極の一方の主面(上面)は半導体と接触させるための面であり、第2電極の他方の主面(下面)は外部接続用の面として機能できる。そして、貼り合わせる支持基板を第2電極に電気的に接続し、半導体発光素子の底面側を、第2電極のパッド部とできる。例えば支持基板の裏面に設けた電極を介して、外部回路との接続が可能となる。また、支持基板を絶縁性材料とした場合では、半導体積層構造側に形成された支持基板の電極と、その反対側の裏面に形成された電極とを、支持基板の立体配線や、配線用ビアホール等の配線電極によって接続するようにしても、支持基板の裏面側からの電極取り出しが可能となる。いずれにしても、露出されたワイヤを用いずに、第2電極と外部電極とを電気的に接続できる。さらに、支持基板に、別個の放熱部材を連結することで、一層の放熱効果を得ることもできる。
(Wiring structure)
In the semiconductor light emitting device having the above structure, if the adhesive layer is conductive and the support substrate is a conductive substrate such as SiC, one main surface of the second electrode is brought into contact with the second conductive semiconductor layer. The second electrode can be externally connected from the other main surface side. That is, one main surface (upper surface) of the second electrode is a surface for contacting the semiconductor, and the other main surface (lower surface) of the second electrode can function as a surface for external connection. Then, the supporting substrate to be bonded is electrically connected to the second electrode, and the bottom surface side of the semiconductor light emitting element can be used as the pad portion of the second electrode. For example, an external circuit can be connected via an electrode provided on the back surface of the support substrate. In addition, when the support substrate is made of an insulating material, the support substrate electrode formed on the semiconductor laminated structure side and the electrode formed on the opposite side are connected to the support substrate by three-dimensional wiring or wiring via holes. Even if the wiring electrodes are connected with each other, the electrodes can be taken out from the back side of the support substrate. In any case, the second electrode and the external electrode can be electrically connected without using the exposed wire. Furthermore, a further heat dissipation effect can be obtained by connecting a separate heat dissipation member to the support substrate.
他方で、半導体層表面側の電極である、第1電極は、外部電源接続用の露出領域に、半田等を介して導電性ワイヤと接続される。これにより外部電極との電気的な接続が可能となる。その他に、半導体層上に配線構造を有する形態、例えば、半導体層上から外部の支持基板上まで配線層が設けられる構造でも良く、その場合上述した支持基板の外部接続、配線構造等により、外部と接続される。この様なワイヤ接続を用いない発光素子、装置であると、補助電極より幅広なパッド電極が不要となり、電流集中傾向を抑えることができ、後述の蛍光体層、それを含む封止部材を好適に形成できる。 On the other hand, the first electrode, which is an electrode on the surface side of the semiconductor layer, is connected to an exposed region for connecting an external power source with a conductive wire via solder or the like. Thereby, electrical connection with the external electrode becomes possible. In addition, a form having a wiring structure on the semiconductor layer, for example, a structure in which a wiring layer is provided from the semiconductor layer to an external support substrate may be used. In that case, the external connection of the support substrate, the wiring structure, etc. Connected. In such a light emitting element and device that does not use wire connection, a pad electrode wider than the auxiliary electrode becomes unnecessary, and the tendency of current concentration can be suppressed, and a phosphor layer described later and a sealing member including the phosphor layer are suitable. Can be formed.
また、半導体発光素子において、支持基板は電気伝導性の良い材料を使用しており、これにより発光層の上下を電極でもって立体的に挟み込む縦型電極構造とできるため、電流を第2導電型半導体層の全面へと拡散でき、電流の面内広がりが均一となる。すなわち電気抵抗を低減でき、キャリア注入効率が向上する。さらに、支持基板は、放熱基板としての機能も果たすことができ、発熱による素子特性の悪化を抑止できる。 Further, in the semiconductor light emitting device, the supporting substrate is made of a material having good electrical conductivity, and thus a vertical electrode structure in which the upper and lower sides of the light emitting layer are sandwiched in three dimensions with electrodes can be used. The semiconductor layer can be diffused over the entire surface, and the in-plane spread of current becomes uniform. That is, electrical resistance can be reduced and carrier injection efficiency is improved. Furthermore, the support substrate can also function as a heat dissipation substrate, and can suppress deterioration of element characteristics due to heat generation.
さらに、本発明の半導体発光素子は、半導体発光素子からの光の一部を異なる波長の光に変換する光変換部材を含有する樹脂で封止することもできる。光変換部材は、少なくとも、半導体発光素子からの発光波長によって励起され蛍光光を発する蛍光物質によって、あるいは蛍光物質と結着材と、任意に無機部材(ガラス、フィラー等)等とを含んで構成される。これにより、半導体発光素子の光を変換させ、半導体発光素子からの光と変換光及び蛍光光とを混色させ、例えば、白色系、電球色等の所望の光を発する発光装置を得ることができる。 Furthermore, the semiconductor light emitting device of the present invention can be sealed with a resin containing a light conversion member that converts a part of light from the semiconductor light emitting device into light of a different wavelength. The light conversion member is configured to include at least a fluorescent material that is excited by a light emission wavelength from the semiconductor light emitting element to emit fluorescent light, or includes a fluorescent material and a binder, and optionally an inorganic member (glass, filler, etc.). Is done. Thereby, the light from the semiconductor light emitting element is converted, and the light from the semiconductor light emitting element is mixed with the converted light and the fluorescent light, so that a light emitting device that emits desired light such as a white color or a light bulb color can be obtained. .
封止樹脂に含まれる光変換部材等は、製造工程において樹脂中に散在させたまま樹脂を硬化させてもよいが、樹脂を硬化させる前に、強制的な遠心力によって半導体発光素子が実装された側に沈降堆積させることもできる。これにより光変換部材は半導体層上面の第1領域、第2領域により形成された溝部分に入り込み、密に充填した光変換部材の堆積層とすることができ、光変換の効率が向上する。 The light conversion member contained in the sealing resin may be cured while being dispersed in the resin in the manufacturing process, but before the resin is cured, the semiconductor light emitting element is mounted by forced centrifugal force. It can also be deposited on the other side. As a result, the light conversion member can enter the groove formed by the first region and the second region on the upper surface of the semiconductor layer, and can be a densely packed layer of the light conversion member, which improves the efficiency of light conversion.
以下に示す半導体発光素子を作製した。本発明は、これらの実施例に限定されるものではない。 The following semiconductor light emitting device was produced. The present invention is not limited to these examples.
<実施例1>
実施例1として、図1〜3に示すように、第一の実施形態に係る半導体発光素子を以下 の仕様で作製した。
実施例1に係る半導体発光素子は、第2導電型半導体層(p型半導体層)112、発光層113、第1導電型半導体層(n型半導体層)111からなる半導体層12と、第1電極(n電極)15と、第2電極(p電極)16と、保護膜107と、支持基板104、接着層105からなる支持台103と、を少なくとも備える。
より具体的には、半導体層12として窒化ガリウム系半導体、第1電極15としてTi(13nm)/Pt(200nm)/Au(1000nm)、第2電極16としてAg(100nm)/Ni(100nm)/Ti(100nm)/Pt(100nm)、保護膜107としてSiO2(400nm)、接合層105としてAu(500nm)/Pt(200nm)/TiSi2(3nm)、支持基板104としてSi基板を用いた。
さらに、第1導電型半導体層(n型半導体層)に第1、第2領域のパターンを、第1、第2領域の厚みの差が1μmで形成し、半導体発光素子(a)とした。
半導体発光素子(a)の大きさは2mm四方であり、nパッド電極の直径は100μm、n補助電極の幅は20μmとした。また、第1、第2領域のストライプ幅を各々20μmとした。
<Example 1>
As Example 1, as shown in FIGS. 1 to 3, the semiconductor light emitting device according to the first embodiment was manufactured with the following specifications.
The semiconductor light emitting device according to Example 1 includes a semiconductor layer 12 including a second conductive semiconductor layer (p-type semiconductor layer) 112, a light emitting layer 113, a first conductive semiconductor layer (n-type semiconductor layer) 111, a first At least an electrode (n electrode) 15, a second electrode (p electrode) 16, a protective film 107, a support substrate 104, and a support base 103 including an adhesive layer 105 are provided.
More specifically, the semiconductor layer 12 is a gallium nitride based semiconductor, the first electrode 15 is Ti (13 nm) / Pt (200 nm) / Au (1000 nm), and the second electrode 16 is Ag (100 nm) / Ni (100 nm) / Ti (100 nm) / Pt (100 nm), SiO 2 (400 nm) as the protective film 107, Au (500 nm) / Pt (200 nm) / TiSi 2 (3 nm) as the bonding layer 105, and Si substrate as the support substrate 104 were used.
Further, a pattern of the first and second regions was formed in the first conductive type semiconductor layer (n-type semiconductor layer) with a thickness difference of 1 μm between the first and second regions to obtain a semiconductor light emitting device (a).
The size of the semiconductor light-emitting element (a) is a 2mm square, the diameter of the n Pas head electrode 100 [mu] m, the width of the n auxiliary electrodes was 20 [mu] m. The stripe widths of the first and second regions were each 20 μm.
<参考例>
参考例として、図1のn電極パターンを有し、かつn電極形成部分以外の第1導電型半導体層(n型半導体層)に第1領域を形成した以外は実施例1と同様にして、半導体発光素子(b)を作製した。
<Reference example>
As a reference example, in the same manner as in Example 1 except that the n-electrode pattern of FIG. 1 is used and the first region is formed in the first conductive semiconductor layer (n-type semiconductor layer) other than the n-electrode forming portion. A semiconductor light emitting device (b) was produced.
<比較例>
比較例として、図1のn電極パターンを有し、第1領域を形成しない以外は実施例と同様にして、半導体発光素子(Ref)を作製した。
<Comparative example>
As a comparative example, a semiconductor light emitting device (Ref) was manufactured in the same manner as in the example except that the n electrode pattern of FIG. 1 was used and the first region was not formed.
半導体発光素子(a)(b)(Ref)を用いて、その評価を行った。図11の(a)は実施例1、(b)は参考例の半導体発光素子の上面写真をそれぞれ示している。 The evaluation was performed using the semiconductor light emitting elements (a), (b), and (Ref). 11A shows a top view photograph of the semiconductor light emitting device of Example 1 and FIG. 11B shows the reference example.
図12は発光強度分布であり、各半導体発光素子において入力電流を350mAとしたとき、実施例1(a)、参考例(b)、比較例(Ref)の絶対値で比較した結果を示している。図13は各半導体発光素子において入力電流を350mAとしたときの光出力(Po)と順方向電圧(Vf)を比較したグラフである。 FIG. 12 shows the emission intensity distribution, and shows the results of comparison in absolute values of Example 1 (a), Reference Example (b), and Comparative Example (Ref) when the input current is 350 mA in each semiconductor light emitting device. Yes. FIG. 13 is a graph comparing the light output (Po) and the forward voltage (Vf) when the input current is 350 mA in each semiconductor light emitting device.
図12の発光強度分布で明らかなとおり、実施例1(a)の電極形成部分周辺が、参考例(b)、比較例(Ref)よりも強く発光していることが確認できた。また、図13の結果から、n型半導体層上面に第1領域を形成した半導体発光素子(a)(b)の光出力が、比較例(Ref)と比して向上した。また、第1領域のみをn電極形成部分以外のn型半導体層に形成するよりも、第1領域に加えて、n電極から露出して延伸する第2領域、すなわち延出部を有する方が、光出力向上に加えて、順方向電圧も低下した。これにより、実施例1(a)の第1、第2領域のパターンの優位性が確認された。 As is clear from the emission intensity distribution of FIG. 12, it was confirmed that the periphery of the electrode formation portion of Example 1 (a) emitted light more strongly than the reference example (b) and the comparative example (Ref). Further, from the result of FIG. 13, the light output of the semiconductor light emitting devices (a) and (b) in which the first region is formed on the upper surface of the n-type semiconductor layer is improved as compared with the comparative example (Ref). In addition to forming only the first region in the n-type semiconductor layer other than the n-electrode forming portion, in addition to the first region, it is preferable to have the second region that is exposed and extended from the n-electrode, that is, the extension portion. In addition to the improvement in light output, the forward voltage also decreased. Thereby, the predominance of the pattern of the 1st, 2nd area | region of Example 1 (a) was confirmed.
本発明の半導体発光素子は、照明用光源、LEDディスプレイ、バックライト光源、信
号機、照明式スイッチ、各種センサ及び各種インジケータ等に好適に利用できる。
The semiconductor light emitting device of the present invention can be suitably used for illumination light sources, LED displays, backlight light sources, traffic lights, illumination switches, various sensors, various indicators, and the like.
10,20,30,40,50,60,70 パッド電極
11,21,31,41,51,61,71 補助電極
12,22,32,42,52,62,72 半導体層
13,23,33,43,53,63,73 第2領域
14,24,34,44,54,64,74 第1領域
15,25,35,45,55,65,75 第1電極
16 第2電極
100,200,300,400,500,600,700 半導体発光素子
103 支持台
104 支持基板
105 接着層
107 保護膜
111 第1導電型半導体層
112 第2導電型半導体層
113 発光層
10, 20, 30, 40, 50, 60, 70 Pad electrodes 11, 21, 31, 41, 51, 61, 71 Auxiliary electrodes 12, 22, 32, 42, 52, 62, 72 Semiconductor layers 13, 23, 33 , 43, 53, 63, 73 Second region 14, 24, 34, 44, 54, 64, 74 First region 15, 25, 35, 45, 55, 65, 75 First electrode 16 Second electrode 100, 200 , 300, 400, 500, 600, 700 Semiconductor light emitting device 103 Support base 104 Support substrate 105 Adhesive layer 107 Protective film 111 First conductive type semiconductor layer 112 Second conductive type semiconductor layer 113 Light emitting layer
Claims (7)
前記半導体層の上面は第1領域と、前記第1領域よりも前記半導体層の厚みが厚い第2領域とを有し、
前記第1電極はパッド電極と、前記パッド電極から延伸する補助電極と、を備え、
前記第1電極は前記第2領域上にあり、
前記第2領域は、前記補助電極に沿った部分と、
前記補助電極に沿った部分から前記補助電極と異なる方向に延伸する複数の部分と、を有し、
前記複数の部分は、前記半導体層の周縁部に達しておらず、
前記複数の部分の長さは、100〜200μmであることを特徴とする半導体発光素子。 A semiconductor light emitting device comprising: a semiconductor layer; a first electrode disposed on an upper surface of the semiconductor layer; and a second electrode disposed on a lower surface of the semiconductor layer,
The upper surface of the semiconductor layer has a first region and a second region in which the semiconductor layer is thicker than the first region,
The first electrode includes a pad electrode and an auxiliary electrode extending from the pad electrode,
The first electrode is on the second region;
The second region includes a portion along the auxiliary electrode;
A plurality of portions extending in a different direction from the auxiliary electrode from a portion along the auxiliary electrode,
The plurality of portions does not reach the peripheral edge of the semiconductor layer,
The length of the plurality of portions is 100 to 200 μm .
前記半導体層の上面は第1領域と、前記第1領域よりも前記半導体層の厚みが厚い第2領域とを有し、
前記第1電極はパッド電極と、前記パッド電極から延伸する補助電極と、を備え、
前記第1電極は前記第2領域上にあり、
前記第2領域は、前記補助電極に沿った部分と、
前記補助電極に沿った部分から前記補助電極と異なる方向に延伸する複数の部分と、を有し、
前記複数の部分は、前記半導体層の周縁部に達しておらず、
前記複数の部分の長さは、30〜50μmであることを特徴とする半導体発光素子。 A semiconductor light emitting device comprising: a semiconductor layer; a first electrode disposed on an upper surface of the semiconductor layer; and a second electrode disposed on a lower surface of the semiconductor layer,
The upper surface of the semiconductor layer has a first region and a second region in which the semiconductor layer is thicker than the first region,
The first electrode includes a pad electrode and an auxiliary electrode extending from the pad electrode,
The first electrode is on the second region;
The second region includes a portion along the auxiliary electrode;
A plurality of portions extending in a different direction from the auxiliary electrode from a portion along the auxiliary electrode,
The plurality of portions does not reach the peripheral edge of the semiconductor layer,
The length of the plurality of portions is 30 to 50 μm .
前記第2領域は、前記n型窒化物半導体層上に設けられていることを特徴とする請求項1から6のいずれか一に記載の半導体発光素子。
The semiconductor layer has p-type and n-type nitride semiconductor layers,
The second region, the semiconductor light emitting device according to any one of claims 1 to 6, characterized in that provided on the n-type nitride semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011092711A JP5736930B2 (en) | 2011-04-19 | 2011-04-19 | Semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011092711A JP5736930B2 (en) | 2011-04-19 | 2011-04-19 | Semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012227311A JP2012227311A (en) | 2012-11-15 |
JP5736930B2 true JP5736930B2 (en) | 2015-06-17 |
Family
ID=47277149
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011092711A Active JP5736930B2 (en) | 2011-04-19 | 2011-04-19 | Semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5736930B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6287317B2 (en) | 2013-02-28 | 2018-03-07 | 日亜化学工業株式会社 | Semiconductor light emitting device |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2834922B2 (en) * | 1991-11-25 | 1998-12-14 | シャープ株式会社 | Light emitting diode |
JP2000174339A (en) * | 1998-12-04 | 2000-06-23 | Mitsubishi Cable Ind Ltd | GaN-BASED SEMICONDUCTOR LIGHT-EMITTING ELEMENT AND GaN- BASED SEMICONDUCTOR PHOTODETECTING ELEMENT |
JP2006128227A (en) * | 2004-10-26 | 2006-05-18 | Mitsubishi Cable Ind Ltd | Nitride semiconductor light emitting element |
KR100610639B1 (en) * | 2005-07-22 | 2006-08-09 | 삼성전기주식회사 | Vertically structured gan type led device and method of manufacturing the same |
JP2008066554A (en) * | 2006-09-08 | 2008-03-21 | Sanken Electric Co Ltd | Semiconductor light emitting device |
WO2009041318A1 (en) * | 2007-09-26 | 2009-04-02 | Nichia Corporation | Light-emitting element and light-emitting device using the same |
JP4993371B2 (en) * | 2007-11-21 | 2012-08-08 | サンケン電気株式会社 | Wafer surface roughening method for semiconductor light emitting device and semiconductor light emitting device |
JP5334158B2 (en) * | 2008-07-15 | 2013-11-06 | シャープ株式会社 | Nitride semiconductor light emitting device and method for manufacturing nitride semiconductor light emitting device |
JP2010045288A (en) * | 2008-08-18 | 2010-02-25 | Shin Etsu Handotai Co Ltd | Light-emitting element and manufacturing method thereof |
JP5304662B2 (en) * | 2009-02-18 | 2013-10-02 | 日立電線株式会社 | Light emitting element |
KR101064006B1 (en) * | 2009-03-03 | 2011-09-08 | 엘지이노텍 주식회사 | Light emitting element |
-
2011
- 2011-04-19 JP JP2011092711A patent/JP5736930B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2012227311A (en) | 2012-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI766356B (en) | Light emitting diode chip | |
US8823031B2 (en) | Semiconductor light emitting device including metal reflecting layer | |
JP5333226B2 (en) | Light emitting element and light emitting device using the same | |
JP5840744B2 (en) | Light emitting diode | |
JP5634003B2 (en) | Light emitting device | |
JP5186800B2 (en) | Nitride semiconductor light emitting device, light emitting device including the same, and method for manufacturing nitride semiconductor light emitting device | |
JP6056150B2 (en) | Semiconductor light emitting device | |
JP2009164423A (en) | Light-emitting element | |
JP2011199221A (en) | Light emitting diode | |
JP5560674B2 (en) | Semiconductor light emitting device | |
TW201428997A (en) | Light emitting element | |
CN113169256A (en) | Interconnection for light emitting diode chips | |
JP6011244B2 (en) | Semiconductor light emitting device | |
JP2018530924A (en) | Semiconductor device, semiconductor device package, and illumination system including the same | |
KR20120002130A (en) | Flip-chip light-emitting device and method of manufacturing the same | |
KR20150107400A (en) | Light emitting diode | |
JP5736930B2 (en) | Semiconductor light emitting device | |
TWI604632B (en) | Light emitting device | |
JP6964421B2 (en) | Semiconductor light emitting device | |
KR20140122970A (en) | Light Emitting Device with Improved Current Spreading | |
CN112582513B (en) | Light emitting diode chip | |
KR20160132658A (en) | Light emitting diode and light emitting diode package | |
TW202315170A (en) | Edge structures for light shaping in light-emitting diode chips | |
TW201743465A (en) | Light emitting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140128 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20140521 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20140603 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140728 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150106 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150304 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150324 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150406 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5736930 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |