JP5728185B2 - Method for producing fermented soybean meal using Bacillus subtilis - Google Patents

Method for producing fermented soybean meal using Bacillus subtilis Download PDF

Info

Publication number
JP5728185B2
JP5728185B2 JP2010202178A JP2010202178A JP5728185B2 JP 5728185 B2 JP5728185 B2 JP 5728185B2 JP 2010202178 A JP2010202178 A JP 2010202178A JP 2010202178 A JP2010202178 A JP 2010202178A JP 5728185 B2 JP5728185 B2 JP 5728185B2
Authority
JP
Japan
Prior art keywords
soybean meal
fermentation
strain
bacillus subtilis
fermented
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010202178A
Other languages
Japanese (ja)
Other versions
JP2011055831A (en
Inventor
ヒュン、ソ サン
ヒュン、ソ サン
ソン−ジュン、チョ
ユン−ホ、ホン
ジェ−フン、ユ
ヒ、カン ジュ
ヒ、カン ジュ
ヒュン、チ
スン−ウォン、パク
リャン、ピョン ユ
リャン、ピョン ユ
チョル、チョ ソク
チョル、チョ ソク
チャン、クォク ム
チャン、クォク ム
ホ、パク ヒュン
ホ、パク ヒュン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CJ CheilJedang Corp
Original Assignee
CJ CheilJedang Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CJ CheilJedang Corp filed Critical CJ CheilJedang Corp
Publication of JP2011055831A publication Critical patent/JP2011055831A/en
Application granted granted Critical
Publication of JP5728185B2 publication Critical patent/JP5728185B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/12Animal feeding-stuffs obtained by microbiological or biochemical processes by fermentation of natural products, e.g. of vegetable material, animal waste material or biomass
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • C12R2001/125Bacillus subtilis ; Hay bacillus; Grass bacillus

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Animal Husbandry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Nutrition Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Mycology (AREA)
  • Botany (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Sustainable Development (AREA)
  • Beans For Foods Or Fodder (AREA)
  • Fodder In General (AREA)

Description

本発明は、植物性タンパク質源としての脱脂大豆粕の品質を改良または改善することができる、低廉で効率的な発酵大豆粕の製造方法、およびこの方法によって製造された発酵大豆粕に関する。   The present invention relates to a cheap and efficient method for producing fermented soybean meal that can improve or improve the quality of defatted soybean meal as a vegetable protein source, and a fermented soybean meal produced by this method.

ヒトに致命的な病気を引き起こす狂牛病などの疾病が、飼料に添加される動物性タンパク質成分に起因した結果として判定されることにより、全世界的に飼料に添加される動物性タンパク質を植物性タンパク質で代替しようとする動きが急速に広がっている。   By determining diseases such as mad cow disease that cause fatal diseases in humans as a result of animal protein components added to the feed, animal proteins added to the feed worldwide are planted. The movement to replace with sex protein is spreading rapidly.

飼料市場において魚粉、肉骨粉または血漿などの動物性タンパク質の代替品として用いられている、植物性タンパク質原料の中でも最も大きい比重を占めるものは、脱脂大豆粕(以下、「大豆粕」という)である。韓国で植物性タンパク質飼料源として用いられる大豆粕は、全体飼料の60%を占めており、物量が年間200万トンに達している(2004年、韓国単味飼料協会)。   The defatted soybean meal (hereinafter referred to as “soybean meal”) is the largest plant protein ingredient used in the feed market as a substitute for animal protein such as fish meal, meat and bone meal or plasma. is there. The soybean meal used as a vegetable protein feed source in Korea accounts for 60% of the total feed, and the amount reaches 2 million tons per year (2004, Korea Simple Feed Association).

大豆粕の代表的な一般分析値は、水分9.5%、粗タンパク質49.4%、転化糖22.1%および水溶性窒素27.2%である。一般に、植物性タンパク質は、動物性タンパク質に比べてタンパク質の含量が比較的低く、家畜に必要な必須アミノ酸の組成が動物性タンパク質に比べて良くなく、一部のビタミン、鉱物質およびUGF(Unknown Growth Factor)の含量が高くない。   Typical general analytical values for soybean meal are 9.5% moisture, 49.4% crude protein, 22.1% invert sugar and 27.2% water-soluble nitrogen. In general, plant proteins have a relatively low protein content compared to animal proteins, and the composition of essential amino acids required for livestock is not as good as that of animal proteins, and some vitamins, minerals and UGF (Unknown Growth factor) is not high.

また、大豆粕は、様々な抗栄養因子(anti-nutritional factor、ANF)が含有されているため、飼料として用いられた場合に消化率が阻害されるという問題点がある。その中でも代表的なものはトリプシン阻害因子(trypsin inhibitor、以下「TI」という)である。陸上動物において、食餌TIは、トリプシンとキモトリプシンの適切な酵素機能を妨害し、その結果、大豆内に存在する全体タンパク質の約6%程度易溶性を低下させる。特に、このような抗栄養因子の影響は、幼畜の場合に著しいため、幼畜用飼料に添加される大豆粕の使用量を制限している。   In addition, soybean meal contains a variety of anti-nutritional factors (ANF), and thus has a problem that digestibility is inhibited when used as feed. Among them, a representative one is a trypsin inhibitor (hereinafter referred to as “TI”). In terrestrial animals, diet TI interferes with the proper enzymatic function of trypsin and chymotrypsin, resulting in a decrease in solubility of about 6% of the total protein present in soybean. In particular, since the effect of such anti-nutritive factors is significant in the case of young animals, the amount of soybean meal added to the feed for young animals is limited.

生大豆粕のTI活性は約39mg/gであるが、脱脂大豆粕は製造工程において熱処理によって抗栄養因子が破壊されるため、商品として販売される脱脂大豆粕のTI活性は一般的に4mg/g以下である。したがって、育成肥育豚または母豚では被害が少ないが、子豚では育成肥育豚とは異なり、大豆粕内の抗栄養因子として大豆粕の使用に制限を受けるので、飼料給与段階別に代替タンパク質を一部使用しなければならない。このような理由により、濃縮大豆タンパクや精製大豆タンパクなどの加工大豆製品が飼料として用いられて主に乳製品類の飼料を給与するときと類似の仕様成績を得ている。   The TI activity of raw soybean meal is about 39 mg / g. However, since defatted soybean meal destroys anti-nutritive factors by heat treatment in the production process, the TI activity of defatted soybean meal sold as a product is generally 4 mg / g. g or less. Therefore, while raising fattening pigs or mother pigs are less damaging, piglets are different from growing fattening pigs in that they limit the use of soybean meal as an anti-nutritional factor in soybean meal. Part must be used. For these reasons, processed soy products such as concentrated soy protein and refined soy protein are used as feeds, and specifications similar to those obtained when feeding mainly dairy feeds are obtained.

現在生産されている濃縮大豆タンパク質(SPC)、分離大豆タンパク質(SPI)または加水分解大豆タンパク質などの大豆タンパク質加工品は、物理化学的処理または酵素処理によって生産され、主に食品加工用として生産されるもので、飼料として使用するには高価である。   Currently produced soy protein processed products such as concentrated soy protein (SPC), isolated soy protein (SPI) or hydrolyzed soy protein are produced by physicochemical treatment or enzymatic treatment and are mainly produced for food processing. It is expensive to use as feed.

したがって、大豆粕を良質の高タンパク質飼料として使用するためには、大豆タンパク質の品質を向上させることができる、低廉且つ効率的で大量処理が可能な新しい加工方法の開発が要求される。しかも、最近、地球温暖化などの地球気候変化により穀物の生産量が減少しており、飼料の主原料となるトウモロコシまたは大豆粕などの国際価格が上昇して飼料産業と畜産農家に大きい打撃を与えている実情なので、その必要性はさらに増大しつつある。   Therefore, in order to use soybean meal as a high-quality high-protein feed, it is required to develop a new processing method that can improve the quality of soybean protein and that is inexpensive, efficient, and capable of mass processing. Moreover, grain production has recently declined due to global climate changes such as global warming, and international prices for corn or soybean meal, the main raw material for feed, have risen, causing a major blow to the feed industry and livestock farmers. Because of the facts they are giving, the need is growing.

前述したTI以外にも、大豆オリゴ糖(soy oligosaccharides)は下痢、腹痛を誘発し、大豆多糖類(soy polysaccharides)は栄養成分の吸収を阻害するものと知られている。飼料に大豆粕を混合した場合、よく腸炎を引き起こすが、その原因は未だ解明されていない。大豆粕中のアルコール可溶性多糖類に起因するものと推測されている(非特許文献1参照)。また、大豆多糖類は、鮭などの魚類と肉鶏雛の栄養成分の吸収を阻害するものと報告されている(非特許文献2参照)。   In addition to the TI described above, soy oligosaccharides are known to induce diarrhea and abdominal pain, and soy polysaccharides inhibit the absorption of nutrient components. When soybean meal is mixed with feed, it often causes enteritis, but the cause has not been elucidated. It is estimated that it originates in the alcohol-soluble polysaccharide in soybean meal (refer nonpatent literature 1). In addition, soybean polysaccharides have been reported to inhibit the absorption of nutrient components in fish such as salmon and meat chicken chicks (see Non-Patent Document 2).

そこで、最近では、このような抗栄養因子の除去による高品質飼料の製造方法として、酵素処理大豆タンパクフィターゼ(phytase)を用いてフィチン酸塩を除去した製品(HP300(デンマーク)−www.hamletprotein.com)あるいは発酵処理大豆タンパク(特許文献1、特許文献2、特許文献3および非特許文献3参照)などに関する研究が行われている。   Therefore, recently, as a method for producing a high-quality feed by removing such antinutritive factors, a product obtained by removing phytate using enzyme-treated soybean protein phytase (HP300 (Denmark)-www.hamletprotein. com) or fermented soybean protein (see Patent Document 1, Patent Document 2, Patent Document 3, and Non-Patent Document 3).

これらの中でも、発酵処理大豆タンパクは、発酵過程中で多数の抗栄養因子を除去することができるうえ、さらにタンパク質または炭水化物を消化し易い形態に分解するため、最も消化吸収の良い高品質の飼料用タンパク素材であるといえる。   Among these, fermented soy protein can remove many anti-nutritive factors during the fermentation process, and further decomposes protein or carbohydrate into a form that is easy to digest, so it is the highest digestive and high-quality feed. It can be said that it is a protein material.

ところが、このような発酵処理過程の場合、適正水準以上の抗栄養因子除去効果を得るためには長い発酵時間を必要とする(前記特許文献1の場合は36時間、前記特許文献2の場合は48時間)。このような長い発酵時間は、製麹機の回転率を低めて全体的なコスト上昇をもたらす。このように従来の技術は、発酵処理大豆粕の製造過程中に長い発酵時間が要求され、全体的なコスト上昇を引き起こすという問題点があった。   However, in the case of such a fermentation process, a long fermentation time is required in order to obtain an antinutritive factor removal effect of an appropriate level or more (in the case of Patent Document 1, 36 hours, in the case of Patent Document 2). 48 hours). Such a long fermentation time results in an overall cost increase by lowering the rotation rate of the koji making machine. As described above, the conventional technique has a problem in that a long fermentation time is required during the production process of the fermented soybean meal, resulting in an increase in overall cost.

現在まで枯草菌、特にバチルスサブチリスTP6菌を用いて発酵時間を画期的に減らしながら発酵大豆粕を生産する研究結果については報告されたことがなく、特に大豆粕の固体発酵中に枯草菌が生産するプロテアーゼと機能性多糖類および前記微生物のプロバイオティクス(probiotics)としての効能を積極的に活用する製品についても報告されたことがない。   To date, there has been no report on research results of producing fermented soybean meal while dramatically reducing the fermentation time using Bacillus subtilis TP6, and in particular, Bacillus subtilis during solid fermentation of soybean meal. There have been no reports on proteases and functional polysaccharides produced by the plant and products that actively utilize the effectiveness of the microorganisms as probiotics.

そこで、本発明者は、タンパク質飼料源である大豆粕の改良および改善のための発酵大豆粕の生産システム構築および効率的な発酵時間の減少による製品のコスト節減のために鋭意努力した結果、大豆粕の固体発酵に適した特性を持つ発酵菌株としてバチルスサブチリスTP6菌株を採用して大豆粕を固体発酵させることにより、タンパク質含量の増加、タンパク質品質の上昇、大豆タンパク質の加水分解による低分子化、TIの不活性化、非消化性多糖類のような抗栄養因子の含量減少などによる消化吸収率および飼料効率の増加だけでなく、既存の発酵処理大豆粕の問題点である長い発酵時間の画期的な改善が実現された高品質の発酵大豆粕を製造することができることを確認し、本発明を完成した。   Therefore, as a result of diligent efforts to reduce the cost of the product by constructing a production system for fermented soybean meal for improving and improving soybean meal, which is a protein feed source, and reducing the fermentation time efficiently, By adopting Bacillus subtilis TP6 strain as a fermenting strain with characteristics suitable for solid fermentation of soybean meal, solid fermentation of soybean meal increases protein content, protein quality, and low molecular weight by hydrolysis of soybean protein , Inactivation of TI, increase in digestion absorption rate and feed efficiency due to decreased content of anti-nutritional factors such as non-digestible polysaccharides, as well as long fermentation time which is a problem of existing fermented soybean meal It was confirmed that a high-quality fermented soybean meal with an epoch-making improvement could be produced, and the present invention was completed.

本明細書全体にわたって多数の特許文献が参照され、その引用が表示されている。引用された特許文献の開示内容はその全体として本明細書に参照として挿入され、これにより本発明の属する技術分野の水準および本発明の内容がより明白に説明される。   Numerous patent references are referenced throughout the specification and their citations are displayed. The disclosures of the cited patent documents are incorporated herein by reference in their entirety, thereby more clearly explaining the level of the technical field to which the present invention belongs and the contents of the present invention.

韓国特許登録第10−0645284号明細書Korean Patent Registration No. 10-0645284 Specification 韓国特許登録第10−0459240号明細書Korean Patent Registration No. 10-0459240 Specification 韓国特許登録第10−0925173号明細書Korean Patent Registration No. 10-0925173 Specification

Krogdahl, A. et al. Feeding atlantic Salmo salar L. soybean products. Aquac. Nutr. 6, 77-84, 200Krogdahl, A. et al. Feeding atlantic Salmo salar L. soybean products. Aquac. Nutr. 6, 77-84, 200 Refstie, S. et al. Non-starch polysaccharides in soybean meals and effects on the absorption of nutrients in farmed Atlantic salmon and broiler chickens. Anim. Feed Sci. Technol. 79,331-3451999Refstie, S. et al. Non-starch polysaccharides in soybean meals and effects on the absorption of nutrients in farmed Atlantic salmon and broiler chickens. Anim. Feed Sci. Technol. 79,331-3451999 Livestock Research for Rural Development 20(9) 2008Livestock Research for Rural Development 20 (9) 2008

本発明の目的は、抗栄養因子除去能力およびタンパク質分解能力に優れて発酵処理大豆粕の製造の際に発酵時間を最大限に減らすことが可能な枯草菌株、特にTP6菌株を用いた固体発酵法による発酵大豆粕の製造方法を提供することにある。   An object of the present invention is a solid fermentation method using a Bacillus subtilis strain, particularly a TP6 strain, which has excellent antinutritive factor removal ability and proteolytic ability and can reduce the fermentation time to the maximum when producing fermented soybean meal. It is in providing the manufacturing method of fermented soybean meal by this.

本発明の他の目的は、前記枯草菌を用いて発酵させた高品質の発酵大豆粕を提供することにある。   Another object of the present invention is to provide a high-quality fermented soybean meal fermented using the Bacillus subtilis.

本発明の別の目的および利点は、下記の発明の詳細な説明、請求の範囲および図面によってさらに明白になるであろう。   Other objects and advantages of the present invention will become more apparent from the following detailed description of the invention, the claims and the drawings.

上記目的を達成するための一つの様態として、本発明は、(a)大豆粕に水分を添加し、熱処理する段階と、(b)前記熱処理された大豆粕を冷却した後、枯草菌を接種する段階と、(c)前記大豆粕に接種された菌を固体培養して発酵大豆粕を得る段階とを含む、発酵大豆粕の製造方法を提供する。   As one aspect for achieving the above object, the present invention includes (a) adding water to soybean meal and heat-treating; and (b) cooling the heat-treated soybean meal and inoculating Bacillus subtilis. And (c) providing a fermented soybean meal by solid-culturing the fungus inoculated in the soybean meal.

本発明者は、発酵によって大豆粕の品質を改良および改善することができると同時に、発酵時間を減らすための生産システムを構築するために鋭意努力した結果、発酵菌株として枯草菌を採用して大豆粕を固体発酵させることにより、上述した問題点が改善された発酵大豆粕を製造することができることを確認した。   The present inventor can improve and improve the quality of soybean meal by fermentation, and at the same time, as a result of diligent efforts to construct a production system for reducing fermentation time, Bacillus subtilis is widely adopted as a fermentation strain. It was confirmed that fermented soybean meal with improved problems described above can be produced by solid fermentation of soybean meal.

発酵大豆粕を製造するための本発明の方法を段階別に詳細に説明すると、次のとおりである。   The method of the present invention for producing fermented soybean meal is described in detail as follows.

(a)大豆粕への水分添加および熱処理
本発明の方法に用いられる大豆粕は、最終産物である発酵大豆粕が同一の品質を維持することができるように、同一の地域から持続的に同一種類の大豆粕を供給されてこれを用いることが好ましいが、原料としての大豆粕の品質差異による生産物としての発酵大豆粕の差異は原料上の栄養成分の初期含量による生産物の成分変化であり、発酵自体にはあまり問題とならない。特に、大豆粕の種類によるタンパク質含量の差異は、最終産物のタンパク質含量に差異を示す。好ましくは、本発明の方法に用いられる大豆粕は、タンパク質の含量が高くトリプシン阻害因子の含量が低いほど発酵大豆粕の品質は増加する。
(A) Addition of moisture to soybean meal and heat treatment The soybean meal used in the method of the present invention is continuously the same from the same region so that the final product fermented soybean meal can maintain the same quality. It is preferable to use this type of soybean meal supplied, but the difference of fermented soybean meal as a product due to the difference in quality of soybean meal as a raw material is due to the change in the ingredients of the product due to the initial content of nutritional components on the raw material. Yes, the fermentation itself is not a problem. In particular, the difference in protein content depending on the type of soybean meal indicates a difference in the protein content of the final product. Preferably, the soybean meal used in the method of the present invention has a higher protein content and a lower trypsin inhibitor content, so that the quality of the fermented soybean meal increases.

本発明の方法によれば、原料としての大豆粕を熱処理する前に、加水する工程が必要である。すなわち、原料大豆粕は固体発酵する前に適量の水を直接噴霧、混合して水分含量を調節した後、一定の時間熱処理する。この際、熱処理は、原料大豆粕中の雑菌を死滅させると同時に大豆細胞壁を破壊し、タンパク質を変性させることにより、目的の微生物が活発に生育することが可能な化学組成を提供するためである。   According to the method of the present invention, a step of adding water is necessary before heat-treating soybean meal as a raw material. That is, the raw soybean meal is subjected to a heat treatment for a certain period of time after the water content is adjusted by directly spraying and mixing water in an appropriate amount before solid fermentation. At this time, the heat treatment is to provide a chemical composition capable of actively growing the target microorganisms by killing various bacteria in the raw soybean meal and simultaneously destroying the soybean cell wall and denaturing the protein. .

本発明の好適な具現例によれば、前記段階(a)の水分添加された大豆粕は水分含量が30〜80%(v/w)であり、好ましくは30〜70%(v/w)であり、より好ましくは40〜60%(v/w)である。30〜80%(v/w)の範囲の水分含量は低水分による発酵速度の遅延防止、大豆粕の移送および発酵後の乾燥工程で多くの費用がかかる問題点の改善、並びに熱効率の面で好ましい。   According to a preferred embodiment of the present invention, the moisture-added soybean meal of step (a) has a water content of 30 to 80% (v / w), preferably 30 to 70% (v / w). More preferably, it is 40 to 60% (v / w). The water content in the range of 30-80% (v / w) prevents the slowing of the fermentation rate due to low water content, improves many of the costly problems in the transfer of soybean meal and the drying process after fermentation, and in terms of thermal efficiency. preferable.

次いで、水分の添加された大豆粕を熱処理する。熱処理工程は、当業界における公知の多様な方法を用いることができるが、好ましくはスチームまたは過熱水蒸気を用いて熱処理することである。   Next, the soybean meal to which moisture has been added is heat-treated. For the heat treatment step, various methods known in the art can be used, but preferably heat treatment is performed using steam or superheated steam.

本発明の方法において、前記段階(a)の熱処理は温度70〜130℃のスチームで10〜60分間蒸煮し、或いは200〜300℃の過熱水蒸気で数秒〜数分間短時間熱処理することであり、好ましくは温度70〜130℃のスチームで10〜30分間蒸煮し、より好ましくは80〜121.1℃のスチームで10分〜30分間蒸煮することである。   In the method of the present invention, the heat treatment in the step (a) is steaming with steam at a temperature of 70 to 130 ° C. for 10 to 60 minutes, or heat treatment with superheated steam at 200 to 300 ° C. for a few seconds to several minutes, Preferably, it is steamed with steam at a temperature of 70 to 130 ° C. for 10 to 30 minutes, and more preferably steamed with steam at 80 to 121.1 ° C. for 10 to 30 minutes.

本発明の方法で熱処理を行うにおいて、熱処理温度が低い場合或いは処理時間が短い場合には、雑菌の殺菌効果が小さく、以後の発酵工程が円滑に行われない問題点があり、熱処理温度が高い場合或いは処理時間が長い場合には、大豆粕内タンパク質の変性による消化率が減少して最終製品の品質が低下する問題点があるので、かかる問題点が発生しないように熱処理温度または処理時間を採択することが好ましい。   When the heat treatment is performed by the method of the present invention, if the heat treatment temperature is low or the treatment time is short, there is a problem that the sterilizing effect of various bacteria is small and the subsequent fermentation process is not smoothly performed, and the heat treatment temperature is high. If the treatment time is long or the digestion rate due to denaturation of protein in soybean meal is reduced, the quality of the final product is lowered, so the heat treatment temperature or treatment time is set so that such a problem does not occur. It is preferable to adopt.

本発明の方法において熱処理過程を経て、大豆粕内の汚染菌が殆ど死滅し、後続工程である固体発酵が円滑に行われる化学的環境が造成される効果があるうえ、消化率を阻害するTIがやや減少する効果もある。   In the method of the present invention, through the heat treatment process, the contaminating bacteria in soybean meal are almost killed, and there is an effect that a chemical environment in which solid fermentation as a subsequent process is smoothly performed is created, and TI that inhibits digestibility There is also an effect of slightly reducing.

本発明の好適な実現例によれば、前記段階(a)の前または後に、タンパク質分解能に優れた枯草菌を選別し前培養する段階をさらに含む。   According to a preferred embodiment of the present invention, the method further includes a step of selecting and pre-culturing Bacillus subtilis excellent in protein resolution before or after the step (a).

発酵菌株の選別および前培養
固体発酵では、一般に固体基質の水分含量が低いため、低水分でよく生育するアスペルギルスオリゼなどのカビが主に用いられる。ところが、カビで大豆粕を発酵させる場合、生産された発酵大豆粕の性状には飼料としての使用に適しない点が多い。カビと枯草菌との共培養などを用いて大豆粕を製造した前記特許文献1があるが、実際2つを同時に生育することは容易ではなく(カビは低水分でよく生育し、細菌は水分がある程度以上であればよく生育するため)、一つを後添加の形式にして後培養を行って製品を作らなければならないという弱点がある。この場合、全体的なプロセスが複雑になり(各菌株に対して種培養/主培養を行わなければならず、接種時間および条件も異にしなければならない)、それぞれ条件に合う水分含量などの変化を与えなければならないことが一般的である。このような点は、結局、プロセスの複雑さなどによるコスト上昇をもたらす。
In the selection of fermentation strains and pre-culture solid fermentation, molds such as Aspergillus oryzae that grow well with low moisture are mainly used because the moisture content of the solid substrate is generally low. However, when fermenting soybean meal with mold, the properties of the fermented soybean meal produced are often unsuitable for use as feed. There is Patent Document 1 in which soybean meal is produced using co-culture of mold and Bacillus subtilis, but it is not easy to grow the two at the same time (mold grows well with low moisture, and bacteria grows with moisture. However, there is a weak point that the product must be made by post-culturing in the form of post-addition. In this case, the overall process becomes complicated (seed culture / main culture must be performed for each strain, and the inoculation time and conditions must be different), and the water content and the like that meet each condition change. It is common to have to give Such a point eventually leads to an increase in cost due to the complexity of the process.

これにより、プロセス単純化のために、単一菌株を用いて、以前に複雑な共培養などを介して長時間発酵させて抗栄養因子を低めた製品と同等以上の品質を有し、発酵時間を最大限に減少させて全体的なコストを減少させることが可能な菌株を選定することが好ましい。   This simplifies the process by using a single strain and having a quality equivalent to or better than a product that has previously been fermented for a long time through complex co-culture, etc. It is preferable to select a strain that can reduce the total cost by reducing the maximum cost.

一般に、細菌はカビより低水分でよく生育しないので、枯草菌を大豆粕に接種して本発明の目的を達成するためには、水分が不十分な大豆粕においても生育が活発であり且つ生育中に目的の酵素を多量生産する菌株を使用することが必須であるといえる。   In general, since bacteria do not grow well at lower moisture than mold, in order to achieve the object of the present invention by inoculating Bacillus subtilis into soybean meal, growth is vigorous even in soybean meal with insufficient moisture. It can be said that it is essential to use a strain that produces the target enzyme in large quantities.

また、産業的に用いられる大量の固体発酵装置では、微生物の生育に要求される十分な酸素を供給することは難しいので、低酸素条件でも活発に生育し且つタンパク質加水分解活性にも優れる枯草菌が大豆粕発酵菌株として好ましい。それだけでなく、本発明の発酵大豆粕の未来志向的価値をさらに増大させるために、胞子形成生菌剤としての機能を持つ菌株を分離することがより好ましい。最近、全世界的に飼料に抗生物質の添加が禁止されている時点で、無抗生剤飼料の代案として腸内菌叢の改善による健康増進だけでなく、有害菌増殖抑制、免疫力向上、疾病抵抗性増進または飼料効率増進などの多様な生理的機能を持っているプロバイオティクス(probiotics)の使用が積極的に勧められている。プロバイオティクスとしては伝統的に乳酸菌が主流をなしたが、最近、胞子形成細菌の生菌剤としての価値が新しく認められることにより、無抗生剤飼料に添加されるプロバイオティクスとしての胞子形成細菌に対する関心が高まっている。胞子形成生菌剤の代表的な菌株は枯草菌である。   Moreover, since it is difficult to supply sufficient oxygen required for the growth of microorganisms in a large amount of solid-state fermentation apparatus used industrially, Bacillus subtilis that grows actively even under low oxygen conditions and has excellent proteolytic activity. Is preferred as a soybean meal fermenting strain. In addition, in order to further increase the future-oriented value of the fermented soybean meal of the present invention, it is more preferable to isolate a strain having a function as a spore-forming viable agent. Recently, when the addition of antibiotics to feed is banned worldwide, as an alternative to antibiotic-free feed, not only health promotion by improving gut microbiota, but also suppression of harmful bacteria growth, immunity improvement, disease The use of probiotics with various physiological functions such as increased resistance or increased feed efficiency is actively encouraged. Lactic acid bacteria have traditionally been the mainstream for probiotics, but recently, spore formation as probiotics added to antibiotic-free diets due to the newly recognized value of live spore-forming bacteria There is a growing interest in bacteria. A representative strain of a spore-forming viable agent is Bacillus subtilis.

本発明で解決しようとする課題を満足させる枯草菌を味噌、清麹醤(チョングッチャン)またはテンペ(Tempeh)などのアジアの伝統的な固相大豆発酵食品から分離するために多くの努力を行った結果、多数の優れた枯草菌の分離に成功した。   Much effort has been made to isolate Bacillus subtilis that satisfies the problems to be solved by the present invention from traditional Asian solid-phase soybean fermented foods such as Miso, Cheongukchan or Tempeh. As a result, we succeeded in isolating many excellent Bacillus subtilis.

本発明の好適な具現例によれば、本発明に使用するために選別された枯草菌は、バチルスサブチリス(Bacillus subtilis)、バチルスセレウス(Bacillus cereus)、バチルスメガテリウム(Bacillus megaterium)、またはバチルスクラウシ(Bacillus clausii)などである。   According to a preferred embodiment of the present invention, the Bacillus subtilis screened for use in the present invention is Bacillus subtilis, Bacillus cereus, Bacillus megaterium, or Bacillus megaterium. This includes Bacillus clausii.

好ましくはバチルスサブチリスであり、より好ましくはバチルスサブチリスTP6菌株(KFCC11343P、韓国特許第10−0753002号)である。   Bacillus subtilis is preferable, and Bacillus subtilis TP6 strain (KFCC11343P, Korean Patent No. 10-075302) is more preferable.

特に、バチルスサブチリスTP6(以下、「TP6菌株」という)菌株は、水分含量40%以上の低水分大豆粕で好気性だけでなく非好気性条件でもよく生育し、大豆タンパク質の加水分解活性にも非常に優れていたうえ、発酵後半期にポリ−γ−グルタミン酸を生成する独特な特性を持っていた。また、バチルスサブチリスTP6菌株の場合、発酵時間を従前の方法より画期的に減縮させた。   In particular, Bacillus subtilis TP6 (hereinafter referred to as “TP6 strain”) is a low-moisture soybean meal having a moisture content of 40% or more and grows well not only in aerobic but also in non-aerobic conditions, and is effective in hydrolyzing soybean protein. In addition, it had a unique property of producing poly-γ-glutamic acid in the second half of the fermentation. Moreover, in the case of Bacillus subtilis TP6 strain, fermentation time was reduced epoch-making than the conventional method.

さらに、本発明の前記菌株は乳酸菌、または乳酸菌と枯草菌との混合菌株を接種するのに使用する菌株として選定できる。   Furthermore, the said strain of this invention can be selected as a strain used for inoculating lactic acid bacteria or a mixed strain of lactic acid bacteria and Bacillus subtilis.

牛乳またはチーズなどから分離された動物性乳酸菌は主に乳糖を用いて生育するが、野菜などから分離された植物性乳酸菌はブドウ糖、果糖、砂糖または麦芽糖などの多様な糖を用いることができ、環境に対する適応性が非常に高いため、低pHなどの過酷な環境でも生育することができるので、動物性乳酸菌より胃での生存率が高く、腸管まで到達して生き残る菌数も多い。   Animal lactic acid bacteria isolated from milk or cheese grow mainly using lactose, but plant lactic acid bacteria isolated from vegetables etc. can use various sugars such as glucose, fructose, sugar or maltose, Because it is highly adaptable to the environment, it can grow even in harsh environments such as low pH, so it has a higher survival rate in the stomach than animal lactic acid bacteria, and there are many bacteria that survive to reach the intestinal tract.

したがって、本明細書における用語「植物性乳酸菌」は植物性原料に由来した乳酸菌を意味する。   Therefore, the term “plant lactic acid bacteria” in the present specification means lactic acid bacteria derived from plant raw materials.

韓国のキムチは植物性乳酸菌の代表的な宝庫であるといえる。キムチを漬ける際には唐辛子粉またはニンニクなどの香辛料が添加されるので、キムチ中の乳酸菌は一般乳酸菌より苛酷な環境で生育し、栄養素を分解、摂取する能力に優れるうえ、各種生理活性物質の生産力にも優れるものと知られている。   Korean kimchi is a representative treasure trove of plant lactic acid bacteria. When kimchi is pickled, spices such as chili powder or garlic are added, so the lactic acid bacteria in kimchi grow in a harsh environment than general lactic acid bacteria, and have the ability to decompose and ingest nutrients, as well as various physiologically active substances. It is known to be excellent in productivity.

したがって、一般乳酸菌ではなく、キムチから分離した植物性乳酸菌を用いて大豆粕を発酵する場合、特別な副原料の添加なしで活発に生育し、発酵中の抗菌物質、機能性ペプチドまたは有機酸などの生産を期待することができる。   Therefore, when fermenting soybean meal using plant lactic acid bacteria isolated from kimchi instead of general lactic acid bacteria, it actively grows without the addition of special auxiliary materials, such as antimicrobial substances, functional peptides or organic acids during fermentation Can be expected to produce.

本発明では、大豆粕の発酵に適した乳酸菌をキムチから選抜しようと努力した結果、本発明の好適な具現例によれば、選抜された乳酸菌として、好ましくはラクトバチルスサケイ(Lactobacillus sakei)、ラクトバチルスブレビス(Lactobacillus brevis)、またはラクトバチルスプランタラム(Lactobacillus plantarum)であり、より好ましくはラクトバチルスプランタラムであり、最も好ましくは本発明者によってキムチから分離したラクトバチルスプランタラムP23(KCCM80048)である。   In the present invention, as a result of efforts to select lactic acid bacteria suitable for fermentation of soybean meal from kimchi, according to a preferred embodiment of the present invention, the selected lactic acid bacteria are preferably Lactobacillus sakei, Lactobacillus brevis or Lactobacillus plantarum, more preferably Lactobacillus plantarum, most preferably Lactobacillus plantarum P23 (KCCM80048) separated from kimchi by the present inventors. .

本発明において、ラクトバチルスプランタラムP23菌株(以下、「P23菌株」という)は、大豆粕中の抗栄養因子である非澱粉多糖類を著しく減少させたうえ、優れた有機酸生成能と耐酸性を示した。   In the present invention, the Lactobacillus plantarum P23 strain (hereinafter referred to as “P23 strain”) significantly reduces non-starch polysaccharides, which are anti-nutritive factors in soybean meal, and has excellent organic acid production ability and acid resistance. showed that.

キムチから分離した乳酸菌を種菌培養する培地としては、当業界における公知の多様な培地を用いることができ、好ましくはMRSブロス(deMan Regosa Sharpe broth)、APT(All Purpose with Tween)またはBHI(Brain Heart Infusion)培地であり、より好ましくはMRSブロス培地である。ところが、産業的に利用するにはMRSブロスの価格が非常に高いため、本発明者は乳酸菌種菌のための低価格培地を構成した。また、乳酸菌種菌を培養するための培地の炭素源および窒素源はCSL(Corn Steep Liquor)から構成した。   Various culture media known in the art can be used as the culture medium for inoculating lactic acid bacteria isolated from kimchi, and preferably MRS broth (deMan Regosa Sharpe broth), APT (All Purpose with Tween) or BHI (Brain Heart). Infusion) medium, more preferably MRS broth medium. However, since the price of MRS broth is very high for industrial use, the present inventor has constructed a low-cost medium for lactic acid bacteria inoculum. The carbon source and nitrogen source of the medium for culturing the lactic acid bacteria inoculum were composed of CSL (Corn Steep Liquor).

また、枯草菌の種菌培養のためには変形栄養培地(5g/Lソイトン、5g/L牛肉エキスおよび20g/Lキシロース、pH7.0)を用いて37℃で12〜24時間培養することが好ましい。枯草菌の培地も産業化のための量産の際に費用が負担できるので、本発明者が考案したCSLを基本とした産業用培地で生育させることが有利である。   For inoculum culture of Bacillus subtilis, it is preferable to culture at 37 ° C. for 12 to 24 hours using a modified nutrient medium (5 g / L soyton, 5 g / L beef extract and 20 g / L xylose, pH 7.0). . Since the Bacillus subtilis medium can also be costly in mass production for industrialization, it is advantageous to grow it on an industrial medium based on CSL devised by the present inventors.

乳酸菌種金培養のために本発明者が考案した産業用培地に、キムチから分離した乳酸菌を接種し、30℃で8〜24時間培養すると、所望の菌の活性を得ることができる。   When the lactic acid bacteria isolated from kimchi are inoculated into an industrial medium devised by the present inventor for lactic acid bacteria seed gold culture and cultured at 30 ° C. for 8 to 24 hours, the activity of the desired bacteria can be obtained.

前記2つの菌株をそれぞれの産業用種菌培地で培養することにより種菌培養液の最終生菌数は(1〜5)×10cfu/mLの範囲となるようにする。 By culturing the two strains in respective industrial inoculum culture media, the final viable cell count of the inoculum culture solution is in the range of (1-5) × 10 9 cfu / mL.

(b)前記熱処理された大豆粕の冷却および微生物の接種
次に、本発明の方法によれば、前記段階(b)で熱処理された大豆粕を固体発酵可能な温度に冷却した後、枯草菌を接種する。
(B) Cooling of the heat-treated soybean meal and inoculation with microorganisms Next, according to the method of the present invention, the soybean meal treated in the step (b) is cooled to a temperature capable of solid fermentation, and then Bacillus subtilis. Inoculate.

本発明において、大豆粕の冷却は蒸煮が終わった後で自然に行えばよいが、冷却速度を高めて過熱を防止し、均一に冷却するために、コンベヤー式放冷器を用いた移送過程を経ると、容易に行うことができる(図1)。   In the present invention, the soybean meal may be cooled naturally after cooking, but in order to prevent overheating by increasing the cooling rate and to cool uniformly, the transfer process using a conveyor type cooler is performed. After that, it can be easily performed (FIG. 1).

本発明の好適な具現例によれば、本発明の方法において、前記段階(b)の冷却した大豆粕の温度は30〜50℃であり、好ましくは35〜45℃であり、より好ましくは37℃である。   According to a preferred embodiment of the present invention, in the method of the present invention, the temperature of the cooled soybean meal in the step (b) is 30-50 ° C, preferably 35-45 ° C, more preferably 37. ° C.

熱処理された大豆粕を冷却した後、本発明の好適な具現例によれば、製造された大豆粕の培地に枯草菌を培養した前培養液をそのまま又は適切に殺菌水で希釈して出来る限り均一に接種することが好ましい。   After cooling the heat-treated soybean meal, according to a preferred embodiment of the present invention, the pre-culture solution obtained by culturing Bacillus subtilis on the produced soybean meal medium is diluted as it is or appropriately with sterilized water as much as possible. It is preferable to inoculate uniformly.

熱処理された大豆粕に接種する微生物の量は、大豆粕の固体発酵を左右する重要な要因となる。蒸煮した大豆粕への微生物の接種量は、接種直後の菌数が10〜10CFU/gとなるようにすることが好ましい。接種量が10CFU/g未満の場合、種菌発酵液の所要量が少ないが、大豆粕の発酵には多くの時間がかかって製品生産のための培養時間が長くなり、雑菌が汚染する可能性が高いという欠点がある。これに対し、接種量が10cfu/g超過の場合、発酵時間は相当短縮できるが、接種用種菌の生産に負担となるという欠点がある。特に、使用する菌株の生育特性と発酵装置の種類によって発酵成績が大きく左右されるので、生産段階で菌株の特性を考慮して接種量を適切に選定することが好ましい。 The amount of microorganisms inoculated into the heat-treated soybean meal is an important factor that affects the solid fermentation of soybean meal. The amount of microorganisms inoculated into the steamed soybean meal is preferably 10 5 to 10 9 CFU / g immediately after the inoculation. When the inoculation amount is less than 10 5 CFU / g, the required amount of the inoculum fermentation solution is small, but it takes a lot of time to ferment soybean meal, and the culture time for product production becomes longer, and various bacteria may be contaminated. There is a drawback of high nature. On the other hand, when the inoculation amount exceeds 10 9 cfu / g, the fermentation time can be considerably shortened, but there is a drawback that it is a burden on the production of inoculum for inoculation. In particular, since the fermentation results greatly depend on the growth characteristics of the strain used and the type of fermentation apparatus, it is preferable to appropriately select the inoculation amount in consideration of the characteristics of the strain at the production stage.

(c)前記大豆粕に接種された菌の固体培養によって大豆粕発酵物の収得
本発明の最も大きい特徴の一つは、カビおよび酵母ではなく、固体発酵(培養)に一般化されていない枯草菌を大豆粕に接種して培養することにより、発酵大豆粕を製造することにある。
(C) Obtaining fermented soybean meal by solid culture of the fungus inoculated in the soybean meal One of the greatest features of the present invention is not mold and yeast but hay that is not generalized in solid fermentation (culture) The purpose is to produce fermented soybean meal by inoculating the fungus into soybean meal and culturing.

本明細書に使用される用語「固体発酵(培養)」は、大豆から脂肪(大豆油)を分離して残った脱脂大豆粕を用いて微生物を培養することを意味し、大豆粕の抽出物を用いる「液体培養または液体発酵」とは区別される方法である。   As used herein, the term “solid fermentation (culture)” means culturing microorganisms using defatted soybean meal left after separation of fat (soybean oil) from soybean, and an extract of soybean meal Is a method that is distinguished from “liquid culture or liquid fermentation”.

ある微生物は時々固体発酵過程でよく生育しながら菌体外酵素と他の様々な代謝産物を多量で生産するため、固体発酵は昔から主にアジア地域で伝統食品またはアルコール飲料の生産に採用された。大豆粕はフレーク(flake)または粒子状の固体基質であるから、微生物を用いて大豆粕の飼料価値を著しく向上させることができる最も低廉且つ効率的な発酵方法は固体発酵法である。   Since certain microorganisms sometimes grow well in solid fermentation processes and produce large amounts of extracellular enzymes and various other metabolites, solid fermentation has long been adopted mainly in the Asian region for the production of traditional foods or alcoholic beverages. It was. Since soybean meal is a flake or particulate solid substrate, the cheapest and most efficient fermentation method that can significantly improve the feed value of soybean meal using microorganisms is the solid fermentation method.

本発明の方法において固体発酵法を用いるために枯草菌から選択される菌株が使用されるが、発酵大豆粕の最終製品特性に応じて菌株の種類および接種方法を調節することができる。好ましくは、バチルスサブチリスTP6菌株が使用され、それにより本発明の発酵時間を減縮させることができる。   In the method of the present invention, a strain selected from Bacillus subtilis is used to use the solid fermentation method, but the type of strain and the inoculation method can be adjusted according to the final product characteristics of the fermented soybean meal. Preferably, the Bacillus subtilis TP6 strain is used, thereby reducing the fermentation time of the present invention.

枯草菌のみを接種して製造する発酵大豆粕は、枯草菌が活発に生育しながら発酵大豆粕の品質を上昇させる作用をするが、優先的に活性の強力なプロテアーゼを生産する。枯草菌が生産するプロテアーゼは、大豆粕の消化を阻害させるタンパク質TIを加水分解して不活性化させるうえ、高分子としての大豆タンパク質を大部分加水分解して低分子化することにより、消化吸収率が増加する特徴を示す。   Fermented soybean meal produced by inoculating only Bacillus subtilis acts to increase the quality of the fermented soybean meal while Bacillus subtilis actively grows, but preferentially produces an active and powerful protease. The protease produced by Bacillus subtilis hydrolyzes and inactivates protein TI, which inhibits the digestion of soybean meal, and hydrolyzes soy protein as a macromolecule to lower its molecular weight. It shows the characteristics of increasing rate.

また、枯草菌は、大豆粕の構成成分中の炭水化物を用いて活発に生育しながら、菌体を構成するタンパク質に転換されるため、大豆粕は、発酵中に相対的にタンパク質の含量が増加する効果を示す。これは、飼料の品質を評価する項目のうち最も重要なタンパク質の含量を増加させる重要な意味を持つ。   Bacillus subtilis grows actively using carbohydrates in the components of soybean meal and is converted to the proteins that make up the cells. Soybean meal has a relatively high protein content during fermentation. Show the effect of This has an important meaning of increasing the content of the most important protein among the items for evaluating the quality of the feed.

大豆粕で生育した枯草菌は、乾燥の際に胞子を形成しながら高い比率で生存することにより、発酵大豆粕を乾燥させた後にも、生菌として存在する特徴がある。この枯草菌の胞子により、上述した胞子形成プロバイオティクスで家畜の腸機能改善効果が期待される。   Bacillus subtilis grown in soybean meal has a characteristic that it exists as a living microorganism even after the fermented soybean meal is dried by surviving at a high ratio while forming spores during drying. The spores of Bacillus subtilis are expected to improve the intestinal function of livestock with the spore-forming probiotics described above.

本発明の方法は、乳酸菌単独、または乳酸菌と枯草菌との混合菌を接種することができる。この際、キムチから分離した植物性乳酸菌のみを接種する場合、大豆粕を原料として旺盛に生育しながら多量の有機酸を生産し、α−ガラクトシダーゼの活性を示すため、大豆粕に含有しているガラクトオリゴ糖を分解する特性を示すうえ、大豆粕中の多様な多糖類抗栄養因子も加水分解して腸炎などを防止することができ、栄養成分の吸収率が顕著に向上するという利点がある。   The method of the present invention can inoculate lactic acid bacteria alone or mixed bacteria of lactic acid bacteria and Bacillus subtilis. At this time, when only plant lactic acid bacteria isolated from kimchi are inoculated, a large amount of organic acid is produced while growing vigorously using soybean meal as a raw material, and it is contained in soybean meal to show the activity of α-galactosidase. In addition to showing the property of degrading galactooligosaccharides, various polysaccharide anti-nutritional factors in soybean meal can also be hydrolyzed to prevent enteritis and the like, and the absorption rate of nutrient components is significantly improved.

前記2つの菌の利点を全て含んだ発酵大豆粕を製造するために、2つの菌を同時にまたは時間差をおいて順次接種することができ、2つの菌の成長条件が同一ではないから、接種比率を異にするか或いは順次接種を行うことが完成品の品質を良くするという点から好ましい。ところが、同時にまたは同一の比率で接種してもその程度が異なるだけであり、目的の効果を達成することができないことを意味するのではない。   In order to produce a fermented soybean meal including all the advantages of the two fungi, the two fungi can be inoculated simultaneously or sequentially with a time difference, and the growth conditions of the two fungi are not the same. It is preferable from the standpoint of improving the quality of the finished product that the inoculation is different or the inoculation is performed sequentially. However, even if they are inoculated at the same time or at the same ratio, they only differ in their degree and do not mean that the desired effect cannot be achieved.

本発明の好適な具現例によれば、前記段階(c)で目的の微生物を均一に接種した大豆粕を充填層発酵器(packed-bed fermentor)で発酵させる。充填層発酵器には回分式通気培養装置、密閉式培養装置、連続式通気培養装置などの様々な形式がある。そのいずれの装置であれ、本発明の方法を制限せず、生産規模に応じて適切な装置を選択して使用する。   According to a preferred embodiment of the present invention, the soybean meal that has been uniformly inoculated with the target microorganism in the step (c) is fermented in a packed-bed fermentor. There are various types of packed bed fermenters such as a batch aeration culture apparatus, a closed culture apparatus, and a continuous aeration culture apparatus. In any of these apparatuses, the method of the present invention is not limited, and an appropriate apparatus is selected and used according to the production scale.

本発明の方法で充填層発酵器に大豆粕を厚さ5〜50cmで載置し、培養温度20〜50℃で12〜72時間発酵させる。出来る限り大豆粕の充填層の厚さは厚いほど好ましく、培養温度30〜45℃で12〜48時間発酵させることが好ましい。より好ましくは37℃で24時間発酵させる。   The soybean cake is placed in a packed bed fermenter with a thickness of 5 to 50 cm by the method of the present invention and fermented at a culture temperature of 20 to 50 ° C. for 12 to 72 hours. As much as possible, the thickness of the packed bed of soybean meal is preferably as high as possible, and it is preferable to ferment at a culture temperature of 30 to 45 ° C. for 12 to 48 hours. More preferably, it is fermented at 37 ° C. for 24 hours.

(d)前記収得された発酵大豆粕の乾燥および粉砕(D) Drying and grinding of the obtained fermented soybean meal

本発明の好適な具現例によれば、本発明の方法は、前記段階(c)の後に、(d)前記発酵大豆粕を低温低湿乾燥および粉砕する段階をさらに含む。   According to a preferred embodiment of the present invention, the method of the present invention further includes, after the step (c), (d) drying and crushing the fermented soybean meal at low temperature and low humidity.

発酵過程で大豆粕中の水分は一部蒸発するが、発酵終了直後の残存水分含量は20〜50%(v/w)と相当高い。ところが、発酵大豆粕製品の最終水分含量は10〜12%(v/w)が好ましいので、乾燥工程が必要である。   Although the water in soybean meal partially evaporates during the fermentation process, the residual water content immediately after the end of fermentation is considerably high at 20 to 50% (v / w). However, since the final moisture content of the fermented soybean meal product is preferably 10 to 12% (v / w), a drying step is required.

また、大豆粕をアスペルギルスオリゼなどのカビで発酵させた場合、菌糸生成により大豆粕が堅く固まり、胞子が飛散して乾燥と粉砕が非常に難しいという欠点がある。これに対し、本発明で細菌によって発酵させた場合は、発酵大豆粕の状態が非常に良好であるが、部分的に弱く固まった塊を形成するので、乾燥の後に発酵大豆粕の粒子サイズを均一に粉砕する必要がある。   In addition, when soybean meal is fermented with fungi such as Aspergillus oryzae, the soybean cake is hardened due to the formation of mycelia, spores are scattered and drying and grinding are very difficult. On the other hand, when fermented by bacteria in the present invention, the state of fermented soybean meal is very good, but it forms a partially weak and hardened lump. It is necessary to grind uniformly.

乾燥および粉砕は当業界における公知の多様な方法で実施することができるが、特に過度に高温で乾燥させる場合、発酵大豆粕中の生菌が大部分死滅するので注意する。好ましくは生菌が死滅しない低温で乾燥させなければならず、より好ましくは低温低湿度の熱風で乾燥させる。粉砕過程は発酵大豆粕を用いようとする目的に応じて多様なサイズに粉砕することができ、粉砕方法としてハンマーミル(hammer mill)を使用することが好ましい。   Drying and grinding can be carried out in various ways known in the art, but care should be taken as most of the viable bacteria in the fermented soybean meal are killed, especially when dried at excessively high temperatures. Preferably, it must be dried at a low temperature at which viable bacteria do not die, more preferably dried with hot air at low temperature and low humidity. The pulverization process can be pulverized into various sizes according to the purpose of using the fermented soybean meal, and it is preferable to use a hammer mill as a pulverization method.

上述した本発明の方法によって大豆粕を発酵させることにより、大豆粕に含有されたTIを始めとして各種抗栄養因子が減少し、タンパク質の加水分解によって消化吸収率が向上し、タンパク質の含量が増加することにより、飼料としての絶対的な価値が改善されるので、動物性タンパク質を代替することが可能な高品質タンパク質飼料源としての発酵大豆粕を得る。   By fermenting soybean meal by the method of the present invention described above, various anti-nutritive factors such as TI contained in soybean meal are reduced, digestion and absorption rate is improved by protein hydrolysis, and protein content is increased. By doing so, since the absolute value as a feed is improved, fermented soybean meal is obtained as a high-quality protein feed source that can replace animal protein.

その他に、本発明の方法によって製造された発酵大豆粕は、流通中にも生存力の強い枯草菌が含有されているため、飼料を摂取した動物の整腸作用に役立つ機能を保有するという利点を持つ。   In addition, since fermented soybean meal produced by the method of the present invention contains Bacillus subtilis having a high viability even during distribution, it has an advantage of having a function that is useful for the intestinal action of animals that have ingested feed. have.

別の様態として、本発明は、上述した本発明の方法によって製造された発酵大豆粕に関する。   In another aspect, the present invention relates to a fermented soybean meal produced by the method of the present invention described above.

本発明の発酵大豆粕は、上述した本発明の方法によって製造されるため、これら両者の間に共通した内容は、反復記載による明細書の過度な複雑性を回避するために、その記載を省略する。   Since the fermented soybean meal of the present invention is produced by the method of the present invention described above, the description common to both of them is omitted in order to avoid excessive complexity of the specification due to repeated description. To do.

バチルスサブチリスTP6菌株を接種して製造する発酵大豆粕は、枯草菌が活発に生育しながら発酵大豆粕の品質を上昇させる作用をするが、優先的に活性が強力なプロテアーゼを生産する。枯草菌が生産するプロテアーゼは、大豆粕の消化を阻害させるタンパク質TIを加水分解して不活性化させるうえ、高分子の大豆タンパク質を大部分加水分解して低分子化することにより、消化吸収率が増加する特徴を示す。また、枯草菌は大豆粕の構成成分中の炭水化物を用いて活発に生育しながら、菌体を構成するタンパク質に転換されるため、大豆粕は発酵中に相対的にタンパク質の含量が増加する効果を示す。これは飼料の品質を評価する項目のうち最も重要なタンパク質の含量を増加させる重要な意味を持つ。そして、大豆粕で生育した枯草菌は、乾燥の際に胞子を形成しながら高い比率で生存することにより、発酵大豆粕を乾燥させた後でも生菌として存在する特徴がある。この枯草菌の胞子により、上述した胞子形成プロバイオティクスとして家畜の腸機能改善効果が期待される。   Fermented soybean meal produced by inoculating the Bacillus subtilis TP6 strain acts to increase the quality of the fermented soybean meal while Bacillus subtilis is actively growing, but preferentially produces a protease with strong activity. The protease produced by Bacillus subtilis hydrolyzes and inactivates protein TI, which inhibits digestion of soybean meal, and hydrolyzes high molecular weight soy protein to lower its molecular weight. Indicates an increasing feature. In addition, Bacillus subtilis grows actively using carbohydrates in the components of soybean meal and is converted to the protein that composes the cells. Soybean meal has the effect of relatively increasing the protein content during fermentation. Indicates. This has an important meaning of increasing the content of the most important protein among the items for evaluating the quality of feed. The Bacillus subtilis grown in soybean meal has a characteristic that it exists as a living microorganism even after the fermented soybean meal is dried, by surviving at a high ratio while forming spores during drying. The Bacillus subtilis spores are expected to improve the intestinal function of livestock as the above-mentioned spore-forming probiotics.

本発明の好適な具現例によれば、本発明の発酵大豆粕は、枯草菌から選択される微生物の栄養細胞または胞子を含む。好ましくはバチルスサブチリスTP6菌株である。   According to a preferred embodiment of the present invention, the fermented soybean meal of the present invention contains vegetative cells or spores of microorganisms selected from Bacillus subtilis. Bacillus subtilis TP6 strain is preferable.

本発明の他の好適な具現例によれば、本発明の発酵大豆粕は、家畜の体脂肪の蓄積を減少させるポリ−γ−グルタミン酸を含有する。   According to another preferred embodiment of the present invention, the fermented soybean meal of the present invention contains poly-γ-glutamic acid that reduces the accumulation of body fat in livestock.

本発明の他の好適な具現例によれば、前記枯草菌は、バチルスサブチリス(Bacillus subtilis)TP6菌株を含む。   According to another preferred embodiment of the present invention, the Bacillus subtilis comprises a Bacillus subtilis TP6 strain.

本発明の特徴および利点を要約すれば、次のとおりである:
(a)本発明は、大豆粕に、大豆抗栄養因子除去能力に優れた枯草菌、特にバチルスサブチリスTP6菌株を接種して固体培養することにより、タンパク質飼料源として特性が改良または改善された高品質発酵大豆粕を製造する方法を提供する。
(b)特に、本発明は、固体発酵時間を既存の特許または論文に比べて12〜24時間減らしながらも、既存のものと比較して同等以上の品質を確保することが可能な菌株(バチルスサブチリスTP6)菌株を用いた。本発明によって製造された発酵大豆粕は、従来の大豆粕に比べて、枯草菌が生産する強力なプロテアーゼによって、TIが加水分解されて殆ど不活性化され、大豆タンパク質がペプチドに低分子化されることにより、吸収率と飼料効率が向上した優れた高品質のタンパク質源である。
(c)このような発酵時間の減少は、製麹機の回転率を増加させて年間生産量を画期的に増加させる。これは製品のコストを低めて消費者に安い価格で高品質の発酵大豆粕を提供することができるという利点がある。
(d)本発明の方法は、固体発酵に一般に用いられない枯草菌を発酵菌株として用いることにより、本発明によって製造された発酵大豆粕は、従来の大豆粕に比べて、枯草菌が生産する強力なプロテアーゼによって、TIが加水分解されて殆ど不活性化され、大豆タンパク質がペプチドに低分子化されることにより、吸収率と飼料効率が向上した優れた高品質のタンパク質源である。
(e)また、本発明の方法で生産された発酵大豆粕は、枯草菌の活発な増殖によって、良質のタンパク質である菌体タンパク質が生産されるので、タンパク質の絶対量が増加すると同時に、大豆粕に含有された炭水化物が微生物の生育に必要なエネルギー源として消費されることにより、相対的にタンパク質の含量が増加するなど、タンパク質飼料としての価値がさらに上昇する。
(f)本発明によって製造された発酵大豆粕には、流通中にも生存力が強い枯草菌を多量含有しているため、発酵大豆粕を摂取した動物の整腸作用に役立つ機能を保有する特徴を持っている。抗生剤使用禁止による代案として、プロバイオティクスが勧められていることを考慮するとき、本発酵大豆粕の未来志向的価値はなお更大きいといえる。
(g)なお、本発明では、ポリ−γ−グルタミン酸生産能を持つ枯草菌を用いて大豆粕を発酵させることにより、付加的に家畜の体脂肪の蓄積を減少させることが可能な効果も得ることができる。
家畜の成長を促進するために、高エネルギー飼料を摂取すると、家畜の体脂肪が増加する。ところが、最近、消費者は健康に対する関心が高まるにつれて動物性脂肪の摂取をできる限り減少させることを願うから、家畜の体脂肪を減少させることが可能な飼育方法または飼料の開発が幅広く要求される。ポリ−γ−グルタミン酸は、韓国の清麹醤(チョングッチャン)または日本の納豆のねばねばとした粘質物の主成分であって、多様な機能を持つ機能性成分であり、最近では、特に家畜の体脂肪の蓄積を減少させることが解明された。
(h)上述したように、本発明の発酵大豆粕は、優れた品質と多様な機能性を持つ高タンパク質飼料源として飼料に幅広く適用できる。また、発酵時間を既存の時間に比べて12〜24時間減らすことができる。
The features and advantages of the present invention can be summarized as follows:
(A) The present invention has improved or improved characteristics as a protein feed source by inoculating soybean meal with Bacillus subtilis excellent in ability to remove soybean antinutritional factors, in particular, Bacillus subtilis TP6 strain and solid culture. A method for producing high quality fermented soybean meal is provided.
(B) In particular, the present invention reduces the solid fermentation time by 12 to 24 hours compared to existing patents or papers, but can ensure a quality equal to or higher than that of existing strains (Bacillus). Subtilis TP6) strain was used. Compared with conventional soybean meal, fermented soybean meal produced according to the present invention is almost inactivated by hydrolysis of TI by a powerful protease produced by Bacillus subtilis, and soy protein is reduced to peptides. It is an excellent high quality protein source with improved absorption and feed efficiency.
(C) Such a decrease in fermentation time increases the annual rate of production by increasing the rotation rate of the iron making machine. This has the advantage of reducing the cost of the product and providing consumers with high quality fermented soybean meal at a low price.
(D) In the method of the present invention, Bacillus subtilis produced by the present invention is produced by Bacillus subtilis produced by the present invention by using Bacillus subtilis not generally used for solid fermentation as a fermenting strain. By powerful protease, TI is hydrolyzed and almost inactivated, soy protein is reduced to peptide, and it is an excellent high quality protein source with improved absorption rate and feed efficiency.
(E) Moreover, since the fermented soybean meal produced by the method of the present invention produces bacterial proteins, which are high-quality proteins, by vigorous growth of Bacillus subtilis, the absolute amount of the protein increases and at the same time Consumption of the carbohydrates contained in the soybean meal as an energy source necessary for the growth of microorganisms further increases the value as a protein feed, such as a relative increase in protein content.
(F) The fermented soybean meal produced according to the present invention contains a large amount of Bacillus subtilis that is highly viable even during distribution, and therefore has a function useful for the intestinal action of animals that have consumed the fermented soybean meal. Has characteristics. Considering that probiotics are recommended as an alternative to prohibiting the use of antibiotics, the future-oriented value of this fermented soybean meal is even greater.
(G) In the present invention, by fermenting soybean meal using Bacillus subtilis having the ability to produce poly-γ-glutamic acid, an effect capable of additionally reducing the accumulation of body fat in livestock is also obtained. be able to.
Ingestion of high energy feed to promote livestock growth will increase livestock body fat. Recently, however, consumers want to reduce the intake of animal fat as much as possible as health concerns increase, so there is a wide demand for the development of breeding methods or feeds that can reduce the body fat of livestock. . Poly-γ-glutamic acid is a main ingredient of sticky mucilage of Korean natto sauce or Japanese natto and is a functional ingredient with various functions. It has been found that it reduces the accumulation of body fat.
(H) As described above, the fermented soybean meal of the present invention can be widely applied to feed as a high protein feed source having excellent quality and various functions. Moreover, fermentation time can be reduced 12 to 24 hours compared with the existing time.

大豆粕を原料として発酵大豆粕を製造する本発明の一実施例を示す概略図である。It is the schematic which shows one Example of this invention which manufactures fermented soybean meal using soybean meal as a raw material. L.プランタラム(L. plantarum)P23単独培養、B.サブチリス(B. subtilis)TP6単独培養、およびL.プランタラム(L. plantarum)P23とB.サブチリス(B. subtilis)TP6との混合培養の場合のトリプシン阻害因子の活性変化を示すグラフである。L. L. plantarum P23 culture alone, B. subtilis TP6 single culture and L. subtilis. Plantarum P23 and B.I. It is a graph which shows the activity change of a trypsin inhibitor in the case of mixed culture with B. subtilis TP6. L.プランタラム(L. plantarum)P23単独培養、B.サブチリス(B. subtilis)TP6単独培養、およびL.プランタラム(L. plantarum)P23とB.サブチリス(B. subtilis)TP6との混合培養の場合のタンパク質パターンの変化を示す図である。L. L. plantarum P23 culture alone, B. subtilis TP6 single culture and L. subtilis. Plantarum P23 and B.I. It is a figure which shows the change of the protein pattern in the case of mixed culture with B. subtilis TP6. 菌を接種してない蒸煮大豆粕の糖分析クロマトグラムを示すグラフである。It is a graph which shows the sugar analysis chromatogram of the steamed soybean meal which is not inoculated with a fungus. B.サブチリス(B. subtilis)TP6菌株で発酵した大豆粕発酵物の糖分析クロマトグラムを示すグラフである。B. It is a graph which shows the saccharide | sugar analysis chromatogram of the fermented soybean meal fermented with B. subtilis TP6 strain. B.サブチリス(B. subtilis)TP6およびL.プランタラム(L. plantarum)P23菌株で発酵した大豆粕発酵物の糖分析クロマトグラムを示すグラフである。B. B. subtilis TP6 and L. It is a graph which shows the sugar analysis chromatogram of the soybean meal fermented material fermented by the plantarum (L. plantarum) P23 strain. B.サブチリス(B. subtilis)TP6発現によるタンパク質分解効果およびアレルギー誘発物質除去効果を示す。M:マーカー、(1):生大豆粕、(2):37℃45%、(3):37℃50%、(4):45℃45%、(5):45℃50%。B. The proteolytic effect and allergen-inducing substance removal effect by subtilis (B. subtilis) TP6 expression are shown. M: Marker, (1): Raw soybean meal, (2): 37 ° C 45%, (3): 37 ° C 50%, (4): 45 ° C 45%, (5): 45 ° C 50%.

以下、実施例によって本発明をさらに詳細に説明する。これらの実施例は本発明をより具体的に説明するためのものに過ぎない。本発明の範囲がこれらの実施例に限定されないのは、本発明の属する技術分野における通常の知識を有する者には自明なことであろう。   Hereinafter, the present invention will be described in more detail with reference to examples. These examples are merely illustrative of the present invention. It will be apparent to those skilled in the art that the scope of the present invention is not limited to these examples.

本明細書全体にわたって、特定物質の濃度を示すために使用される「%」は、別途に言及しない限りは、固体/固体は(重量/重量)%、固体/液体は(重量/体積)%、液体/液体は(体積/体積)%である。   Throughout this specification, “%” used to indicate the concentration of a particular substance is (weight / weight)% for solid / solid and (weight / volume)% for solid / liquid unless otherwise stated. , Liquid / liquid is (volume / volume)%.

実施例1:大豆粕の水分含量別枯草菌と乳酸菌の生育
細菌の培養に適した大豆粕の水分含量を決定するために、大豆粕の水分含量が30%、40%、50%および60%となるように均一に加水し、加水した大豆粕50gをビーカー(250mL)に入れ、アルミニウム箔でビーカーの上部を覆ってゴム紐で縛った後、80℃で30分間蒸煮し、しかる後に、放冷した。
ここで、大豆粕発酵には、本発明の具現例によって最も好ましい菌株として選定したバチルスサブチリス(Bacillus subtilis)TP6(KFCC11343P)(以下、「TP6」菌株という)菌株とラクトバチルスプランタラム(Lactobacillus plantrum)P23(KCCM80048)(以下、「P23」菌株という)菌株を使用した。TP6菌株の種培養には、キシロース2%、ソイトン0.5%および牛肉エキス0.5%を含有する培地を使用し、P23菌株はMRSブロス(Difco)を用いて温度37℃で24時間前培養した。
蒸煮した大豆粕の温度が約30℃まで冷却すると、クリーンベンチで前記各種菌培地を用いて前培養した各種菌を、水分含量を異にした各蒸煮大豆粕に5%接種し、汚染と水分蒸発を防止するためにビーカーをアルミニウム箔で密閉した状態でインキュベーターを用いて37℃で72時間発酵させた後、各大豆粕発酵物の菌数およびpH値を測定した。その結果を下記表1にまとめた。
Example 1: To determine the moisture content of soybean meal suitable for cultivation of Bacillus subtilis and lactic acid bacteria growing bacteria according to the moisture content of soybean meal, the moisture content of soybean meal is 30%, 40%, 50% and 60%. Add 50 g of the soy bean cake to a beaker (250 mL), cover the top of the beaker with aluminum foil and tie it with a rubber string, boil at 80 ° C for 30 minutes, and then release it. Chilled.
Here, for soybean meal fermentation, Bacillus subtilis TP6 (KFCC11343P) (hereinafter referred to as “TP6” strain) and Lactobacillus plantarum (Lactobacillus plantrum) selected as the most preferred strains according to the embodiment of the present invention. ) P23 (KCCM80048) (hereinafter referred to as “P23” strain) was used. For the seed culture of the TP6 strain, a medium containing 2% xylose, 0.5% soyton and 0.5% beef extract was used, and the P23 strain was used with MRS broth (Difco) at a temperature of 37 ° C. for 24 hours. Cultured.
When the temperature of the steamed soybean meal is cooled to about 30 ° C., 5% inoculation of the various fungi pre-cultured with the above-mentioned various bacteria culture mediums on a clean bench into each steamed soybean meal with different moisture content, contamination and moisture In order to prevent evaporation, the beaker was sealed with aluminum foil and fermented at 37 ° C. for 72 hours using an incubator, and then the number of bacteria and the pH value of each fermented soybean meal were measured. The results are summarized in Table 1 below.

表1から分かるように、接種後初期菌数が約1×10CFU/gであることを考慮すると、大豆粕の水分含量が30%の場合には発酵後にP23およびTP6菌が殆ど増殖しないことを確認することができる。大豆粕の水分含量が40%の場合には(4.5〜7.0)×10CFU/g、大豆粕の水分含量が50%の場合には(1.3〜2.5)×10CFU/g水準までそれぞれ増殖した。
水分含量が増加するほど菌の生育はさらに活発になって、水分含量60%の場合には発酵後にP23とTP6の最終菌数が3.2×10CFU/g水準まで増加した。また、P23菌株の場合は、有機酸の生成によって、発酵後にpHが著しく減少した。
したがって、本実験の結果によって産業的水準に細菌を増殖させるために、大豆粕の初期水分含量は40%以上にならなければならないという事実を確認することができた。
As can be seen from Table 1, considering that the initial number of bacteria after inoculation is about 1 × 10 7 CFU / g, P23 and TP6 bacteria hardly grow after fermentation when the water content of soybean meal is 30%. I can confirm that. When the water content of soybean meal is 40%, (4.5 to 7.0) × 10 8 CFU / g, when the moisture content of soybean meal is 50%, (1.3 to 2.5) × Each grew to a level of 10 9 CFU / g.
As the water content increased, the growth of the bacteria became more vigorous. When the water content was 60%, the final number of P23 and TP6 bacteria increased to a level of 3.2 × 10 9 CFU / g after fermentation. In the case of the P23 strain, the pH decreased significantly after fermentation due to the production of organic acids.
Therefore, the result of this experiment was able to confirm the fact that the initial moisture content of soybean meal must be 40% or more in order to grow the bacteria to the industrial level.

実施例2:大豆粕の熱処理条件
大豆粕の発酵において加水した大豆粕の熱処理は、雑菌の汚染を防ぐだけでなく、大豆粕の化学的環境が発酵に適するようにする重要な要因なので、本発明者は大豆粕の熱処理条件を検討した。発酵期間中に汚染菌が発生せず、接種菌株が活発に生育することができるなるべく最小限の熱処理条件を確立するために、大豆粕の水分含量を60%に調節した後、250mLのビーカーにそれぞれ50gを入れてビーカーの上部をアルミニウム箔で密閉し、60℃、80℃、105℃および121.1℃のオートクレーブでそれぞれ10〜30分間熱処理した後、放冷した。
蒸煮条件を異にした各蒸煮大豆粕に、実施例1と同様の方法で前培養したTP6およびP23菌株の種培養液をそれぞれ5%接種し、37℃72時間培養した。発酵過程中の雑菌汚染有無と培養終了後の発酵大豆粕中の各生菌数およびpHを測定した。大豆粕の発酵に及ぼす熱処理条件を下記表2に示した。
Example 2: Heat treatment conditions of soybean meal The heat treatment of soybean meal that has been hydrolyzed in the fermentation of soybean meal not only prevents contamination of bacteria, but is also an important factor that makes the chemical environment of soybean meal suitable for fermentation. The inventor examined the heat treatment conditions of soybean meal. In order to establish the minimum heat treatment conditions so that the inoculated strains can grow vigorously without causing contamination during the fermentation period, the water content of soybean meal is adjusted to 60% and then placed in a 250 mL beaker. 50 g of each was added, and the upper part of the beaker was sealed with aluminum foil, heat-treated in an autoclave at 60 ° C., 80 ° C., 105 ° C. and 121.1 ° C. for 10 to 30 minutes, respectively, and then allowed to cool.
Each cooked soybean meal with different cooking conditions was inoculated with 5% seed culture solution of TP6 and P23 strains precultured in the same manner as in Example 1 and cultured at 37 ° C. for 72 hours. The presence or absence of miscellaneous bacteria during the fermentation process and the number of viable bacteria and the pH in the fermented soybean meal after the cultivation were measured. The heat treatment conditions affecting the fermentation of soybean meal are shown in Table 2 below.

表2から確認できるように、60℃の条件では、30分間殺菌をした場合、発酵24時間後に汚染して所望の発酵を行うことができなかった。ところが、80℃以上で10分以上熱処理した場合には、72時間発酵が行われる間にも汚染が発生せず、1×10CFU/g以上に菌が生育した。 As can be confirmed from Table 2, under the condition of 60 ° C., when sterilization was performed for 30 minutes, the desired fermentation could not be performed due to contamination after 24 hours of fermentation. However, when the heat treatment was performed at 80 ° C. or higher for 10 minutes or longer, no contamination occurred during the fermentation for 72 hours, and the bacteria grew to 1 × 10 9 CFU / g or more.

実施例3:乳酸菌および枯草菌をそれぞれ培養したときの発酵大豆粕の品質特性変化
原物大豆粕重量の70%および100%の水を均一に大豆粕に噴霧し、0℃で30分間蒸煮した大豆粕に、実施例1と同様の方法で前培養したP23とTP6菌株種培養液をそれぞれ5%接種し、あるいは2菌株の種培養液を同時に5%ずつ接種して発酵を行いながら、培養時間別にトリプシン阻害因子(TI)の含量とタンパク質分解程度をSDS−PAGEで分析してそれぞれ図2および図3に示した。
図2から確認できるように、TP6菌株を単独培養した場合、TI活性の変化を測定した結果、加水量70%のとき、培養24時間後にTI活性が著しく減少した。その後、緩やかに減少して培養72時間後には完全に不活性化された。加水量100%のときは、不活性化速度がさらに速くなり、発酵24時間後にTIがほぼ完全に不活性化された。その以後には殆ど変化が見られなかった。一方、P23菌株を単独培養した場合には72時間発酵後にもTIの残存量が高かった。TP6菌株とP23菌株とを混合培養した場合には、TP6菌株を単独培養した場合とほぼ同様の傾向を示した。
また、図3に示した発酵によるタンパク質パターンの変化を考察すると、TP6単独培養の場合、発酵48時間後に高分子ペプチドが加水分解されてバンドが殆ど無くなったことが分かる。ところが、P23菌株を単独培養した場合には、原物に比べてタンパク質パターンの変化が殆どなかった。一方、TP6菌株とP23菌株とを混合培養した場合にはTP6菌株を単独培養した場合とほぼ同様であった。
一方、菌を接種していない蒸煮大豆粕の多糖類分析結果は図4、TP6菌株で発酵させた大豆粕発酵物の多糖類分析結果は図5、TP6およびP23菌株で発酵させた大豆粕発酵物の多糖類分析結果は図6にそれぞれ示した。図4と図5とを比較すると、クロマトグラムの糖パターンがほぼ同一であることが分かる。これは、TP菌株が、プロテアーゼを始めとして各種酵素の活性は高いが、大豆多糖類を殆ど加水分解していないことを示す。ところが、図4、図5、およびキムチから分離した乳酸菌P23とTP6菌株とを混合発酵させた図6を比較すると、大豆粕中の抗栄養因子である多糖類がP23菌株によって殆ど加水分解されて消失したことが分かる。
Example 3: Change in quality characteristics of fermented soybean meal when lactic acid bacteria and Bacillus subtilis were cultured respectively 70% and 100% of the original soybean meal weight was uniformly sprayed on soybean meal and cooked at 0 ° C for 30 minutes. Soybean meal is inoculated with 5% each of P23 and TP6 strain seed cultures precultured in the same manner as in Example 1, or 5% seed cultures of the two strains are simultaneously inoculated and cultured while performing fermentation. The content of trypsin inhibitor (TI) and the degree of proteolysis by time were analyzed by SDS-PAGE and shown in FIGS. 2 and 3, respectively.
As can be seen from FIG. 2, when the TP6 strain was cultured alone, the change in the TI activity was measured. As a result, when the water content was 70%, the TI activity significantly decreased after 24 hours of culture. Thereafter, it gradually decreased and was completely inactivated after 72 hours of culture. When the amount of water was 100%, the inactivation rate was further increased, and TI was almost completely inactivated after 24 hours of fermentation. There was little change after that. On the other hand, when the P23 strain was cultured alone, the residual amount of TI was high even after 72 hours of fermentation. When the TP6 strain and the P23 strain were mixed and cultured, the same tendency was observed as when the TP6 strain was cultured alone.
Moreover, when the change of the protein pattern by fermentation shown in FIG. 3 is considered, in the case of TP6 single culture | cultivation, it turns out that the high molecular peptide was hydrolyzed 48 hours after fermentation, and the band almost disappeared. However, when the P23 strain was cultured alone, there was almost no change in the protein pattern compared to the original. On the other hand, when the TP6 strain and the P23 strain were mixed and cultured, it was almost the same as when the TP6 strain was cultured alone.
On the other hand, the polysaccharide analysis result of the steamed soybean meal not inoculated with the fungus is FIG. 4, the polysaccharide analysis result of the fermented soybean meal fermented with the TP6 strain is the fermented soybean meal fermented with the TP6 and P23 strains. The polysaccharide analysis results of the product are shown in FIG. Comparing FIG. 4 and FIG. 5, it can be seen that the sugar patterns of the chromatogram are almost the same. This indicates that the TP strain has high activity of various enzymes including protease, but hardly hydrolyzes soybean polysaccharide. However, comparing FIG. 4, FIG. 5, and FIG. 6 in which lactic acid bacteria P23 isolated from kimchi and TP6 strain were mixed and fermented, polysaccharides, which are anti-nutritive factors in soybean meal, were almost hydrolyzed by P23 strain. You can see that it has disappeared.

実施例4:乳酸菌と枯草菌の大豆粕における混合培養
水分含量を50%に調節し、110℃で15分間熱処理した大豆粕に、種菌培地で培養したTP6およびP23菌株の接種比または接種時間を異にして37℃で48時間培養した。具体的に、「混合培養1」は初期にTP6菌株を5%接種し20時間培養した発酵大豆粕に、種菌培地で20時間培養したP23菌株を5%接種した後、28時間さらに発酵を行ったものであり、「混合培養2および3」は初期にTP6菌株とP23菌株の接種比をそれぞれ1:0.5および1:1と異にして接種し、48時間発酵したものである。
Example 4: Mixed culture water content in soybean meal of lactic acid bacteria and Bacillus subtilis was adjusted to 50%, and the inoculation ratio or inoculation time of TP6 and P23 strains cultured in the inoculum culture medium on soybean meal treated at 110 ° C. for 15 minutes. Different cultures were carried out at 37 ° C. for 48 hours. Specifically, “Mixed Culture 1” is an inoculation of 5% of P23 strain cultured for 20 hours in a seed culture medium in a fermented soybean meal initially inoculated with 5% of TP6 strain and cultured for 20 hours, followed by further fermentation for 28 hours. “Mixed cultures 2 and 3” were initially inoculated with different inoculation ratios of TP6 and P23 strains of 1: 0.5 and 1: 1, respectively, and fermented for 48 hours.

表3から分かるように、TP6菌株を単独培養した場合、P23菌株を追加接種した場合、またはTP6菌株とP23菌株を接種比を異にして同時に混合培養した場合は、最終菌数とTI値においてあまり大きい差異がない。このような結果からみて、単独および混合培養など発酵方法を異にしても、本発明で期待する大豆粕発酵物を得ることができる。
ところが、発酵大豆粕の品質は、最終菌数、酸度、風味などにおいて若干ずつ差異があるので、好ましくは目的の製品の仕様に応じて植物性乳酸菌、枯草菌、および前記植物性乳酸菌と前記枯草菌との混合菌よりなる群から選ばれる微生物の接種時間と接種比を適切に調節する必要がある。
As can be seen from Table 3, when the TP6 strain was cultured alone, when the P23 strain was additionally inoculated, or when the TP6 strain and the P23 strain were mixed and cultured simultaneously at different inoculation ratios, There is not much difference. In view of these results, fermented soybean meal expected in the present invention can be obtained even if fermentation methods such as single and mixed culture are different.
However, since the quality of the fermented soybean meal has slight differences in the final bacterial count, acidity, flavor and the like, it is preferable that the plant lactic acid bacteria, Bacillus subtilis, and the plant lactic acid bacteria and the hay bean according to the specifications of the target product. It is necessary to appropriately adjust the inoculation time and the inoculation ratio of microorganisms selected from the group consisting of mixed bacteria with bacteria.

実施例5:発酵大豆粕の品質特性
水分含量を30%に調節した後、121℃で20分間殺菌した大豆粕に殺菌水を均一に噴霧することにより、水分含量を60%に調節した。水分含量を調節した大豆粕にそれぞれの種菌培地で24時間培養したTP6およびP23菌株を大豆粕の10%(v/w)となるように接種した後、37℃で48時間発酵を行った。発酵済みの大豆粕を乾燥させた後、理化学的特性を考察した結果を下記表4に示した。
Example 5: Quality characteristics of fermented soybean meal After the moisture content was adjusted to 30%, the moisture content was adjusted to 60% by spraying soybean milk uniformly on soybean meal for 20 minutes at 121 ° C. After inoculating soybean koji with adjusted water content with TP6 and P23 strains cultured in each seed medium for 24 hours to 10% (v / w) of soybean koji, fermentation was carried out at 37 ° C. for 48 hours. Table 4 below shows the results of examining physicochemical properties after drying fermented soybean meal.

表4から確認できるように、本発明のTP6菌株の単独発酵大豆粕は、原物大豆粕と比較してタンパク質の含量が著しく増加したうえ、抗栄養因子としてのトリプシン阻害因子、大豆オリゴ糖および多糖類が減少して飼料の価値を幾段階上昇させた製品であるといえる。しかも、大豆粕発酵物には2.0×10CFU/g DMの生菌とポリ−γ−グルタミン酸が含有されており、その価値はさらに高いといえる。 As can be seen from Table 4, the single fermented soybean meal of the TP6 strain of the present invention has a significantly increased protein content as compared with the original soybean meal, and also has trypsin inhibitor, soybean oligosaccharide and It can be said that this is a product in which polysaccharides are reduced and feed value is increased by several levels. Moreover, the fermented soybean meal contains 2.0 × 10 9 CFU / g DM of live bacteria and poly-γ-glutamic acid, and it can be said that the value is even higher.

実施例6:培養条件によるTI含量の変化
消化吸収を防ぐ抗栄養因子の一つであるトリプシン阻害因子の含量変化を測定するために、発酵大豆粕のトリプシン阻害因子の含量を測定した。TI含量の測定は韓国単味飼料協会に依頼して進行した。その方法としてはAOAC方法を使用した。次の実験群について考察すると、「大豆」群:一般大豆、「大豆粕」群:大豆から大豆油を採って残った部分、「発酵24時間」群:大豆粕100gを水分45%に合わせて蒸煮し(90℃15分)、蒸煮された大豆粕にTP6菌株を5mLの2×10cfu/mL接種し、37℃で24時間恒湿が維持される条件で発酵させた。発酵後のTI(トリプシン阻害因子)の含量変化は下記表5のとおりである。
Example 6: Change in TI content depending on culture conditions In order to measure the change in the content of trypsin inhibitor, which is one of the antinutritional factors that prevent digestion and absorption, the content of trypsin inhibitor in fermented soybean meal was measured. The measurement of TI content was carried out by requesting the Korea Simple Feed Association. The AOAC method was used as the method. Considering the following experimental group, "soybean" group: general soybean, "soybean meal" group: the portion left by taking soybean oil from soybean, "fermentation 24 hours" group: 100g soybean meal is adjusted to 45% moisture The steamed soybean meal was inoculated with 5 mL of 2 × 10 9 cfu / mL of steamed soybean meal (90 ° C. for 15 minutes) and fermented at 37 ° C. for 24 hours under constant humidity conditions. The change in the content of TI (trypsin inhibitor) after fermentation is as shown in Table 5 below.

発酵24時間で、トリプシン阻害因子の含量は前記特許文献1に記載された36時間発酵させた結果のTI含量0.6mg/gの50%水準である0.32mg/gであって、24時間発酵のみで以前実験の結果と同等以上の抗栄養因子低減効果を示した。   In 24 hours of fermentation, the content of trypsin inhibitor is 0.32 mg / g, which is a 50% level of the TI content of 0.6 mg / g as a result of 36 hours of fermentation described in Patent Document 1, and is 24 hours. Only the fermentation showed the same or better anti-nutritive factor reduction effect than the previous experiment.

実施例7:TP6菌株単一培養時の大豆粕発酵時間による粗タンパク含量の変化
(発酵温度は37℃)
大豆粕100gを水分45%に合わせて蒸煮し(90℃15分)、蒸煮された大豆粕にTP6菌株を5mLの2×10cfu/mL接種し、37℃で24時間恒湿が維持される条件で発酵させた。発酵時のタンパク質含量の変化は下記表6のとおりである。
Example 7: Change in crude protein content according to soybean meal fermentation time during single culture of TP6 strain (fermentation temperature is 37 ° C.)
100 g of soybean cake was steamed to a moisture content of 45% (90 ° C. for 15 minutes), 5 mL of 2 × 10 9 cfu / mL of TP6 strain was inoculated into the cooked soybean cake, and constant humidity was maintained at 37 ° C. for 24 hours. Fermented under the following conditions. Changes in protein content during fermentation are shown in Table 6 below.

発酵時間24時間の水準で既存の特許(前記特許文献1)の混合菌株を用いた36時間発酵の結果、既存の特許(前記特許文献2)の単一菌株を用いた48時間発酵した結果と比較して同等以上水準のタンパク質含量を得ながらも、既存の特許または論文に比べて発酵時間を12〜24時間減らすことができた(配合比上で総粗タンパク含量が重要なので、タンパク質剤の役割を果たす大豆粕加工品の場合、粗タンパクの含量が重要である。)。このような発酵時間の減少は製麹機の回転率を高める。これは年間生産可能な培地数の増加に繋がり、より安い価格で良い品質の発酵大豆粕を消費者に供給することができるという点から、本発明の優秀性を確認することができる。   As a result of 36 hours fermentation using a mixed strain of an existing patent (Patent Document 1) at a level of fermentation time of 24 hours, the result of fermentation for 48 hours using a single strain of an existing patent (Patent Document 2) Compared to existing patents or papers, the fermentation time could be reduced by 12 to 24 hours compared to existing patents or papers (because the total crude protein content is important in the blend ratio, For processed soybean meal that plays a role, the content of crude protein is important.) Such a decrease in fermentation time increases the rotation rate of the koji making machine. This leads to an increase in the number of media that can be produced annually, and the superiority of the present invention can be confirmed from the point that it is possible to supply consumers with a good quality fermented soybean meal at a lower price.

実施例8:TP6菌株単一培養時の大豆粕発酵時間による粗タンパク含量の変化
(発酵時間は24時間)
大豆粕100gを水分45%に合わせて蒸煮し(90℃15分)、蒸煮された大豆粕にTP6菌株を5mLの2×10cfu/mL接種し、37℃で24時間恒湿が維持される条件で発酵させた。発酵時のタンパク質含量の変化は下記表7のとおりである。
Example 8: Change in crude protein content depending on soybean meal fermentation time during single culture of TP6 strain (fermentation time is 24 hours)
100 g of soybean cake was steamed to a moisture content of 45% (90 ° C. for 15 minutes), 5 mL of 2 × 10 9 cfu / mL of TP6 strain was inoculated into the cooked soybean cake, and constant humidity was maintained at 37 ° C. for 24 hours. Fermented under the following conditions. Changes in protein content during fermentation are shown in Table 7 below.

選定されたTP6菌株を用いて24時間発酵を行った結果、抗栄養因子であるラフィノースとスタキオースの比率が著しく減少した。また、既存の特許(前記特許文献2)の48時間発酵結果とほぼ同等水準の結果を24時間発酵によって得ることができた。   As a result of performing fermentation for 24 hours using the selected TP6 strain, the ratio of raffinose and stachyose, which are anti-nutritive factors, was significantly reduced. Moreover, the result of the level substantially equivalent to the 48-hour fermentation result of the existing patent (the said patent document 2) was able to be obtained by 24-hour fermentation.

実施例9:TP6発酵によるタンパク質分解効果およびアレルギー誘発物質(β−コングリシニン、グリシニン)の除去効果
発酵時間は全て24時間と同一であり、温度条件および水分条件を変化させて発酵実験を行った。発酵条件は実施例7および8と同一であり、蒸煮時の水分%のみに変化を与えた。それぞれの水分%は、それぞれ図7の2レインの場合には37℃45%、3レインの場合には37℃50%、4レインの場合には45℃45%、5レインの場合には45℃50%であった。図7の結果より、生大豆粕内のアレルギー誘発物質であるβ−コングリシニンとグリシニンは37℃の培養条件で水分含量45〜50%の間で最も除去がよくなされたことを確認することができ、高分子タンパク質が低分子ペプチドの形態に分解され、消化吸収に適した形態に変わったことが分かる。
Example 9: Proteolytic effect by TP6 fermentation and removal effect of allergens (β-conglycinin, glycinin) Fermentation time was all the same as 24 hours, and fermentation experiments were carried out by changing temperature conditions and water conditions. The fermentation conditions were the same as in Examples 7 and 8, and only the moisture percentage during cooking was changed. The respective moisture percentages are 37 ° C. 45% in the case of 2 rains in FIG. 7 and 37 ° C. 50% in the case of 3 rains, 45% 45% in the case of 4 rains and 45% in the case of 5 rains. The temperature was 50%. From the results shown in FIG. 7, it can be confirmed that β-conglycinin and glycinin, which are allergens in raw soybean meal, were best removed at a moisture content of 45 to 50% under 37 ° C. culture conditions. Thus, it can be seen that the high molecular protein was decomposed into a low molecular peptide form and changed into a form suitable for digestion and absorption.

Claims (6)

(a)水分含量が40〜80%(v/w)となるように水分を添加した大豆粕を、80〜130℃の温度で10〜30分間熱処理する段階と、
(b)前記熱処理された大豆粕を冷却した後、バチルスサブチリス(Bacillus subtilis)TP6(KCCM11438P)菌株を接種する段階と、
(c)前記大豆粕に接種された菌を12〜24時間固体培養して発酵大豆粕を得る段階とを含む、発酵大豆粕の製造方法。
(A) a step of heat-treating soybean meal with moisture added so as to have a moisture content of 40 to 80% (v / w) at a temperature of 80 to 130 ° C. for 10 to 30 minutes ;
(B) after cooling the heat-treated soybean meal, inoculating Bacillus subtilis TP6 (KCCM11438P) strain;
(C) A method for producing fermented soybean meal, comprising solid-culturing the bacteria inoculated in the soybean meal for 12 to 24 hours to obtain fermented soybean meal.
前記段階(b)の冷却した大豆粕の温度は30〜50℃であることを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein the temperature of the cooled soybean meal in step (b) is 30-50 ° C. 前記段階(c)の固体培養は20〜50℃の温度で行われることを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein the solid culture in the step (c) is performed at a temperature of 20 to 50C. 前記製造方法は、前記段階(c)の後に、(d)前記発酵大豆粕を乾燥および粉砕する段階をさらに含むことを特徴とする、請求項1に記載の方法。   The method according to claim 1, wherein the manufacturing method further comprises, after the step (c), (d) drying and pulverizing the fermented soybean meal. 請求項1に記載の方法によって製造された発酵大豆粕であって、前記発酵大豆粕がバチルスサブチリス(Bacillus subtilis)TP6(KCCM11438P)菌株の栄養細胞または胞子を含むことを特徴とする、発酵大豆粕。   A fermented soybean meal produced by the method according to claim 1, wherein the fermented soybean meal contains vegetative cells or spores of a Bacillus subtilis TP6 (KCCM11438P) strain. Bean candy. 前記発酵大豆粕はポリ−γ−グルタミン酸を含むことを特徴とする、請求項に記載の発酵大豆粕。 The fermented soybean meal according to claim 5 , wherein the fermented soybean meal contains poly-γ-glutamic acid.
JP2010202178A 2009-09-09 2010-09-09 Method for producing fermented soybean meal using Bacillus subtilis Active JP5728185B2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0085086 2009-09-09
KR20090085086 2009-09-09
KR1020100028142A KR101139027B1 (en) 2009-09-09 2010-03-29 Method for preparing a fermented soybean meal using Bacillus strains
KR10-2010-0028142 2010-03-29

Publications (2)

Publication Number Publication Date
JP2011055831A JP2011055831A (en) 2011-03-24
JP5728185B2 true JP5728185B2 (en) 2015-06-03

Family

ID=43934334

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202178A Active JP5728185B2 (en) 2009-09-09 2010-09-09 Method for producing fermented soybean meal using Bacillus subtilis

Country Status (2)

Country Link
JP (1) JP5728185B2 (en)
KR (1) KR101139027B1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101214573B1 (en) 2011-05-13 2012-12-24 주식회사 리스나 Fermented soybean meal by Weissella koreensis and method of preparing the same
KR101507470B1 (en) * 2013-08-27 2015-04-01 (주)건우애듀 Solid phase fermentation method of grains using useful microorganism and functional fermentation composition manufactured by the same
KR101517326B1 (en) 2014-01-28 2015-05-04 씨제이제일제당 (주) Bacillus sp. strain with improved productivity of fermented soybean meal and method for producing fermented soybean meal using the same
KR101833093B1 (en) 2014-05-09 2018-04-16 씨제이제일제당 (주) Improved process for preparing fermented soybean meal
KR101781914B1 (en) * 2015-01-06 2017-10-23 씨제이제일제당(주) Method of preparing a functional fermented soybean using yeast cell walls
KR101786386B1 (en) 2016-09-26 2017-10-17 주식회사 피드업 A manufacturing methods of fermented soybean meal using lactic acid bacteria
KR101909375B1 (en) * 2017-02-28 2018-10-18 씨제이제일제당 (주) A method for producing fermented Guar meal
KR102026777B1 (en) 2017-08-28 2019-10-01 (주)한국바이오케미칼 Method for preparing fermented soybean meal for replacing fishmeal using Anti-Nutritional Factor controlling strain Microbacterium hydrothemale KBCBS1021
KR102236335B1 (en) 2017-08-31 2021-04-06 씨제이제일제당 주식회사 Soy Protein Concentrate using Low-Water Hydrolysis and Preparation Method of the same
KR102092851B1 (en) 2017-08-31 2020-03-24 씨제이제일제당 주식회사 A Novel Bacillus amyloliquefaciens Bacterium strain and Method for Producing Fermented Soy Products using the Same
WO2019045492A2 (en) * 2017-08-31 2019-03-07 Cj Cheiljedang Corporation Soy protein concentrate hydrolyzed under low moisture condition and preparation method thereof
KR102072696B1 (en) * 2018-07-17 2020-02-03 주식회사 피드업 Enterococcus sp. strain and Method for manufacturing fermented soybean meal using the same
WO2020017721A1 (en) * 2018-07-17 2020-01-23 주식회사 피드업 Fermented soybean meal and preparation method therefor
CN108902747A (en) * 2018-07-24 2018-11-30 河南蜀正园食品有限公司 Edible bean cake, preparation method and its preparing the application in health food
KR102081852B1 (en) * 2018-08-08 2020-02-26 중앙대학교 산학협력단 Method of manufacturing peptide from korean native cattle meat and composition for preventing, treating, or improving the hypertension or neurodegenerative disease comprising the peptide from korean native cattle meat using thereof
KR102134365B1 (en) * 2018-10-31 2020-07-16 씨제이제일제당 주식회사 Method for producing soy protein concentrates hydrolysate
KR102087673B1 (en) * 2018-10-31 2020-03-11 청미바이오(주) Animal feed additive comprising fermented soybean meal using Bacillus and kefir
JP7326022B2 (en) * 2019-05-17 2023-08-15 ユニ・チャーム株式会社 pet food
CN112167427A (en) * 2020-09-29 2021-01-05 南京宝辉生物饲料有限公司 Fermented flaky soybean meal feed and preparation method and application thereof
WO2022092864A1 (en) * 2020-10-29 2022-05-05 씨제이제일제당 (주) Microorganism with reduced mucilage production ability and fermented soy product obtained using same
WO2022250516A1 (en) * 2021-05-28 2022-12-01 씨제이제일제당 (주) Microorganism with reduced mucilage production ability, and fermented soy product using same
CN113331318B (en) * 2021-06-07 2024-02-20 浙江博仕佳生物科技有限公司 Preparation method of feed for enriching yeast, astaxanthin, lactic acid and protease for shrimp and crab culture
CN115211552B (en) * 2022-03-09 2024-02-06 江西师范大学 Microbial processing method for improving nutrition components of shrimp branchia sauce
CN115197876B (en) * 2022-06-02 2023-05-09 浙江海洋大学 Bacillus subtilis FNFH_BS08 and application thereof
CN115197875B (en) * 2022-06-02 2023-05-09 浙江海洋大学 Bacillus subtilis FNFH_BS06 and application thereof
KR102589538B1 (en) 2023-01-30 2023-10-16 청미바이오(주) Supplementary feed composition for livestock using useful microorganisms and enzymes

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235052A (en) * 1988-07-23 1990-02-05 Shinwa Internatl Kk Method for treating by-product of grains
JP2774899B2 (en) * 1992-03-25 1998-07-09 京都府 Production method of feed for cultured fish
KR100372159B1 (en) * 2000-05-19 2003-02-14 주식회사 바이오알앤즈 A method for preparing feed additive and feed additive there from
KR100963684B1 (en) * 2007-10-30 2010-06-15 주식회사 엔유씨전자 A METHOD FOR A FERMENTED OR EXTRACTED PRODUCT OF ISOLATED SOYBEAN PROTEIN USING Bacilus subtilis KCCM-10839P
KR100943891B1 (en) * 2007-11-30 2010-02-24 (주)진바이오텍 Process for preparing ruminally protected soybean peptide and the use thereof

Also Published As

Publication number Publication date
KR20110027535A (en) 2011-03-16
KR101139027B1 (en) 2012-04-27
JP2011055831A (en) 2011-03-24

Similar Documents

Publication Publication Date Title
JP5728185B2 (en) Method for producing fermented soybean meal using Bacillus subtilis
JP6367974B2 (en) Bacillus strain having improved productivity of fermented soybean meal and method for producing fermented soybean meal using the same
CN102018096B (en) Method for preparing fermented soybean meal using bacillus strains
US8153174B2 (en) Fermented protein product
AU2006228829B2 (en) Fermented protein product
TWI702914B (en) Novel bacillus amyloliquefaciens strain and method for preparing fermented soy product using the same
CN107080101A (en) Chicken feed and preparation method thereof
KR101922053B1 (en) Method for manufacturing fish culture feed and fish culture feed manufactured by the same
CN110545672A (en) Method for producing fermented guar flour
JP5945318B2 (en) Hydrolyzate of protein substrate and production method thereof
KR101215422B1 (en) Pediococcus acidilactici WRL-1 and use of the same
CN101155520B (en) Fermented protein product
KR20090117363A (en) Mixed culturing method of aspergillus oryzae and bacillus subtilis in rice bran, and it's processing methods
KR102370009B1 (en) Manufacturing method for feed composition for pet dogs and feed composition for pet dogs manufactured using the same
CN106795541B (en) Culture containing menadione-7 and method for producing menadione-7
JP4794486B2 (en) Fermented food combined with medium and method for producing the same
Azokpota Quality aspects of alkaline-fermented foods
KR20230062278A (en) Novel strain of Lacrimispora algidixylanolytica producing carbohydrase and use thereof
JP2016041046A (en) Fermentation product of protein-containing food by-product comprising menaquinone-7 and method for production thereof
KR20220085367A (en) Functional fermemted green tea complex probiotic and manufacturing method thereof
KR20230062277A (en) Novel strain of Mitsuokella multacida producing carbohydrase and use thereof
JP2005224133A (en) Lactic acid-fermented soybean protein feed component for animal, and method for preparing the same
EA045153B1 (en) METHOD FOR OBTAINING FEED ADDITIVE FROM OILSEED SEED PROCESSING WASTE

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120619

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120918

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120921

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121016

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121019

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121119

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20121214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130326

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130624

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130726

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131227

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140224

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150406

R150 Certificate of patent or registration of utility model

Ref document number: 5728185

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250