KR102589538B1 - Supplementary feed composition for livestock using useful microorganisms and enzymes - Google Patents

Supplementary feed composition for livestock using useful microorganisms and enzymes Download PDF

Info

Publication number
KR102589538B1
KR102589538B1 KR1020230012163A KR20230012163A KR102589538B1 KR 102589538 B1 KR102589538 B1 KR 102589538B1 KR 1020230012163 A KR1020230012163 A KR 1020230012163A KR 20230012163 A KR20230012163 A KR 20230012163A KR 102589538 B1 KR102589538 B1 KR 102589538B1
Authority
KR
South Korea
Prior art keywords
soybean meal
livestock
feed composition
protein
hours
Prior art date
Application number
KR1020230012163A
Other languages
Korean (ko)
Inventor
남명수
라석한
권영웅
Original Assignee
청미바이오(주)
주식회사 에프앤티바이오
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 청미바이오(주), 주식회사 에프앤티바이오 filed Critical 청미바이오(주)
Priority to KR1020230012163A priority Critical patent/KR102589538B1/en
Application granted granted Critical
Publication of KR102589538B1 publication Critical patent/KR102589538B1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/14Pretreatment of feeding-stuffs with enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/30Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms
    • A23K10/37Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material
    • A23K10/38Animal feeding-stuffs from material of plant origin, e.g. roots, seeds or hay; from material of fungal origin, e.g. mushrooms from waste material from distillers' or brewers' waste
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/07Bacillus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi
    • C12R2001/85Saccharomyces
    • C12R2001/865Saccharomyces cerevisiae

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Animal Husbandry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Fodder In General (AREA)

Abstract

본 발명은 쌀주정박 및 대두박 혼합물에 바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 및 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P)의 혼합균주; 알칼리성 프로테아제(alkaline protease), 자일라나제(Xylanase), 아밀라제(Amylase), 셀룰라제(Cellulase)를 포함하는 효소제를 포함하여 24~48시간 배양한 발효물인 것을 특징으로 하는 축산용 보충사료 조성물에 관한 것으로, 사료 조성물 내 분해성 단백질 및 비분해성 단백질을 실질적으로 증가시키고 항산화, 항균 활성을 나타냄으로써 가축의 단백질 보충 및 건강에 유익한 보충사료 조성물로 사용될 수 있다.The present invention relates to a mixed strain of Bacillus coagulans (Bacillus coagulans NRR1207, KACC92114P) and Saccharomyces cerevisiae ( Saccharomyces cerevisiae MNRU0927, KACC 93265P) in a mixture of rice ethanol and soybean meal; About a supplementary feed composition for livestock, characterized in that it is a fermented product cultured for 24 to 48 hours and contains enzymes including alkaline protease, xylanase, amylase, and cellulase. As such, it can be used as a protein supplement for livestock and as a health-beneficial supplementary feed composition by substantially increasing degradable and non-degradable proteins in the feed composition and exhibiting antioxidant and antibacterial activities.

Description

유용미생물과 효소제를 이용한 축산용 보충사료 조성물{Supplementary feed composition for livestock using useful microorganisms and enzymes}{Supplementary feed composition for livestock using useful microorganisms and enzymes}

본 발명은 유용미생물과 효소제를 이용한 축산용 보충사료 조성물 에 관한 것이다. The present invention relates to a supplementary feed composition for livestock using useful microorganisms and enzymes.

현대 사회에서 인구가 급속히 증가함에 따라 동물성 단백질을 공급하는 축산업이 함께 발달되었다. 그러나 최근 단백질 사료의 부족과 비용 상승은 축산업이 직면한 가장 큰 문제이다. 이에 따라 적은 비용으로 동물의 최적의 성능을 유지하기 위해 다양한 단백질 공급원에 대한 연구가 이루어지고 있다. 전통적으로 육분 또는 어분을 사용한 사료는 목초, 곡물 사료보다 가축의 평균 일일 증체량을 증가시키는 데에 효과적이다. Ru

Figure 112023011000135-pat00001
i
Figure 112023011000135-pat00002
-Muslic 등(2011)에 의하면 평균 체중 18.0kg의 MIS 양의 경우, 해바라기 가루, 대두 가루 및 어분을 단백질 공급원을 급여하였을 경우, 평균 일일 증체량이 각각 0.169, 0.205 및 0.227kg으로, 어분과 같은 동물성 단백질이 어린 양의 성장에 효과적인 것으로 나타났다. 그러나 유럽연합 집행위원회가 동물성 단백질 사료를 법적으로 규제하면서 경제적이면서도 충분한 영양을 공급하는 사료에 대한 연구가 시급하게 대두되었다.As the population increases rapidly in modern society, livestock farming, which supplies animal protein, has developed along with it. However, the recent shortage of protein feed and rising costs are the biggest problems facing the livestock industry. Accordingly, research is being conducted on various protein sources to maintain optimal animal performance at low cost. Traditionally, feeds using meat meal or fish meal are more effective in increasing the average daily weight gain of livestock than grass or grain feeds. Ru
Figure 112023011000135-pat00001
i
Figure 112023011000135-pat00002
-According to Muslic et al. (2011), for MIS sheep with an average weight of 18.0kg, when sunflower powder, soybean powder, and fishmeal were fed as protein sources, the average daily weight gain was 0.169, 0.205, and 0.227kg, respectively, which was 0.169kg, 0.205kg, and 0.227kg respectively, compared to animal-based sheep such as fishmeal. Protein has been shown to be effective in lamb growth. However, with the European Commission legally regulating animal protein feed, research on feed that is economical and provides sufficient nutrition has become urgent.

특히 함량미달의 원료를 급여하는 경우 가축은 수태율과 면역력 저하로 질병에 대한 노출이 증가하게 된다. 최근 유량 생산이 대폭 개선된 고능력우의 원료 가격 상승과 저가 및 단백질 함량미달 원료의 유입으로 충분한 양의 에너지와 단백질을 공급하는 것이 어려우므로 급여사료는 섭취 가능한 영양소의 효율적인 이용이 가능하도록 구성되어야 한다.In particular, when feeding raw materials with insufficient content, livestock exposure to diseases increases due to reduced conception rates and reduced immunity. It is difficult to supply a sufficient amount of energy and protein due to the recent increase in raw material prices for high-capacity cattle, whose flow production has significantly improved, and the influx of low-priced and low-protein raw materials, so feed must be structured to enable efficient use of ingestible nutrients. .

소, 젖소를 포함하는 반추동물이 섭취하는 단백질은 분해성 단백질과 비분해성 단백질로 구분할 수 있다. 분해성 단백질이란 제1위에서 분해되어 미생물들에 의해 파괴되는 단백질을 말하며 이후 미생물단백질 합성에 이용된다. 비분해성 단백질도 일부는 충분한 시간이 지나면 제1위에서 파괴되어 미생물에 의해 이용되기도 하나, 주로 파괴되지 않고 제4위로 넘어가 소화효소에 의한 소화과정을 거쳐 소장을 지나는 동안에 흡수 이용된다. 소장에서 흡수되는 미생물단백질과 비분해성 단백질을 합한 것을 대사단백질이라고 한다. 이 대사단백질이 젖소의 몸을 구성하고 유생산에 이용되므로 충분한 대사단백질 공급은 고능력우를 유지하는데 중요하다.Proteins consumed by ruminants, including cattle and dairy cows, can be divided into degradable proteins and non-degradable proteins. Degradable proteins refer to proteins that are broken down in the first stomach and destroyed by microorganisms and are later used for microbial protein synthesis. Some of the non-degradable proteins are destroyed in the first stomach after a sufficient period of time and are used by microorganisms, but they are mainly not destroyed and are absorbed and used while passing through the small intestine through the digestion process by digestive enzymes and pass to the fourth stomach without being destroyed. The combination of microbial proteins absorbed in the small intestine and non-degradable proteins is called metabolic protein. Since these metabolic proteins make up the cow's body and are used for milk production, supplying sufficient metabolic proteins is important to maintain high performance cows.

한편, 대두는 유럽연합 집행위원회가 동물성 단백질 사료를 규제하면서 가축사료로서는 전 세계적으로 가장 많이 사용되는 식물성 단백질 공급원이 되었다. 특히 대두박(soybean meal)은 대두로부터 기름을 짠 후 생기는 산물로서, 현재 동물 사료로 사용되는 총 단백질 사료 중 60% 이상의 비중을 차지하고 있으며, 닭, 돼지, 소, 젖소 및 반려동물을 비롯한 대부분의 가축의 사료로 이용되고 있다. 그러나 대두박에 포함되어 있는 항영양인자(anti-nutritional factor)에 의해 돼지 및 닭과 같이 소화기관이 짧은 가축의 장 내에서는 효율적으로 분해되지 못하는 문제점이 있으며, 어린 가축의 경우에는 소화가 잘 안되어 소화를 저해하기 때문에 어린 가축의 사료에는 사용량을 제한하고 있다(Li, D.F., et al., 1990). 대두박의 항영양인자로는 가축의 설사와 복통을 유발하는 라피노스(raffinose), 스타키오스(stachyose) 등의 올리고당, 단백질 소화를 방해하는 트립신 억제제(trypsin inhibitor), 혈구응집소인 헤마글루티닌(hemaglutinin) 등이 있다. 이들 중 일부는 열처리에 의해서 파괴되지만, 이 과정에서 대두단백질이 변성될 수 있고, 라이신(lysine) 등의 필수 아미노산이 소실될 수 있다. 이에, 대두박에 포함된 항영양인자를 제거하고 대두박을 사료로서 보다 효율적으로 이용하기 위한 여러 가공방법들이 개발되고 있다. 이와 관련하여 에탄올 추출에 의하여 농축 대두단백질(soy protein concentrates, SPC)을 제조하거나, 알칼리 조건에서 단백질 성분을 추출하고 산성 조건에서 단백질을 침전시킨 후 분무건조 공법으로 건조하여 분리정제 대두단백질(isolated soy proteins, IPS)을 제조함으로써 대두 올리고당을 제거하는 방법이 공지되어 있으며, 최근에는 미생물을 이용하여 항영양인자를 분해, 저감시키는 가공 방법이 개발되고 있다(한국등록특허 제10-2087673호; 한국등록특허 제10-1139027호; 한국등록특허 제10-1157618호; 한국등록특허 제10-1214573호). 특히 본 발명자의 선행특허인 한국등록특허 제10-2087673호에는 대두박을 바실러스속 균 및 케피어를 혼합하여 발효시킴으로써 대두박 내에 항영양인자가 저감되고, 젖산과 같은 유익한 유기산 및 비타민과 같은 생체에 필요한 생리 활성 물질이 강화된 동물 사료 첨가제를 개시하였다.Meanwhile, soybeans have become the most widely used vegetable protein source worldwide as livestock feed as the European Commission regulates animal protein feed. In particular, soybean meal is a product produced by extracting oil from soybeans, and currently accounts for more than 60% of the total protein feed used as animal feed, and is used in most livestock including chickens, pigs, cows, dairy cows, and companion animals. It is used as feed for. However, due to the anti-nutritional factors contained in soybean meal, there is a problem in that it cannot be decomposed efficiently in the intestines of livestock with short digestive organs such as pigs and chickens, and in the case of young livestock, digestion is poor and the digestion is difficult. Because it is harmful, its use in feed for young livestock is limited (Li, D.F., et al., 1990). Anti-nutritional factors in soybean meal include oligosaccharides such as raffinose and stachyose, which cause diarrhea and abdominal pain in livestock, trypsin inhibitor, which interferes with protein digestion, and hemagglutinin, a hemagglutinin. etc. Some of these are destroyed by heat treatment, but during this process, soy proteins may be denatured and essential amino acids such as lysine may be lost. Accordingly, various processing methods are being developed to remove anti-nutritional factors contained in soybean meal and to use soybean meal more efficiently as feed. In this regard, soy protein concentrates (SPC) are produced by ethanol extraction, or protein components are extracted under alkaline conditions, the protein is precipitated under acidic conditions, and then dried using a spray drying method to produce isolated soy protein. There is a known method of removing soy oligosaccharides by producing proteins (IPS), and recently, a processing method to decompose and reduce anti-nutritional factors using microorganisms has been developed (Korean Patent No. 10-2087673; Korean Patent No. No. 10-1139027; Korean Patent No. 10-1157618; Korean Patent No. 10-1214573). In particular, in Korean Patent No. 10-2087673, which is a prior patent of the present inventor, anti-nutritional factors are reduced in soybean meal by fermenting soybean meal by mixing it with Bacillus bacteria and kefir, and it contains beneficial organic acids such as lactic acid and physiologically necessary vitamins such as vitamins. An animal feed additive enriched with active substances is disclosed.

그러나 고능력우 등에 대두박 발효만으로는 충분한 대사단백질을 공급하는 데에 한계가 있었으며, 동일 중량의 사료에서 대두박의 항영양인자를 효과적으로 저감시키고 실질적으로 가축의 체증과 유량을 증가시키는 데에 사용되는 대사단백질의 비율을 높일 수 있는 보충사료의 개발이 필요하게 되었다.However, there were limitations in supplying sufficient metabolic proteins through soybean meal fermentation alone, such as for high-capacity cattle, and the metabolic proteins used to effectively reduce the anti-nutritional factors of soybean meal in the same weight of feed and substantially increase the body weight and flow rate of livestock. There was a need to develop supplementary feed that could increase the ratio.

한국등록특허 제10-2087673호, 바실러스속 균 및 케피어를 이용해 발효시킨 발효 대두박을 포함하는 동물 사료 첨가제, 2020. 03. 05. 등록.Korean Patent No. 10-2087673, Animal feed additive containing fermented soybean meal fermented using Bacillus bacteria and kefir, registered on March 5, 2020. 한국등록특허 제10-1139027호, 바실러스균을 이용한 발효 대두박의 제조방법, 2012. 04. 16. 등록.Korean Patent No. 10-1139027, Manufacturing method of fermented soybean meal using Bacillus bacteria, registered on April 16, 2012. 한국등록특허 제10-1157618호, 대두단백질의 제조방법 및 이로부터 제조된 대두단백질을 포함하는 사료 조성물, 2012. 06. 12. 등록.Korean Patent No. 10-1157618, Method for producing soy protein and feed composition containing soy protein prepared therefrom, registered on June 12, 2012. 한국등록특허 제10-1214573호, 바이셀라 코리엔시스를 이용하여 얻어진 발효대두박 및 그 제조방법, 2012. 12. 14. 등록.Korean Patent No. 10-1214573, Fermented soybean meal obtained using Vicella coriensis and its manufacturing method, registered on December 14, 2012. 한국등록특허 제10-1600669호, β-글루칸 및 케이퍼를 유효성분으로 포함하는 가금류의 육질 개선용 사료 첨가제, 이를 이용한 사료 조성물 및 사육 방법, 2016. 02. 29. 등록.Korean Patent No. 10-1600669, Feed additive for improving meat quality of poultry containing β-glucan and capers as active ingredients, feed composition and breeding method using the same, registered on February 29, 2016. 한국등록특허 제10-1771488호, 신규한 바실러스 코아귤란스 NRR1207 균주, 이를 이용한 발효 인삼과 프로바이오틱스 생균제제 조성물, 2017. 08. 21. 등록.Korean Patent No. 10-1771488, novel Bacillus coagulans NRR1207 strain, fermented ginseng and probiotic probiotic composition using the same, registered on August 21, 2017.

Figure 112023011000135-pat00003
Figure 112023011000135-pat00004
Figure 112023011000135-pat00005
D. Rui-Muslic, M. P. Petrovic, M. M. Petrovic, Z. Bijelic, V. Pantelicand P. Periic, Effects of different protein sources of diet on yield and quality of lamb meat, African Journal of Biotechnology Vol. 10(70), pp. 15823-15829, 9 November, 2011. Li, D.F., et al., Transient hypersensitivity to soybean meal in the early-weaned pig, J. Anim. Sci., 68(6), 1790-1799, 1990.
Figure 112023011000135-pat00003
Figure 112023011000135-pat00004
Figure 112023011000135-pat00005
D. Rui-Muslic, MP Petrovic, MM Petrovic, Z. Bijelic, V. Pantelicand P. Periic, Effects of different protein sources of diet on yield and quality of lamb meat, African Journal of Biotechnology Vol. 10(70), pp. 15823-15829, 9 November, 2011. Li, DF, et al., Transient hypersensitivity to soybean meal in the early-weaned pig, J. Anim. Sci., 68(6), 1790-1799, 1990.

본 발명의 목적은 유용미생물과 효소제를 이용한 축산용 보충사료 조성물을 제공하는 데 있다. The purpose of the present invention is to provide a supplementary feed composition for livestock using useful microorganisms and enzymes.

상기 과제를 해결하기 위하여 본 발명은 쌀주정박 및 대두박 혼합물에 바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 및 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P)의 혼합균주를 접종하여 배양한 발효물을 포함하는 축산용 보충사료 조성물을 제공한다.In order to solve the above problem, the present invention includes Bacillus coagulans NRR1207, KACC92114P and Saccharomyces cerevisiae in a mixture of rice ethanol and soybean meal. A supplementary feed composition for livestock containing a fermented product obtained by inoculating and culturing a mixed strain of (MNRU0927, KACC 93265P) is provided.

본 발명에서 사용한 균주 바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 및 효모 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P)는 본 발명자가 대두박의 항영양인자 등의 분해를 연구하는 과정에서 발굴한 스트레인으로, 한국농업미생물자원센터에 기탁되었다.Strains used in the present invention Bacillus coagulans NRR1207, KACC92114P and yeast Saccharomyces cerevisiae cerevisiae MNRU0927, KACC 93265P) is a strain discovered by the present inventor in the process of studying the decomposition of anti-nutritional factors in soybean meal, and was deposited at the Korea Agricultural Microbial Resource Center.

또한, 본 발명은 상기 축산용 보충사료 조성물은, 상기 쌀주정박 및 대두박 혼합물에 알칼리성 프로테아제(Alkaline protease), 자일라나제(Xylanase), 아밀라제(Amylase), 셀룰라제(Cellulase)를 포함하는 효소제를 더 포함하여 배양한 발효물인 것을 특징으로 하는 축산용 보충사료 조성물을 제공한다.In addition, the present invention provides the supplementary feed composition for livestock, adding an enzyme agent containing alkaline protease, xylanase, amylase, and cellulase to the rice ethanol and soybean meal mixture. Provided is a supplementary feed composition for livestock, characterized in that it is a cultured fermented product.

본 발명에서 알칼리성 프로테아제는 중성 내지 알칼리성 pH 범위에서 활성인 프로테아제로, 세린 센터를 가지고 있거나 메탈로 유형이며 주로 미생물에서 분리되어 세제, 식품, 제약 및 가죽 산업에서 널리 사용되고 있다.In the present invention, alkaline protease is a protease active in the neutral to alkaline pH range, has a serine center or is of the metallo type, and is mainly isolated from microorganisms and is widely used in the detergent, food, pharmaceutical and leather industries.

본 발명에서 자일라나제(Xylanase)는 선형 다당류 자일란(xylan)을 자일로오스(xylose)로 분해하는 효소이다.In the present invention, xylanase is an enzyme that decomposes the linear polysaccharide xylan into xylose.

본 발명에서 아밀라제(Amylase)는 녹말을 가수분해하여 당으로의 분해를 촉매하는 효소이다.In the present invention, amylase is an enzyme that hydrolyzes starch and catalyzes its decomposition into sugar.

본 발명에서 셀룰라제(Cellulase)는 셀룰로스를 가수분해하는 효소이다.In the present invention, cellulase is an enzyme that hydrolyzes cellulose.

본 발명에서는 가축 사료용으로 제공되는 자일라나제(Xylanase), 아밀라제(Amylase) 및 셀룰라제(Cellulase)를 자일라나제, 아밀라제 및 셀룰라제의 복합 효소제인 Maxa Feed Wheat (Xylanase, Amylase, Cellulase, Lumis. co. India)로 루미스사(社)에서 구입하여 사용하였으며, 각 효소 활성은 ≥2500 units/g의 활성을 유지하였다.In the present invention, co. India) and was used by Loomis, and each enzyme activity was maintained at ≥2500 units/g.

본 발명에서 쌀주정박은 쌀을 이용하여 에탄올을 만드는 과정에서 생산되는 부산물로, 주정을 거르고 남은 찌꺼기를 말한다. 쌀주정박(Rice Dried Distiller's Grains)은 에너지(TDN 84%)와 단백질(CP 29.5%) 함량이 높으며, by-pass 단백질(60% 정도)원이며, 농후사료의 25%까지 이용할 수 있다(Ensminger 등, 1991).In the present invention, rice ethanol is a by-product produced in the process of making ethanol using rice, and refers to the residue remaining after filtering the alcohol. Rice Dried Distiller's Grains is high in energy (TDN 84%) and protein (CP 29.5%), is a by-pass protein source (about 60%), and can be used up to 25% of concentrated feed (Ensminger et al. , 1991).

본 발명에서 대두박(soybean meal)은 대두로부터 기름을 짠 후 생기는 산물로서, 단백질함량이 50%(껍질제거 후, 기름 추출)이나 껍질을 제거하지 않으면 44%정도로서 가축의 기호성이 높고, 메치오닌 (Methionine)이 제한아미노산이며 단백질함량이나 아미노산조성이 다른 식물성단백질 사료에 비해 균일한 편이다.In the present invention, soybean meal is a product produced after extracting oil from soybeans, and has a protein content of 50% (after removing the husk and extracting the oil), or about 44% if the husk is not removed, so it is highly palatable to livestock and contains methionine. ) is the limiting amino acid, and the protein content and amino acid composition are more uniform than other vegetable protein feeds.

본 발명의 쌀주정박 및 대두박 혼합물은 쌀주정박 및 대두박이 중량비 50~90:10~50으로 혼합될 수 있다. 쌀주정박 및 대두박이 중량비가 90:10보다 쌀주정박 중량비가 큰 경우, 가축 사료 기호성이 떨어지며, 충분한 단백질을 포함하지 못하는 문제가 있으며, 쌀주정박 및 대두박이 중량비가 50:50보다 쌀주정박 중량비가 적은 경우, 사료 조성물의 조단백질 내 분해성 단백질 및 비분해성 단백질의 비율이 낮아져 바람직하지 못하다. 바람직하게는 쌀주정박 및 대두박 혼합물은 쌀주정박 및 대두박이 중량비 50~60:40~50으로 혼합될 수 있으며, 가장 바람직하게는 쌀주정박 및 대두박 혼합물은 쌀주정박 및 대두박이 중량비 50:50으로 혼합된 것이다.The rice ethanol and soybean meal mixture of the present invention may be a mixture of rice ethanol and soybean meal in a weight ratio of 50 to 90:10 to 50. If the rice ethanol and soybean meal weight ratio is greater than the 90:10 weight ratio, the palatability of the feed for livestock is reduced and there is a problem of not containing sufficient protein, and the rice ethanol and soybean meal weight ratio is less than the rice ethanol and soybean meal weight ratio of 50:50. In this case, the ratio of degradable protein and non-degradable protein in the crude protein of the feed composition is lowered, which is not desirable. Preferably, the rice ethanol and soybean meal mixture may be a mixture of rice ethanol and soybean meal in a weight ratio of 50 to 60:40 to 50, and most preferably, the rice ethanol and soybean meal mixture may be a mixture of rice ethanol and soybean meal in a weight ratio of 50:50. will be.

본 발명은 상기 축산용 보충사료 조성물은, 상기 쌀주정박 및 대두박 혼합물에 바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 및 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P)의 혼합균주; 알칼라인 포스파타제 및 밀(wheat)을 포함하는 효소제를 포함하여 24~48시간 배양한 발효물인 것을 특징으로 하는 축산용 보충사료 조성물을 제공한다.The present invention is a supplementary feed composition for livestock, which contains Bacillus coagulans (Bacillus coagulans NRR1207, KACC92114P) and Saccharomyces cerevisiae in the rice ethanol and soybean meal mixture. cerevisiae MNRU0927, KACC 93265P) mixed strain; Provided is a supplementary feed composition for livestock, characterized in that it is a fermented product containing alkaline phosphatase and an enzyme containing wheat and cultured for 24 to 48 hours.

상기 축산용 보충사료 조성물은 쌀주정박 및 대두박 혼합물에 접종하는 바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 및 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P)의 혼합균주는 바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 2×107~2×108 cell/g 및 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P) 1×106~1×107 cell/g를 접종하여 배양할 수 있다. 상기 균주수보다 적게 접종하는 경우 충분히 발효되지 않을 수 있으며, 상기 균주수보다 많게 접종하는 경우, 경제적이지 않을 수 있다.The supplementary feed composition for livestock is Bacillus coagulans (Bacillus coagulans NRR1207, KACC92114P) and Saccharomyces cerevisiae inoculated into a mixture of rice ethanol and soybean meal. The mixed strain of Bacillus coagulans (Bacillus coagulans NRR1207, KACC92114P) 2×10 7 ~2×10 8 cell/g and Saccharomyces cerevisiae (MNRU0927, KACC 93265P) cerevisiae MNRU0927, KACC 93265P) can be cultured by inoculating 1×10 6 ~1×10 7 cell/g. If less than the number of strains is inoculated, sufficient fermentation may not occur, and if more than the number of strains is inoculated, it may not be economical.

상기 축산용 보충사료 조성물은 조단백질 내 분해성 단백질(Degradable intake protein, DIP) 및 비분해성 단백질(Undegradable intake protein, UIP)의 비율이 75% 이상인 것을 특징한다.The supplementary feed composition for livestock is characterized in that the ratio of degradable protein (DIP) and undegradable intake protein (UIP) in crude protein is 75% or more.

본 발명에서 조단백질은 요소, 아미노산, 아민과 같은 비단백태질소(Non Protein Nitrogen, NPN)와 진정단백질(true protein)을 모두 포함한다. 진정단백질은 분해성 단백질(DIP) 및 비분해성 단백질(UIP)로 구성되며, 분해성 단백질은 반추동물이 섭취하여 제1위에서 분해되어 미생물들에 의해 파괴되는 단백질을 말한다. 비분해성 단백질은 제1위에서 주로 파괴되지 않고 제4위로 넘어가 소화효소에 의한 소화과정을 거쳐 소장을 지나는 동안에 흡수 이용되는 단백질을 의미한다. 가축의 증체 및 유량 증가를 위하여 사료 단백질 중 실질적인 분해성 단백질 및 비분해성 단백질의 비율을 높일 필요가 있으며, 본 발명의 축산용 보충사료 조성물은 발효물 내 조단백질 내 분해성 단백질 및 비분해성 단백질의 비율을 75% 이상으로 향상시킬 수 있어 효과적인 가축용 단백질 보충사료로 이용할 수 있다.In the present invention, crude protein includes both non-protein nitrogen (NPN) such as urea, amino acids, and amines and true protein. Degradable proteins are composed of degradable proteins (DIP) and non-degradable proteins (UIP). Degradable proteins refer to proteins that are ingested by ruminants, broken down in the first stomach, and destroyed by microorganisms. Non-degradable protein refers to protein that is not mainly destroyed in the first stomach, but passes to the fourth stomach and is absorbed and used while passing through the small intestine through a digestion process using digestive enzymes. In order to increase the weight gain and flow rate of livestock, it is necessary to increase the ratio of degradable protein and non-degradable protein in feed protein, and the supplemental feed composition for livestock of the present invention increases the ratio of degradable protein and non-degradable protein in crude protein in fermented product to 75. It can be improved to more than %, so it can be used as an effective protein supplement for livestock.

본 발명의 상기 축산용 보충사료 조성물은 리스테리아 모노사이토제네스 530(Listeria monocytogenes 530)에 항균활성을 갖는 것을 특징으로 한다. 리스테리아 모노사이토제네스 530(Listeria monocytogenes 530)는 그람양성의 세포내 기생세균으로 막대모양이며, 1~44℃에서 성장하는 저온세균으로서 감염형 식중독을 일으킨다. 1983년에 음식물에 의해 사람에게 감염될 수 있다는 것이 밝혀진 리스테리아는 공공 보건에 있어 주요 질병의 하나가 되었다. 본 발명의 상기 축산용 보충사료 조성물은 리스테리아 모노사이토제네스 530(Listeria monocytogenes 530)에 항균활성을 가짐으로써 급여되는 가축의 식중독을 예방하는 효과를 나타낼 수 있다.The supplementary feed composition for livestock of the present invention is characterized by having antibacterial activity against Listeria monocytogenes 530. Listeria monocytogenes 530 is a Gram-positive intracellular parasitic bacterium with a rod shape and a low temperature that grows at 1 to 44°C and causes infectious food poisoning. Listeria, which was discovered in 1983 to be infectious to humans through food, has become one of the major public health diseases. The supplementary feed composition for livestock farming of the present invention is Listeria monocytogenes 530 ( Listeria monocytogenes 530), it can prevent food poisoning in fed livestock by having antibacterial activity.

본 발명의 상기 축산용 보충사료 조성물은 항산화 활성을 갖는 것을 특징한다. 본 발명의 쌀주정박 및 대두박 혼합물에 바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 및 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P)의 혼합균주; 알칼라인 포스파타제 및 (wheat)을 포함하는 효소제를 포함하여 24~48시간 배양한 발효물은 비발효물과 비교하여 높은 항산화 활성을 나타냄으로써 급여되는 가축의 체내에서 활성산소종 등에 의한 염증을 예방하는 등 건강에 유익한 효과를 나타낼 수 있다.The supplementary feed composition for livestock of the present invention is characterized by having antioxidant activity. Mixed strains of Bacillus coagulans NRR1207, KACC92114P and Saccharomyces cerevisiae MNRU0927, KACC 93265P in the rice ethanol and soybean meal mixture of the present invention; Fermented products cultured for 24 to 48 hours, including enzymes including alkaline phosphatase and (wheat), exhibit higher antioxidant activity compared to non-fermented products, thereby preventing inflammation caused by reactive oxygen species in the bodies of livestock fed. It may have beneficial effects on health.

본 발명은 쌀주정박 및 대두박 혼합물에 바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 및 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P)의 혼합균주; 알칼리성 프로테아제(alkaline protease), 자일라나제(Xylanase), 아밀라제(Amylase), 셀룰라제(Cellulase)를 포함하는 효소제를 포함하여 24~48시간 배양한 발효물인 것을 특징으로 하는 축산용 보충사료 조성물에 관한 것으로, 사료 조성물 내 분해성 단백질 및 비분해성 단백질을 실질적으로 증가시키고 항산화, 항균 활성을 나타냄으로써 가축의 단백질 보충 및 건강에 유익한 보충사료 조성물로 사용될 수 있다.The present invention relates to a mixed strain of Bacillus coagulans (Bacillus coagulans NRR1207, KACC92114P) and Saccharomyces cerevisiae ( Saccharomyces cerevisiae MNRU0927, KACC 93265P) in a mixture of rice ethanol and soybean meal; About a supplementary feed composition for livestock, characterized in that it is a fermented product cultured for 24 to 48 hours and contains enzymes including alkaline protease, xylanase, amylase, and cellulase. As such, it can be used as a protein supplement for livestock and as a health-beneficial supplementary feed composition by substantially increasing degradable and non-degradable proteins in the feed composition and exhibiting antioxidant and antibacterial activities.

도 1은 각 균주로 발효시킨 대두박에서 생존 세포 수를 나타낸 그래프이다. (LF; L. fermentum DSHA, LS; L. salivarus Nam27, BC2; B. coagulans NRR1207, BC4; B. coagulans S254, SC; Saccharomyces cerevisiae MNRU0927, SB; Saccharomyces boulardi)
도 2는 발효 대두박의 가수분해 탄수화물의 HPLC 분석 결과이다. (대조군 (non-fermented soybean meal), LF 24 h; L. fermentum 24 h, LF 48 h; L. fermentum 48 h, LS 24 h; L. salivatus 24 h, LS 48 h; L. salivarus 48 h, BC2 24 h; B. coagulans NRR1207 24 h, BC2 48 h; B. coagulans NRR1207 48 h, BC4 24; B. coagulans S254 24 h, BC4 48 h; B. coagulans S254 48 h, SB 24 h; S. boulardi 24 h, SB 48 h; S. boulardi 48 h, SC 24 h; S. cerevisiae MNRU0927 24 h, SC 48 h; S. cerevisiae MNRU0927 48 h)
도 3은 발효 대두박의 가수분해 탄수화물의 TLC 결과이다. (F; Fructose, S; Sucrose, G; Glucose, M; Melibiose, R; Raffinose, St; Stachyose, Co; Control (non-fermented soybean meal), LF 24 h; L. fermentum 24 h, LF 48 h; L. fermentum 48 h, LS 24 h; L. salivatus 24 h, LS 48 h; L. salivarus 48 h, BC2 24 h; B. coagulans NRR1207 24 h, BC2 48 h; B. coagulans NRR1207 48 h, BC4 24; B. coagulans S254 24 h, BC4 48 h; B. coagulans S254 48 h, SB 24 h; S. boulardi 24 h, SB 48 h; S. boulardi 48 h, SC 24 h; S. cerevisiae MNRU0927 24 h, SC 48 h; S. cerevisiae MNRU0927 48 h)
도 4는 본 발명의 균주 및 효소 조성물에 의한 발효 대두박의 pH 변화를 나타낸 그래프이다.
도 5는 본 발명의 균주 및 효소 조성물에 의한 발효 대두박 내 유산균(B. coagulans NRR1207) 및 효모(Saccharomyces cerevisiae MNRU0927)의 생균수 변화를 나타낸 그래프이다.
도 6은 본 발명의 균주 및 효소 조성물에 의한 발효 대두박의 단백질 SDS-PAGE 결과이다. (STD: 표준 마커, Cont: 대두박, 발효 대두박: 4시간, 8시간, 12시간, 24시간, 48시간)
도 7은 본 발명의 균주 및 효소 조성물에 의한 발효 대두박의 탄수화물 HPLC 분석 결과이다. (발효시간 : 0시간, 4시간, 8시간, 12시간, 24시간, 48시간)
도 8은 본 발명의 균주 및 효소 조성물에 의한 발효 대두박의 탄수화물 TLC 분석 결과이다. (F; Fructose, S; Sucrose, G; Glucose, M; Melibiose, R; Raffinose, St; Stachyose, 발효시간 : 0시간, 4시간, 8시간, 12시간, 24시간, 48시간)
도 9는 본 발명의 균주 및 효소 조성물에 의한 발효 대두박 유기산의 HPLC 분석 결과이다. (발효시간 : 0시간, 4시간, 8시간, 12시간, 24시간, 48시간)
도 10은 본 발명의 균주 및 효소 조성물에 의한 쌀주정박 및 대두박 조성비에 따른 pH 변화를 나타낸 결과이다. (쌀주정박; RDDG, 대두박; SBM, A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10%)
도 11은 본 발명의 균주 및 효소 조성물에 의한 쌀주정박 및 대두박 조성비에 따른 쌀주정박과 대두박 혼합발효물의 생균수변화를 나타낸 결과이다. (쌀주정박; RDDG, 대두박; SBM, A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10%)
도 12는 본 발명의 균주 및 효소 조성물에 의한 쌀주정박 및 대두박 조성비에 따른 쌀주정박과 대두박 혼합발효물의 SDS-PAGE 결과이다. (M; 분자량 마커, 쌀주정박; RDDG, 대두박; SBM, Lane 1; RDDG 50%+SBM 50% (0 h), Lane 2; RDDG 50%+SBM 50% (24 h), Lane 3; RDDG 50%+SBM 50% (48 h), Lane 4; RDDG 60%+SBM 40% (0 h), Lane 5; RDDG 60%+SBM 40% (24 h), Lane 6; RDDG 60%+SBM 40% (48 h), Lane 7; RDDG 70%+SBM 30% (0 h), Lane 8; RDDG 70%+SBM 30% (24 h), Lane 9; RDDG 70%+SBM 30% (48 h),Lane 10; RDDG 80%+SBM 20% (0 h), Lane 11; RDDG 80%+SBM 20% (24 h), Lane 12; RDDG 80%+SBM 20% (48 h), Lane 13; RDDG 90%+SBM 10% (0 h), Lane 14; RDDG 90%+SBM 10% (24 h), Lane 15; RDDG 90%+SBM 10% (48 h), Rice DDG; RDDG, Soybean meal; SBM)
도 13은 본 발명의 균주 및 효소 조성물에 의한 쌀주정박 및 대두박 조성비에 따른 쌀주정박과 대두박 혼합발효물 탄수화물의 HPLC 분석 결과이다. (쌀주정박; RDDG, 대두박; SBM A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10%, 발효시간 ; A0-0 h, A24-24 h, A48-48 h, B0-0 h, B24-24 h, B48-48 h, C0-0 h, C24-24 h, C48-48 h, D0-0 h, D24-24 h, D48-48 h, E0-0 h, E24-24 h, E48-48 h)
도 14는 본 발명의 균주 및 효소 조성물에 의한 쌀주정박 및 대두박 조성비에 따른 쌀주정박과 대두박 혼합발효물의 탄수화물 성분 변화를 나타낸 그래프이다. (쌀; 쌀주정박, 대; 대두박)
도 15는 본 발명의 균주 및 효소 조성물에 의한 쌀주정박 및 대두박 조성비에 따른 쌀주정박과 대두박 혼합발효물의 TLC 분석 결과이다. (쌀주정박; RDDG, 대두박; SBM, G: Glucose, F: Fructose, Suc: Sucrose, M: Melibiose, R: Raffinose, Sta: Stachyose, A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10% 발효시간 ; A0-0 h, A24-24 h, A48-48 h, B0-0 h, B24-24 h, B48-48 h, C0-0 h, C24-24 h, C48-48 h, D0-0 h, D24-24 h, D48-48 h, E0-0 h, E24-24 h, E48-48 h)
도 16은 본 발명의 균주 및 효소 조성물에 의한 쌀주정박 및 대두박 조성비에 따른 쌀주정박과 대두박 혼합발효물 유기산의 HPLC 분석 결과이다. (쌀주정박; RDDG, 대두박; SBM, A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10%, 발효시간 ; A0-0 h, A24-24 h, A48-48 h, B0-0 h, B24-24 h, B48-48 h, C0-0 h, C24-24 h, C48-48 h, D0-0 h, D24-24 h, D48-48 h, E0-0 h, E24-24 h, E48-48 h)
도 17은 본 발명의 균주 및 효소 조성물에 의한 쌀주정박 및 대두박 조성비에 따른 쌀주정박과 대두박 혼합발효물의 항균 활성을 나타낸 사진이다. (쌀주정박: RDDG, 대두박: SBM, 대조군: Cont, A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10%, 발효시간 ; A0-0 h, A24-24 h, A48-48 h, B0-0 h, B24-24 h, B48-48 h, C0-0 h, C24-24 h, C48-48 h, D0-0 h, D24-24 h, D48-48 h, E0-0 h, E24-24 h, E48-48 h)
도 18은 본 발명의 균주 및 효소 조성물에 의한 쌀주정박 및 대두박 조성비에 따른 쌀주정박과 대두박 혼합발효물의 라디칼 소거 활성(항산화 활성) 변화를 나타낸 그래프이다. (쌀주정박; RDDG, 대두박; SBM, A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10%)
Figure 1 is a graph showing the number of viable cells in soybean meal fermented with each strain. (LF; L. fermentum DSHA, LS; L. salivarus Nam27, BC2; B. coagulans NRR1207, BC4; B. coagulans S254, SC; Saccharomyces cerevisiae MNRU0927, SB; Saccharomyces boulardi )
Figure 2 shows the results of HPLC analysis of hydrolyzed carbohydrates in fermented soybean meal. (Control (non-fermented soybean meal), LF 24 h; L. fermentum 24 h, LF 48 h; L. fermentum 48 h, LS 24 h; L. salivatus 24 h, LS 48 h; L. salivarus 48 h, BC2 24 h; B. coagulans NRR1207 24 h, BC2 48 h; B. coagulans NRR1207 48 h, BC4 24; B. coagulans S254 24 h, BC4 48 h; B. coagulans S254 48 h, SB 24 h; S. boulardi 24 h, SB 48 h; S. boulardi 48 h, SC 24 h; S. cerevisiae MNRU0927 24 h, SC 48 h; S. cerevisiae MNRU0927 48 h)
Figure 3 shows TLC results of hydrolyzed carbohydrates of fermented soybean meal. (F; Fructose, S; Sucrose, G; Glucose, M; Melibiose, R; Raffinose, St; Stachyose, Co; Control (non-fermented soybean meal), LF 24 h; L. fermentum 24 h, LF 48 h; L. fermentum 48 h, LS 24 h; L. salivatus 24 h, LS 48 h; L. salivarus 48 h, BC2 24 h; B. coagulans NRR1207 24 h, BC2 48 h; B. coagulans NRR1207 48 h, BC4 24 ; B. coagulans S254 24 h, BC4 48 h; B. coagulans S254 48 h, SB 24 h; S. boulardi 24 h, SB 48 h; S. boulardi 48 h, SC 24 h; S. cerevisiae MNRU0927 24 h, SC 48 h; S. cerevisiae MNRU0927 48 h)
Figure 4 is a graph showing the pH change of fermented soybean meal by the strain and enzyme composition of the present invention.
Figure 5 shows lactic acid bacteria ( B. coagulans NRR1207) and yeast ( Saccharomyces ) in fermented soybean meal using the strain and enzyme composition of the present invention. This is a graph showing the change in viable cell count of cerevisiae MNRU0927).
Figure 6 shows the protein SDS-PAGE results of soybean meal fermented with the strain and enzyme composition of the present invention. (STD: standard marker, Cont: soybean meal, fermented soybean meal: 4 hours, 8 hours, 12 hours, 24 hours, 48 hours)
Figure 7 shows the results of carbohydrate HPLC analysis of soybean meal fermented using the strain and enzyme composition of the present invention. (Fermentation time: 0 hours, 4 hours, 8 hours, 12 hours, 24 hours, 48 hours)
Figure 8 shows the results of carbohydrate TLC analysis of soybean meal fermented with the strain and enzyme composition of the present invention. (F; Fructose, S; Sucrose, G; Glucose, M; Melibiose, R; Raffinose, St; Stachyose, fermentation time: 0 hours, 4 hours, 8 hours, 12 hours, 24 hours, 48 hours)
Figure 9 shows the results of HPLC analysis of organic acids of fermented soybean meal using the strain and enzyme composition of the present invention. (Fermentation time: 0 hours, 4 hours, 8 hours, 12 hours, 24 hours, 48 hours)
Figure 10 shows the results showing the pH change according to the composition ratio of rice ethanol and soybean meal by the strain and enzyme composition of the present invention. (Rice ethanol meal; RDDG, soybean meal; SBM, A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10%)
Figure 11 shows the results showing changes in the number of viable bacteria in mixed fermented rice ethanol and soybean meal according to the composition ratio of rice ethanol and soybean meal using the strain and enzyme composition of the present invention. (Rice ethanol meal; RDDG, soybean meal; SBM, A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10%)
Figure 12 shows the SDS-PAGE results of mixed fermentation of rice ethanol and soybean meal according to the composition ratio of rice ethanol and soybean meal using the strain and enzyme composition of the present invention. (M; molecular weight marker, rice ginseng; RDDG, soybean meal; SBM, Lane 1; RDDG 50%+SBM 50% (0 h), Lane 2; RDDG 50%+SBM 50% (24 h), Lane 3; RDDG 50 %+SBM 50% (48 h), Lane 4; RDDG 60%+SBM 40% (0 h), Lane 5; RDDG 60%+SBM 40% (24 h), Lane 6; RDDG 60%+SBM 40% (48 h), Lane 7; RDDG 70%+SBM 30% (0 h), Lane 8; RDDG 70%+SBM 30% (24 h), Lane 9; RDDG 70%+SBM 30% (48 h), Lane 10; RDDG 80%+SBM 20% (0 h), Lane 11; RDDG 80%+SBM 20% (24 h), Lane 12; RDDG 80%+SBM 20% (48 h), Lane 13; RDDG 90 %+SBM 10% (0 h), Lane 14; RDDG 90%+SBM 10% (24 h), Lane 15; RDDG 90%+SBM 10% (48 h), Rice DDG; RDDG, Soybean meal; SBM)
Figure 13 shows the results of HPLC analysis of carbohydrates in mixed fermentation of rice ethanol and soybean meal according to the composition ratio of rice ethanol and soybean meal using the strain and enzyme composition of the present invention. (Rice ethanol meal; RDDG, soybean meal; SBM A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E : RDDG 90%+SBM 10%, fermentation time; A0-0 h, A24-24 h, A48-48 h, B0-0 h, B24-24 h, B48-48 h, C0-0 h, C24-24 h, C48-48 h, D0-0 h, D24-24 h, D48-48 h, E0-0 h, E24-24 h, E48-48 h)
Figure 14 is a graph showing changes in carbohydrate components of mixed fermented rice ethanol and soybean meal according to the composition ratio of rice ethanol and soybean meal using the strain and enzyme composition of the present invention. (Rice; Rice ginseng meal; Stalk; Soybean meal)
Figure 15 shows the results of TLC analysis of mixed fermentation of rice ethanol and soybean meal according to the composition ratio of rice ethanol and soybean meal using the strain and enzyme composition of the present invention. (Rice ethanol meal; RDDG, Soybean meal; SBM, G: Glucose, F: Fructose, Suc: Sucrose, M: Melibiose, R: Raffinose, Sta: Stachyose, A: RDDG 50%+SBM 50%, B: RDDG 60%+ SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10% Fermentation time: A0-0 h, A24-24 h, A48-48 h , B0-0 h, B24-24 h, B48-48 h, C0-0 h, C24-24 h, C48-48 h, D0-0 h, D24-24 h, D48-48 h, E0-0 h , E24-24 h, E48-48 h)
Figure 16 shows the results of HPLC analysis of organic acids in the mixed fermentation of rice ethanol and soybean meal according to the composition ratio of rice ethanol and soybean meal using the strain and enzyme composition of the present invention. (Rice ethanol meal; RDDG, soybean meal; SBM, A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10%, fermentation time; A0-0 h, A24-24 h, A48-48 h, B0-0 h, B24-24 h, B48-48 h, C0-0 h, C24- 24 h, C48-48 h, D0-0 h, D24-24 h, D48-48 h, E0-0 h, E24-24 h, E48-48 h)
Figure 17 is a photograph showing the antibacterial activity of mixed fermentation of rice ethanol and soybean meal according to the composition ratio of rice ethanol and soybean meal using the strain and enzyme composition of the present invention. (Rice ethanol meal: RDDG, soybean meal: SBM, control group: Cont, A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+ SBM 20%, E: RDDG 90%+SBM 10%, fermentation time: A0-0 h, A24-24 h, A48-48 h, B0-0 h, B24-24 h, B48-48 h, C0-0 h, C24-24 h, C48-48 h, D0-0 h, D24-24 h, D48-48 h, E0-0 h, E24-24 h, E48-48 h)
Figure 18 is a graph showing the change in radical scavenging activity (antioxidant activity) of mixed fermented rice ethanol and soybean meal according to the composition ratio of rice ethanol and soybean meal using the strain and enzyme composition of the present invention. (Rice ethanol meal; RDDG, soybean meal; SBM, A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10%)

이하 본 발명의 바람직한 실시예를 상세히 설명한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있으며, 여기서 소개되는 내용은 본 발명의 사상을 충분히 전달하기 위해 제공하는 것이다.Hereinafter, preferred embodiments of the present invention will be described in detail. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms, and the content introduced here is provided to sufficiently convey the spirit of the present invention.

<< 실시예Example 1. 유용 미생물의 선별> 1. Selection of useful microorganisms>

1.1 효소활성 측정1.1 Measurement of enzyme activity

유용미생물은 대사산물로 산생성 능력과 대두박의 항영양인자인 stachyose, raffinose 분해 효소 생산이 우수한 균주를 선정하기 위해 본 발명자가 대두박의 항영양인자 및 단백질 분해에서 활성을 갖는 균주로 분리한 Lactobacillus fermentum DSHA, Lactobacillus salivarus Nam27, Bacillus coagulans NRR1207, Bacillus coagulans S254, Saccharomyces cerevisiae MNRU0927 및 Saccharomyces boulardi의 대한 효소활성 측정하였다.Useful microorganisms include Lactobacillus fermentum DSHA, which the present inventor isolated as a strain with activity in decomposing anti-nutritional factors and proteins of soybean meal in order to select strains with excellent ability to produce acid as a metabolite and to produce enzymes that decompose stachyose and raffinose, which are anti-nutritional factors of soybean meal; Lactobacillus salivarus Nam27, Bacillus coagulans NRR1207, Bacillus coagulans S254, Saccharomyces cerevisiae The enzyme activity of MNRU0927 and Saccharomyces boulardi was measured.

상기 균주의 효소 활성은 API ZYM enzyme system (version 4.0 of API LAB plus, BioM

Figure 112023011000135-pat00006
rieux, Mercy I’Etoile, France)을 사용하여 조사하였다. 배양 상자를 준비하고 약 5 mL의 멸균 증류수를 트레이에 부어 수분을 유지시켰다. 그 후 스트립을 트레이 위에 올려놓고 각 균주를 액체배지 (0.85% NaCl, Ref 20070, BioM
Figure 112023011000135-pat00007
rieux, France)에 현탁한 다음, 표준 탁도 농도를 McFarland No 5.0-6.0 standard (BioM
Figure 112023011000135-pat00008
rieux, France)를 맞추었다. API ZYM 19 탈수 발색 효소 기질(dehydrated chromogenic enzyme substrates)에 50 μl씩 분주 및 현탁한 다음 37℃에서 4시간 동안 배양하였다(version 4.0 of API LAB plus; BioM
Figure 112023011000135-pat00009
rieux, France). 이후, ZYM A와 ZYM B시약을 각각의 커플에 한 방울씩 떨어뜨린 후 ZYM A가 표면의 활성을 증가시켜 ZYM B의 용해를 돕게 하고 5분간 후에 판독하였다. 큐플 위의 10 cm 위치에 강력한 빛(1,000 W bulb)을 10초간 쪼이도록 하고 반응 결과를 읽고 색의 변화 정도에 따라 0-5까지의 값으로 표시하였다. 0은 음성반응, 5는 최대 강도의 반응이고 1, 2, 3, 4는 중간 반응 값이며 3 이상이면 양성으로 판정하고 그 결과를 하기 표 1에 나타내었다.The enzyme activity of the strain was tested using the API ZYM enzyme system (version 4.0 of API LAB plus, BioM
Figure 112023011000135-pat00006
rieux, Mercy I'Etoile, France). A culture box was prepared, and approximately 5 mL of sterile distilled water was poured into the tray to maintain moisture. Afterwards, the strip was placed on a tray and each strain was cultured in liquid medium (0.85% NaCl, Ref 20070, BioM
Figure 112023011000135-pat00007
rieux, France), and then the standard turbidity concentration was measured using McFarland No 5.0-6.0 standard (BioM
Figure 112023011000135-pat00008
rieux, France). 50 μl each was dispensed and suspended in API ZYM 19 dehydrated chromogenic enzyme substrates and incubated at 37°C for 4 hours (version 4.0 of API LAB plus; BioM
Figure 112023011000135-pat00009
rieux, France). Afterwards, one drop of ZYM A and ZYM B reagent was added to each couple, and ZYM A increased surface activity to help dissolve ZYM B, and the results were read after 5 minutes. A strong light (1,000 W bulb) was irradiated for 10 seconds at a position 10 cm above the cupule, and the reaction results were read and expressed as a value from 0 to 5 depending on the degree of color change. 0 is a negative response, 5 is the maximum intensity response, 1, 2, 3, and 4 are intermediate response values, and if it is 3 or more, it is judged positive. The results are shown in Table 1 below.

NoNo EnzymesEnzymes L. fermentum
DSHA
L. fermentum
DSHA
L. salivarus
Nam27
L. salivarus
Nam27
B. coagulans
1207
B. coagulans
1207
B. coagulans
S254
B. coagulans
S254
S. cerevisiae MNRU0927 S. cerevisiae MNRU0927 S. S. boulardiboulardi
1One ControlControl 00 00 00 00 00 00 22 Alkaline phosphataseAlkaline phosphatase 00 33 33 33 22 22 33 Esterase (c4)Esterase (c4) 22 55 33 44 22 22 44 Esterase lipase (C8)Esterase lipase (C8) 22 44 22 33 1One 22 55 Lipase (c14)Lipase (c14) 00 33 00 00 00 00 66 LeucinearylamidaseLeucinearylamidase 55 55 44 22 55 55 77 ValinearylamidaseValinearylamidase 22 55 22 1One 1One 22 88 CystinearylamidaseCystinearylamidase 22 33 1One 1One 00 1One 99 TrypsinTrypsin 00 00 00 00 00 00 1010 α-chymotrypsinα-chymotrypsin 00 33 00 00 00 00 1111 Acid phosphataseAcid phosphatase 1One 55 44 55 55 55 1212 Naphtol-AS-BO-phosphohydrolaseNaphtol-AS-BO-phosphohydrolase 22 55 44 55 44 55 1313 α-galactosidaseα-galactosidase 33 55 33 33 00 00 1414 β-galactosidaseβ-galactosidase 1One 55 55 55 00 1One 1515 β-glucuronidaseβ-glucuronidase 00 00 00 22 1One 00 1616 α-glucosidaseα-glucosidase 22 55 55 55 00 00 1717 β-glucosidaseβ-glucosidase 00 22 1One 44 00 00 1818 N-acetyl-β-glucosamidaseN-acetyl-β-glucosamidase 00 00 33 22 00 00 1919 α-mannosidaseα-mannosidase 00 00 00 00 00 00 2020 α-fucosidaseα-fucosidase 00 00 00 00 00 00 * Quantity of hydrolyzed substrate, 0: 0 nanomoles, 1: 5 nanomoles, 2: 10 nanomoles, 3: 20 nanomoles, 4: 30 nanomoles, 5: ≥40 nanomoles* Quantity of hydrolyzed substrate, 0: 0 nanomoles, 1: 5 nanomoles, 2: 10 nanomoles, 3: 20 nanomoles, 4: 30 nanomoles, 5: ≥40 nanomoles

상기 표 1에서 보는 바와 같이, 실험에 사용된 4종의 박테리아 및 2종의 효모는 모두 지방 분해에 관여하는 에스터라제(Esterase) 및 에스터라제 리파제(Esterase lipase) 효소 활성을 나타내었다. 또한 단백질 가수분해 효소인 류신 아크릴아미다제(Leucine arylamidase), 발린 아크릴아미다제(Valine arylamidase), 시스틴(Cystine arylamidase) 등에서 5~40≤ nmol의 활성을 나타내었으며, 트립신(trypsin)은 활성 없는 것으로 나타냈다. 대두박 항영양인자인 raffinose와 stachyose를 분해할 수 있는 α-갈락토시다제(α-galactosidase) 활성은 4종의 박테리아에서 모두 관찰되었으며, 당 분해에 관여하는 β-갈락토시다제(β-galactosidase) 활성 또한 L. fermentum DSHA를 제외한 3종의 박테리아에서 높게 나타났다. B. coagulans 1207 및 B. coagulans S254는 키틴을 포함하는 올리고당을 표적으로 하고 가수분해하는 N-아세틸-β-글루코사미다제(N-acetyl-β-glucosamidase) 활성을 나타내었으며, S. cerevisiae MNRU0927는 복합 탄수화물의 분해를 촉매하는 글리코시다제 계열 효소 베타-글루쿠로니다아제(β-glucuronidase) 활성을 나타내었다.As shown in Table 1, all four types of bacteria and two types of yeast used in the experiment showed esterase and esterase lipase enzyme activities involved in fat decomposition. In addition, proteolytic enzymes such as leucine arylamidase, valine arylamidase, and cystine arylamidase showed activity of 5 to 40 ≤ nmol, and trypsin showed no activity. . α-galactosidase activity, which can decompose raffinose and stachyose, which are anti-nutritional factors in soybean meal, was observed in all four types of bacteria, and β-galactosidase, which is involved in sugar decomposition. Active also L. fermentum It was found to be high in three types of bacteria excluding DSHA. B. coagulans 1207 and B. coagulans S254 exhibited N-acetyl-β-glucosamidase activity that targets and hydrolyzes oligosaccharides including chitin and S. cerevisiae MNRU0927 showed beta-glucuronidase activity, a glycosidase family enzyme that catalyzes the decomposition of complex carbohydrates.

1.2. 당 이용성 조사1.2. Sugar availability survey

LactobacllsLactobacillus spsp . 와 . and Bacillus Bacillus spsp ..

상기 4종 균주의 당 이용성은 API 50CHL/B(version 4.0 of API LAB plus, BioM

Figure 112023011000135-pat00010
rieux, Mercy I’Etoile, France)을 사용하여 조사하였다. 배양 상자를 준비하고 약 5 mL의 멸균 증류수를 트레이에 부어서 수분을 유지하고 스트립을 트레이 위에 올려놓았다. 이후 상기 각 균주를 액체배지 (0.85% NaCl, Ref 20070, BioM
Figure 112023011000135-pat00011
rieux, France)에 현탁하고 표준 탁도 농도 McFarland No 2.0 standard (BioM
Figure 112023011000135-pat00012
rieux, France)를 맞추었다. 각 API 50CHL/B kit 에 100 μl씩 분주 및 현탁한 다음 37℃에서 48시간 동안 배양 (version 4.0 of API LAB plus; BioM
Figure 112023011000135-pat00013
rieux, France) 후에 배지에 포함되어 있는 bromocresol purple 지시약에 의해 산이 생성되면 배지의 색이 노란색으로 변한다. Esculin test는 보라색에서 검은색으로 변하면 양성으로 기록하여 하기 표 2에 나타내었다. 대두박에 들어있는 당은 대부분 raffinose, stachyose 및 melibiose 이고, glucose, sucrose, fructose는 소량 포함된 것으로 알려져 있으며, 하기 표 2에서 보는 바와 같이, 49종의 당이 포함되어 있는 API 50CHL/B kit을 이용하고 당 이용성을 확인할 때 4종류 미생물은 galactose, glucose, fructose, mannose, mannitol, esculin, cellibiose, maltose, lactose, melibiose, sucrose, raffinose 등을 100% 이용한 것으로 나타났다.The sugar availability of the above four strains was API 50CHL/B (version 4.0 of API LAB plus, BioM
Figure 112023011000135-pat00010
rieux, Mercy I'Etoile, France). A culture box was prepared, approximately 5 mL of sterile distilled water was poured into the tray to maintain moisture, and the strips were placed on the tray. Afterwards, each of the above strains was cultured in liquid medium (0.85% NaCl, Ref 20070, BioM
Figure 112023011000135-pat00011
rieux, France) and adjusted to a standard turbidity concentration of McFarland No 2.0 standard (BioM).
Figure 112023011000135-pat00012
rieux, France). Dispense and suspend 100 μl of each API 50CHL/B kit and then culture at 37°C for 48 hours (version 4.0 of API LAB plus; BioM
Figure 112023011000135-pat00013
rieux, France), when acid is produced by the bromocresol purple indicator contained in the medium, the color of the medium changes to yellow. Esculin test was recorded as positive when it changed from purple to black, and is shown in Table 2 below. Most of the sugars in soybean meal are raffinose, stachyose, and melibiose, and small amounts of glucose, sucrose, and fructose are known to be contained. As shown in Table 2 below, the API 50CHL/B kit, which contains 49 types of sugars, is used. When checking sugar utilization, the four types of microorganisms were found to use 100% of galactose, glucose, fructose, mannose, mannitol, esculin, cellibiose, maltose, lactose, melibiose, sucrose, and raffinose.

Substrate Substrate L. fermentum DSHA L. fermentum DSHA L. salivarus Nam27 L. salivarus Nam27 B. coagulans
NRR1207
B. coagulans
NRR1207
B. coagulans S254 B. coagulans S254
00 Control Control - - - - - - - - 1One GrycerolGrycerol - - - - - - +(50%) +(50%) 22 ErythritolErythritol - - - - - - - - 33 D-ArabinoseD-Arabinose - - - - - - - - 44 L_ArabinoseL_Arabinose +(80%) +(80%) + + + + + + 55 D-RiboseD-Ribose + + + + + + + + 66 D-XyloseD-Xylose - - - - + + +(20%) +(20%) 77 L-XyloseL-Xylose - - - - - - - - 88 D-AdonitolD-Adonitol - - - - - - - - 99 Methyl-β D xylopyranosideMethyl-βD xylopyranoside - - - - - - - - 1010 D-GalactoseD-Galactose + + + + +(90%) +(90%) + + 1111 D-GlucoseD-Glucose + + + + + + + + 1212 D-FructoseD-Fructose + + + + + + + + 1313 D-MannoseD-Mannose + + + + + + + + 1414 L-SorboseL-Sorbose - - - - - - - - 1515 L-RhamnoseL-Rhamnose - - + + +(10%) +(10%) + + 1616 DulcitolDulcitol - - - - - - - - 1717 InositolInositol - - - - - - - - 1818 D-MannitolD-Mannitol + + + + + + + + 1919 D-SorbitolD-Sorbitol + + + + +(50%) +(50%) +(50%) +(50%) 2020 Methyl-α D-MannoryranosideMethyl-α D-Mannoryranoside - - - - - - - - 2121 Methyl-α D-glucopyranosideMethyl-α D-glucopyranoside - - - - +(80%) +(80%) +(60%) +(60%) 2222 N Acetyl glucosamineN-Acetyl glucosamine + + + + + + + + 2323 AmygdalineAmygdaline + + - - + + + + 2424 ArbutineArbutine + + + + + + + + 2525 EsculineEsculine + + + + + + + + 2626 Salicine Salicine + + - - + + + + 2727 D-CellobioseD-Cellobiose + + + + + + + + 2828 D-MaltoseD-Maltose + + + + + + +(50%) +(50%) 2929 D-Lactose D-Lactose + + + + - - + + 3030 D-MelibioseD-Melibiose + + + + + + + + 3131 D-SucroseD-Sucrose + + + + + + +(60%) +(60%) 3232 D-TrehaloseD-Trehalose + + + + +(80%) +(80%) +(50%) +(50%) 3333 Inuline Inuline - - - - - - - - 3434 D-MelezitoseD-Melezitose ++ + + - - - - 3535 D-RafiinoseD-Rafiinose + + + + + + + + 3636 StarchStarch - - - - +(50%) +(50%) +(50%) +(50%) 3737 GlycogeneGlycogene - - - - - - - - 3838 XylitolXylitol - - - - - - +(20%) +(20%) 3939 GentibioseGentibiose + + - - + + + + 4040 D-TuranoseD-Turanose + + +(50%) +(50%) +(50%) +(50%) +(50%) +(50%) 4141 D-LuxoseD-Luxose - - - - - - - - 4242 D-TagatoseD-Tagatose - - +(50%) +(50%) - - - - 4343 D-FucoseD-Fucose - - - - - - - - 4444 L-FucoseL-Fucose - - - - - - - - 4545 D-ArabitolD-Arabitol - - - - - - + + 4646 L-ArabitolL-Arabitol - - - - - - - - 4747 GluconateGluconate + + +(50%) +(50%) +(10%) +(10%) +(10%) +(10%) 4848 2keto-gluconate2keto-gluconate - - - - +(50%) +(50%) + + 4949 5keto-gluconate5keto-gluconate + + - - +(70%) +(70%) +(50%) +(50%)

효모leaven

상기 효모 Saccharomyces cerevisiae MNRU0927 및 Saccharomyces boulardi 2종의 당 이용성은 API 20 C AUX (version 4.0 of API LAB plus, BioM

Figure 112023011000135-pat00014
rieux, Mercy I’Etoile, France)을 사용하여 조사하였다. 배양 상자를 준비하고 약 5 mL의 멸균 증류수를 트레이에 부어서 수분을 유지한 다음 스트립을 트레이 위에 올려놓았다. 분리된 균주를 액체배지(0.85% NaCl, Ref 20070, BioM
Figure 112023011000135-pat00015
rieux, France)에 현탁하고 표준 탁도 농도 McFarland No 2.0 standard (BioM
Figure 112023011000135-pat00016
rieux, France)를 맞추었다. 각 API 50CHL/B kit 에 100 μl씩 분주 및 현탁 한 다음 29±2℃에서 72시간 동안 배양 후에 “0” 큐플을 음성 대조군으로 하고 혼탁도가 높은 큐플을 양성 반응으로 결과지에 기록하여 표 3에 나타내었다. 효모의 당 이용성을 확인할 때 효모에만 사용하는 API 20 C AUX kit을 이용하였다. 표 3의 결과에 의하면 사용한 2가지 효모는 19종 당 중에서 2-keto-D-gluconate, adonitol, xylitol, D-melezitose 외 모든 당을 이용하는 것으로 나타났다. The yeast Saccharomyces cerevisiae MNRU0927 and Saccharomyces The sugar availability of the two types of boulardi is API 20 C AUX (version 4.0 of API LAB plus, BioM
Figure 112023011000135-pat00014
rieux, Mercy I'Etoile, France). A culture box was prepared, approximately 5 mL of sterile distilled water was poured into the tray to maintain moisture, and the strips were placed on the tray. The isolated strain was cultured in liquid medium (0.85% NaCl, Ref 20070, BioM
Figure 112023011000135-pat00015
rieux, France) and adjusted to a standard turbidity concentration of McFarland No 2.0 standard (BioM).
Figure 112023011000135-pat00016
rieux, France). Dispense and suspend 100 μl of each API 50CHL/B kit, and then incubate at 29±2°C for 72 hours. The “0” cupule was used as a negative control, and the cupule with high turbidity was recorded as a positive reaction on the result sheet, as shown in Table 3. indicated. When checking the sugar availability of yeast, the API 20 C AUX kit, which is used only for yeast, was used. According to the results in Table 3, the two types of yeast used were found to use all sugars including 2-keto-D-gluconate, adonitol, xylitol, and D-melezitose among 19 types of sugars.

NoNo Substrate Substrate S. cerevisiae MNRU0927 S. cerevisiae MNRU0927 S. S. boulardiboulardi 1One Control Control - - - - 22 Glucose Glucose + (100%) + (100%) + (100%) + (100%) 33 Glycerol Glycerol + (100%) + (100%) + (100%) + (100%) 44 2-keto-D-gluconate 2-keto-D-gluconate - - - - 55 L-arabinose L-arabinose + (100%) + (100%) + (100%) + (100%) 66 D-Xylose D-Xylose + (100%) + (100%) + (100%) + (100%) 77 Adonitol Adonitol - - - - 88 Xylitol Xylitol - - - - 99 D-galactose D-galactose + (100%) + (100%) + (100%) + (100%) 1010 Inositol Inositol - - + (50%) + (50%) 1111 D-sorbitol D-sorbitol - - + (50%) + (50%) 1212 α-methyl- D-glucosideα-methyl-D-glucoside + (100%) + (100%) + (100%) + (100%) 1313 N-acetyl-D-glucosamineN-acetyl-D-glucosamine + (100%) + (100%) + (100%) + (100%) 1414 D-cellulose D-cellulose + (100%) + (100%) + (100%) + (100%) 1515 D-lactose D-lactose + (50%) + (50%) + (100%) + (100%) 1616 D-maltose D-maltose + (100%) + (100%) + (100%) + (100%) 1717 D-sucrose D-sucrose + (100%) + (100%) + (100%) + (100%) 1818 D-trehalose D-trehalose + (100%) + (100%) + (100%) + (100%) 1919 D-melezitose D-melezitose - - - - 2020 D-raffinose D-raffinose + (100%) + (100%) + (100%) + (100%)

유용미생물은 대사산물로 산생성 능력과 대두박의 항영양인자인 stachyose, raffinose 분해 효소 생산이 우수한 균주를 선정하기 위해 본 발명자가 대두박의 항영양인자 및 단백질 분해에서 활성을 갖는 균주로 분리한 Lactobacillus fermentum DSHA, Lactobacillus salivarus Nam27, Bacillus coagulans NRR1207, Bacillus coagulans S254, Saccharomyces cerevisiae MNRU0927 및 Saccharomyces boulardi의 대한 효소활성 측정하였다.Useful microorganisms include Lactobacillus fermentum DSHA, which the present inventor isolated as a strain with activity in decomposing anti-nutritional factors and proteins of soybean meal in order to select strains with excellent ability to produce acid as a metabolite and to produce enzymes that decompose stachyose and raffinose, which are anti-nutritional factors of soybean meal; Lactobacillus salivarus Nam27, Bacillus coagulans NRR1207, Bacillus coagulans S254, Saccharomyces cerevisiae The enzyme activity of MNRU0927 and Saccharomyces boulardi was measured.

1.3. 1.3. 대두박soybean meal 발효 특성조사 Fermentation characteristics investigation

생균수Probiotic count 측정 measurement

상기에서 조사한 균주의 효소 분석 및 당 이용성을 바탕으로 실제 대두박의 발효 능력을 확인하였다. 대두박 1,000 g과 멸균 증류수 450 g (40℃)을 혼합하고 상기에서 확인한 각각의 미생물을 5% 첨가하여 하기 표 4와 같이 미생물 별 최적 온도에서 48시간까지 배양시켰다.The actual fermentation ability of soybean meal was confirmed based on enzyme analysis and sugar availability of the strains investigated above. 1,000 g of soybean meal and 450 g of sterilized distilled water (40°C) were mixed, 5% of each microorganism identified above was added, and the mixture was cultured at the optimal temperature for each microorganism for up to 48 hours as shown in Table 4 below.

Microorganisms Microorganisms Temperature (℃) Temperature (°C) Starter/soybean 1,000gStarter/soybean 1,000g L. fermentum DSHA L. fermentum DSHA 37℃ 37℃ 5% 5% L. salivarus Nam27 L. salivarus Nam27 37℃ 37℃ 5% 5% B. B. coagulanscoagulans NRR1207NRR1207 40℃ 40℃ 5% 5% B. coagulans S254 B. coagulans S254 40℃ 40℃ 5% 5% Saccharomyces cerevisiae MNRU0927 Saccharomyces cerevisiae MNRU0927 30℃ 30℃ 5% 5% SaccharomycesSaccharomyces boulardiboulardi 30℃ 30℃ 5% 5%

상기 0, 24 및 48 시간에 배양 시료 1g을 각각 무균적으로 채취하여 0.85% NaCl 용액 9 mL에 분주하고 10진 희석법으로 희석하여 유산균을 MRS agar에, 바실러스를 TS agar에, 효모를 PD agar에 접종 한 뒤, 각각 최적 온도에서 배양하여 확인하고 그 결과를 표 5 및 도 1에 나타내었다. 표 5 및 도 1의 결과에 나타난 바와 같이, 생균수는 6종 미생물 모두 24시간 발효 시 급격히 증가하였으며, 48시간 후 다소 감소하여 6종 미생물 모두 대두박에서 일정 이상의 생균수를 유지할 수 있음을 확인하였다.At 0, 24, and 48 hours, 1 g of the culture sample was aseptically collected, dispensed into 9 mL of 0.85% NaCl solution, and diluted using the decimal dilution method to place lactic acid bacteria on MRS agar, Bacillus on TS agar, and yeast on PD agar. After inoculation, each was cultured at the optimal temperature to confirm, and the results are shown in Table 5 and Figure 1. As shown in the results in Table 5 and Figure 1, the number of viable bacteria for all six types of microorganisms increased rapidly during 24-hour fermentation, and decreased slightly after 48 hours, confirming that all six types of microorganisms were able to maintain a certain number of viable bacteria in soybean meal. .

Microorganism Microorganism Viable cell count Viable cell count 0 h 0h 24 h 24h 48h 48h L. fermentum DHSA L. fermentum DHSA 5.0×107 5.0×10 7 5.85×108 5.85×10 8 4.96×108 4.96×10 8 L. salivarus Nam27 L. salivarus Nam27 6.9×106 6.9×10 6 1.03×109 1.03×10 9 2.12×108 2.12×10 8 B. coagulans NRR1207 B. coagulans NRR1207 2.37×107 2.37×10 7 1.25×109 1.25×10 9 1.8×108 1.8×10 8 B. coagulans S254 B. coagulans S254 1.89×106 1.89×10 6 2.23×109 2.23×10 9 5.62×108 5.62×10 8 SaccharomycesSaccharomyces boulardiboulardi 1.5×106 1.5×10 6 1.39×108 1.39×10 8 4.3×107 4.3×10 7 Saccharomyces cerevisiae MNRU0927 Saccharomyces cerevisiae MNRU0927 1.24×106 1.24×10 6 1.38×108 1.38×10 8 6.3×107 6.3×10 7

항영양인자anti-nutritional factor 분해능 측정 Resolution measurement

상기 6종의 미생물 각각으로 발효한 발효대두박 1g을 10% 에탄올 5 mL에 혼합하고 50℃에서 60분 동안 200 rpm 에서 교반한 후에 4,000 rpm에서 10분 동안 원심분리하였다. 이후 단백질을 제거하기 위해서 상징액을 2:3 비율로 아세토니트릴(Acetonitrile)과 혼합하여 12시간 증발시킨 후 원심분리기(Mega 17R, Hanil Science Industrial, Korea)로 9,000 rpm에서 20 min 동안 원심분리하였다. 분리된 상징액을 취하여 0.2 ㎛ membrane filter를 사용하여 필터링한 후 HPLC system (Waters 2695 Separations Module, Waters Associates, USA)을 이용하여 탄수화물을 분석하였다. Detector는 Refractive Index Detector (Waters Associates, USA)를 사용하였고, Column은 SUPELCOGEL C-610H (38cm×7.8mm, Sigma-Aldrich Co., USA)을 사용하였고, column의 온도는 40℃를 유지하였고, 이동상은 0.5 mL/min의 유속으로 30분간 분석하였다. 분석 프로그램은 Empower (Waters Associates, USA)를 사용하여 정량분석을 하였다. 표준물질은 Sigma-Aldrich Co.(USA)에서 구입하여 분석에 사용하였다. 미생물 별로 대두박의 당 이용을 HPLC로 확인하였고, 표준 당 peak area를 이용해서 계산하여 도 2 및 표 6에 나타내었다.1 g of fermented soybean meal fermented with each of the six types of microorganisms was mixed with 5 mL of 10% ethanol, stirred at 200 rpm for 60 minutes at 50°C, and then centrifuged at 4,000 rpm for 10 minutes. Then, to remove the protein, the supernatant was mixed with acetonitrile in a 2:3 ratio, evaporated for 12 hours, and then centrifuged at 9,000 rpm for 20 min using a centrifuge (Mega 17R, Hanil Science Industrial, Korea). The separated supernatant was taken, filtered using a 0.2 ㎛ membrane filter, and carbohydrates were analyzed using an HPLC system (Waters 2695 Separations Module, Waters Associates, USA). The detector used was a Refractive Index Detector (Waters Associates, USA), the column used SUPELCOGEL C-610H (38cm×7.8mm, Sigma-Aldrich Co., USA), the temperature of the column was maintained at 40°C, and the mobile phase was analyzed for 30 minutes at a flow rate of 0.5 mL/min. Quantitative analysis was performed using the analysis program Empower (Waters Associates, USA). Standard materials were purchased from Sigma-Aldrich Co. (USA) and used for analysis. The sugar utilization of soybean meal for each microorganism was confirmed by HPLC, and calculated using the standard sugar peak area, which is shown in Figure 2 and Table 6.

Sugar (mg/g)Sugar (mg/g) Incubation time (h)Incubation time (h) Con.
0 h
Con.
0h
L. L. fermentumfermentum L. L. salivatussalivatus B. coagulans NRR1207 B. coagulans NRR1207 B. coagulans S254 B. coagulans S254 S.S. boulardiboulardi S. cerevisiae MNRU0927 S. cerevisiae MNRU0927
24 h24h 48 h48h 24 h24h 48 h48h 24 h24h 48 h48h 24 h24h 48 h48h 24 h24h 48 h48h 24 h24h 48 h48h Stachyose Stachyose 17.2317.23 18.1518.15 19.6919.69 10.1710.17 12.7012.70 0 0 0 0 0 0 0 0 1.231.23 1.231.23 1.301.30 0.530.53 Raffinose Raffinose 16.0216.02 0 0 0 0 13.4413.44 11.9111.91 12.7912.79 5.965.96 14.0114.01 11.5111.51 11.2011.20 10.8210.82 12.5412.54 12.5912.59 MelibioseMelibiose 23.0723.07 9.269.26 5.245.24 7.077.07 3.983.98 6.986.98 1.971.97 7.897.89 4.644.64 6.426.42 4.824.82 7.457.45 6.836.83 Sucrose Sucrose 21.8721.87 10.2810.28 8.908.90 7.987.98 6.086.08 6.436.43 7.057.05 7.417.41 6.456.45 6.526.52 7.377.37 8.428.42 9.409.40 Glucose Glucose 20.9920.99 9.469.46 7.207.20 6.736.73 5.015.01 13.1113.11 5.985.98 12.7812.78 14.3714.37 4.314.31 8.858.85 6.066.06 8.798.79 FructoseFructose - - 4.854.85 7.017.01 11.5311.53 6.696.69 0.000.00 11.3811.38 0 0 0 0 0 0 0 0 4.024.02 0.000.00

도 2 및 표 6에 나타난 바와 같이 L. fermentum DSHA는 발효 24, 48 시간째 raffinose peak는 보이지 않았고, stachyose 양은 0 시간과 비교 하면 조금 증가하였다. Bacillus coagulans NRR1207 및 Bacillus coagulans S254는 발효 24, 48 시간째 Stachyose peak를 나타내지 않았다. HPLC 분석에서 stachyose와 raffinose 성분의 peak 위치가 혼합되어 정확하게 판단하기는 어렵지만 일부 분해된 것으로 판단된다. 또한 melibiose, sucrose와 glucose는 감소되었고, fructose는 다당류인 raffinose가 분해되어 증가했다. L. salivarus Nam27은 당이 모두 감소했다.As shown in Figure 2 and Table 6, L. fermentum DSHA did not show a raffinose peak at 24 and 48 hours after fermentation, and the amount of stachyose slightly increased compared to 0 hours. Bacillus coagulans NRR1207 and Bacillus coagulans S254 did not show stachyose peak at 24 and 48 hours of fermentation. In the HPLC analysis, it is difficult to determine accurately because the peak positions of the stachyose and raffinose components are mixed, but it is believed that they were partially decomposed. Additionally, melibiose, sucrose, and glucose decreased, and fructose increased due to the decomposition of the polysaccharide raffinose. In L. salivarus Nam27, all sugars were reduced.

상기 결과로부터 B. coagulans NRR1207이 stachyose를 완전히 분해시켰고, raffinose는 16.02 mg/g을 5.96 mg/g으로 분해시켰으며, melibiose, sucrose, glucose는 모두 현저히 분해한 것을 알 수 있었다. 다당류의 분해로 인하여 fructose는 11.38 mg/g이 생성되었다. B. coagulans S254는 당 이용 방식이 B. coagulans S252와 비슷하지만 raffinose 분해 활성이 약했다. Saccharomyces cerevisiae MNRU0927와 Saccharomyces boulardi 효모들은 대조구와 비교했을 때 stachyose 17.23 mg/g을 0.5 mg/g으로 가수분해를 시켰고, mlibiose, sucrose, glucose, fructose도 감소시켰다.From the above results, it was found that B. coagulans NRR1207 completely decomposed stachyose, raffinose was decomposed from 16.02 mg/g to 5.96 mg/g, and melibiose, sucrose, and glucose were all significantly decomposed. Due to the decomposition of polysaccharides, 11.38 mg/g of fructose was produced. B. coagulans S254 was similar to B. coagulans S252 in its sugar utilization method, but had weak raffinose decomposition activity. with Saccharomyces cerevisiae MNRU0927 Saccharomyces boulardi Compared to the control, yeast hydrolyzed 17.23 mg/g of stachyose to 0.5 mg/g and also reduced mlibiose, sucrose, glucose, and fructose.

TLC 분석TLC analysis

상기 발효한 대두박의 당 분해는 Thin Layer Chromatography (TLC)로 확인하였다. 발효 대두박에서 당을 HPLC와 동일한 방법으로 분리하여 TLC 분석에 이용하였다. 5㎕를 Silica-Gel 60 F254 Aluminum sheets plate (Merck, Darmstadt, Germany)의 하단에 찍고 건조시킨 다음 isopropanol:water (80:20, v/v) 용매로 충분히 전개시켰다. 1 g diphenylamine, 1 mL aniline, 85 % H3PO45 mL, 50 mL acetone 혼합용액으로 Aluminium sheets plate에 뿌리고 120℃에서 10분간 가열처리하고 그 결과를 도 3에 나타내었다. 이동상의 거리를 측정하여 각각의 분획과 비율을 구하였다. 도 3에서 보는 바와 같이 L. fermentum DSHA, L. salivarus Nam27, S. cerevisiae MNRU0927, S . boulardi 를 이용한 발효대두박 당 TLC 결과는 Fog. 2의 HPLC 결과와 일치하였다. B. coagulans NRR1207은 발효 48 시간에 raffinose와 melibiose, fructose, stachyose, glucose spot는 소멸되었고 B. coagulans S254 보다 당 이용성이 뛰어났다. S. boulardi와 S . cerevisiae MNRU1207은 raffinose와 melibiose는 일부 분해되었고 fructose, stachyose, glucose spot는 소멸되었다.Sugar decomposition of the fermented soybean meal was confirmed by Thin Layer Chromatography (TLC). Sugars were separated from fermented soybean meal using the same method as HPLC and used for TLC analysis. 5㎕ was stamped on the bottom of a Silica-Gel 60 F254 Aluminum sheet plate (Merck, Darmstadt, Germany), dried, and fully developed with isopropanol:water (80:20, v/v) solvent. A mixed solution of 1 g diphenylamine, 1 mL aniline, 5 mL of 85% H 3 PO 4 , and 50 mL acetone was spread on an aluminum sheet plate and heated at 120°C for 10 minutes, and the results are shown in Figure 3. The distance of the mobile phase was measured to obtain each fraction and ratio. As shown in Figure 3, L. fermentum DSHA, L. salivarus Nam27 , S. cerevisiae MNRU0927, S. The TLC results for fermented soybean meal using boulardi are Fog. It was consistent with the HPLC results of 2. In B. coagulans NRR1207, raffinose, melibiose, fructose, stachyose, and glucose spots disappeared after 48 hours of fermentation, and B. coagulans Sugar usability was superior to S254. S. boulardi and S . cerevisiae In MNRU1207, raffinose and melibiose were partially decomposed, and fructose, stachyose, and glucose spots disappeared.

<< 실시예Example 2. 2. Bacillus Bacillus coagulanscoagulans NRR1207NRR1207 (( KACC92114PKACC92114P ) 및 ) and SaccharomycesSaccharomyces cerevisiaecerevisiae MNRU0927(KACC93265P) MNRU0927(KACC93265P) 혼합균주에In mixed strains 의한 by 대두박soybean meal 발효 및 특성 조사> Fermentation and Characterization Investigation>

상기 각 균주의 당 분해능을 바탕으로 β-갈락토시다제, N-아세틸-β-글루코사미다제 및 β-글루쿠로니다아제의 활성을 모두 포함할 수 있도록 Bacillus coagulans NRR1207(KACC92114P) 및 Saccharomyces cerevisiae MNRU0927(KACC93265P) 두 종을 선발하여 이들의 혼합 균주가 대두박을 충분히 발효시킬 수 있는지 확인하였다. Bacillus coagulans NRR1207 (KACC92114P) and Saccharomyces to include the activities of β-galactosidase, N-acetyl-β-glucosamidase, and β-glucuronidase based on the sugar-decomposing ability of each of the above strains. cerevisiae Two strains, MNRU0927 (KACC93265P), were selected to determine whether their mixed strains were capable of sufficiently fermenting soybean meal.

대두박 1,000 g과 멸균 증류수 450 g (40℃)을 혼합하고 Bacillus coagulans NRR1207(KACC92114P) 및 Saccharomyces cerevisiae MNRU0927(KACC93265P)의 미생물 각각 및 이들의 혼합균주를 미생물을 5% 가 되도록 첨가하고 37℃에서 48시간까지 배양시킨 다음, 상기와 동일한 방법으로 HPLC 분석을 수행하여 표 7에 나타내었다.Mix 1,000 g of soybean meal and 450 g of sterilized distilled water (40℃) and mix Bacillus coagulans NRR1207 (KACC92114P) and Saccharomyces . cerevisiae Each of the microorganisms of MNRU0927 (KACC93265P) and their mixed strains were added to a concentration of 5% microorganisms and cultured at 37°C for 48 hours. HPLC analysis was performed in the same manner as above, and is shown in Table 7.

Sugar (mg/g)Sugar (mg/g) Incubation time (h)Incubation time (h) Con.
0 h
Con.
0 h
B. coagulans NRR1207 B. coagulans NRR1207 S. cerevisiae MNRU0927 S. cerevisiae MNRU0927 BS + SCBS+SC
24 h24h 48 h48h 24 h24h 48 h48h 24 h24h 48 h48h Stachyose Stachyose 18.5618.56 00 00 1.731.73 0.660.66 00 00 Raffinose Raffinose 17.5117.51 11.8611.86 4.544.54 11.5411.54 10.2310.23 8.428.42 2.122.12 MelibioseMelibiose 22.5922.59 5.215.21 2.632.63 8.148.14 5.495.49 4.234.23 0.890.89 Sucrose Sucrose 21.8621.86 6.216.21 6.526.52 7.987.98 8.368.36 7.987.98 8.548.54 Glucose Glucose 21.4521.45 14.2314.23 6.256.25 6.006.00 8.058.05 5.435.43 8.698.69 FructoseFructose -- 0.000.00 10.4210.42 5.265.26 1.231.23 4.224.22 1.121.12

상기 표 7에 나타난 바와 같이 Bacillus coagulans NRR1207(KACC92114P) 및 Saccharomyces cerevisiae MNRU0927(KACC93265P) 혼합균주는 stachyose, raffinose 및 melibiose 모두에서 Bacillus coagulans NRR1207(KACC92114P) 및 Saccharomyces cerevisiae MNRU0927(KACC93265P) 각 단일 균주와 비교하여 높은 분해능을 나타내었다. 이는 바실러스 균주 및 효모 내 분해 효소의 종류 및 기능적 차이에 의하여 상승적으로 항영양인자를 분해할 수 있음을 의미한다.remind As shown in Table 7, Bacillus coagulans NRR1207 (KACC92114P) and Saccharomyces cerevisiae MNRU0927 (KACC93265P) mixed strain showed high resolution in stachyose, raffinose, and melibiose compared to Bacillus coagulans NRR1207 (KACC92114P) and Saccharomyces cerevisiae MNRU0927 (KACC93265P) single strains. This means that anti-nutritional factors can be decomposed synergistically due to differences in the type and function of decomposition enzymes in Bacillus strains and yeast.

<< 실시예Example 3. 효소제 추가에 의한 3. By adding enzymes 대두박soybean meal 발효 및 특성 조사> Fermentation and Characterization Investigation>

상기 실험에서 유용미생물은 6종 미생물 모두에서 효소활성 결과 단백질 분해 활성이 충분하지 못하였으며, 이에 따라 대두박으로부터 분해성 단백질 및 비분해성 단백질의 비율을 증가시키기 위하여 효소제를 추가하였다. 효소는 알칼리성 프로테아제(Alkaline protease)와 Maxa Feed Wheat (Xylanase, Amylase, Cellulase) 루미스 Co. (India)을 사용하였다. 각 효소 활성은 ≥2500 units/g이었다. 표 8과 같이 대두박 1,000 g에 AP 알칼리성 프로테아제 5g, 밀 Maxa Feed Wheat 2 g (Xylanase, Amylase, Cellulase 각 5000 units 이상), 40℃ 멸균 증류수 450 g과 미생물 starter 5%를 첨가하여 37℃에 48 시간까지 배양하였다. 발효 0, 4, 8, 12, 24, 48 시간째 샘플을 수집해 실험에 사용하였다.In the above experiment, the useful microorganisms did not have sufficient proteolytic activity as a result of the enzyme activity in all six types of microorganisms. Accordingly, an enzyme agent was added to increase the ratio of degradable and non-degradable proteins from soybean meal. Enzymes include alkaline protease and Maxa Feed Wheat (Xylanase, Amylase, Cellulase) from Lumis Co. (India) was used. Each enzyme activity was ≥2500 units/g. As shown in Table 8, 5 g of AP alkaline protease, 2 g of wheat Maxa Feed Wheat (more than 5000 units each of Xylanase, Amylase, and Cellulase), 450 g of 40°C sterilized distilled water, and 5% microbial starter were added to 1,000 g of soybean meal and incubated at 37°C for 48 hours. Cultured until. Samples were collected at 0, 4, 8, 12, 24, and 48 hours of fermentation and used in the experiment.

MaterialsMaterials Weight Weight Soybean meal Soybean meal 1,000 g 1,000 g AP Alkalic protease AP Alkalic protease 5 g 5g Maxa Feed Wheat (Xylanase, Amylase, Cellulase) 루미스 Co. (India) Maxa Feed Wheat (Xylanase, Amylase, Cellulase) Loomis Co. (India) 2 g 2g B. coagulans NRR1207 (5%) B. coagulans NRR1207 (5%) 50 mL 50mL S. cerevisiae MNRU0927 (5%) S. cerevisiae MNRU0927 (5%) 50 mL 50mL Moisture 45% (40℃) Moisture 45% (40℃) 400 g 400g

pHpH

발효대두박의 pH는 pH meter (Mettler Toledo Seven Easy pH meter, Sigma-Aldrich, USA)를 사용하여 측정하여 표 9 및 도 4에 나타내었다.The pH of fermented soybean meal was measured using a pH meter (Mettler Toledo Seven Easy pH meter, Sigma-Aldrich, USA) and is shown in Table 9 and Figure 4.

ItemItem pH pH 발효 시간fermentation time 0 h0h 4 h4h 8 h8h 12 h12h 24 h24h 48 h48h 발효 대두박fermented soybean meal 6.466.46 6.316.31 5.895.89 5.475.47 4.924.92 4.804.80

표 9 및 도 4에 나타낸 바와 같이 pH는 발효 시간에 따라 6.46에서 4.80까지 감소되었는데 이러한 현상은 유산균이 대두박의 당 성분을 이용하여 산을 왕성하게 생성하기 때문이다.As shown in Table 9 and Figure 4, the pH decreased from 6.46 to 4.80 depending on the fermentation time. This phenomenon is because lactic acid bacteria actively produce acid using the sugar component of soybean meal.

생균수Probiotic count 측정 measurement

상기 발효 대두박 내 Bacillus coagulans NRR1207(KACC92114P) 및 Saccharomyces cerevisiae MNRU0927(KACC93265P)의 생균수를 상기 생균수 측정방법과 동일한 방법으로 측정하여 표 10 및 도 5에 나타내었다. 표 10 및 도 5에서 보는 바와 같이, Bacillus coagulans NRR1207(KACC92114P)는 발효 시간이 따라 3.0×107에서 1.2×109까지 증가했으며, Saccharomyces cerevisiae MNRU0927(KACC93265P)는 4.7×106에서 발효 8시간에 9×106까지 자랐다가 다시 감소하였다. Bacillus coagulans NRR1207 (KACC92114P) and Saccharomyces cerevisiae in the fermented soybean meal The viable bacterial count of MNRU0927 (KACC93265P) was measured using the same method as the above-mentioned viable bacterial count measurement method and is shown in Table 10 and Figure 5. As shown in Table 10 and Figure 5, Bacillus coagulans NRR1207 (KACC92114P) increased from 3.0 × 10 7 to 1.2 × 10 9 depending on the fermentation time, and Saccharomyces cerevisiae MNRU0927 (KACC93265P) grew from 4.7×10 6 to 9×10 6 in 8 hours of fermentation and then decreased again.

미생물 microbe Viable cell count Viable cell count 0 h 0 h 4 h 4h 8 h 8h 12 h 12h 24 h 24h 48 h 48h B. coagulans NRR1207 B. coagulans NRR1207 3.0×107 3.0×10 7 2.6×107 2.6×10 7 1.56×108 1.56×10 8 4.77×108 4.77×10 8 1.38×109 1.38×10 9 1.2×109 1.2×10 9 S. S. serevisiaeserevisiae 4.7×106 4.7×10 6 7.1×106 7.1×10 6 9.0×106 9.0×10 6 2.2×106 2.2×10 6 1.43×106 1.43×10 6 1.13×103 1.13×10 3

단백질 분해protein breakdown

상기 발효 대두박의 단백질 분해정도를 조사하기 위해 SDS-PAGE 전기영동을 Livia (1982)의 방법에 따라 실시하였다. 발효 대두박 시료 5 g을 100 mL extracting buffer (0.05M Tris-HCl buffer pH=8.2)에 혼합하여 40℃ 초음파 수조에 10분 간격으로 vortex 하면서 70분 추출한 후에 9,000 rpm에서 30분간 원심분리하여 상등액을 1,000 dalton 투석막을 이용하여 투석 한 후에 동결 건조기 (IlShin Lab Co. Ltd, Siheung, Korea)를 사용하여 건조하였다. 건조한 시료를 SDS-polyacrylamide gel electrophoresis (SDS-PAGE)를 수행하고 그 결과를 도 6에 나타내었다. 도 6에 나타난 바와 같이 발효 대두박 단백질 전기영동 결과는 분자량이 큰 단백질은 발효 시간에 따라 분해되어 감소했으며, 12, 24, 48 시간 경과함에 따라 단백질 분해는 급격하게 일어나 저분자 band가 약하게 보여졌다. 분자량 10 kDa이하 peptide는 전기영동 상에 나타나지 않고 빠져나간 것으로 추측된다.To investigate the degree of protein degradation of the fermented soybean meal, SDS-PAGE electrophoresis was performed according to the method of Livia (1982). 5 g of fermented soybean meal sample was mixed with 100 mL extraction buffer (0.05M Tris-HCl buffer pH=8.2) and extracted for 70 minutes by vortexing at 10-minute intervals in an ultrasonic bath at 40°C. Then, centrifuged at 9,000 rpm for 30 minutes and the supernatant was centrifuged at 1,000 rpm. After dialysis using a Dalton dialysis membrane, it was dried using a freeze dryer (IlShin Lab Co. Ltd, Siheung, Korea). SDS-polyacrylamide gel electrophoresis (SDS-PAGE) was performed on the dried sample, and the results are shown in Figure 6. As shown in Figure 6, the results of fermented soybean meal protein electrophoresis showed that proteins with high molecular weight were decomposed and decreased depending on the fermentation time, and as 12, 24, and 48 hours passed, protein decomposition occurred rapidly and the low molecular weight band appeared weak. Peptides with a molecular weight of 10 kDa or less are presumed to have escaped without appearing on electrophoresis.

당 분해glycolysis

상기 발효 대두박의 당 분해정도를 조사하기 위해 HPLC 및 TLC를 상기의 방법에 따라 실시하였다. 상기 발효 대두박 시료 5 g을 100 mL extracting buffer (0.05M Tris-HCl buffer pH=8.2)에 혼합하여 40℃ 초음파 수조에 10분 간격으로 vortex 하면서 70분 추출한 후에 9,000 rpm에서 30분간 원심분리하여 상등액을 1,000 dalton 투석막을 이용하여 투석 한 후에 동결 건조기 (IlShin Lab Co. Ltd, Siheung, Korea)를 사용하여 건조하였다. 건조한 시료를 HPLC 및 TLC를 수행하고 그 결과를 표 11, 도 7(HPLC) 및 도 8(TLC)에 나타내었다. 표 11, 도 7(HPLC) 및 도 8(TLC)에 나타난 바와 같이 대두박 발효 시간에 따라 stachyose와 melibiose 양이 현저히 감소하였으며, sucrose, glucose 및 fructose 양도 감소되었다. Raffinose의 경우 HPLC 상으로는 감소가 현저하지 않았으나, 하기 TLC 결과, 발효 24 시간과 48 시간에 stachyose 및 melibiose와 같이 raffinose 또한 대부분 가수분해된 것으로 판단되었다.To investigate the degree of sugar decomposition of the fermented soybean meal, HPLC and TLC were performed according to the above method. 5 g of the fermented soybean meal sample was mixed with 100 mL extraction buffer (0.05M Tris-HCl buffer pH=8.2) and extracted for 70 minutes while vortexed at 10-minute intervals in an ultrasonic bath at 40°C. Then, centrifuged at 9,000 rpm for 30 minutes to obtain the supernatant. After dialysis using a 1,000 dalton dialysis membrane, it was dried using a freeze dryer (IlShin Lab Co. Ltd, Siheung, Korea). HPLC and TLC were performed on the dried sample, and the results are shown in Table 11, Figure 7 (HPLC), and Figure 8 (TLC). As shown in Table 11 and Figure 7 (HPLC) and Figure 8 (TLC), the amounts of stachyose and melibiose decreased significantly with soybean meal fermentation time, and the amounts of sucrose, glucose, and fructose also decreased. In the case of raffinose, the decrease was not significant on HPLC, but as a result of TLC below, it was determined that raffinose, like stachyose and melibiose, was mostly hydrolyzed at 24 and 48 hours after fermentation.

CarbohydrateCarbohydrate Fermentation time (h)Fermentation time (h) 0 0 4 4 8 8 12 12 24 24 48 48 Stachyose (mg/g) Stachyose (mg/g) 17.23 17.23 16.24 16.24 14.73 14.73 13.34 13.34 6.14 6.14 5.01 5.01 Raffinose (mg/g) Raffinose (mg/g) 16.02 16.02 16.46 16.46 16.58 16.58 17.05 17.05 16.27 16.27 14.20 14.20 Melibiose (mg/g) Melibiose (mg/g) 23.07 23.07 19.99 19.99 10.90 10.90 8.59 8.59 8.01 8.01 7.44 7.44 Sucrose (mg/g) Sucrose (mg/g) 21.87 21.87 19.73 19.73 13.89 13.89 11.43 11.43 10.93 10.93 12.17 12.17 Glucose (mg/g) Glucose (mg/g) 20.99 20.99 16.93 16.93 17.39 17.39 13.19 13.19 8.31 8.31 9.42 9.42 Fructose (mg/g) Fructose (mg/g) 0.00 0.00 8.78 8.78 17.33 17.33 15.85 15.85 15.42 15.42 13.19 13.19

유기산 생성Organic acid production

상기 발효 대두박의 유기산 생성 정도를 조사하였다. 상기 발효대두박 1g을 10% 에탄올 mL에 혼합하고 50℃에 60분 동안 200 rpm 에서 교반한 후에 4,000 rpm에서 10분 동안 원심분리하였다. 단백질을 제거하기에 위해서 상징액을 2:3 비율로 Acetonitrile과 혼합하여 12시간 증발시킨 후 원심분리기(Mega 17R, Hanil Science Industrial, Korea)로 9,000 rpm에서 20 min 동안 원심분리하였다. 분리된 상징액을 취하여 0.2 ㎛ membrane filter를 사용하여 필터링한 후 HPLC system (Waters 2695 Separations Module, Waters Associates, USA)을 이용하여 유기산을 분석하였다. Detector는 Refractive Index Detector (Waters Associates, USA)를 사용하였고, Column은 SUPELCOGEL C-610H (38cm×7.8mm, Sigma-Aldrich Co., USA)을 사용하였고, column의 온도는 40℃를 유지하였고, 이동상은 0.5 mL/min의 유속으로 30분간 분석하여 도 9에 나타내었다. 분석 프로그램은 Empower (Waters Associates, USA)를 사용하여 정량분석을 하였다. 표준물질은 Sigma-Aldrich Co.(USA)에서 구입하여 분석에 사용하였다. 도 9에서 보는 바와 같이, 발효대두박의 유기산 분석 결과로 발효 시간에 따라 유산은 현격히 증가하였다. 초산(acetic acid)의 경우, 발효 24, 48 시간에는 조금 감소하였고, 엽산(phytic acid)은 48 시간째 크게 증가하였다. 시트르산(Citric acid), 타르타르산(tartaric acid) 및 숙신산(succinic acid)의 경우, 발효 전 과정을 통해 큰 변화는 없었다.The degree of organic acid production in the fermented soybean meal was investigated. 1 g of the fermented soybean meal was mixed with 10% ethanol mL, stirred at 200 rpm for 60 minutes at 50°C, and then centrifuged at 4,000 rpm for 10 minutes. To remove proteins, the supernatant was mixed with Acetonitrile in a 2:3 ratio, evaporated for 12 hours, and then centrifuged at 9,000 rpm for 20 min using a centrifuge (Mega 17R, Hanil Science Industrial, Korea). The separated supernatant was taken, filtered using a 0.2 ㎛ membrane filter, and organic acids were analyzed using an HPLC system (Waters 2695 Separations Module, Waters Associates, USA). The detector used was a Refractive Index Detector (Waters Associates, USA), the column used SUPELCOGEL C-610H (38cm×7.8mm, Sigma-Aldrich Co., USA), the temperature of the column was maintained at 40°C, and the mobile phase was analyzed for 30 minutes at a flow rate of 0.5 mL/min and is shown in Figure 9. Quantitative analysis was performed using the analysis program Empower (Waters Associates, USA). Standard materials were purchased from Sigma-Aldrich Co. (USA) and used for analysis. As shown in Figure 9, as a result of organic acid analysis of fermented soybean meal, lactic acid increased significantly with fermentation time. In the case of acetic acid, it slightly decreased at 24 and 48 hours of fermentation, and folic acid (phytic acid) increased significantly at 48 hours. In the case of citric acid, tartaric acid, and succinic acid, there were no significant changes throughout the fermentation process.

분해성decomposability 단백질(DIP) 및 protein (DIP) and 비분해성non-degradable 단백질( protein( UIPUIP ) 측정) measurement

상기 발효 대두박의 유기산 생성 정도를 조사하였다. 분해성 단백질(Degradable intake protein, DIP), 분석은 Licitra et al.(1996)의 방법에 따라 상기 발효대두박 0.5g을 125㎖ 삼각플라스크에 취해 borate phosphate buffer(pH 6.8)) 50㎖를 넣고 10% Sodium azide 용액 1㎖을 가하였다. 실온에서 3시간 방치한 다음, whatman 여지 541로 여과하고 여지위의 잔사를 증류수로 2회 씻어주었다. 여지를 단백질 분해튜브에 넣고 분해, 증류, 적정하고, 총단백질에서 여지위의 단백질을 빼서 하기 식과 같이 soluble protein을 계산하였다.The degree of organic acid production in the fermented soybean meal was investigated. Degradable intake protein (DIP) was analyzed according to the method of Licitra et al. (1996). 0.5 g of the fermented soybean meal was taken in a 125 ml Erlenmeyer flask, 50 ml of borate phosphate buffer (pH 6.8) was added, and 10% sodium was added. 1 ml of azide solution was added. After standing at room temperature for 3 hours, it was filtered through Whatman filter paper 541, and the residue on the filter paper was washed twice with distilled water. The filter paper was placed in a protein digestion tube, decomposed, distilled, and titrated, and the protein on the filter paper was subtracted from the total protein to calculate the soluble protein according to the formula below.

비분해성 단백질(Undegradable intake protein, UIP)은 실온에서 건조한 샘플 약 0.2 g을 삼각플라스크에 넣고 borate-phosphate buffer (pH 6.7) 40 ml와 혼합하고 39℃수조에서 1시간 동안 배양하였다. 그 후 10 ml의 신선한 protease 용액을 첨가하고 약하게 흔든다(protease 용액은 Streptomyces griseus, Sigma Chemical Co, Ltd.). 시료는 18 시간 이후에 Whatman 541로 여과하고 250 ml 증류수로 세척하였다. 질소잔류물은 Kjeldahl 방법으로 측정했다. 조단백질 분해성은 총 CP의 백분율로 하기와 같이 계산하였다.For undegradable intake protein (UIP), about 0.2 g of a sample dried at room temperature was placed in an Erlenmeyer flask, mixed with 40 ml of borate-phosphate buffer (pH 6.7), and incubated in a 39°C water bath for 1 hour. Then, add 10 ml of fresh protease solution and shake gently (protease solution is Streptomyces griseus, Sigma Chemical Co, Ltd.). The sample was filtered through Whatman 541 after 18 hours and washed with 250 ml distilled water. Nitrogen residue was measured by the Kjeldahl method. Crude protein degradability was calculated as a percentage of total CP as follows.

%CP 분해능 = [(초기 CP - 배양 후 CP)/초기 CP]×100.%CP resolution = [(initial CP - CP after incubation)/initial CP] × 100.

미분해 섭취 단백질(UIP) %UIP = 100 - %CP 분해능Undigested Intake Protein (UIP) %UIP = 100 - %CP Resolution

그 결과, 본 발명의 균주 및 효소 조성물에 의한 48시간 발효 후 대두박의 조단백질(Crude protein, CP)은 63.45%이었으며, 이 중, 분해성 단백질 18.45%, 비분해성 단백질이 17.62%이었다. 조단백질은 요소, 아미노산, 아민과 같은 비단백태질소(Non Protein Nitrogen, NPN)와 진정단백질(true protein)로 구성되며, 진정단백질은 분해성 단백질(DIP) 및 비분해성 단백질(UIP)로 구성되는 점에서 분해성 단백질(DIP) 및 비분해성 단백질(UIP)을 보다 증가시킬 필요가 있다.As a result, the crude protein (CP) of soybean meal after 48 hours of fermentation using the strain and enzyme composition of the present invention was 63.45%, of which degradable protein was 18.45% and non-degradable protein was 17.62%. Crude protein is composed of non-protein nitrogen (NPN) such as urea, amino acids, and amines and true protein, while true protein is composed of degradable protein (DIP) and non-degradable protein (UIP). There is a need to further increase degradable protein (DIP) and non-degradable protein (UIP).

<< 실시예Example 4. 유용미생물과 효소제를 이용한 4. Using useful microorganisms and enzymes 대두박soybean meal , , 쌀주정박의of rice wine marmalade 발효 특성 조사> Investigation of fermentation characteristics>

상기 유용미생물과 효소제를 이용한 발효대두박의 결과를 바탕으로 대두박에 쌀주정박을 추가하여 본 발명의 균주 및 효소 조성물에 의한 발효로 진정단백질 및 아미노산 등이 증가할 수 있는지 확인하였다. Based on the results of fermented soybean meal using the above useful microorganisms and enzymes, rice wine marmalade was added to soybean meal to determine whether true proteins and amino acids could be increased through fermentation using the strain and enzyme composition of the present invention.

대두박(soybean meal, SBM)과 쌀주정박(Rice distiller's dried grain, RDGG)의 비율을 하기 표 12와 같이 조성하여 상기 실시예와 동일한 조건으로 발효시켰다. 유용미생물은 상기 당 분해력이 뛰어난 미생물 Bacillus coagulans NRR1207(KACC92114P)와 Saccharomyces cerevisiae MNRU0927 (KACC 93265P)를 선정하였고, 효소는 알칼리성 프로테아제(Alkaline protease)와 Maxa Feed Wheat (Xylanase, Amylase, Cellulase) 루미스 Co. (India)를 사용하였다.The ratio of soybean meal (SBM) and rice distiller's dried grain (RDGG) was prepared as shown in Table 12 below and fermented under the same conditions as in the above example. Useful microorganisms include Bacillus coagulans NRR1207 (KACC92114P) and Saccharomyces , which have excellent sugar decomposition ability. cerevisiae MNRU0927 (KACC 93265P) was selected, and the enzymes were alkaline protease and Maxa Feed Wheat (Xylanase, Amylase, Cellulase) from Lumis Co. (India) was used.

Materials Materials Weight(w/v)Weight(w/v) 쌀주정박 (RDGG) : 대두박 (SBM)Rice ginseng meal (RDGG): Soybean meal (SBM) A (RDGG 50 : SBM 50)A (RDGG 50 : SBM 50) 1 kg (500 g : 500 g)1 kg (500 g : 500 g) B (RDGG 60 : SBM 40)B (RDGG 60 : SBM 40) 1 kg (600 g : 400 g)1 kg (600 g : 400 g) C (RDGG 70 : SBM 30)C (RDGG 70:SBM 30) 1 kg (700 g : 300 g)1 kg (700 g : 300 g) D (RDGG 80 : SBM 20)D (RDGG 80 : SBM 20) 1 kg (800 g : 200 g)1 kg (800 g : 200 g) E (RDGG 90 : SBM 10)E (RDGG 90:SBM 10) 1 kg (900 g : 100 g)1 kg (900 g : 100 g) 알칼리성 프로테아제 + Maxa Feed Wheat (Xylanase, Amylase, Cellulase) 루미스 Co. (India)Alkaline Protease + Maxa Feed Wheat (Xylanase, Amylase, Cellulase) Lumis Co. (India) 5 g5g Bacillus coagulans NRR1207 5% Bacillus coagulans NRR1207 5% 50 mL50mL Saccharomyces cerevisiae MNRU0927 5% Saccharomyces cerevisiae MNRU0927 5% 50 mL50mL 멸균 증류수 (40℃)Sterile distilled water (40℃) 45% (400 g = 500 g - 미생물 배양액 100 mL)45% (400 g = 500 g - 100 mL of microbial culture)

쌀주정박과 대두박을 표 12와 같은 비율로 혼합하고 시료 1 kg을 40℃로 조절한 멸균 증류수 450 g과 유용미생물 starter 5%를 첨가하여 34℃에서 48시간 배양하였다.Rice ethanol and soybean meal were mixed in the same ratio as Table 12, and 450 g of sterilized distilled water adjusted to 40°C and 5% useful microorganism starter were added to 1 kg of sample and cultured at 34°C for 48 hours.

pHpH

상기 쌀주정박과 대두박 비율에 따른 혼합발효물의 pH는 pH meter (Mettler Toledo Seven Easy pH meter, Sigma-Aldrich, USA)를 사용하여 측정하여 도 10에 나타내었다. 도 10에서 보는 바와 같이, 상기 대두박 50:50 혼합비(시료 A)는 유산균이 잘 자람에 따라 발효시간이 경과하면서 감소되었다. 반대로 시료 E (쌀주정박 90: 대두박 10)는 pH가 조금 증가하였다, 시료 E는 발효 초기부터 pH가 낮았는데 이는 쌀주정박 자체가 알코올을 생산한 부산물로 발효가 되면서 산을 많이 생성한 상태로 이용하였기 때문인 것으로 사료된다.The pH of the mixed fermentation product according to the ratio of rice ethanol and soybean meal was measured using a pH meter (Mettler Toledo Seven Easy pH meter, Sigma-Aldrich, USA) and is shown in Figure 10. As shown in Figure 10, the soybean meal 50:50 mixing ratio (sample A) decreased over fermentation time as the lactic acid bacteria grew well. On the contrary, the pH of sample E (rice ethanol 90: soybean meal 10) increased slightly. Sample E had a low pH from the beginning of fermentation, which is because rice ethanol itself is a by-product of producing alcohol and produces a lot of acid during fermentation. It is believed that this is because it was done.

생균수Probiotic count 측정 measurement

상기 쌀주정박과 대두박 비율에 따른 혼합발효물 내 Bacillus coagulans NRR1207(KACC92114P) 및 Saccharomyces cerevisiae MNRU0927(KACC93265P)의 생균수를 상기 생균수 측정방법과 동일한 방법으로 측정하여 도 11에 나타내었다. 도 11에서 보는 바와 같이, 유용미생물의 생균수로 발효 24시간 째 시료 A (쌀주정박 50: 대두박 50)는 B. coagulans NRR1207이 발효 24 시간째는 1.04×1010로 가장 높았고 발효 48 시간째는 2.17×109으로 약간 감소하였다. S. serevisiae MNRU0927은 E (쌀90: 대10)가 발효 24 시간째 4.89×107, 발효 48시간째는 2.2×108 으로 가장 높게 나타냈다. Bacillus coagulans NRR1207 (KACC92114P) and Saccharomyces in the mixed fermentation product according to the ratio of rice ethanol and soybean meal cerevisiae The viable bacterial count of MNRU0927 (KACC93265P) was measured using the same method as the above-mentioned viable bacterial count measurement method and is shown in FIG. 11. As shown in Figure 11 , the number of useful microorganisms in sample A (50 rice ethanol: 50 soybean meal) was the highest at 1.04 × 10 10 at 24 hours after fermentation and at 48 hours after fermentation. It decreased slightly to 2.17×10 9 . S. serevisiae MNRU0927 showed the highest E (rice 90: large 10) at 4.89×10 7 at 24 hours of fermentation and 2.2×10 8 at 48 hours of fermentation.

단백질 분해protein breakdown

상기 쌀주정박과 대두박 비율에 따른 혼합발효물 내 단백질 분해정도를 조사하기 위해 상기와 동일한 방법으로 SDS-PAGE 전기영동을 실시하였다. 쌀주정박과 대두박 혼합발효물 시료 5 g을 100 mL extracting buffer (0.05M Tris-HCl buffer pH=8.2) 혼합하여 40℃초음파 수조에 10분 간격으로 vortex 하면서 70분 추출한 후에 9,000 rpm으로 30분간 원심분리하였으며, 상등액을 1,000 dalton 투석막을 이용하여 투석한 후에 동결건조기 (IlShin Lab Co. Ltd, Siheung, Korea)를 사용하여 건조한 후, 이를 버퍼에 녹여 SDS-PAGE를 실시하고, 그 결과를 도 12에 나타내었다. 도 12에서 보는 바와 같이, Control (0시간)과 비교하면 시료 A와 시료 B는 단백질이 거의 완전히 분해되었으며, 쌀주정박 비율이 증가함에 따라 단백질 가수분해는 잘 되지 않았다. 쌀주정박의 pH가 너무 낮아서 단백질 분해효소(알칼리성 프로테아제 등) 활성이 떨어진 것으로 판단된다.To investigate the degree of protein degradation in the mixed fermentation product according to the ratio of rice ethanol and soybean meal, SDS-PAGE electrophoresis was performed in the same manner as above. Mix 5 g of rice ethanol and soybean meal mixed fermentation sample with 100 mL extraction buffer (0.05M Tris-HCl buffer pH=8.2), extract in an ultrasonic bath at 40°C for 70 minutes while vortexing at 10-minute intervals, and then centrifuge at 9,000 rpm for 30 minutes. The supernatant was dialyzed using a 1,000 dalton dialysis membrane, dried using a freeze dryer (IlShin Lab Co. Ltd, Siheung, Korea), and then dissolved in buffer and subjected to SDS-PAGE. The results are shown in Figure 12. It was. As shown in Figure 12, compared to Control (0 hours), the proteins of Sample A and Sample B were almost completely decomposed, and as the ratio of rice ethanol was increased, protein hydrolysis did not work well. It is believed that the pH of rice wine marmalade is too low and the activity of proteolytic enzymes (alkaline protease, etc.) has decreased.

당 분해glycolysis

상기 쌀주정박과 대두박 비율에 따른 혼합발효물의 당 분해정도를 조사하기 위해 HPLC 및 TLC를 상기의 방법에 따라 실시하였다. 상기 쌀주정박과 대두박 비율에 따른 혼합발효물 시료 5 g을 100 mL extracting buffer (0.05M Tris-HCl buffer pH=8.2)에 혼합하여 40℃ 초음파 수조에 10분 간격으로 vortex 하면서 70분 추출한 후에 9,000 rpm에서 30분간 원심분리하여 상등액을 1,000 dalton 투석막을 이용하여 투석 한 후에 동결 건조기 (IlShin Lab Co. Ltd, Siheung, Korea)를 사용하여 건조하였다. 건조한 시료를 HPLC 및 TLC를 수행하고 그 결과를 도 13 내지 도 15에 나타내었다. 도 13 및 도 14(HPLC)에 나타난 바와 같이, 항영양인자인 stachyose와 raffinose는 시료 A에서는 크게 감소되었는데, stachyose는 발효 0시간에 7.02 mg/g에서 48시간에 1.76 mg/g, raffinose은 13.23 mg/g에서 3.13 mg/g, melibiose은 9.39 mg/g에서 0까지 감소되었고 발효 48시간째는 fructose 2.09 mg/g이 생성되었다. 쌀주정박의 비율이 증가할수록 당 가수분해력은 낮아진 것으로 판단된다. 시료 E는 glucose를 제외한 모든 당의 양은 큰 변화가 없었다.HPLC and TLC were performed according to the above method to investigate the degree of sugar decomposition of the mixed fermentation product according to the ratio of rice ethanol and soybean meal. 5 g of mixed fermentation sample according to the ratio of rice ethanol and soybean meal was mixed with 100 mL extraction buffer (0.05M Tris-HCl buffer pH=8.2) and extracted for 70 minutes while vortexing at 10-minute intervals in an ultrasonic water bath at 40°C at 9,000 rpm. After centrifugation for 30 minutes, the supernatant was dialyzed using a 1,000 dalton dialysis membrane and then dried using a freeze dryer (IlShin Lab Co. Ltd, Siheung, Korea). HPLC and TLC were performed on the dried sample, and the results are shown in Figures 13 to 15. As shown in Figures 13 and 14 (HPLC), the anti-nutritional factors stachyose and raffinose were greatly reduced in Sample A, with stachyose from 7.02 mg/g at 0 hours of fermentation to 1.76 mg/g at 48 hours, and raffinose from 13.23 mg. /g decreased from 3.13 mg/g, melibiose decreased from 9.39 mg/g to 0, and fructose 2.09 mg/g was produced at 48 hours of fermentation. It is believed that as the ratio of rice wine marmalade increases, the sugar hydrolyzing ability decreases. In sample E, the amounts of all sugars except glucose did not change significantly.

또한 도 15(TLC)에서 보는 바와 같이, 시료 A와 B에서 stachyose와 raffinose 분해되었고 쌀주정박 양이 증가할수록 stachyose와 raffinose가 분해가 안 된 HPLC 결과와 일치하였다.In addition, as shown in Figure 15 (TLC), stachyose and raffinose were decomposed in samples A and B, which was consistent with the HPLC results in which stachyose and raffinose were not decomposed as the amount of rice ethanol was increased.

유기산 생성Organic acid production

상기 쌀주정박과 대두박 비율에 따른 혼합발효물의 유기산 생성 정도를 조사하였다. 쌀주정박과 대두박 혼합발효물 1g을 10% 에탄올 5 mL에 혼합하고 50℃에서 50℃에 60분 동안 200 rpm에서 교반한 후에 4,000 rpm에서 10분 동안 원심분리하였다. 단백질을 제거하기에 위해서 상징액을 2:3 비율로 Acetonitrile과 혼합하여 12시간 증발시킨 후 원심분리기(Mega 17R, Hanil Science Industrial, Korea)로 9,000 rpm에서 20 min 동안 원심분리하였다. 분리된 상징액을 취하여 0.2 ㎛ membrane filter를 사용하여 필터링한 후 HPLC system (Waters 2695 Separations Module, Waters Associates, USA)을 이용하여 탄수화물을 분석하였다. Detector는 Refractive Index Detector (Waters Associates, USA)를 사용하였고, Column은 SUPELCOGEL C-610H (38cm×7.8mm, Sigma-Aldrich Co., USA)을 사용하였고, column의 온도는 40℃를 유지하였고, 이동상은 0.5 mL/min의 유속으로 30분간 분석하여 도 16에 나타내었다. 분석 프로그램은 Empower (Waters Associates, USA)를 사용하여 정량분석을 하표준물질은 Sigma-Aldrich Co.(USA)에서 구입하여 분석에 사용하였다. 도 16에서 보는 바와 같이, 쌀주정박과 대두박 혼합발효물의 유기산 분석 결과로 발효 시간이 증가함에 따라 시료 A(대두박 50%:쌀주정박 50%)는 락트산과 초산 양이 현격히 증가하였다. 시료 B(대두박 40%:쌀주정박 60%)도 시료 A와 유사하게 유산과 초산 양이 현격히 증가하였다. 시료 C(대두박 30%:쌀주정박 70%)는 발효 시간이 증가함에 따라 초산이 급격하게 증가하였고, 시료 D(대두박 20%:쌀주정박 80%)는 락트산은 약간 증가하였고 초산은 급격하게 증가하였다. 시료 E(대두박 10%:쌀주정박 90%)는 락트산은 조금 감소하였고 초산은 소량 증가하였다. 시트르산과 타르타르산은 대조구와 비교했을 때 발효 전 과정을 통해 큰 변화가 없었다.The degree of organic acid production in the mixed fermentation product according to the ratio of rice ethanol and soybean meal was investigated. 1 g of mixed fermentation of rice ethanol and soybean meal was mixed with 5 mL of 10% ethanol, stirred at 200 rpm for 60 minutes at 50°C, and then centrifuged at 4,000 rpm for 10 minutes. To remove proteins, the supernatant was mixed with Acetonitrile in a 2:3 ratio, evaporated for 12 hours, and then centrifuged at 9,000 rpm for 20 min using a centrifuge (Mega 17R, Hanil Science Industrial, Korea). The separated supernatant was taken, filtered using a 0.2 ㎛ membrane filter, and carbohydrates were analyzed using an HPLC system (Waters 2695 Separations Module, Waters Associates, USA). The detector used was a Refractive Index Detector (Waters Associates, USA), the column used SUPELCOGEL C-610H (38cm×7.8mm, Sigma-Aldrich Co., USA), the temperature of the column was maintained at 40°C, and the mobile phase was analyzed for 30 minutes at a flow rate of 0.5 mL/min. It is shown in Figure 16. Quantitative analysis was performed using the analysis program Empower (Waters Associates, USA), and standard materials were purchased from Sigma-Aldrich Co. (USA) and used for analysis. As shown in Figure 16, as a result of organic acid analysis of the mixed fermentation of rice ethanol and soybean meal, the amount of lactic acid and acetic acid in sample A (50% soybean meal: 50% rice ethanol) significantly increased as the fermentation time increased. In sample B (40% soybean meal: 60% rice ethanol), the amount of lactic acid and acetic acid increased significantly, similar to sample A. In sample C (30% soybean meal: 70% rice ethanol), acetic acid increased rapidly as the fermentation time increased, and in sample D (20% soybean meal: 80% rice ethanol), lactic acid slightly increased and acetic acid increased rapidly. In sample E (10% soybean meal: 90% rice ethanol), lactic acid slightly decreased and acetic acid slightly increased. Citric acid and tartaric acid did not change significantly throughout the entire fermentation process compared to the control.

항균 활성antibacterial activity

상기 쌀주정박과 대두박 비율에 따른 혼합발효물의 항균효과를 확인하였다. 쌀주식중독균인 리스테리아 모노사이토제네스(Listeria monocytogenes 530) 균주를 이용하여 paper disc agar diffusion 방법으로 항균활성을 측정하였다. 쌀주정박과 대두박 비율을 달리한 혼합발효물 1 g을 5 mL 증류수에 혼합하고 50℃ 진탕배양기에서 60분 동안 반응시킨 후에 망사를 이용하여 필터링 후 여과액을 13,000 rpm에서 15분 원심분리하여 상징액을 0.2 um syringe filter (Satorius Stedin Biotech, Germany)로 여과한 후 시료로 사용하였다. Listeria monocytogenes 530을 LB broth에 접종하여 30℃에서 24시간 배양 후 LB agar에 접종하고 멸균한 paper disc (8 mm)를 배지 위에 올려놓고 시료 100 μl를 주입하고 48시간 동안 배양한 다음 clear zone의 형성 여부를 확인하여 도 17에 나타내었다. 도 17에서 보는 바와 같이, 발효 시료는 Listeria monocytogenes 530 (aeruginosa ) 에 항균 효과가 있었으며 시료 A가 가장 항균 효과가 높았다. 시료 B로부터 시료 E로 갈수록 (쌀주정박의 혼합비가 커질수록) 항균효과는 낮아졌으며, 시료 E(대두박 10%: 쌀주정박 90%)는 효과가 가의 없는 것으로 나타났다. 시료 A에서 발효 시료에 생긴 clear zone size은 발효 24 시간 때 0.12mm, 48 시간 때 0.35mm, 시료 B에 경우 24 시간 째 0.1mm, 48 시간 째 0.26mm, 시료 C의 경우 24 시간이 0.07 mm, 48 시간이 0.14 mm이였고, 시료 D와 E는 clear zone이 생기지 않았다.The antibacterial effect of the mixed fermentation product according to the ratio of rice ethanol and soybean meal was confirmed. Listeria monocytogenes ( Listeria monocytogenes) monocytogenes 530) strain was used to measure antibacterial activity using the paper disc agar diffusion method. 1 g of mixed fermentation product with different ratios of rice ethanol and soybean meal was mixed with 5 mL of distilled water, reacted in a shaking incubator at 50°C for 60 minutes, filtered using a mesh net, and the filtrate was centrifuged at 13,000 rpm for 15 minutes to obtain the supernatant. It was filtered using a 0.2 um syringe filter (Satorius Stedin Biotech, Germany) and then used as a sample. Listeria monocytogenes 530 was inoculated into LB broth and cultured at 30°C for 24 hours, then inoculated onto LB agar. A sterilized paper disc (8 mm) was placed on the medium, 100 μl of sample was injected, and cultured for 48 hours to determine whether a clear zone was formed. was confirmed and shown in Figure 17. As shown in Figure 17, the fermentation sample was Listeria monocytogenes 530 ( aeruginosa ) had an antibacterial effect, and sample A had the highest antibacterial effect. From Sample B to Sample E (the larger the mixing ratio of rice ethanol), the antibacterial effect decreased, and Sample E (10% soybean meal: 90% rice ethanol) showed no effect. The clear zone size created in the fermentation sample in Sample A was 0.12 mm at 24 hours and 0.35 mm at 48 hours, in Sample B it was 0.1 mm at 24 hours and 0.26 mm at 48 hours, and in Sample C it was 0.07 mm at 24 hours, 48 hours was 0.14 mm, and no clear zone occurred in samples D and E.

항산화 활성antioxidant activity

상기 쌀주정박과 대두박 비율에 따른 혼합발효물의 항산화 효과를 확인하였다. 상기 발효대두박과 발효쌀주정박 혼합물 1g을 10% 에탄올 5 mL에 혼합하고 50℃에서 extracting buffer (0.05M Tris-HCl buffer pH=8.2) 혼합하여 초음파 수조 40℃에서 10분 간격으로 vortex 하면서 70분 추출한 후 9,000 rpm에서 30분간 원심분리 하였다. 상징액 0.2 mL와 ABTS radical 소거능 검사 시약인 0.2 mM DPPH 0.8 mL를 혼합한 후 암실에서 25℃로 10분간 방치시킨 다음 ELIZA reader를 이용하여 490 nm에서 흡광도를 측정하여 도 18에 나타내었다. 도 18에서 보는 바와 같이, RDDG 50% + SBM 50%(A)는 발효 0 시간에서는 29.93%로 나타난 반면에 24시간째는 50.33% 48시간째는 58.44%로 발효시간이 경과함에 따라 급격히 증가하였는데 0 시간에 비해 48시간 발효혼합물은 약 100% 증가하였다. RDDG 60%+SBM 40%(B)는 발효 0 시간에서는 36.61.%로 나타난 반면에 24시간째는 60.25% 48시간째는 62.15%로 발효시간이 경과함에 따라 급격히 증가하였는데 0 시간에 비해 48시간 발효혼합물은 약 85% 증가하였다. RDDG 70%+SBM 30%(C)는 발효 0 시간에서는 36.51%로 나타난 반면에 24시간째는 60.53% 48시간째는 57.20%로 발효시간이 경과함에 따라 급격히 증가하였는데 0 시간에 비해 48시간 발효혼합물은 약 78% 증가하였다. RDDG 80%+SBM 20%(D)는 발효 0 시간에서는 45.28%로 나타난 반면에 24시간째는 60.25% 48시간째는 62.54%로 발효시간이 경과함에 따라 급격히 증가하였는데 0 시간에 비해 48시간 발효혼합물은 약 69% 증가하였다. RDDG 90%+SBM 10%(E)는 발효 0 시간에서는 54.53%로 나타난 반면에 24시간째는 65.20% 48시간째는 63.68%로 발효시간이 경과함에 따라 급격히 증가하였는데 0 시간에 비해 48시간 발효혼합물은 약 45.75% 증가하였다. 발효쌀주정박 함량이 높을수록 0 시간에는 항산화효과가 농도 의존적으로 증가하였는데 이는 쌀주정박의 대사산물이 영향을 미친 것으로 판단되며, 발효 48시간이 경과하면서 항산화능의 증가비율은 반대로 감소하였다. 이는 대두박 양이 증가하고 쌀주정박 양이 감소한 혼합발효물의 유산균과 효모의 생균수가 증가하고 이에 따라 생산된 대사산물이 항산화 효과에 영향을 미친 것으로 판단된다. The antioxidant effect of the mixed fermentation product according to the ratio of rice ethanol and soybean meal was confirmed. 1 g of the fermented soybean meal and fermented rice ethanol mixture was mixed with 5 mL of 10% ethanol, mixed with extraction buffer (0.05M Tris-HCl buffer pH=8.2) at 50°C, and extracted for 70 minutes while vortexing at 10-minute intervals in an ultrasonic water bath at 40°C. Then it was centrifuged at 9,000 rpm for 30 minutes. After mixing 0.2 mL of the supernatant with 0.8 mL of 0.2 mM DPPH, an ABTS radical scavenging ability test reagent, the mixture was left in the dark at 25°C for 10 minutes, and the absorbance was measured at 490 nm using an ELIZA reader, as shown in Figure 18. As shown in Figure 18, RDDG 50% + SBM 50% (A) was 29.93% at 0 hours of fermentation, while it rapidly increased with fermentation time to 50.33% at 24 hours and 58.44% at 48 hours. Compared to 0 hours, the fermentation mixture increased by about 100% at 48 hours. RDDG 60%+SBM 40% (B) was 36.61.% at 0 hours of fermentation, while it was 60.25% at 24 hours and 62.15% at 48 hours, which increased rapidly as fermentation time elapsed, compared to 0 hours at 48 hours. The fermentation mixture increased by approximately 85%. RDDG 70%+SBM 30% (C) was 36.51% at 0 hours of fermentation, while it increased rapidly with fermentation time to 60.53% at 24 hours and 57.20% at 48 hours, with 48 hours of fermentation compared to 0 hours. The mixture increased by approximately 78%. RDDG 80%+SBM 20% (D) was 45.28% at 0 hours of fermentation, while it was 60.25% at 24 hours and 62.54% at 48 hours, which increased rapidly with the passage of fermentation time, compared to 0 hours at 48 hours of fermentation. The mixture increased by approximately 69%. RDDG 90%+SBM 10% (E) was 54.53% at 0 hours of fermentation, while it was 65.20% at 24 hours and 63.68% at 48 hours, which increased rapidly with the passage of fermentation time, compared to 0 hours at 48 hours of fermentation. The mixture increased by approximately 45.75%. As the fermented rice ethanol content increased, the antioxidant effect increased in a concentration-dependent manner at 0 hours, which was believed to be influenced by the metabolites of the rice ethanol. On the other hand, the rate of increase in antioxidant activity decreased after 48 hours of fermentation. This is believed to be due to the increase in the number of viable lactic acid bacteria and yeast in the mixed fermentation in which the amount of soybean meal was increased and the amount of rice ethanol was reduced, and the metabolites produced accordingly affected the antioxidant effect.

처리구 5종류(A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+SBM 10%) 중 RDDG 50%+SBM 50%(A)가 0시간에 비해 약 100% 증가하여 항산화효과가 가장 높게 나타났다. 5 types of treatment (A: RDDG 50%+SBM 50%, B: RDDG 60%+SBM 40%, C: RDDG 70%+SBM 30%, D: RDDG 80%+SBM 20%, E: RDDG 90%+ Among SBM 10%), RDDG 50% + SBM 50% (A) showed the highest antioxidant effect with an increase of about 100% compared to 0 hours.

구성 아미노산 및 Constituent amino acids and 분해성decomposability 단백질(DIP), Protein (DIP), 비분해성non-degradable 단백질( protein( UIPUIP ) 측정) measurement

상기 쌀주정박과 대두박 비율이 50:50인 혼합발효물의 구성 아미노산 및 분해성 단백질(DIP), 비분해성 단백질(UIP)을 측정하였다. 구성아미노산 함량 분석 조건은 표 13 및 표 14와 같다. 구성 아미노산은 AOAC 법을 변형하여 이온교환크로마토그래피법을 이용한 ninhydrin post column 반응법으로 18성분을 분석하였다. 구성아미노산 분석은 시료 0.2 g을 분해관에 넣고 6 N HCl 10㎖를 가하고 질소가스를 주입한 후 110℃에서 24시간 가수분해 시켰다. 여액을 감압농축기로 농축 후 0.2M sodium citrate buffer로 50 ㎖로 정용한 후, 0.45 μm의 nylon syringe filter로 여과한 여액을 분석시료로 사용하였다. 황함유 계열인 methionine과 cysteine은 performic acid 산화법, tryptophan은 알칼리 가수분해법을 이용하였다.The constituent amino acids, degradable protein (DIP), and non-degradable protein (UIP) of the mixed fermentation product with the rice ethanol and soybean meal ratio of 50:50 were measured. The conditions for analyzing the amino acid content are shown in Tables 13 and 14. The constituent amino acids were analyzed for 18 components using the ninhydrin post column reaction method using ion exchange chromatography by modifying the AOAC method. For amino acid composition analysis, 0.2 g of the sample was placed in a decomposition tube, 10 ml of 6 N HCl was added, nitrogen gas was injected, and the sample was hydrolyzed at 110°C for 24 hours. The filtrate was concentrated using a vacuum concentrator, adjusted to 50 ml with 0.2M sodium citrate buffer, and then filtered through a 0.45 μm nylon syringe filter and used as an analysis sample. Performic acid oxidation method was used for sulfur-containing series methionine and cysteine, and alkaline hydrolysis method was used for tryptophan.

ItemsItems ConditionsConditions 기구machine Hitachi, L-8900Hitachi, L-8900 컬럼column Ion exchange column (#2622PH column)
4.6×60 mm
Ion exchange column (#2622PH column)
4.6×60mm
이동상mobile phase Buffer set (PH-SET KANTO)Buffer set (PH-SET KANTO) 감지detect UV/Vis(440, 570㎚)UV/Vis (440, 570㎚) 유속flow rate Ninhydrin ; 0.35㎖/min
Buffer ; 0.40㎖/min
Ninhydrin; 0.35㎖/min
Buffer ; 0.40㎖/min
주입량Injection amount 20 μL20 μL

ItemsItems ConditionsConditions 기구machine Waters Isocratic 600 pump, 486 UV/VIS detectorWaters Isocratic 600 pump, 486 UV/VIS detector 컬럼column CAPCELL C18 (4.6x250㎜)CAPCELL C18 (4.6x250㎜) 이동상mobile phase 0.0085M Sodium acetate : methanol = 95 : 50.0085M Sodium acetate:methanol = 95:5 감지detect UV 280㎚UV 280㎚ 유속flow rate 1.0㎖/min1.0㎖/min 주입량Injection amount 20㎕20㎕

분해성 단백질(DIP) 및 비분해성 단백질(UIP) 측정은 상기에서 설명한 방법과 동일한 방법으로 측정하여 구성 아미노산 및 분해성 단백질(DIP) 및 비분해성 단백질(UIP) 결과를 표 15에 나타내었다.Degradable protein (DIP) and undegradable protein (UIP) were measured using the same method as described above, and the constituent amino acids and degradable protein (DIP) and undegradable protein (UIP) results are shown in Table 15.

ItemItem RDDG+SBM (0 h, %DM)RDDG+SBM (0 h, %DM) RDDG+SBM(48 h, %DM)RDDG+SBM (48 h, %DM) Crude protein 52.66 %Crude protein 52.66% Crude protein 44.83%Crude protein 44.83% DIPDIP 19.9719.97 48.2648.26 UIPUIP 18.0418.04 28.6828.68 Aspartic acidAspartic acid 1.681.68 2.542.54 ThreonineThreonine 0.670.67 1.021.02 SerineSerine 0.870.87 1.301.30 Glutamic acid Glutamic acid 2.812.81 4.374.37 ProlineProline 0.880.88 1.331.33 GlycineGlycine 0.710.71 1.081.08 AlanineAlanine 0.800.80 1.231.23 ValineValine 0.800.80 1.181.18 IsoleucineIsoleucine 0.690.69 1.001.00 LeucineLeucine 1.351.35 1.981.98 TyrosineTyrosine 0.510.51 0.770.77 PhenylalaninePhenylalanin 0.850.85 1.271.27 HistidineHistidine 0.390.39 0.610.61 LysineLysine 0.860.86 1.281.28 ArginineArginine 1.031.03 1.551.55 CysteineCysteine 0.250.25 0.500.50 MethionineMethionine 0.150.15 0.380.38 TryptophanTryptophan 0.170.17 0.240.24

조단백질은 요소, 아미노산, 아민과 같은 비단백태질소(Non Protein Nitrogen, NPN)와 진정단백질(true protein)로 구성되며, 진정단백질은 분해성 단백질(DIP) 및 비분해성 단백질(UIP)로 구성된다. 표 15에서 보는 바와 같이, 대조구(발효 0 h)과 시험구(발효 48 h)를 비교하면 조단백질(crude protein) 함량은 대조구 건물함량 기준 52.66%에서 시험구 44.83%로 7.83% 감소하였는데 이는 발효 과정 중 단백질의 분해와 유용미생물들이 영양원으로 이용하였기 때문으로 사료된다. 조단백질 내에 분해성 단백질(Degradable intake protein)은 대조구인 비발효물은 19.97%인데 비하여 시험구인 48시간 발효물은 48.26%로 28.29%가 증가하였으며, 이는 “NPN + soluble true protein + 발효 중 분해된 단백질”로 구성되기 때문에 발효대두박과 발효쌀주정박 혼합물에서 매우 높게 생성되었다. 또한 비분해성 단백질(Undegradable intake protein)도 대조구인 비발효 시료는 18.04%인데 비하여 시험구인 48시간 발효 시료는 28.68%로 10.64%가 증가하였는데 이는 “NPN의 일부 성분 + unsoluble true protein” 으로 구성되기 때문에 쌀주정박과 대두박 혼합발효물에서 매우 높게 생성되었다. 즉, 비발효 시료 조단백질 내 38.01%이었던 분해성 단백질 및 비분해성 단백질의 합인 대사단백질이 발효 후 76.94%로 2배 이상 증가한 것을 확인하였다.Crude protein is composed of non-protein nitrogen (NPN) such as urea, amino acids, and amines, and true protein, and true protein is composed of degradable protein (DIP) and non-degradable protein (UIP). As shown in Table 15, comparing the control group (fermentation 0 h) and the test group (fermentation 48 h), the crude protein content decreased by 7.83% from 52.66% based on dry matter content in the control group to 44.83% in the test group, which is due to the fermentation process. This is thought to be due to the decomposition of heavy proteins and use by useful microorganisms as a source of nutrients. Degradable intake protein in the crude protein was 19.97% in the non-fermented product as a control, but it increased by 28.29% to 48.26% in the 48-hour fermented product as a test group, which is “NPN + soluble true protein + protein decomposed during fermentation.” Because it is composed of, it was produced at very high levels in a mixture of fermented soybean meal and fermented rice ethanol. In addition, undegradable intake protein increased by 10.64% to 28.68% in the 48-hour fermented sample as the test group, compared to 18.04% in the non-fermented sample as the control group. This is because it consists of “some components of NPN + unsoluble true protein.” It was produced at a very high level in the mixed fermentation of rice ethanol and soybean meal. In other words, it was confirmed that the metabolic protein, which is the sum of degradable and non-degradable proteins, which was 38.01% in the crude protein of the non-fermented sample, more than doubled to 76.94% after fermentation.

또한 분석한 18종류의 아미노산 모두가 대조구보다 시험구(발효 48 h)에 증가된 것으로 확인되었다. 이는 발효가 진행되는 동안 사용한 유용미생물들의 대사산물인 단백질 분해 효소에 의해 단백질이 분해되어 아미노산 량이 증가된 것으로 사료된다.Additionally, it was confirmed that all 18 types of amino acids analyzed were increased in the test group (fermentation 48 h) compared to the control group. This is thought to be due to the increase in the amount of amino acids due to protein decomposition by proteolytic enzymes, which are metabolites of useful microorganisms used during fermentation.

상기 결과를 통하여 본 발명의 Bacillus coagulans NRR1207(KACC92114P) 및 Saccharomyces cerevisiae MNRU0927(KACC93265P) 혼합균주 및 효소 조성물에 의한 쌀주정박과 대두박 혼합발효물은 대두박의 항균인자가 현저히 저감되면서 아울러 구성 아미노산 및 분해성 단백질(DIP)과 비분해성 단백질(UIP)의 비율을 높여 축산용 보충사료로서 적합한 것을 확인하였다.Through the above results, Bacillus coagulans NRR1207 (KACC92114P) and Saccharomyces cerevisiae of the present invention The mixed fermentation of rice ethanol and soybean meal using MNRU0927 (KACC93265P) mixed strain and enzyme composition significantly reduces the antibacterial factors of soybean meal and increases the ratio of constituent amino acids and degradable protein (DIP) to non-degradable protein (UIP) to supplement livestock farming. It was confirmed that it was suitable as feed.

농촌진흥청 국립농업과학원 미생물은행(KACC)Rural Development Administration National Academy of Agricultural Sciences Microbial Bank (KACC) KACC92114PKACC92114P 2015121520151215 농촌진흥청 국립농업과학원 미생물은행(KACC)Rural Development Administration National Academy of Agricultural Sciences Microbial Bank (KACC) KACC93265PKACC93265P 2016093020160930

Claims (9)

쌀주정박 및 대두박 혼합물에 바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 및 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P)의 혼합균주를 접종하여 배양한 발효물을 포함하는 축산용 보충사료 조성물에 있어서,
상기 축산용 보충사료 조성물은, 상기 쌀주정박 및 대두박 혼합물에 알칼리성 프로테아제(alkaline protease), 자일라나제(Xylanase), 아밀라제(Amylase) 및 셀룰라제(Cellulase)를 포함하는 효소제를 더 포함하여 배양한 발효물인 것을 특징으로 하는 축산용 보충사료 조성물.
A supplementary feed composition for livestock containing a fermented product cultured by inoculating a mixture of rice ethanol and soybean meal with mixed strains of Bacillus coagulans (Bacillus coagulans NRR1207, KACC92114P) and Saccharomyces cerevisiae ( Saccharomyces cerevisiae MNRU0927, KACC 93265P) In
The supplementary feed composition for livestock is fermented by further comprising an enzyme agent including alkaline protease, xylanase, amylase, and cellulase in the rice ethanol and soybean meal mixture. A supplementary feed composition for livestock, characterized in that it is water.
삭제delete 제1항에 있어서,
상기 쌀주정박 및 대두박 혼합물은, 쌀주정박 및 대두박이 중량비가 50~90:10~50으로 혼합된 것을 특징으로 하는 축산용 보충사료 조성물.
According to paragraph 1,
The rice ethanol and soybean meal mixture is a supplementary feed composition for livestock, characterized in that rice ethanol and soybean meal are mixed at a weight ratio of 50 to 90:10 to 50.
제1항에 있어서,
상기 축산용 보충사료 조성물은, 상기 쌀주정박 및 대두박 혼합물에
바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 및 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P)의 혼합균주;
알칼리성 프로테아제(alkaline protease), 자일라나제(Xylanase), 아밀라제(Amylase), 셀룰라제(Cellulase)를 포함하는 효소제; 를 투여하여 24~48시간 배양한 발효물인 것을 특징으로 하는 축산용 보충사료 조성물.
According to paragraph 1,
The supplementary feed composition for livestock is added to the rice ethanol and soybean meal mixture.
Mixed strains of Bacillus coagulans NRR1207, KACC92114P) and Saccharomyces cerevisiae MNRU0927, KACC 93265P;
Enzyme agents including alkaline protease, xylanase, amylase, and cellulase; A supplementary feed composition for livestock, characterized in that it is a fermented product administered and cultured for 24 to 48 hours.
제1항에 있어서,
상기 축산용 보충사료 조성물은 쌀주정박 및 대두박 혼합물에 바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 2×107~2×108 cell/g 및 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P) 1×106~1×107 cell/g를 접종하여 배양한 것을 특징으로 하는 축산용 보충사료 조성물.
According to paragraph 1,
The supplementary feed composition for livestock is a mixture of rice ethanol and soybean meal containing Bacillus coagulans (Bacillus coagulans NRR1207, KACC92114P) 2×10 7 ~2×10 8 cell/g and Saccharomyces cerevisiae ( Saccharomyces cerevisiae MNRU0927, KACC 93265P) ) Supplementary feed composition for livestock, characterized in that 1×10 6 ~1×10 7 cell/g was inoculated and cultured.
제1항에 있어서,
상기 축산용 보충사료 조성물은 조단백질 내 분해성 단백질(Degradable intake protein, DIP) 및 비분해성 단백질(Undegradable intake protein, UIP)의 비율이 75% 이상인 것을 특징으로 하는 축산용 보충사료 조성물.
According to paragraph 1,
The supplementary feed composition for livestock farming is characterized in that the ratio of degradable protein (DIP) and undegradable intake protein (UIP) in crude protein is 75% or more.
제1항에 있어서,
상기 축산용 보충사료 조성물은 리스테리아 모노사이토제네스 530(Listeria monocytogenes 530)에 항균활성을 갖는 것을 특징으로 하는 축산용 보충사료 조성물.
According to paragraph 1,
The supplementary feed composition for livestock is characterized in that it has antibacterial activity against Listeria monocytogenes 530.
제1항에 있어서,
상기 축산용 보충사료 조성물은 항산화 활성을 갖는 것을 특징으로 하는 축산용 보충사료 조성물.
According to paragraph 1,
The supplementary feed composition for livestock farming is characterized in that it has antioxidant activity.
쌀주정박 및 대두박 혼합물 100 중량부에 알칼리성 프로테아제 0.5 중량부, 자일라나제, 아밀라제 및 셀룰라제의 혼합 효소제 0.2 중량부, 바실러스 코아귤란스(Bacillus coagulans NRR1207, KACC92114P) 및 사카로미세스 세레비시아(Saccharomyces cerevisiae MNRU0927, KACC 93265P)의 혼합균주 10중량부 및 물 40 중량부를 혼합하는 단계;
상기 혼합물을 34~37℃에서 24~48 시간 배양하는 단계; 및
상기 배양물을 수거하여 건조하는 단계;를 포함하는 축산용 보충사료 조성물을 제조하는 방법.
For 100 parts by weight of the rice ethanol and soybean meal mixture, 0.5 parts by weight of alkaline protease, 0.2 parts by weight of mixed enzyme of xylanase, amylase and cellulase, Bacillus coagulans NRR1207, KACC92114P and Saccharomyces cerevisiae. cerevisiae Mixing 10 parts by weight of the mixed strain (MNRU0927, KACC 93265P) and 40 parts by weight of water;
Incubating the mixture at 34-37°C for 24-48 hours; and
A method of producing a supplementary feed composition for livestock, comprising: collecting and drying the culture.
KR1020230012163A 2023-01-30 2023-01-30 Supplementary feed composition for livestock using useful microorganisms and enzymes KR102589538B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020230012163A KR102589538B1 (en) 2023-01-30 2023-01-30 Supplementary feed composition for livestock using useful microorganisms and enzymes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020230012163A KR102589538B1 (en) 2023-01-30 2023-01-30 Supplementary feed composition for livestock using useful microorganisms and enzymes

Publications (1)

Publication Number Publication Date
KR102589538B1 true KR102589538B1 (en) 2023-10-16

Family

ID=88506116

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020230012163A KR102589538B1 (en) 2023-01-30 2023-01-30 Supplementary feed composition for livestock using useful microorganisms and enzymes

Country Status (1)

Country Link
KR (1) KR102589538B1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070022057A (en) * 2004-05-27 2007-02-23 제넨코 인터내셔날 인코포레이티드 Acid-stable alpha amylases having granular starch hydrolyzing activity and enzyme compositions
KR20100078838A (en) * 2008-12-30 2010-07-08 진도군 Additive for feed using distiller's dried grain produced from jindo-hongju and manufacturing method thereof and method for breeding pig
KR20110035610A (en) * 2009-09-30 2011-04-06 자연과기술(주) Method for manufacturing of soybeanpeptide and feed composition comprising the soybeanpeptide manufactured therefrom
KR101139027B1 (en) 2009-09-09 2012-04-27 씨제이제일제당 (주) Method for preparing a fermented soybean meal using Bacillus strains
KR101214573B1 (en) 2011-05-13 2012-12-24 주식회사 리스나 Fermented soybean meal by Weissella koreensis and method of preparing the same
KR20140069920A (en) * 2012-11-30 2014-06-10 (주)비엔아이 Method for producing fermented feed with dead-fish and residual product of fisheries and fermentation device
KR101600669B1 (en) 2013-12-30 2016-03-08 단국대학교 천안캠퍼스 산학협력단 - A feed additive for improving meat quality comprising -glucan and kefir as an effective ingredient a feed composition and a breeding method using the same
KR20170077989A (en) * 2015-12-29 2017-07-07 충남대학교산학협력단 Novel Bacillus coagulans NRR1207, fermented ginseng using the same and probiotic composition containing the same
KR20190098465A (en) * 2018-02-14 2019-08-22 씨제이제일제당 (주) Method for preparing fermented composition with improved odor using yeast
US20200054690A1 (en) * 2017-04-10 2020-02-20 Kibow Biotech, Inc. Multifiber prebiotic composition for digestive health, weight control, boosting immunity and improving health
KR102087673B1 (en) 2018-10-31 2020-03-11 청미바이오(주) Animal feed additive comprising fermented soybean meal using Bacillus and kefir
KR20210043877A (en) * 2019-10-14 2021-04-22 염상구 Method for preparing fermented total mixed ration using microbial strain complex
WO2021191901A1 (en) * 2020-03-24 2021-09-30 TripleW Ltd. Production of lactic acid from organic waste using compositions of bacillus coagulans spores

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070022057A (en) * 2004-05-27 2007-02-23 제넨코 인터내셔날 인코포레이티드 Acid-stable alpha amylases having granular starch hydrolyzing activity and enzyme compositions
KR20100078838A (en) * 2008-12-30 2010-07-08 진도군 Additive for feed using distiller's dried grain produced from jindo-hongju and manufacturing method thereof and method for breeding pig
KR101139027B1 (en) 2009-09-09 2012-04-27 씨제이제일제당 (주) Method for preparing a fermented soybean meal using Bacillus strains
KR20110035610A (en) * 2009-09-30 2011-04-06 자연과기술(주) Method for manufacturing of soybeanpeptide and feed composition comprising the soybeanpeptide manufactured therefrom
KR101157618B1 (en) 2009-09-30 2012-06-19 이소영 Method for manufacturing of soybeanpeptide and feed composition comprising the soybeanpeptide manufactured therefrom
KR101214573B1 (en) 2011-05-13 2012-12-24 주식회사 리스나 Fermented soybean meal by Weissella koreensis and method of preparing the same
KR20140069920A (en) * 2012-11-30 2014-06-10 (주)비엔아이 Method for producing fermented feed with dead-fish and residual product of fisheries and fermentation device
KR101600669B1 (en) 2013-12-30 2016-03-08 단국대학교 천안캠퍼스 산학협력단 - A feed additive for improving meat quality comprising -glucan and kefir as an effective ingredient a feed composition and a breeding method using the same
KR20170077989A (en) * 2015-12-29 2017-07-07 충남대학교산학협력단 Novel Bacillus coagulans NRR1207, fermented ginseng using the same and probiotic composition containing the same
KR101771488B1 (en) 2015-12-29 2017-08-25 충남대학교산학협력단 Novel Bacillus coagulans NRR1207, fermented ginseng using the same and probiotic composition containing the same
US20200054690A1 (en) * 2017-04-10 2020-02-20 Kibow Biotech, Inc. Multifiber prebiotic composition for digestive health, weight control, boosting immunity and improving health
KR20190098465A (en) * 2018-02-14 2019-08-22 씨제이제일제당 (주) Method for preparing fermented composition with improved odor using yeast
KR102087673B1 (en) 2018-10-31 2020-03-11 청미바이오(주) Animal feed additive comprising fermented soybean meal using Bacillus and kefir
KR20210043877A (en) * 2019-10-14 2021-04-22 염상구 Method for preparing fermented total mixed ration using microbial strain complex
WO2021191901A1 (en) * 2020-03-24 2021-09-30 TripleW Ltd. Production of lactic acid from organic waste using compositions of bacillus coagulans spores

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
D. Rui-Muslic, M. P. Petrovic, M. M. Petrovic, Z. Bijelic, V. Pantelicand P. Periic, Effects of different protein sources of diet on yield and quality of lamb meat, African Journal of Biotechnology Vol. 10(70), pp. 15823-15829, 9 November, 2011.
Li, D.F., et al., Transient hypersensitivity to soybean meal in the early-weaned pig, J. Anim. Sci., 68(6), 1790-1799, 1990.

Similar Documents

Publication Publication Date Title
CA2295570C (en) Enzymes mixture
Lee et al. Influence of an anaerobic fungal culture administration on in vivo ruminal fermentation and nutrient digestion
KR101144473B1 (en) A manufacturing method of fermented roughage for ruminants using spent mushroom substrates
Saxena et al. Effect of administration of rumen fungi on production performance of lactating buffaloes
CN103875893A (en) Multi-strain composite microorganism feed additive and preparation method thereof
CN105053566B (en) A kind of bicycle beam wood seed Pepsin feed addictive and preparation method thereof
US20160324190A1 (en) Use of an enzymatic composition in the feed of ruminants
Wang et al. Growth performance and digestion improvement of juvenile sea cucumber Apostichopus japonicus fed by solid‐state fermentation diet
CN111718879A (en) Fermented momordica grosvenori residues and preparation method and application thereof
CN116083262A (en) Lactobacillus plantarum strain with aquatic pathogenic bacteria antagonistic property and preparation and application of preparation thereof
US20200407764A1 (en) Method for preparing fermented composition with improved odor using yeast
Yin et al. Effects of soybean meal replacement with fermented alfalfa meal on the growth performance, serum antioxidant functions, digestive enzyme activities, and cecal microflora of geese
KR20160143499A (en) A fermented feedstuff additive composition having enhanced active components by bioconversion using microorganisms and the method for preparing of the same
CN109170364A (en) A kind of fresh water fish feed and preparation method thereof
KR102589538B1 (en) Supplementary feed composition for livestock using useful microorganisms and enzymes
CN113317390B (en) Biological leavening agent for palm meal and preparation method and application thereof
KR20160143498A (en) A fermented feedstuff additive composition having enhanced active components by bioconversion using microorganisms and the method for preparing of the same
Kumar et al. Growth performance and fibre utilization of Murrah male buffalo calves fed wheat straw based complete feed blocks incorporated with superior anaerobic fungal zoospores (Neocallimastix sp. GR-1)
CN115553380A (en) Fermented feed and fermentation process thereof
KR20130000628A (en) Penicillium sp. gdx01 strain producing cellulase and uses thereof
EP2893815A1 (en) Assorted livestock feed with enhanced nutrients and method of preparing the same
CN115486497B (en) Yeast culture for ruminant animals and preparation method and application thereof
CN116508880B (en) Saccharomyces cerevisiae culture prepared from double yeasts and application thereof
CN114015580B (en) Strain and method for remarkably improving content of small peptide in fermented feed
CN116849292B (en) Fermented feed additive and preparation method and application thereof

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant