JP5735030B2 - Resin sheet for sealing electronic device and method for manufacturing electronic device package - Google Patents

Resin sheet for sealing electronic device and method for manufacturing electronic device package Download PDF

Info

Publication number
JP5735030B2
JP5735030B2 JP2013069886A JP2013069886A JP5735030B2 JP 5735030 B2 JP5735030 B2 JP 5735030B2 JP 2013069886 A JP2013069886 A JP 2013069886A JP 2013069886 A JP2013069886 A JP 2013069886A JP 5735030 B2 JP5735030 B2 JP 5735030B2
Authority
JP
Japan
Prior art keywords
resin sheet
electronic device
group
resin
sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013069886A
Other languages
Japanese (ja)
Other versions
JP2014194959A (en
Inventor
豊田 英志
英志 豊田
祐作 清水
祐作 清水
石坂 剛
剛 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2013069886A priority Critical patent/JP5735030B2/en
Priority to KR1020157023966A priority patent/KR20150135253A/en
Priority to CN201480019056.XA priority patent/CN105074905B/en
Priority to PCT/JP2014/057689 priority patent/WO2014156926A1/en
Priority to SG11201507890TA priority patent/SG11201507890TA/en
Priority to TW103111070A priority patent/TWI625832B/en
Publication of JP2014194959A publication Critical patent/JP2014194959A/en
Application granted granted Critical
Publication of JP5735030B2 publication Critical patent/JP5735030B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • H01L23/295Organic, e.g. plastic containing a filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16245Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/146Mixed devices
    • H01L2924/1461MEMS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders; Supports
    • H03H9/10Mounting in enclosures

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は、電子デバイス封止用樹脂シート及び電子デバイスパッケージの製造方法に関する。   The present invention relates to an electronic device sealing resin sheet and an electronic device package manufacturing method.

電子デバイスパッケージの作製には、代表的に、基板などに固定された1又は複数の電子デバイスを封止樹脂にて封止し、必要に応じて封止体を電子デバイス単位のパッケージとなるようにダイシングするという手順が採用されている。このような封止樹脂として、シート状の封止樹脂が用いられていることがある。   In producing an electronic device package, typically, one or a plurality of electronic devices fixed to a substrate or the like are sealed with a sealing resin, and the sealing body is packaged in units of electronic devices as necessary. The procedure of dicing is adopted. As such a sealing resin, a sheet-shaped sealing resin may be used.

例えば、特許文献1では、ワニスをフィルム上に塗布して、次いで塗布膜を乾燥させることにより樹脂シートを形成することが記載されている。   For example, Patent Document 1 describes that a resin sheet is formed by applying a varnish on a film and then drying the coating film.

特開2006−19714号公報JP 2006-19714 A

特許文献1のような樹脂シートの作製方法(溶剤塗工)では、ワニス調製にあたり溶剤を使用する。溶剤が樹脂シートに残存すると、熱硬化時やはんだリフロー時の加熱により溶剤が揮発し、アウトガスが発生してしまう。溶剤塗工により作製した樹脂シートから溶剤を充分に揮発させることは難しく、シート厚が厚い樹脂シートでは特に難しい。   In the method for producing a resin sheet (solvent coating) as in Patent Document 1, a solvent is used for varnish preparation. If the solvent remains in the resin sheet, the solvent volatilizes due to heating during thermosetting or solder reflow, and outgas is generated. It is difficult to sufficiently volatilize a solvent from a resin sheet produced by solvent coating, and it is particularly difficult for a resin sheet having a large sheet thickness.

本発明は前記課題を解決し、シート厚が厚く、かつアウトガス量が低減された樹脂シートを提供することを目的とする。   An object of the present invention is to solve the above-mentioned problems and to provide a resin sheet having a large sheet thickness and a reduced outgas amount.

本発明は、厚みが100〜2000μmであり、150℃で1時間硬化させた際に発生するガス量が500ppm以下である電子デバイス封止用樹脂シートに関する。   The present invention relates to a resin sheet for sealing an electronic device having a thickness of 100 to 2000 μm and a gas amount generated when cured at 150 ° C. for 1 hour is 500 ppm or less.

従来、厚さが前記範囲内の樹脂シートでは硬化させる際に発生するガス量を低減することは困難であったが、本発明の樹脂シートでは硬化時のアウトガス量が低減されており、当該アウトガスに起因した電子デバイスの腐食や誤作動を低減できる。   Conventionally, it has been difficult to reduce the amount of gas generated when the resin sheet having a thickness within the above range is cured, but the outgas amount at the time of curing is reduced in the resin sheet of the present invention. Corrosion and malfunction of electronic devices due to

150℃で1時間、前記電子デバイス封止用樹脂シートを硬化して得られた硬化物の1%重量減少温度が260℃以上であることが好ましい。260℃以上であると、樹脂シート中の揮発成分量が低減されており、はんだリフロー時に発生するガス(アウトガス)量が低減される。   It is preferable that 1% weight reduction temperature of the cured product obtained by curing the resin sheet for sealing an electronic device at 150 ° C. for 1 hour is 260 ° C. or more. When the temperature is 260 ° C. or higher, the amount of volatile components in the resin sheet is reduced, and the amount of gas (outgas) generated during solder reflow is reduced.

150℃で1時間、前記電子デバイス封止用樹脂シートを硬化して得られた硬化物を、40℃から260℃まで昇温速度10℃/分で昇温し、次いで260℃で1分間加熱した際に発生するガス量が500ppm以下であることが好ましい。当該ガス量の前提である加熱条件は、はんだリフロープロファイルを想定したものである。当該ガス量が、500ppm以下であると、はんだリフロー時に発生するガス(アウトガス)量が低減される。   The cured product obtained by curing the electronic device sealing resin sheet at 150 ° C. for 1 hour is heated from 40 ° C. to 260 ° C. at a heating rate of 10 ° C./min, and then heated at 260 ° C. for 1 minute. It is preferable that the amount of gas generated at the time is 500 ppm or less. The heating condition that is the premise of the gas amount assumes a solder reflow profile. When the gas amount is 500 ppm or less, the amount of gas (outgas) generated during solder reflow is reduced.

本発明はまた、1又は複数の電子デバイスを覆うように前記電子デバイス封止用樹脂シートを前記電子デバイス上に積層する積層工程、及び前記電子デバイス封止用樹脂シートを硬化させて封止体を形成する封止体形成工程を含む電子デバイスパッケージの製造方法に関する。   The present invention also provides a sealing step in which the electronic device sealing resin sheet is laminated on the electronic device so as to cover one or more electronic devices, and the electronic device sealing resin sheet is cured. The present invention relates to a method for manufacturing an electronic device package, which includes a sealing body forming step of forming.

本発明の一実施形態に係る樹脂シートを模式的に示す断面図である。It is sectional drawing which shows typically the resin sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子デバイスパッケージの製造方法の一工程を模式的に示す図である。It is a figure which shows typically 1 process of the manufacturing method of the electronic device package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子デバイスパッケージの製造方法の一工程を模式的に示す図である。It is a figure which shows typically 1 process of the manufacturing method of the electronic device package which concerns on one Embodiment of this invention. 本発明の一実施形態に係る電子デバイスパッケージの製造方法の一工程を模式的に示す図である。It is a figure which shows typically 1 process of the manufacturing method of the electronic device package which concerns on one Embodiment of this invention.

以下に実施形態を掲げ、本発明を詳細に説明するが、本発明はこれらの実施形態のみに限定されるものではない。   The present invention will be described in detail below with reference to embodiments, but the present invention is not limited only to these embodiments.

[電子デバイス封止用樹脂シート]   [Resin sheet for sealing electronic devices]

図1は、本発明の一実施形態に係る樹脂シート11を模式的に示す断面図である。樹脂シート11は、代表的に、ポリエチレンテレフタレート(PET)フィルムなどの支持体11a上に積層された状態で提供される。なお、支持体11aには樹脂シート11の剥離を容易に行うために離型処理が施されていてもよい。   FIG. 1 is a cross-sectional view schematically showing a resin sheet 11 according to an embodiment of the present invention. The resin sheet 11 is typically provided in a state of being laminated on a support 11a such as a polyethylene terephthalate (PET) film. Note that a release treatment may be performed on the support 11a in order to easily peel off the resin sheet 11.

樹脂シート11の厚さは、比較的厚く、具体的には100〜2000μmである。従来、厚さが前記範囲内の樹脂シートではアウトガス量を低減することは困難であったが、樹脂シート11ではアウトガス量が低減されている。樹脂シート11の厚さは、150μm以上が好ましい。一方、樹脂シート11の厚さは1000μm以下が好ましい。   The thickness of the resin sheet 11 is relatively thick, specifically, 100 to 2000 μm. Conventionally, it has been difficult to reduce the amount of outgas with a resin sheet having a thickness within the above range, but the amount of outgas with resin sheet 11 is reduced. The thickness of the resin sheet 11 is preferably 150 μm or more. On the other hand, the thickness of the resin sheet 11 is preferably 1000 μm or less.

樹脂シート11は、150℃で1時間硬化させた際に発生するガス(アウトガス)量が500ppm以下であり、好ましくは300ppm以下である。500ppm以下であるので、硬化時のアウトガス量が低減されており、当該アウトガスに起因した電子デバイスの腐食や誤作動を低減できる。一方、150℃で1時間硬化させた際に発生するガス量の下限は特に限定されず、例えば、30ppm以上である。
150℃で1時間硬化させた際に発生するガス量は、実施例に記載の方法で測定できる。
The amount of gas (outgas) generated when the resin sheet 11 is cured at 150 ° C. for 1 hour is 500 ppm or less, preferably 300 ppm or less. Since it is 500 ppm or less, the amount of outgas at the time of curing is reduced, and corrosion and malfunction of the electronic device due to the outgas can be reduced. On the other hand, the lower limit of the amount of gas generated when cured at 150 ° C. for 1 hour is not particularly limited, and is, for example, 30 ppm or more.
The amount of gas generated when cured at 150 ° C. for 1 hour can be measured by the method described in Examples.

150℃で1時間、樹脂シート11を硬化して得られた硬化物の1%重量減少温度が260℃以上であることが好ましく、300℃以上であることが好ましい。260℃以上であると、樹脂シート11中の揮発成分量が低減されており、はんだリフロー時に発生するガス(アウトガス)量が低減される。150℃で1時間、樹脂シート11を硬化して得られた硬化物の1%重量減少温度の上限は特に限定されないが、例えば、500℃以下である。
150℃で1時間、樹脂シート11を硬化して得られた硬化物の1%重量減少温度は、実施例に記載の方法で測定できる。
The 1% weight reduction temperature of the cured product obtained by curing the resin sheet 11 at 150 ° C. for 1 hour is preferably 260 ° C. or higher, and preferably 300 ° C. or higher. When the temperature is 260 ° C. or higher, the amount of volatile components in the resin sheet 11 is reduced, and the amount of gas (outgas) generated during solder reflow is reduced. The upper limit of the 1% weight reduction temperature of the cured product obtained by curing the resin sheet 11 at 150 ° C. for 1 hour is not particularly limited, but is, for example, 500 ° C. or less.
The 1% weight reduction temperature of the cured product obtained by curing the resin sheet 11 at 150 ° C. for 1 hour can be measured by the method described in Examples.

150℃で1時間樹脂シート11を硬化して得られた硬化物を、40℃から260℃まで昇温速度10℃/分で昇温し、次いで260℃で1分間加熱した際に発生するガス量が500ppm以下であることが好ましい。当該ガス量の前提である加熱条件は、はんだリフロープロファイルを想定したものである。当該ガス量が、500ppm以下であると、はんだリフロー時に発生するガス(アウトガス)量が低減される。下限は特に限定されないが、30ppm以上である。
150℃で1時間樹脂シート11を硬化して得られた硬化物を、40℃から260℃まで昇温速度10℃/分で昇温し、次いで260℃で1分間加熱した際に発生するガス量は、実施例に記載の方法で測定できる。
Gas generated when the cured product obtained by curing the resin sheet 11 at 150 ° C. for 1 hour is heated from 40 ° C. to 260 ° C. at a heating rate of 10 ° C./min and then heated at 260 ° C. for 1 minute. The amount is preferably 500 ppm or less. The heating condition that is the premise of the gas amount assumes a solder reflow profile. When the gas amount is 500 ppm or less, the amount of gas (outgas) generated during solder reflow is reduced. Although a minimum is not specifically limited, It is 30 ppm or more.
Gas generated when the cured product obtained by curing the resin sheet 11 at 150 ° C. for 1 hour is heated from 40 ° C. to 260 ° C. at a heating rate of 10 ° C./min and then heated at 260 ° C. for 1 minute. The amount can be measured by the method described in the examples.

樹脂シート11の製造方法は特に限定されないが、後述の各成分の混練物を調製し、得られた混練物をシート状に塑性加工する方法が好ましい。これにより、溶剤を使用せずに樹脂シート11を作製できるので、アウトガス量を低減できる。また、溶剤塗工でシート厚の厚い樹脂シート11を作製するためには、複数の溶剤塗工製樹脂シートを積層する必要があるが、これによれば積層せずに樹脂シート11を作製できる(一括で樹脂シート11を作製できる)。よって、層間剥離のおそれがない。シート厚の均一性も高められる。また、積層する場合に比べて表面積が小さいため、低吸湿化を達成でき、結果としてアウトガス量を低減できる。   Although the manufacturing method of the resin sheet 11 is not specifically limited, the method of preparing the kneaded material of each component mentioned later and plastic-working the obtained kneaded material in a sheet form is preferable. Thereby, since the resin sheet 11 can be produced without using a solvent, the amount of outgas can be reduced. Further, in order to produce a thick resin sheet 11 by solvent coating, it is necessary to laminate a plurality of solvent-coated resin sheets. According to this, the resin sheet 11 can be produced without lamination. (The resin sheet 11 can be produced at once). Therefore, there is no fear of delamination. The uniformity of the sheet thickness is also improved. Moreover, since the surface area is smaller than in the case of stacking, low moisture absorption can be achieved, and as a result, the outgas amount can be reduced.

具体的には、後述の各成分(例えば、エポキシ樹脂、フェノール樹脂、熱可塑性樹脂、無機充填材及び硬化促進剤など)をミキシングロール、加圧式ニーダー、押出機などの公知の混練機で溶融混練することにより混練物を調製し、得られた混練物をシート状に塑性加工する。混練条件として、温度は、上述の各成分の軟化点以上であることが好ましく、例えば30〜150℃、エポキシ樹脂の熱硬化性を考慮すると、好ましくは40〜140℃、さらに好ましくは60〜120℃である。時間は、例えば1〜30分間、好ましくは5〜15分間である。   Specifically, each component described later (for example, epoxy resin, phenol resin, thermoplastic resin, inorganic filler, curing accelerator, etc.) is melt-kneaded in a known kneader such as a mixing roll, a pressure kneader, or an extruder. Thus, a kneaded material is prepared, and the obtained kneaded material is plastically processed into a sheet shape. As the kneading conditions, the temperature is preferably equal to or higher than the softening point of each component described above. For example, when considering the thermosetting property of 30 to 150 ° C. and epoxy resin, preferably 40 to 140 ° C., more preferably 60 to 120. ° C. The time is, for example, 1 to 30 minutes, preferably 5 to 15 minutes.

混練は、減圧条件下(減圧雰囲気下)で行うことが好ましい。これにより、脱気できるとともに、混練物への気体の侵入を防止でき、その結果アウトガス量を低減できる。減圧条件下の圧力は、好ましくは0.1kg/cm以下、より好ましくは0.05kg/cm以下である。0.1kg/cm以下であると、アウトガス量を良好に低減できる。減圧下の圧力の下限は特に限定されないが、例えば、1×10−4kg/cm以上である。 The kneading is preferably performed under reduced pressure conditions (under reduced pressure atmosphere). Thereby, while being able to deaerate, the penetration | invasion of the gas to a kneaded material can be prevented, As a result, the amount of outgases can be reduced. The pressure under reduced pressure is preferably 0.1 kg / cm 2 or less, more preferably 0.05 kg / cm 2 or less. When it is 0.1 kg / cm 2 or less, the amount of outgas can be reduced satisfactorily. Although the minimum of the pressure under pressure reduction is not specifically limited, For example, it is 1 * 10 < -4 > kg / cm < 2 > or more.

溶融混練後の混練物は、冷却することなく高温状態のままで塑性加工することが好ましい。塑性加工方法としては特に制限されず、平板プレス法、Tダイ押出法、スクリューダイ押出法、ロール圧延法、ロール混練法、インフレーション押出法、共押出法、カレンダー成形法などが挙げられる。塑性加工温度としては上述の各成分の軟化点以上が好ましく、エポキシ樹脂の熱硬化性および成形性を考慮すると、例えば40〜150℃、好ましくは50〜140℃、さらに好ましくは70〜120℃である。   The kneaded material after melt-kneading is preferably subjected to plastic working in a high temperature state without cooling. The plastic working method is not particularly limited, and examples thereof include a flat plate pressing method, a T die extrusion method, a screw die extrusion method, a roll rolling method, a roll kneading method, an inflation extrusion method, a coextrusion method, and a calendering method. The plastic processing temperature is preferably higher than the softening point of each component described above, and is 40 to 150 ° C., preferably 50 to 140 ° C., more preferably 70 to 120 ° C., considering the thermosetting property and moldability of the epoxy resin. is there.

樹脂シート11は、単層構造であってもよいし、2以上の樹脂シートを積層した多層構造であってもよいが、層間剥離のおそれがなく、シート厚の均一性が高く、低吸湿化し易いという理由から、単層構造が好ましい。   The resin sheet 11 may have a single layer structure or a multilayer structure in which two or more resin sheets are laminated, but there is no fear of delamination, the sheet thickness is highly uniform, and the moisture absorption is reduced. A single layer structure is preferred because it is easy.

次に、樹脂シート11の組成について説明する。   Next, the composition of the resin sheet 11 will be described.

樹脂シート11はエポキシ樹脂、及びフェノール樹脂を含むことが好ましい。これにより、良好な熱硬化性が得られる。   The resin sheet 11 preferably contains an epoxy resin and a phenol resin. Thereby, favorable thermosetting is obtained.

エポキシ樹脂としては、特に限定されるものではない。例えば、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、変性ビスフェノールA型エポキシ樹脂、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、変性ビスフェノールF型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、フェノキシ樹脂などの各種のエポキシ樹脂を用いることができる。これらエポキシ樹脂は単独で用いてもよいし2種以上併用してもよい。   The epoxy resin is not particularly limited. For example, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, modified bisphenol A type epoxy resin, bisphenol A type epoxy resin, bisphenol F type epoxy resin, modified bisphenol F type epoxy resin, dicyclopentadiene type Various epoxy resins such as an epoxy resin, a phenol novolac type epoxy resin, and a phenoxy resin can be used. These epoxy resins may be used alone or in combination of two or more.

エポキシ樹脂の硬化後の靭性及びエポキシ樹脂の反応性を確保する観点からは、エポキシ当量150〜250、軟化点もしくは融点が50〜130℃の常温で固形のものが好ましく、なかでも、信頼性の観点から、トリフェニルメタン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂がより好ましい。   From the viewpoint of ensuring the toughness of the epoxy resin after curing and the reactivity of the epoxy resin, those having an epoxy equivalent of 150 to 250 and a softening point or melting point of 50 to 130 ° C. are preferably solid, and particularly reliable. From the viewpoint, triphenylmethane type epoxy resin, cresol novolac type epoxy resin, and biphenyl type epoxy resin are more preferable.

フェノール樹脂は、エポキシ樹脂との間で硬化反応を生起するものであれば特に限定されるものではない。例えば、フェノールノボラック樹脂、フェノールアラルキル樹脂、ビフェニルアラルキル樹脂、ジシクロペンタジエン型フェノール樹脂、クレゾールノボラック樹脂、レゾール樹脂などが用いられる。これらフェノール樹脂は単独で用いてもよいし、2種以上併用してもよい。   The phenol resin is not particularly limited as long as it causes a curing reaction with the epoxy resin. For example, a phenol novolac resin, a phenol aralkyl resin, a biphenyl aralkyl resin, a dicyclopentadiene type phenol resin, a cresol novolak resin, a resole resin, or the like is used. These phenolic resins may be used alone or in combination of two or more.

フェノール樹脂としては、エポキシ樹脂との反応性の観点から、水酸基当量が70〜250、軟化点が50〜110℃のものを用いることが好ましく、なかでも硬化反応性が高いという観点から、フェノールノボラック樹脂を好適に用いることができる。また、信頼性の観点から、フェノールアラルキル樹脂やビフェニルアラルキル樹脂のような低吸湿性のものも好適に用いることができる。   From the viewpoint of reactivity with the epoxy resin, it is preferable to use a phenol resin having a hydroxyl group equivalent of 70 to 250 and a softening point of 50 to 110 ° C., and in particular, a phenol novolac from the viewpoint of high curing reactivity. Resin can be used suitably. From the viewpoint of reliability, low hygroscopic materials such as phenol aralkyl resins and biphenyl aralkyl resins can also be suitably used.

エポキシ樹脂とフェノール樹脂の配合割合は、硬化反応性という観点から、エポキシ樹脂中のエポキシ基1当量に対して、フェノール樹脂中の水酸基の合計が0.7〜1.5当量となるように配合することが好ましく、より好ましくは0.9〜1.2当量である。   From the viewpoint of curing reactivity, the blending ratio of the epoxy resin and the phenol resin is blended so that the total number of hydroxyl groups in the phenol resin is 0.7 to 1.5 equivalents with respect to 1 equivalent of the epoxy group in the epoxy resin. Preferably, it is 0.9 to 1.2 equivalents.

樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量は、2.0重量%以上が好ましく、3.0重量%以上がより好ましい。2.0重量%以上であると、電子デバイス、基板などに対する接着力が良好に得られる。樹脂シート11中のエポキシ樹脂及びフェノール樹脂の合計含有量は、20重量%以下が好ましく、10重量%以下がより好ましい。20重量%以下であると、吸湿性を低く抑えることができる。   The total content of the epoxy resin and the phenol resin in the resin sheet 11 is preferably 2.0% by weight or more, and more preferably 3.0% by weight or more. Adhesive force with respect to an electronic device, a board | substrate, etc. is acquired favorably as it is 2.0 weight% or more. The total content of the epoxy resin and the phenol resin in the resin sheet 11 is preferably 20% by weight or less, and more preferably 10% by weight or less. If it is 20% by weight or less, the hygroscopicity can be kept low.

樹脂シート11は、熱可塑性樹脂を含むことが好ましい。これにより、未硬化状態でのハンドリング性、硬化物の低応力性を得ることができる。   The resin sheet 11 preferably contains a thermoplastic resin. Thereby, the handling property in a non-hardened state and the low stress property of hardened | cured material can be obtained.

熱可塑性樹脂としては、天然ゴム、ブチルゴム、イソプレンゴム、クロロプレンゴム、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、エチレン−アクリル酸エステル共重合体、ポリブタジエン樹脂、ポリカーボネート樹脂、熱可塑性ポリイミド樹脂、6−ナイロンや6,6−ナイロンなどのポリアミド樹脂、フェノキシ樹脂、アクリル樹脂、PETやPBTなどの飽和ポリエステル樹脂、ポリアミドイミド樹脂、フッ素樹脂、スチレン−イソブチレン−スチレンブロック共重合体などが挙げられる。これらの熱可塑性樹脂は単独で、又は2種以上を併用して用いることができる。なかでも、低応力性、低吸水性という観点から、スチレン-イソブチレン-スチレンブロック共重合体が好ましい。   As thermoplastic resins, natural rubber, butyl rubber, isoprene rubber, chloroprene rubber, ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, ethylene-acrylic acid ester copolymer, polybutadiene resin, polycarbonate resin, thermoplasticity Polyimide resin, polyamide resin such as 6-nylon and 6,6-nylon, phenoxy resin, acrylic resin, saturated polyester resin such as PET and PBT, polyamideimide resin, fluorine resin, styrene-isobutylene-styrene block copolymer, etc. Can be mentioned. These thermoplastic resins can be used alone or in combination of two or more. Of these, a styrene-isobutylene-styrene block copolymer is preferred from the viewpoint of low stress and low water absorption.

樹脂シート11中の熱可塑性樹脂の含有量は、1.0重量%以上が好ましく、1.5重量%以上がより好ましい。1.0重量%以上であると、柔軟性、可撓性が得られる。樹脂シート11中の熱可塑性樹脂の含有量は、3.5重量%以下が好ましく、3重量%以下がより好ましい。3.5重量%以下であると、電子デバイスや基板との接着性を高められる。   1.0 weight% or more is preferable and, as for content of the thermoplastic resin in the resin sheet 11, 1.5 weight% or more is more preferable. A softness | flexibility and flexibility are acquired as it is 1.0 weight% or more. The content of the thermoplastic resin in the resin sheet 11 is preferably 3.5% by weight or less, and more preferably 3% by weight or less. Adhesiveness with an electronic device or a board | substrate can be improved as it is 3.5 weight% or less.

樹脂シート11は、無機充填材を含むことが好ましい。   It is preferable that the resin sheet 11 contains an inorganic filler.

無機充填材は、特に限定されるものではなく、従来公知の各種充填剤を用いることができ、例えば、石英ガラス、タルク、シリカ(溶融シリカや結晶性シリカなど)、アルミナ、窒化アルミニウム、窒化珪素、窒化ホウ素の粉末が挙げられる。これらは単独で用いてもよいし、2種以上併用してもよい。なかでも、線膨張係数を良好に低減できるという理由から、シリカ、アルミナが好ましく、シリカがより好ましい。   The inorganic filler is not particularly limited, and various conventionally known fillers can be used. For example, quartz glass, talc, silica (such as fused silica and crystalline silica), alumina, aluminum nitride, silicon nitride And boron nitride powder. These may be used alone or in combination of two or more. Among these, silica and alumina are preferable, and silica is more preferable because the linear expansion coefficient can be satisfactorily reduced.

シリカとしては、シリカ粉末が好ましく、溶融シリカ粉末がより好ましい。溶融シリカ粉末としては、球状溶融シリカ粉末、破砕溶融シリカ粉末が挙げられるが、流動性という観点から、球状溶融シリカ粉末が好ましい。なかでも、平均粒径が10〜30μmの範囲のものが好ましく、15〜25μmの範囲のものがより好ましい。
なお、平均粒径は、例えば、母集団から任意に抽出される試料を用い、レーザー回折散乱式粒度分布測定装置を用いて測定することにより導き出すことができる。
As silica, silica powder is preferable, and fused silica powder is more preferable. Examples of the fused silica powder include spherical fused silica powder and crushed fused silica powder. From the viewpoint of fluidity, spherical fused silica powder is preferable. Especially, the thing of the range whose average particle diameter is 10-30 micrometers is preferable, and the thing of the range which is 15-25 micrometers is more preferable.
The average particle diameter can be derived, for example, by using a sample arbitrarily extracted from the population and measuring it using a laser diffraction / scattering particle size distribution measuring apparatus.

樹脂シート11中の無機充填材の含有量は、好ましくは70体積%以上であり、より好ましくは74体積%以上である。70体積%以上であると、線膨張係数を低く設計できる。一方、無機充填材の含有量は、好ましくは90体積%以下であり、より好ましくは85体積%以下である。90体積%以下であると、柔軟性、流動性、接着性が良好に得られる。   Content of the inorganic filler in the resin sheet 11 becomes like this. Preferably it is 70 volume% or more, More preferably, it is 74 volume% or more. A linear expansion coefficient can be designed low as it is 70 volume% or more. On the other hand, the content of the inorganic filler is preferably 90% by volume or less, and more preferably 85% by volume or less. A softness | flexibility, fluidity | liquidity, and adhesiveness are favorably obtained as it is 90 volume% or less.

無機充填材の含有量は、「重量%」を単位としても説明できる。代表的にシリカの含有量について、「重量%」を単位として説明する。
シリカは通常、比重2.2g/cmであるので、シリカの含有量(重量%)の好適範囲は例えば以下のとおりである。
すなわち、樹脂シート11中のシリカの含有量は、81重量%以上が好ましく、84重量%以上がより好ましい。樹脂シート11中のシリカの含有量は、94重量%以下が好ましく、91重量%以下がより好ましい。
The content of the inorganic filler can be explained by using “wt%” as a unit. Typically, the content of silica will be described in units of “% by weight”.
Since silica usually has a specific gravity of 2.2 g / cm 3 , the preferred range of the silica content (% by weight) is, for example, as follows.
That is, the content of silica in the resin sheet 11 is preferably 81% by weight or more, and more preferably 84% by weight or more. 94 weight% or less is preferable and, as for content of the silica in the resin sheet 11, 91 weight% or less is more preferable.

アルミナは通常、比重3.9g/cmであるので、アルミナの含有量(重量%)の好適範囲は例えば以下のとおりである。
すなわち、樹脂シート11中のアルミナの含有量は、88重量%以上が好ましく、90重量%以上がより好ましい。樹脂シート11中のアルミナの含有量は、97重量%以下が好ましく、95重量%以下がより好ましい。
Since alumina usually has a specific gravity of 3.9 g / cm 3 , the preferred range of the alumina content (% by weight) is, for example, as follows.
That is, the content of alumina in the resin sheet 11 is preferably 88% by weight or more, and more preferably 90% by weight or more. 97 weight% or less is preferable and, as for content of the alumina in the resin sheet 11, 95 weight% or less is more preferable.

樹脂シート11は、硬化促進剤を含むことが好ましい。   It is preferable that the resin sheet 11 contains a hardening accelerator.

硬化促進剤としては、エポキシ樹脂とフェノール樹脂の硬化を進行させるものであれば特に限定されず、例えば、トリフェニルホスフィン、テトラフェニルホスホニウムテトラフェニルボレートなどの有機リン系化合物;2−フェニル−4,5−ジヒドロキシメチルイミダゾール、2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾールなどのイミダゾール系化合物;などが挙げられる。なかでも、混練時の温度上昇によっても硬化反応が急激に進まず、樹脂シート11を良好に作製できるという理由から、2−フェニル−4,5−ジヒドロキシメチルイミダゾールが好ましい。   The curing accelerator is not particularly limited as long as it cures the epoxy resin and the phenol resin, and examples thereof include organic phosphorus compounds such as triphenylphosphine and tetraphenylphosphonium tetraphenylborate; 2-phenyl-4, And imidazole compounds such as 5-dihydroxymethylimidazole and 2-phenyl-4-methyl-5-hydroxymethylimidazole. Among these, 2-phenyl-4,5-dihydroxymethylimidazole is preferable because the curing reaction does not proceed rapidly even when the temperature rises during kneading and the resin sheet 11 can be satisfactorily produced.

硬化促進剤の含有量は、エポキシ樹脂及びフェノール樹脂の合計100重量部に対して0.1〜5重量部が好ましい。   As for content of a hardening accelerator, 0.1-5 weight part is preferable with respect to a total of 100 weight part of an epoxy resin and a phenol resin.

樹脂シート11は、難燃剤成分を含むことが好ましい。これにより、部品ショートや発熱などにより発火した際の、燃焼拡大を低減できる。難燃剤組成分としては、例えば水酸化アルミニウム、水酸化マグネシウム、水酸化鉄、水酸化カルシウム、水酸化スズ、複合化金属水酸化物などの各種金属水酸化物;ホスファゼン系難燃剤などを用いることができる。なかでも、難燃性、硬化後の強度に優れるという理由から、ホスファゼン系難燃剤が好ましく、式(1)又は式(2)で表される化合物が好ましい。   It is preferable that the resin sheet 11 contains a flame retardant component. This can reduce the expansion of combustion when ignition occurs due to component short-circuiting or heat generation. As the flame retardant composition, for example, various metal hydroxides such as aluminum hydroxide, magnesium hydroxide, iron hydroxide, calcium hydroxide, tin hydroxide, complex metal hydroxides; phosphazene flame retardants, etc. should be used. Can do. Of these, phosphazene-based flame retardants are preferred, and compounds represented by formula (1) or formula (2) are preferred because they are excellent in flame retardancy and strength after curing.

Figure 0005735030

(式中、R及びRは、同一若しくは異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基、アリル基又はこれらの基からなる群より選択される少なくとも1種の基を有する1価の有機基を表す。xは3〜25の整数を表す。)
Figure 0005735030

(Wherein R 1 and R 2 are the same or different and are monovalent having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group, an allyl group, or these groups) Represents an organic group, x represents an integer of 3 to 25)

Figure 0005735030

(式中、R及びRは、同一若しくは異なって、アルコキシ基、フェノキシ基、アミノ基、水酸基、アリル基又はこれらの基からなる群より選択される少なくとも1種の基を有する1価の有機基を表す。Rは、アルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される少なくとも1種の基を有する2価の有機基を表す。yは3〜25の整数を表す。zは3〜25の整数を表す。)
Figure 0005735030

(Wherein R 3 and R 5 are the same or different and are monovalent having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group, an allyl group, or these groups) R 4 represents an organic group, R 4 represents a divalent organic group having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group, and y is 3 to 25. Represents an integer, and z represents an integer of 3 to 25.)

及びRのアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基などが挙げられる。なかでも、炭素数4〜10のアルコキシ基が好ましい。 Examples of the alkoxy group for R 1 and R 2 include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. Especially, a C4-C10 alkoxy group is preferable.

及びRのフェノキシ基としては、例えば、式(3)で表される基が挙げられる。

Figure 0005735030

(式中、R11は、水素、水酸基、アルキル基、アルコキシ基、グリシジル基又はこれらの基からなる群より選択される少なくとも1種の基を有する1価の有機基を表す。) Examples of the phenoxy group for R 1 and R 2 include a group represented by the formula (3).
Figure 0005735030

(In the formula, R 11 represents hydrogen, a hydroxyl group, an alkyl group, an alkoxy group, a glycidyl group, or a monovalent organic group having at least one group selected from the group consisting of these groups.)

11のアルキル基としては、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、へキシル基、へプチル基、2−エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、オクタデシル基などが挙げられる。R11のアルコキシ基としては、R及びRのアルコキシ基と同様の基が挙げられる。 Examples of the alkyl group for R 11 include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, iso-butyl group, sec-butyl group, tert-butyl group, pentyl group, and hexyl group. , Heptyl group, 2-ethylhexyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, octadecyl group and the like. Examples of the alkoxy group for R 11 include the same groups as the alkoxy groups for R 1 and R 2 .

及びRとしては、難燃性、硬化後の強度が良好に得られるという理由から、フェノキシ基が好ましく、式(3)で表される基がより好ましい。 As R 1 and R 2 , a phenoxy group is preferable and a group represented by the formula (3) is more preferable because flame retardancy and strength after curing can be favorably obtained.

xは3〜25の整数を表すが、難燃性、硬化後の強度が良好に得られるという理由から、3〜10が好ましく、3〜4がより好ましい。   x represents an integer of 3 to 25, but 3 to 10 is preferable and 3 to 4 is more preferable because the flame retardancy and the strength after curing can be obtained satisfactorily.

式(2)において、R及びRのアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基などが挙げられる。なかでも、炭素数4〜10のアルコキシ基が好ましい。 In the formula (2), examples of the alkoxy group of R 3 and R 5 include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. Especially, a C4-C10 alkoxy group is preferable.

及びRのフェノキシ基としては、例えば、前記式(3)で表される基が挙げられる。 Examples of the phenoxy group for R 3 and R 5 include a group represented by the formula (3).

及びRにおけるアルコキシ基、フェノキシ基、アミノ基、水酸基及びアリル基からなる群より選択される少なくとも1種の基を有する1価の有機基としては特に限定されない。 The monovalent organic group having at least one group selected from the group consisting of an alkoxy group, a phenoxy group, an amino group, a hydroxyl group and an allyl group in R 3 and R 5 is not particularly limited.

及びRとしては、難燃性、硬化後の強度が良好に得られるという理由から、フェノキシ基が好ましく、式(3)で表される基がより好ましい。 As R 3 and R 5 , a phenoxy group is preferable and a group represented by the formula (3) is more preferable because flame retardancy and strength after curing can be favorably obtained.

の2価の有機基が有するアルコキシ基としては、例えば、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、t−ブトキシ基などが挙げられる。なかでも、炭素数4〜10のアルコキシ基が好ましい。 Examples of the alkoxy group contained in the divalent organic group represented by R 4 include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, and a t-butoxy group. Especially, a C4-C10 alkoxy group is preferable.

の2価の有機基が有するフェノキシ基としては、例えば、前記式(3)で表される基が挙げられる。 Examples of the phenoxy group contained in the divalent organic group represented by R 4 include a group represented by the formula (3).

yは3〜25の整数を表すが、難燃性、硬化後の強度が良好に得られるという理由から、3〜10が好ましい。   Although y represents the integer of 3-25, 3-10 are preferable from the reason that flame retardance and the intensity | strength after hardening are acquired favorably.

zは3〜25の整数を表すが、難燃性、硬化後の強度が良好に得られるという理由から、3〜10が好ましい。   Although z represents the integer of 3-25, 3-10 are preferable from the reason that flame retardance and the intensity | strength after hardening are acquired favorably.

少量でも難燃効果を発揮するという観点から、ホスファゼン系難燃剤に含まれるリン元素の含有率は、12重量%以上であることが好ましい。   From the viewpoint of exhibiting a flame retardant effect even in a small amount, the phosphorus element content contained in the phosphazene flame retardant is preferably 12% by weight or more.

難燃剤成分の含有量は、有機成分(無機充填材を除く全成分)100重量%中、10重量%以上が好ましく、15重量%以上がより好ましい。10重量%以上であると、難燃性が良好に得られる。難燃剤成分の含有量は、30重量%以下が好ましく、25重量%以下がより好ましい。30重量%以下であると、硬化物の物性低下(具体的には、ガラス転移温度や高温樹脂強度などの物性の低下)が少ない傾向がある。   The content of the flame retardant component is preferably 10% by weight or more, more preferably 15% by weight or more, in 100% by weight of the organic component (all components excluding the inorganic filler). A flame retardance is favorably acquired as it is 10 weight% or more. The content of the flame retardant component is preferably 30% by weight or less, and more preferably 25% by weight or less. When the content is 30% by weight or less, there is a tendency that there is little decrease in physical properties of the cured product (specifically, physical properties such as glass transition temperature and high-temperature resin strength).

樹脂シート11は、シランカップリング剤を含むことが好ましい。シランカップリング剤としては特に限定されず、3−グリシドキシプロピルトリメトキシシランなどが挙げられる。   The resin sheet 11 preferably contains a silane coupling agent. It does not specifically limit as a silane coupling agent, 3-Glycidoxypropyl trimethoxysilane etc. are mentioned.

樹脂シート11中のシランカップリング剤の含有量は、0.1〜3重量%が好ましい。0.1重量%以上であると、硬化物強度が十分得られ、吸水率が低減できる。3重量%以下であると、アウトガス量を低く抑えることができる。   The content of the silane coupling agent in the resin sheet 11 is preferably 0.1 to 3% by weight. When it is 0.1% by weight or more, sufficient strength of the cured product can be obtained and the water absorption rate can be reduced. If it is 3% by weight or less, the outgas amount can be kept low.

樹脂シート11は、顔料を含むことが好ましい。顔料としては特に限定されず、カーボンブラックなどが挙げられる。   The resin sheet 11 preferably contains a pigment. The pigment is not particularly limited, and examples thereof include carbon black.

樹脂シート11中の顔料の含有量は、0.1〜2重量%が好ましい。0.1重量%以上であると、良好なマーキング性が得られる。2重量%以下であると、硬化物強度が十分得られる。   The content of the pigment in the resin sheet 11 is preferably 0.1 to 2% by weight. When the content is 0.1% by weight or more, good marking properties can be obtained. When the content is 2% by weight or less, a cured product strength is sufficiently obtained.

なお、樹脂組成物には、上記の各成分以外に必要に応じて、他の添加剤を適宜配合できる。   In addition to the above components, other additives can be appropriately blended in the resin composition as necessary.

樹脂シート11は、SAW(Surface Acoustic Wave)フィルタ;圧力センサ、振動センサなどのMEMS(Micro Electro Mechanical Systems);LSIなどのIC(集積回路)、トランジスタなどの半導体;コンデンサ;抵抗などの電子デバイスの封止に使用される。なかでも、中空封止が必要な電子デバイス(具体的には、SAWフィルタ、MEMS)の封止に好適に使用でき、SAWフィルタの封止に特に好適に使用できる。   The resin sheet 11 includes a SAW (Surface Acoustic Wave) filter; a MEMS (Micro Electro Mechanical Systems) such as a pressure sensor and a vibration sensor; an IC (integrated circuit) such as an LSI; a semiconductor such as a transistor; a capacitor; and an electronic device such as a resistor. Used for sealing. Especially, it can use suitably for the sealing of the electronic device (specifically SAW filter, MEMS) which needs hollow sealing, and can use it especially suitably for sealing of a SAW filter.

封止方法としては特に限定されず、例えば、基板上の電子デバイスを覆うように未硬化の樹脂シート11を基板上に積層し、次いで樹脂シート11を硬化させて封止する方法などが挙げられる。基板としては特に限定されず、例えば、プリント配線基板、セラミック基板、シリコン基板、金属基板などが挙げられる。   The sealing method is not particularly limited, and examples thereof include a method in which an uncured resin sheet 11 is laminated on a substrate so as to cover an electronic device on the substrate, and then the resin sheet 11 is cured and sealed. . It does not specifically limit as a board | substrate, For example, a printed wiring board, a ceramic substrate, a silicon substrate, a metal substrate etc. are mentioned.

[電子デバイスパッケージの製造方法]
図2A〜2Cはそれぞれ、本発明の一実施形態に係る電子デバイスパッケージの製造方法の一工程を模式的に示す図である。本実施形態では、プリント配線基板12上に搭載されたSAWフィルタ13を樹脂シート11により中空封止して電子デバイスパッケージを作製する。
[Method of manufacturing electronic device package]
2A to 2C are views schematically showing one step of the method for manufacturing the electronic device package according to the embodiment of the present invention. In the present embodiment, the SAW filter 13 mounted on the printed wiring board 12 is hollow-sealed with the resin sheet 11 to produce an electronic device package.

(SAWフィルタ搭載基板準備工程)
SAWフィルタ搭載基板準備工程では、複数のSAWフィルタ13が搭載されたプリント配線基板12を準備する(図2A参照)。SAWフィルタ13は、所定の櫛形電極が形成された圧電結晶を公知の方法でダイシングして個片化することにより形成できる。SAWフィルタ13のプリント配線基板12への搭載には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。SAWフィルタ13とプリント配線基板12とはバンプなどの突起電極13aを介して電気的に接続されている。また、SAWフィルタ13とプリント配線基板12との間は、SAWフィルタ表面での表面弾性波の伝播を阻害しないように中空部分14を維持するようになっている。SAWフィルタ13とプリント配線基板12との間の距離は適宜設定でき、一般的には15〜50μm程度である。
(SAW filter mounting substrate preparation process)
In the SAW filter mounting board preparing step, a printed wiring board 12 on which a plurality of SAW filters 13 are mounted is prepared (see FIG. 2A). The SAW filter 13 can be formed by dicing a piezoelectric crystal on which predetermined comb-shaped electrodes are formed by a known method. For mounting the SAW filter 13 on the printed wiring board 12, a known device such as a flip chip bonder or a die bonder can be used. The SAW filter 13 and the printed wiring board 12 are electrically connected via protruding electrodes 13a such as bumps. Further, a hollow portion 14 is maintained between the SAW filter 13 and the printed wiring board 12 so as not to inhibit the propagation of surface acoustic waves on the surface of the SAW filter. The distance between the SAW filter 13 and the printed wiring board 12 can be set as appropriate, and is generally about 15 to 50 μm.

(封止工程)
封止工程では、SAWフィルタ13を覆うようにプリント配線基板12へ樹脂シート11を積層し、SAWフィルタ13を樹脂シート11で樹脂封止する(図2B参照)。樹脂シート11は、SAWフィルタ13及びそれに付随する要素を外部環境から保護するための封止樹脂として機能する。
(Sealing process)
In the sealing step, the resin sheet 11 is laminated on the printed wiring board 12 so as to cover the SAW filter 13, and the SAW filter 13 is resin-sealed with the resin sheet 11 (see FIG. 2B). The resin sheet 11 functions as a sealing resin for protecting the SAW filter 13 and its accompanying elements from the external environment.

樹脂シート11をプリント配線基板12上に積層する方法は特に限定されず、熱プレスやラミネータなど公知の方法により行うことができる。熱プレス条件としては、温度が、例えば、40〜100℃、好ましくは50〜90℃であり、圧力が、例えば、0.1〜10MPa、好ましくは0.5〜8MPaであり、時間が、例えば0.3〜10分間、好ましくは0.5〜5分間である。また、樹脂シート11のSAWフィルタ13及びプリント配線基板12への密着性および追従性の向上を考慮すると、減圧条件下(例えば0.1〜5kPa)においてプレスすることが好ましい。   The method of laminating the resin sheet 11 on the printed wiring board 12 is not particularly limited, and can be performed by a known method such as hot pressing or laminator. As hot press conditions, the temperature is, for example, 40 to 100 ° C., preferably 50 to 90 ° C., the pressure is, for example, 0.1 to 10 MPa, preferably 0.5 to 8 MPa, and the time is, for example, 0.3 to 10 minutes, preferably 0.5 to 5 minutes. Moreover, when the adhesiveness to the SAW filter 13 and the printed wiring board 12 of the resin sheet 11 and improvement in followability are taken into consideration, it is preferable to press under reduced pressure conditions (for example, 0.1 to 5 kPa).

(封止体形成工程)
封止体形成工程では、樹脂シート11を熱硬化処理して封止体15を形成する(図2B参照)。
(Sealing body forming process)
In the sealing body forming step, the resin sheet 11 is thermally cured to form the sealing body 15 (see FIG. 2B).

熱硬化処理の条件として、加熱温度が好ましくは100℃以上、より好ましくは120℃以上である。一方、加熱温度の上限が、好ましくは200℃以下、より好ましくは180℃以下である。加熱時間が、好ましくは10分以上、より好ましくは30分以上である。一方、加熱時間の上限が、好ましくは180分以下、より好ましくは120分以下である。また、必要に応じて加圧してもよく、好ましくは0.1MPa以上、より好ましくは0.5MPa以上である。一方、上限は好ましくは10MPa以下、より好ましくは5MPa以下である。   As the conditions for the thermosetting treatment, the heating temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher. On the other hand, the upper limit of the heating temperature is preferably 200 ° C. or lower, more preferably 180 ° C. or lower. The heating time is preferably 10 minutes or more, more preferably 30 minutes or more. On the other hand, the upper limit of the heating time is preferably 180 minutes or less, more preferably 120 minutes or less. Moreover, you may pressurize as needed, Preferably it is 0.1 Mpa or more, More preferably, it is 0.5 Mpa or more. On the other hand, the upper limit is preferably 10 MPa or less, more preferably 5 MPa or less.

(ダイシング工程)
続いて、封止体15のダイシングを行ってもよい(図2C参照)。これにより、SAWフィルタ13単位での電子デバイスパッケージ18を得ることができる。
(Dicing process)
Subsequently, dicing of the sealing body 15 may be performed (see FIG. 2C). Thereby, the electronic device package 18 in the SAW filter 13 unit can be obtained.

(基板実装工程)
必要に応じて、電子デバイスパッケージ18に対して再配線及びバンプを形成し、これを別途の基板(図示せず)に実装する基板実装工程を行うことができる。電子デバイスパッケージ18の基板への実装には、フリップチップボンダーやダイボンダーなどの公知の装置を用いることができる。
(Board mounting process)
If necessary, a substrate mounting step can be performed in which rewiring and bumps are formed on the electronic device package 18 and mounted on a separate substrate (not shown). For mounting the electronic device package 18 on the substrate, a known apparatus such as a flip chip bonder or a die bonder can be used.

以下に、この発明の好適な実施例を例示的に詳しく説明する。ただし、この実施例に記載されている材料や配合量などは、特に限定的な記載がない限りは、この発明の範囲をそれらのみに限定する趣旨のものではない。   Hereinafter, preferred embodiments of the present invention will be described in detail by way of example. However, the materials, blending amounts, and the like described in the examples are not intended to limit the scope of the present invention only to those unless otherwise specified.

実施例で使用した成分について説明する。
エポキシ樹脂1:新日鐵化学(株)製のYSLV−80XY(ビスフェノールF型エポキシ樹脂、エポキン当量200g/eq.軟化点80℃)
エポキシ樹脂2:日本化薬(株)製のEPPN−501HY(トリフェニルメタン型エポキシ樹脂)
エポキシ樹脂3:三菱化学(株)製のYL980(ビスフェノールA型エポキシ樹脂)
フェノール樹脂1:明和化成社製のMEH−7851−SS(ビフェニルアラルキル骨格を有するフェノール樹脂、水酸基当量203g/eq.、軟化点67℃)
フェノール樹脂2:昭和高分子(株)製のND564
熱可塑性樹脂1:カネカ社製のSIBSTER 072T(スチレン-イソブチレン-スチレンブロック共重合体)
熱可塑性樹脂2:ナガセケムテックス(株)製のSG−P3
無機充填剤:電気化学工業社製のFB−9454FC(溶融球状シリカ、平均粒子径20μm)
シランカップリング剤:信越化学社製のKBM−403(3−グリシドキシプロピルトリメトキシシラン)
カーボンブラック:三菱化学社製の#20
難燃剤:伏見製薬所製のFP−100(ホスファゼン系難燃剤:式(4)で表される化
合物)

Figure 0005735030

(式中、mは3〜4の整数を表す。)
硬化促進剤1:四国化成工業社製の2PHZ−PW(2−フェニル−4,5−ジヒドロキシメチルイミダゾール)
硬化促進剤2:北興化学工業社製のTPP−MK(テトラフェニルホスホニウムテトラ−p−トリルボレート) The components used in the examples will be described.
Epoxy resin 1: YSLV-80XY manufactured by Nippon Steel Chemical Co., Ltd. (bisphenol F type epoxy resin, epkin equivalent 200 g / eq. Softening point 80 ° C.)
Epoxy resin 2: EPPN-501HY (triphenylmethane type epoxy resin) manufactured by Nippon Kayaku Co., Ltd.
Epoxy resin 3: YL980 (bisphenol A type epoxy resin) manufactured by Mitsubishi Chemical Corporation
Phenol resin 1: MEH-7851-SS manufactured by Meiwa Kasei Co., Ltd. (phenol resin having a biphenylaralkyl skeleton, hydroxyl group equivalent 203 g / eq., Softening point 67 ° C.)
Phenol resin 2: ND564 manufactured by Showa Polymer Co., Ltd.
Thermoplastic resin 1: SIBSTER 072T (styrene-isobutylene-styrene block copolymer) manufactured by Kaneka Corporation
Thermoplastic resin 2: SG-P3 manufactured by Nagase ChemteX Corporation
Inorganic filler: FB-9454FC manufactured by Denki Kagaku Kogyo Co., Ltd. (fused spherical silica, average particle size 20 μm)
Silane coupling agent: KBM-403 (3-glycidoxypropyltrimethoxysilane) manufactured by Shin-Etsu Chemical Co., Ltd.
Carbon black: # 20 manufactured by Mitsubishi Chemical
Flame retardant: FP-100 manufactured by Fushimi Pharmaceutical (phosphazene flame retardant: compound represented by formula (4))
Figure 0005735030

(In the formula, m represents an integer of 3 to 4.)
Curing accelerator 1: 2PHZ-PW (2-phenyl-4,5-dihydroxymethylimidazole) manufactured by Shikoku Kasei Kogyo Co., Ltd.
Curing accelerator 2: TPP-MK (tetraphenylphosphonium tetra-p-tolylborate) manufactured by Hokuko Chemical Co., Ltd.

実施例1〜3
表1に記載の配合比に従い、各成分を配合し、2軸混練機により60〜120℃、10分間、減圧条件下(0.01kg/cm)で溶融混練し、混練物を調製した。次いで、得られた混練物を、平板プレス法により、シート状に形成して、表1に示す厚さの樹脂シートを作製した。得られた樹脂シートに、セパレーターを貼り付けた。
Examples 1-3
Each component was blended according to the blending ratio shown in Table 1, and melt-kneaded under a reduced pressure condition (0.01 kg / cm 2 ) at 60 to 120 ° C. for 10 minutes using a biaxial kneader to prepare a kneaded product. Next, the obtained kneaded material was formed into a sheet shape by a flat plate pressing method, and a resin sheet having a thickness shown in Table 1 was produced. A separator was attached to the obtained resin sheet.

得られた樹脂シート用いて下記の評価を行った。結果を表1に示す。   The following evaluation was performed using the obtained resin sheet. The results are shown in Table 1.

[アウトガス量]
未硬化の樹脂シートから、1cm×1cm×厚さ200μmのサンプルを切り取り、サンプルに付いているセパレーターを剥がした。サンプルをバイアル瓶に入れ秤量した。その後、ヘッドスペースサンプラー(HSS)で150℃、1時間の条件でサンプルを加熱した。加熱状態のガス1mlをAgilen Technology社製6890GC−MSに注入しアウトガス量を測定した。
[Outgas amount]
A sample of 1 cm × 1 cm × 200 μm thickness was cut out from the uncured resin sheet, and the separator attached to the sample was peeled off. Samples were placed in vials and weighed. Thereafter, the sample was heated with a headspace sampler (HSS) at 150 ° C. for 1 hour. 1 ml of heated gas was injected into 6890GC-MS manufactured by Agilent Technologies, and the amount of outgas was measured.

[硬化物の1%重量減少温度]
未硬化の樹脂シートからセパレーターを剥がした後、樹脂シートを150℃で1時間加熱して硬化させた。硬化物から約8mgのサンプルを切り取った。エスアイアイ・ナノテクノロジー社製TG/DTA220にて室温〜500℃まで10℃/minでAir中ガス流量200mg/minにてサンプルを加熱し、重量分析した。
[1% weight loss temperature of cured product]
After removing the separator from the uncured resin sheet, the resin sheet was cured by heating at 150 ° C. for 1 hour. About 8 mg of sample was cut from the cured product. The sample was heated at 10 ° C./min from room temperature to 500 ° C. with a TG / DTA220 manufactured by SII Nano Technology, Inc. at a gas flow rate of 200 mg / min in Air, and subjected to gravimetric analysis.

[硬化物のアウトガス量]
未硬化の樹脂シートから、1cm×1cm×厚さ200μmのサンプルを切り取り、サンプルに付いているセパレーターを剥がした。サンプルを150℃で1時間加熱して硬化させた。硬化物をバイアル瓶に入れ秤量した。その後、ヘッドスペースサンプラー(HSS)で硬化物を加熱した(加熱条件:40℃から260℃まで昇温速度10℃/分で昇温した後、260℃で1分間保持した)。加熱状態のガス1mlをAgilen Technology社製6890GC−MSに注入しアウトガス量を測定した。
[Outgas amount of cured product]
A sample of 1 cm × 1 cm × 200 μm thickness was cut out from the uncured resin sheet, and the separator attached to the sample was peeled off. The sample was cured by heating at 150 ° C. for 1 hour. The cured product was placed in a vial and weighed. Thereafter, the cured product was heated with a headspace sampler (HSS) (heating condition: heated from 40 ° C. to 260 ° C. at a heating rate of 10 ° C./min and then held at 260 ° C. for 1 minute). 1 ml of heated gas was injected into 6890GC-MS manufactured by Agilent Technologies, and the amount of outgas was measured.

比較例1〜2
表1に記載の配合比に従い、各成分を配合し、これに各成分の総量と同量のメチルエチルケトンを添加して、ワニスを調製した。得られたワニスを、コンマコ―タ−により、厚み50μmのポリエステルフィルムA(三菱化学ポリエステル社製、MRF−50)の剥離処理面上に、乾燥後の厚みが50μmとなるように塗工し、乾燥させた。次いで、厚み38μmのポリエステルフィルムB(三菱化学ポリエステル社製、MRF−38)の剥離処理面を、乾燥後のワニス上に張り合わせて、薄膜樹脂シートを調製した。
その後、ポリエステルフィルムAおよびポリエステルフィルムBを適宜剥離しながら、ロールラミネ―タ―により、薄膜樹脂シートを4枚積層することにより、厚み200μmの樹脂シートを調製した。
Comparative Examples 1-2
Each component was blended according to the blending ratio shown in Table 1, and the same amount of methyl ethyl ketone as the total amount of each component was added thereto to prepare a varnish. The obtained varnish was coated on a release-treated surface of a 50 μm thick polyester film A (MRF-50, manufactured by Mitsubishi Chemical Polyester Co., Ltd.) with a comma coater so that the thickness after drying was 50 μm. Dried. Next, a 38 μm thick polyester film B (MRF-38, manufactured by Mitsubishi Chemical Polyester Co., Ltd.) was bonded to the dried varnish to prepare a thin film resin sheet.
Thereafter, while peeling the polyester film A and the polyester film B as appropriate, four thin film resin sheets were laminated by a roll laminator to prepare a resin sheet having a thickness of 200 μm.

得られた樹脂シート用いて上記の評価を行った。結果を表1に示す。   Said evaluation was performed using the obtained resin sheet. The results are shown in Table 1.

Figure 0005735030
Figure 0005735030

11 樹脂シート
11a 支持体
13 SAWフィルタ
15 封止体
18 電子デバイスパッケージ
DESCRIPTION OF SYMBOLS 11 Resin sheet 11a Support body 13 SAW filter 15 Sealing body 18 Electronic device package

Claims (5)

厚みが100〜2000μmであり、
150℃で1時間硬化させた際に発生するガス量が500ppm以下であり、
150℃で1時間硬化して得られた硬化物の1%重量減少温度が260℃以上である電子デバイス封止用樹脂シート。
The thickness is 100 to 2000 μm,
Amount of gas generated when cured for 1 hour at 0.99 ° C. is Ri der less 500 ppm,
The resin sheet for electronic device sealing whose 1% weight reduction | decrease temperature of the hardened | cured material obtained by hardening | curing at 150 degreeC for 1 hour is 260 degreeC or more .
150℃で1時間硬化して得られた硬化物を、
40℃から260℃まで昇温速度10℃/分で昇温し、次いで260℃で1分間加熱した際に発生するガス量が500ppm以下である請求項1に記載の電子デバイス封止用樹脂シート。
A cured product obtained by curing at 150 ° C. for 1 hour,
2. The resin sheet for encapsulating an electronic device according to claim 1, wherein the amount of gas generated when heated from 40 ° C. to 260 ° C. at a heating rate of 10 ° C./min and then heated at 260 ° C. for 1 minute is 500 ppm or less. .
1又は複数の電子デバイスを覆うように請求項1又は2に記載の電子デバイス封止用樹脂シートを前記電子デバイス上に積層する積層工程、及び
前記電子デバイス封止用樹脂シートを硬化させて封止体を形成する封止体形成工程を含む電子デバイスパッケージの製造方法。
A lamination step of laminating the electronic device sealing resin sheet according to claim 1 or 2 on the electronic device so as to cover one or more electronic devices, and the electronic device sealing resin sheet is cured and sealed. The manufacturing method of the electronic device package including the sealing body formation process which forms a stop.
厚みが100〜2000μmであり、
150℃で1時間硬化させた際に発生するガス量が500ppm以下であり、
150℃で1時間硬化して得られた硬化物を、
40℃から260℃まで昇温速度10℃/分で昇温し、次いで260℃で1分間加熱した際に発生するガス量が500ppm以下である電子デバイス封止用樹脂シート。
The thickness is 100 to 2000 μm,
Amount of gas generated when cured for 1 hour at 0.99 ° C. is Ri der less 500 ppm,
A cured product obtained by curing at 150 ° C. for 1 hour,
A resin sheet for encapsulating electronic devices , wherein the amount of gas generated when heated from 40 ° C. to 260 ° C. at a heating rate of 10 ° C./min and then heated at 260 ° C. for 1 minute is 500 ppm or less .
1又は複数の電子デバイスを覆うように請求項4に記載の電子デバイス封止用樹脂シートを前記電子デバイス上に積層する積層工程、及びA laminating step of laminating the electronic device sealing resin sheet according to claim 4 on the electronic device so as to cover one or more electronic devices; and
前記電子デバイス封止用樹脂シートを硬化させて封止体を形成する封止体形成工程を含む電子デバイスパッケージの製造方法。The manufacturing method of the electronic device package including the sealing body formation process which hardens the said resin sheet for electronic device sealing, and forms a sealing body.
JP2013069886A 2013-03-28 2013-03-28 Resin sheet for sealing electronic device and method for manufacturing electronic device package Active JP5735030B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2013069886A JP5735030B2 (en) 2013-03-28 2013-03-28 Resin sheet for sealing electronic device and method for manufacturing electronic device package
KR1020157023966A KR20150135253A (en) 2013-03-28 2014-03-20 Resin sheet for electronic device sealing and production method for electronic device package
CN201480019056.XA CN105074905B (en) 2013-03-28 2014-03-20 The manufacturing method of electronic component encapsulation resin sheet and electron device package body
PCT/JP2014/057689 WO2014156926A1 (en) 2013-03-28 2014-03-20 Resin sheet for electronic device sealing and production method for electronic device package
SG11201507890TA SG11201507890TA (en) 2013-03-28 2014-03-20 Resin sheet for sealing electronic device and method of manufacturing electronic device package
TW103111070A TWI625832B (en) 2013-03-28 2014-03-25 Resin sheet for electronic component sealing and method of manufacturing electronic component package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013069886A JP5735030B2 (en) 2013-03-28 2013-03-28 Resin sheet for sealing electronic device and method for manufacturing electronic device package

Publications (2)

Publication Number Publication Date
JP2014194959A JP2014194959A (en) 2014-10-09
JP5735030B2 true JP5735030B2 (en) 2015-06-17

Family

ID=51623905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013069886A Active JP5735030B2 (en) 2013-03-28 2013-03-28 Resin sheet for sealing electronic device and method for manufacturing electronic device package

Country Status (6)

Country Link
JP (1) JP5735030B2 (en)
KR (1) KR20150135253A (en)
CN (1) CN105074905B (en)
SG (1) SG11201507890TA (en)
TW (1) TWI625832B (en)
WO (1) WO2014156926A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070805B2 (en) * 2000-05-09 2012-11-14 ダイキン工業株式会社 Crosslinkable fluoroelastomer composition containing clean filler
JP3716408B2 (en) * 2000-09-20 2005-11-16 Necトーキン株式会社 Electronic component, solid electrolytic capacitor, selection method of electronic component components
JP2004115552A (en) * 2002-09-24 2004-04-15 Taoka Chem Co Ltd One-pack liquid epoxy resin composition
JP4730652B2 (en) * 2004-06-02 2011-07-20 ナガセケムテックス株式会社 Manufacturing method of electronic parts
JP5228426B2 (en) * 2006-10-06 2013-07-03 日立化成株式会社 Liquid resin composition for electronic component sealing and electronic component device using the same
JP5133598B2 (en) * 2007-05-17 2013-01-30 日東電工株式会社 Thermosetting adhesive sheet for sealing
JP2010006983A (en) * 2008-06-27 2010-01-14 Hitachi Chem Co Ltd Sealing filler and semiconductor device
JP5476988B2 (en) * 2009-12-30 2014-04-23 デクセリアルズ株式会社 Electrical device and epoxy resin composition used therefor
WO2011148620A1 (en) * 2010-05-26 2011-12-01 京セラケミカル株式会社 Sheet-like resin composition, circuit component using the sheet-like resin composition, method for sealing electronic component, method for connecting electronic component, method for affixing electronic component, composite sheet, electronic component using the composite sheet, electronic device, and method for producing composite sheet
JP2011058003A (en) * 2010-11-24 2011-03-24 Mitsubishi Chemicals Corp Epoxy resin composition for sealing semiconductor, resin-sealed semiconductor device and method for mounting semiconductor device
JP2012160668A (en) * 2011-02-02 2012-08-23 Sumitomo Bakelite Co Ltd Method for manufacturing electric component
JP2013007028A (en) * 2011-05-20 2013-01-10 Nitto Denko Corp Sealing sheet and electronic component device

Also Published As

Publication number Publication date
JP2014194959A (en) 2014-10-09
WO2014156926A1 (en) 2014-10-02
CN105074905B (en) 2018-11-30
TWI625832B (en) 2018-06-01
SG11201507890TA (en) 2015-10-29
KR20150135253A (en) 2015-12-02
TW201507074A (en) 2015-02-16
CN105074905A (en) 2015-11-18

Similar Documents

Publication Publication Date Title
JP6643791B2 (en) Hollow sealing resin sheet and hollow package manufacturing method
JP6259608B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
JP5735036B2 (en) Electronic component device manufacturing method and laminated sheet
TWI664076B (en) Sealing sheet, manufacturing method of sealing sheet, and manufacturing method of electronic component package
JP5793160B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
JP6302693B2 (en) Hollow sealing resin sheet and method for producing hollow package
JP6688852B2 (en) Hollow sealing resin sheet and hollow package manufacturing method
JP5768023B2 (en) Thermosetting resin sheet for encapsulating electronic parts, resin-encapsulated semiconductor device, and method for producing resin-encapsulated semiconductor device
WO2014156777A1 (en) Hollow electronic device sealing sheet and production method for hollow electronic device package
JP5735030B2 (en) Resin sheet for sealing electronic device and method for manufacturing electronic device package
WO2014188826A1 (en) Method for manufacturing electronic-component device
JP6434181B2 (en) Hollow type electronic device sealing sheet and method for manufacturing hollow type electronic device package
JP6302692B2 (en) Hollow sealing resin sheet and method for producing hollow package
WO2014188824A1 (en) Method for manufacturing electronic-component device
WO2014156779A1 (en) Thermosetting sealing sheet and thermosetting sealing sheet with separator
JP2016094575A (en) Encapsulation sheet with separator, and manufacturing method of semiconductor device
JP2016028476A (en) Resin sheet for sealing electronic device, and method for manufacturing electronic device package

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141119

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20141119

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150317

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150415

R150 Certificate of patent or registration of utility model

Ref document number: 5735030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250