JP5727949B2 - 電流波形識別装置 - Google Patents

電流波形識別装置 Download PDF

Info

Publication number
JP5727949B2
JP5727949B2 JP2012011142A JP2012011142A JP5727949B2 JP 5727949 B2 JP5727949 B2 JP 5727949B2 JP 2012011142 A JP2012011142 A JP 2012011142A JP 2012011142 A JP2012011142 A JP 2012011142A JP 5727949 B2 JP5727949 B2 JP 5727949B2
Authority
JP
Japan
Prior art keywords
waveform
current waveform
current
state
difference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012011142A
Other languages
English (en)
Other versions
JP2013150508A (ja
Inventor
康直 鈴木
康直 鈴木
将樹 香西
将樹 香西
和明 矢野
和明 矢野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2012011142A priority Critical patent/JP5727949B2/ja
Publication of JP2013150508A publication Critical patent/JP2013150508A/ja
Application granted granted Critical
Publication of JP5727949B2 publication Critical patent/JP5727949B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/30Systems integrating technologies related to power network operation and communication or information technologies for improving the carbon footprint of the management of residential or tertiary loads, i.e. smart grids as climate change mitigation technology in the buildings sector, including also the last stages of power distribution and the control, monitoring or operating management systems at local level
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S20/00Management or operation of end-user stationary applications or the last stages of power distribution; Controlling, monitoring or operating thereof
    • Y04S20/20End-user application control systems
    • Y04S20/242Home appliances

Description

本発明は、電流波形を用いて各機器の動作状態を識別する電流波形識別装置に関する。
近年、一般家庭やオフィス等の電力需要家の宅内に電力センサを設置し、電力の効率的利用や電気機器の遠隔制御を図る、HEMS(HomeEnergy Management System)技術に関する検討、開発が進んでいる。
一般に、HEMSは家電製品等の電気機器の各々に取り付けられた電力センサからの情報を、有線もしくは無線の通信手段を用いて集約、転送することにより、必要な情報を収集する方法が考えられている。
一方で、電力需要家に電力を供給する電源線の引込み線や分電盤の位置に設置した1台のセンサで消費電力や電流波形をモニタし、その特徴に基づいて各電気機器の種別や動作状態、消費電力等を識別、把握する方法が提案されている(非特許文献1)。
Katsukura et al. "Life Pattern Sensor with Non-intrusive Appliance Monitoring," ICCE '09 pp.1-2, Jan.2009.
非特許文献1の方式は、必要なセンサが1台で済むことから経済性が高く、また既存の電気製品にセンサを追加したり、新しい電気製品に規格の統一されたセンサを埋め込んだりしておく必要が無いことから、導入への障壁が少ない点で、実用性が高く有効な実現手段になると考えられる。しかしながら、1台のセンサが取得できる情報は積算された電流や電圧の値に限られ、個々の電気機器の電力消費の状態を直接把握することはできないため、何らかの方法で、積算された電力データから個々の機器の電力データを推測する必要がある。
非特許文献1では、あらかじめ各電気機器を組み合わせた様々な動作状態において、電力消費や電流波形等のデータを測定、蓄積しておき、それらのデータベースと実測値とを比較、参照して機器の識別や、動作状態の推測を行う方法が提案されている。
しかしながら、このような方法で個々の電気機器の電力データを推測する場合、対象とする電気機器の種別や、電力需要家が同時に使用する電気機器の数が増えるに従って、それぞれの電気機器の組み合わせに応じて膨大な数のデータベースが必要となり、これらを事前に取得、計算して保管しておく必要がある。また、このように膨大なデータベースを参照して解析を行う場合、計算の試行回数や計算時間が著しく増加し、さらに識別の精度も低下するという問題点がある。
本発明は、上記事情に鑑みてなされたものであり、本発明の目的は、電流波形を用いて機器を識別する場合に、データベースに格納しておく参照波形のデータ量を低減し、機器の識別に要する処理時間を減少させる電流波形識別装置を提供することにある。
上記目的を達成するため、本発明の電流波形識別装置は、複数の機器の各々の電流波形を参照波形として記憶するデータベースと、電源線に流れる電流波形を電源周波数1サイクルごとに測定する電流波形測定手段と、前記電流波形の1サイクルごとの変化量が所定の閾値を超える場合に過渡状態と判別するとともに、前記変化量が前記閾値を超えない場合に安定状態と判別する安定状態判別手段と、第1の安定状態から過渡状態を経て第2の安定状態に遷移した場合に、第2の安定状態で測定した電流波形と、第1の安定状態で測定した電流波形との差分である差分波形を、前記過渡状態において動作状態の変化があった機器の電流波形として算出する差分波形算出手段と、前記差分波形と、前記データベースの各参照波形とを比較し、前記差分波形に最も類似する参照波形を選択し、選択した参照波形に対応する機器が前記過渡状態において動作状態の変化があった機器であると識別する識別手段と、を備える。
本発明によれば、電流波形を用いて機器を識別する場合に、データベースに格納しておく参照波形のデータ量を低減し、機器の識別に要する処理時間を減少させる電流波形識別装置を提供することができる。
本実施形態の電源線電流波形識別装置の使用例を説明する図である。 本実施形態の電源系統の模式図である。 電流波形の重ね合わせを説明する図である。 本発明の実施形態に係る電流波形識別装置の構成例を示す図である。 本実施形態の電流波形識別方式の原理を説明する図である。 本実施形態の電流波形識別方式の原理の説明を補足する図である。 本実施形態の電流波形識別方式の手順を説明する図である。 比較例の電源線電流波形識別装置に必要なデータベースを説明する図である。 本実施形態の電源線電流波形識別装置に必要なデータベースを説明する図である。
以下、本発明の実施の形態を図面を用いて説明する。
まず図1に、本発明の実施形態に係る電源線電流波形識別装置の使用形態の一例を示す。
図1に示す電源線電流波形識別装置1−1は、電力需要家の建屋内の分電盤1−2に接続される電源線の途中など、電力需要家宅内の総消費電力が測定可能な位置に設置される。電力需要家宅内の個々の電気機器1−3は、それぞれ電源回路や電力消費形態が異なるため、それらの電源線を流れる電流波形も一般的に異なるものとなる。電源線電流波形識別装置1−1において測定される電源電流の波形は、これら複数の電気機器1−3の電源線の電流波形の総和となる。
電源線電流波形識別装置1−1は、このような総和の電流波形から、個々の電気機器1−3の電流波形を推測して、電気機器1−3の機器種別およびその動作状態を識別することを目的とする装置である。
以下、本発明の第1の実施形態の電源線電流波形識別装置の構成および機能をより詳細に説明する。
図2に、本実施形態の電源線電流波形識別装置を説明するための、電源系統の模式図を示す。ここでは簡単のため、対象とする電気機器を図中2−6に示す電気機器(A)と図中2−7に示す電気機器(B)との2種類に限った場合について説明するが、機器の数が増えた場合でも動作原理は同様である。
電源線電流波形識別装置2−4は、電力需要家(一般家庭や事務所など)に電力を供給する電源線の引込み線または分電盤内の電力線など、電力需要家が使用する電気機器の総電力量を検出可能な位置に設置され、その位置で測定した電流、電圧、消費電力量などの総量をもとに、電力需要家が使用している電気機器等の種別や動作状況、消費電力等を把握するモニタ装置として使用される。
図示する電源線電流波形識別装置2−4は、電力需要家宅内の分電盤2−3から電力需要家宅内2−1に供給される電源の電流を測定し、その波形データを保存、処理する。このときの電源の電流波形は、電気機器(A)2−6の電源線(屋内配電線)2−5の電流波形と、電気機器(B)2−7の電源線(屋内配電線)2−5の電流波形とを加え合わせた波形となる。
図3は、電気機器(A)と電気機器(B)の電流波形の例を示した図である。すなわち、図3(a)は、電気機器(A)の単独動作時の電流波形3−2を示し、図3(b)は、電気機器(B)の単独動作時の電流波形3−3を示し、図3(c)は、電気機器(A)および電気機器(B)が同時に動作したときの合成電流波形3−4を示している。
図3(a)から図3(c)の各々で点線で示す電源の電圧波形3−1は、電力需要家宅内で全て同じ波形となる。一方、図3(a)の電気機器(A)の電流波形3−2と、図3(b)の電気機器(B)の電流波形3−3は、機器の種別やその状態が異なれば一般的に異なる波形になる。なお、図3には、これらの波形の交流電源の周波数の1サイクル分について示しており、実際にはこれと同じ波形が、電気機器の動作状態が変化しない限り、繰り返されることになる。
一方、電源線電流波形識別装置2−4の位置で測定した、図3(c)の合成電流波形3−4は、電流の重ね合わせの原理(キルヒホッフの第一法則)から、図3(c)に示すように、これらの電流波形3−2、3−3を加算した波形となる。
図4は、本実施形態の電源線電流波形識別装置の機能構成の一例を示した図である。
図4中の4−1は本実施形態の電源線電流波形識別装置であり、分電盤4−2と屋内電気配線の間の電源線に設置される。電源線電流波形識別装置4−1は、電流センサ4−3と、電圧センサ4−4と、電流波形測定部4−5と、タイミング検出部4−6と、A/D変換部4−7と、逐次波形メモリ4−8と、波形比較部4−9と、安定状態判定部4−10と、安定波形メモリ4−11と、差分波形計算部4−12と、波形識別・判定部4−13と、参照波形データベース4−14とを備える。
電流センサ4−3および電圧センサ4−4は、電源線に取り付けられ、それぞれ電源線の電流値、電圧値をモニタしている。電流センサ4−3は、非接触型の電流プローブ、または電源線内に挿入した低抵抗の両端の電圧を測定するタイプの電流計などが使用できる。電圧センサ4−4としては、2線間の電圧を電圧計で直接測定することで実現できるし、非接触の容量性電圧プローブを用いても良い。
電流センサ4−3で読み取った電流波形は、電圧センサ4−4で読み取った電圧値を基準として、タイミング検出部4−6により電圧1サイクル内の特定の位相のタイミングでトリガを掛け、電流波形測定部4−5でその1サイクル分の電流波形を取得する。こうして取得した1サイクル分の電流波形は、A/D変換部4−7でディジタルデータに変換された後、1サイクルごとに波形比較部4−9および逐次波形メモリ4−8に送られる。
逐次波形メモリ4−8は、この1サイクル分の電流波形を必要なサイクル数分記憶しておく機能を持つ。波形比較部4−9は、A/D変換部4−7から送られた時点での測定電流波形と、逐次波形メモリ4−8に記憶された1サイクル前の、もしくは所定の複数サイクル分前の電流波形とを比較する。比較したこれらの電流波形の差分(変化量)が、事前に設定した特定の閾値以下の場合には、安定状態判定部4−10は、その時点の状態を安定状態と判定する。一方、電流波形の差分が上記の閾値より大きい場合には、安定状態判定部4−10は、その時点の状態を過渡状態と判定する。
上記の判定に用いる差分の値としては、2つの電流波形の間の電流のピーク値の差、電流の時間平均値(実効値)の差、波形の差を1サイクル分積分した値、等を指標として用いることが出来る。安定状態判定部4−10で安定状態と判定されたその時点での電流波形データは、安定波形メモリ4−11に保存される。安定状態判定部4−10は、安定状態と判定された最初の電流波形のみを安定波形メモリ4−11に記憶してもよく、また、安定状態と判定されている間は、安定状態の電流波形を上書きして安定波形メモリ4−11に記憶してもよい。
一方、過渡状態と判定された場合は、安定状態判定部4−10は、過渡状態が続く間は電流波形の安定波形メモリ4−11への記憶および上書きはせずに、安定状態と判定されている間の電流波形を安定波形メモリ4−11に保存しておく。
差分波形計算部4−12、過渡状態から安定状態に遷移したタイミングで、その時点の電流波形と、安定波形メモリ4−11に保持された前回の安定状態の電流波形との差分を算出する。後で述べるように、この算出された差分の電流波形(差分波形)は、過渡状態の期間で起動、停止もしくは動作状態が変化した電気機器の電源線の電流波形を示している。
そこで、波形識別・判定部4−13は、この差分波形計算部4−12が出力する差分波形と、参照波形データベース4−14に蓄積された各参照波形と比較、対照し、最も差分波形に類似する波形の参照波形を選択する。参照波形データベース4−14には、電源線に接続された全ての各電気機器について、当該電気機器が単独で動作しているときの電流波形(図3(a)、(b)参照)のデータが参照波形として記憶されている。あらかじめ、各電気機器を単独で動作させて測定し、測定した電流波形を対応する電気機器の識別情報とともに参照波形データベース4−14に記憶しておく。また、電気機器がON/OFFの動作状態だけでなく、エアコンなどのようにレベル調整が可能な機器の場合は、各レベル(または代表的なレベル)で単独動作させた場合の電流波形も、参照波形データベース4−14に記憶しておく。
波形識別・判定部4−13は、例えば、パターン認識、ニューラルネットワークの推定アルゴリズム等の手法を用いて、差分波形と、各参照波形との比較、対照および識別判定を行う。なお、パターン認識、およびニューラルネットワークの推定アルゴリズムについては、例えば、下記の文献1に記載されている。
文献1:K. Yoshimoto, Y. Nakano, Y. Amano, and B. Kermanshahi, "Non-Intrusive Appliances Load Monitoring System Using Neural Networks," 2000 ACEEE Summer Study on Energy Efficiency in Buildings, Pacific Grove, CA, USA, August 20-25, 2000
こうして波形識別・判定部4−13で識別、判定された識別、推定結果は、識別結果4−15として出力される。識別結果としては、例えば、差分波形に最も類似すると識別された参照波形に対応する電気機器の機器種別、当該機器の動作状態(ON、OFF等)、時刻などが出力される。なお、識別結果として、当該電気機器の消費電力も出力することとしてもよい。
なお、出力される識別結果4−15は、電源線電流波形識別装置4−1が備える識別結果情報データベース(不図示)に記憶し、所定のタイミングでネットワークを介して外部システムに送信することにより、外部システムでは、電力需要家が使用する電力情報を収集し、遠隔で電力情報に基づく電力制御等を行うことが出来る。これにより、家庭内消費電力を効果的に節減するための情報提供サービスや、機器故障の把握、通知サービス、独居老人や要介護者の見守りサービスを、電力需要家に提供することが可能となる。
図5は、本実施形態の電源線電流波形識別装置が、上記で述べたようなプロセスで電気機器およびその動作状態の識別、判定を行う際の、具体的な波形の変化の様子を示したものである。
図5中の5−1は安定状態(1)、5−2は過渡状態、5−3は安定状態(2)を示している。また、図5中の5−4は電気機器(A)の状態、5−5は電気機器(B)の状態を示している。
図5では、電気機器(A)は常に起動した状態であるが、電気機器(B)は安定状態(1)5−1では起動しておらず、起動した瞬間から過渡状態5−2に入り、その後動作が安定した安定状態(2)5−3になる一連のプロセスを例として示している。過渡状態5−2では電気機器(B)の消費電力や電流波形は変動するが、安定状態(2)5−3では一定の値となる。
この一連のプロセスでの電気機器(A)および電気機器(B)の電源線の電流波形を、それぞれ図中の5−6、5−7に示している。ここで、上述した図4の電流センサ4−3で読み取る電流波形は、電気機器(A)と電気機器(B)の電流波形の和になることから、図5の合成波形5−8のようになる。したがって、対象となる電気機器のいずれかの動作状態が変化した場合には、合成波形5−8も同様に変化し、電源線電流波形識別装置が過渡状態としてその変化を検知することができる。
図6は、図4の差分波形計算部4−12が、図5に示す過渡状態5−2の前後の安定状態の電流波形の変化から、電気機器(B)の波形を逆算して算出する過程を説明した図である。
安定状態(1)での電流波形6−2が、過渡状態を経て、安定状態(2)の電流波形6−3に移行した場合、電流波形6−3から電流波形6−2を差し引くことで、過渡状態の間に起動または停止した電気機器(B)の電流波形6−4を求めることが出来る。起動していた電気機器が停止した場合には、起動した場合と位相が逆になるため、起動と停止の区別は容易に判断することができる。
このように本実施形態では、合成波形が電力需要家が使用する各電気機器で消費される電流の波形を足し合わせたものであるため、各電気機器の動作状態が変化しない限りほぼ一定であり、このような電流波形がほぼ一定の状態を安定状態と判断する。また、新たな電気機器を起動させたり、逆に今まで起動していた電気機器を停止した場合、またこれらの電気機器の動作状態が変わった場合には、合成波形はこれらの影響で変化することとなり、このような安定状態からの変化中の状態を過渡状態と判断する。そして、一定の時間が経過すると、起動、停止、もしくは動作状態が変化した電気機器の消費する電力の電流波形は一定の値を示すこととなるため、再び安定状態と判断する。そして、第1の安定状態から過渡状態を経て、第2の安定状態になった場合おいて、第2の安定状態時に測定した電流波形から、第1の安定状態に測定した電流波形を差し引いた差分波形を算出する。差分波形は、過渡状態に起動、停止、もしくは動作状態が変化した電気機器の消費する電流波形を表すものである。このため、あらかじめ測定し、参照波形データベースに蓄積しておいた各電気機器の各動作状態での参照波形と、差分波形とを比較、対照することで、過渡状態に生じた事象を時系列で特定することができる。
図7は、上述したプロセスを、フローチャートの形式で記載したものである。
初期処理としてn=1、m=1を設定し、測定を開始する。そして、電流波形測定部4−5は、1サイクル目の電流波形i(n)を測定し、A/D変換部4−7は、測定した電流波形i(n)をディジタルデータに変換し、1サイクル分の電流波形を逐次波形メモリ4−8に記憶するとともに、波形比較部4−9に送出する(S11)。
そして、nに「1」を加算してnを更新し(S12)、S11と同様に、次のサイクルの電流波形i(n)を測定し、ディジタルデータに変換した1サイクル分の電流波形を逐次波形メモリ4−8に記憶するとともに、波形比較部4−9に送出する(S13)。
波形比較部4−9は、S13で送出された測定電流波形と、逐次波形メモリ4−8に記憶された1サイクル前の電流波形とを比較し、電流波形の差分(変化量)(△i(n)= i(n)- i(n-1))を算出する(S14)。安定状態判定部4−10は、電流波形の差分があらかじめ設定した所定の閾値よりも大きい場合は(S15:YES)、 その時点の状態を過渡状態と判定する(S16)。
そして、安定状態判定部4−10は、1つ前のサイクルの状態が安定状態か否かを判定し(S17)、過渡状態の場合(S17:NO)、S12に戻り、以降の処理を行う。一方、1つ前のサイクルの状態が安定状態の場合(S17:YES)、mに「1」を加算してmを更新し(S18)、S12に戻り、以降の処理を繰り返し行う。
また、電流波形の差分が所定の閾値以下の場合は(S15:NO)、安定状態判定部4−10は、その時点の状態を安定状態と判定する(S19)。そして、安定状態判定部4−10は、1つ前のサイクルの状態が過渡状態か否かを判定し(S20)、安定状態の場合(S20:NO)、S12に戻り、以降の処理を繰り返し行う。
一方、1つ前のサイクルの状態が過渡状態の場合(S20:YES)、すなわち、過渡状態から安定状態に遷移した場合、安定状態判定部4−10は、安定状態と判定された当該時点での電流波形データi(n)を、安定時電流波形I(m)として、現時点の測定時刻t(m)とともに安定波形メモリ4−11に記憶する(S21)。
そして、差分波形計算部4−12は、S21で安定波形メモリ4−11に記憶した電流波形データI(m)と、安定波形メモリ4−11に保持された1つ前の安定状態の電流波形データI(m-1)との差分の電流波形を算出する(S22)。この差分波形は、過渡状態の期間で起動、停止もしくは動作状態が変化した電気機器の電源線の電流波形を示している。
波形識別・判定部4−13は、この差分波形と、参照波形データベース4−14にあらかじめ蓄積された各参照波形とを比較、対照し、差分波形に最も近い波形の参照波形を選択する。そして、選択した参照波形に対応する電気機器の種別、動作状態、およびS21で安定波形メモリ4−11に記憶した測定時刻t(m)を、識別結果として出力する(S23)。
以上述べたように、本実施形態の電源線電流波形識別装置では、過渡状態をはさんだ前後の安定状態における電流波形を測定して、その差分を求めることにより、過渡状態において状態が変化した電気機器の電流波形を算出することができる。
次に、図8および図9を用いて、本実施形態の比較例の電源線電流波形識別装置が必要とするデータベースのデータ量と、本実施形態の電源線電流波形識別装置が必要とするデータベースのデータ量とを具体的に説明する。
図8は、比較例の電源線電流波形識別装置における参照波形データベースのデータ量を示したものである。比較例の電源線電流波形識別装置は、複数の電気機器の電流波形が積算された電流波形を測定し、これを予め測定し、参照波形データベースに蓄積した各参照波形と比較することで、その時点で動作している機器の種別や状態を識別する。図8の例では、5種類の電気機器が同一電源線に接続され、それぞれの電気機器の電源ON、OFFの別を判定しようとする場合の参照波形データベース数は、各電器機器に2つづつ(電源ONとOFF)の状態があることから、全ての状態数の組み合わせは2=32通り存在する。比較例では、測定される電流波形は全ての電気機器の消費電流の積算値であるから、必要な参照波形データベースの参照波形データ数は32個となる。
一方、図9に示す本実施形態の電源線電流波形識別装置においては、過渡状態をはさんだ前後の安定状態における電流波形の差分を利用する。過渡状態で状態が変化する電気機器の数は、たまたま全く同じタイミングで電源のON・OFF等の事象が同時に起こる場合を除けば、一般に1台のみである。このことから、電源OFFの機器の電源がONに変化する場合の状態変化の数は、図9の表に示すように電気機器の機種数と同じ5通りとなる。
なお、電源ONの状態の機器の電源がOFFに変化する場合も考慮すると、状態変化の数は5通り増えて10通りとなるが、この場合、変化する電流波形は電源がONに変化する場合の電流波形の正負が反転したものであるため、5つの電流波形データに正負の符号情報を付け加えた形でデータを扱うことができる。これにより、参照波形データベースに蓄積するデータ量は、ほぼ5つ分の電流波形の程度で済むこととなる。
以上のように、比較例の電源線電流波形識別装置では、電気機器の数nが増えると共に、必要なデータベースに格納する波形データ数が2のように指数的に増加するため、膨大な量の波形データを保持するか、識別の度に全ての組み合わせを計算する必要がある。これに対し、本実施形態の電源線電流波形識別装置において必要となる波形データの数は、ほぼ電気機器の数nと同程度で済むこととなり、大幅なデータベース量の削減や、計算量の削減を図ることができる。
次に、本発明の第2の実施形態について説明する。
第2の実施形態の電源線電流波形識別装置の構成は、図4に示す第1の実施形態の電源線電流波形識別装置と、波形識別・判定部4−13の識別方法のみが異なり、それ以外は同様である。
本実施形態の波形識別・判定部4−13は、差分波形計算部4−12が算出した差分波形と、参照波形データベース4−14の各参照波形とを直接比較するのではなく、差分波形計算部4−12が算出した差分波形(時間波形)にフーリエ変換やFFTによる周波数解析、またはホルマント解析もしくはそれと同様な周波数成分の時間変動を導く解析方法を適用し、差分波形の周波数スペクトルやその時間変化のプロファイルを算出する。周波数解析および周波数成分の時間変動を導く解析方法については、下記文献2に記載されている。
文献2:香西将樹、鈴木康直、石山文彦、秋山佳春、“ノーマルモード電流の周波数特性に基づく家電機器の識別”、電子情報通信学会2011総合大会講演論文集B-4-25
また、波形識別・判定部4−13は、参照波形データベース4−14に蓄積された各参照波形データを、差分波形と同様の解析方法を適用し、各参照波形の周波数スペクトルまたはその時間変化のプロファイルを算出する。そして、波形識別・判定部4−13は、差分波形の周波数スペクトルまたは時間変化のプロファイルと、各参照波形の周波数スペクトルまたはその時間変化のプロファイルとを比較し、差分波形の周波数スペクトルまたは時間変化のプロファイルに最も類似する参照波形の周波数スペクトルまたはその時間変化のプロファイルを選択する。そして、選択した周波数スペクトルまたはその時間変化のプロファイルに対応する電気機器の種別、動作状態、測定時刻t(m)などを、識別結果として出力する。
なお、波形識別・判定部4−13は、例えば、パターン認識、ニューラルネットワークの推定アルゴリズム等の手法を用いて、周波数スペクトルまたはその時間変化のプロファイルの比較、対照および識別判定を行う。
時間波形として明確な特徴が現れない電流波形に関しても、周波数スペクトル等に明確な特徴が現れる場合があり、この場合、第2の実施形態の手法を用いたり、第2の実施形態と第1の実施形態とを組み合わせて用いることで、電流波形のより精度の良い識別判定が可能となる。
以上説明した上記実施形態の電源線電流波形識別装置では、過渡状態をはさんだ前後の安定状態における電流波形を測定して、その差分を求めることにより、過渡状態において状態が変化した電気機器のみの電流波形を算出することが可能となる。このとき、参照波形データベースに蓄積しておくべき参照波形は、電気機器が単独動作しているときのものだけで良く、複数の電気機器が様々な組合せで同時に動作している場合の膨大な数のデータを蓄積しておく、もしくはその都度計算するという必要が無い。このことにより、参照波形データベースのデータ数の大幅な削減が可能となり、またそのことによって波形の識別判定の計算負荷も大幅に削減される。加えて、参照波形データベースのデータ数が少なくなることにより、誤識別の確率も減ることが期待でき、判別精度も向上する。
なお、本発明は上記実施形態に限定されるものではなく、その要旨の範囲内で数々の変形が可能である。
4−1 :電源線電流波形識別装置
4−2 :分電盤
4−3 :電流センサ
4−4 :電圧センサ
4−5 :電流波形測定部
4−6 :タイミング検出部
4−7 :A/D変換部
4−8 :逐次波形メモリ
4−9 :波形比較部
4−10:安定状態判定部
4−11:安定波形メモリ
4−12:差分波形計算部
4−13:波形識別・判定部
4−14:参照波形データベース

Claims (4)

  1. 複数の機器の各々の電流波形を参照波形として記憶するデータベースと、
    電源線に流れる電流波形を電源周波数1サイクルごとに測定する電流波形測定手段と、
    前記電流波形の1サイクルごとの変化量が所定の閾値を超える場合に過渡状態と判別するとともに、前記変化量が前記閾値を超えない場合に安定状態と判別する安定状態判別手段と、
    第1の安定状態から過渡状態を経て第2の安定状態に遷移した場合に、第2の安定状態で測定した電流波形と、第1の安定状態で測定した電流波形との差分である差分波形を、前記過渡状態において動作状態の変化があった機器の電流波形として算出する差分波形算出手段と、
    前記差分波形と、前記データベースの各参照波形とを比較し、前記差分波形に最も類似する参照波形を選択し、選択した参照波形に対応する機器が前記過渡状態において動作状態の変化があった機器であると識別する識別手段と、を備えること
    を特徴とする電流波形識別装置。
  2. 請求項1記載の電流波形識別装置であって、
    前記識別手段は、
    前記差分波形の周波数解析を行い、差分周波数スペクトルを取得するとともに、前記データベースに記憶された参照波形毎に前記周波数解析を行い、参照周波数スペクトルをそれぞれ取得し、
    前記差分周波数スペクトルと各参照周波数スペクトルとを比較し、前記差分周波数スペクトルに最も類似する参照周波数スペクトルを選択し、選択した参照周波数スペクトルに対応する機器が前記過渡状態において動作状態の変化があった機器であると識別すること
    を特徴とする電流波形識別装置。
  3. 請求項1記載の電流波形識別装置であって、
    前記識別手段は、パターン認識またはニューラルネットワークの推定アルゴリズムを用いて、前記差分波形に最も類似する参照波形を選択すること
    を特徴とする電流波形識別装置。
  4. 請求項2記載の電流波形識別装置であって、
    前記識別手段は、パターン認識またはニューラルネットワークの推定アルゴリズムを用いて、前記差分周波数スペクトルに最も類似する参照周波数スペクトルを選択すること
    を特徴とする電流波形識別装置。
JP2012011142A 2012-01-23 2012-01-23 電流波形識別装置 Active JP5727949B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012011142A JP5727949B2 (ja) 2012-01-23 2012-01-23 電流波形識別装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012011142A JP5727949B2 (ja) 2012-01-23 2012-01-23 電流波形識別装置

Publications (2)

Publication Number Publication Date
JP2013150508A JP2013150508A (ja) 2013-08-01
JP5727949B2 true JP5727949B2 (ja) 2015-06-03

Family

ID=49047506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012011142A Active JP5727949B2 (ja) 2012-01-23 2012-01-23 電流波形識別装置

Country Status (1)

Country Link
JP (1) JP5727949B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103472333A (zh) * 2013-09-16 2013-12-25 国家电网公司 风电并网电能质量综合性能检测方法
JP2015108953A (ja) * 2013-12-04 2015-06-11 株式会社東芝 演算装置
JP6018597B2 (ja) * 2014-02-18 2016-11-02 日本電信電話株式会社 電気製品識別方法および電気製品識別システム
JP6263112B2 (ja) * 2014-10-31 2018-01-17 日本電信電話株式会社 電力値算出方法および電力値算出システム
WO2018038000A1 (ja) * 2016-08-22 2018-03-01 日本電気株式会社 状態変化検知装置、方法及びプログラム
CN110959271B (zh) * 2017-08-09 2023-09-19 绿铜能源科技有限公司 用于从电力监控器通过无线系统提供波形的系统和方法
CN108254641B (zh) * 2017-12-20 2021-01-22 北京惠泽智信科技有限公司 一种医疗设备状态识别方法及装置
KR101915565B1 (ko) * 2018-04-30 2018-11-06 영남이공대학교 산학협력단 전자 디바이스의 동작을 감지하는 장치 및 방법

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150807B2 (ja) * 2001-12-28 2008-09-17 株式会社ブイキューブ 電気機器の遠隔制御方法及び遠隔制御システムと、これに用いるコンセント
JP2003333768A (ja) * 2002-05-15 2003-11-21 Sharp Corp 電気機器稼働状況把握方法及び装置
JP3892358B2 (ja) * 2002-07-23 2007-03-14 財団法人電力中央研究所 消費電力の変動が頻繁に起こる電気機器の動作状態を推定する方法および消費電力の変動が頻繁に起こる電気機器のモニタリングシステム
JP4931152B2 (ja) * 2007-12-25 2012-05-16 パナソニック株式会社 管理システム及び管理装置
JP2010210575A (ja) * 2009-03-12 2010-09-24 Oki Electric Ind Co Ltd 電気機器稼動状況推定装置、情報格納装置、及び、電気機器稼動状況推定システム
JP5455231B2 (ja) * 2010-06-07 2014-03-26 Necシステムテクノロジー株式会社 電気機器判別装置、電気機器判別方法および電気機器判別プログラム

Also Published As

Publication number Publication date
JP2013150508A (ja) 2013-08-01

Similar Documents

Publication Publication Date Title
JP5727949B2 (ja) 電流波形識別装置
US9250101B2 (en) Method and apparatus for monitoring power consumption
TWI423549B (zh) 辨識電器狀態的電力監測裝置及其電力監測方法
JP6829073B2 (ja) 電力流用路の検出
US11002773B2 (en) Monitoring apparatus, monitoring method, and storage medium
TWI491136B (zh) 電器負載監測方法與系統
CN105652739B (zh) 用于分层负载标识算法的实时执行的负载电源设备和系统
JP3892358B2 (ja) 消費電力の変動が頻繁に起こる電気機器の動作状態を推定する方法および消費電力の変動が頻繁に起こる電気機器のモニタリングシステム
JP5604089B2 (ja) 消費電力計測システム、制御装置、及び消費電力計測方法
US9523718B2 (en) Disaggregation apparatus for identifying an appliance in an electrical network
US20140149056A1 (en) Multi-modal data improvement for power disaggregation systems
CN108021736A (zh) 一种基于滑动窗残差模型的负荷投切动作监测方法
JP2013539337A5 (ja)
JP5492148B2 (ja) 電気機器識別装置、電気機器識別方法及び電気機器識別プログラム
Rahimi et al. Usage monitoring of electrical devices in a smart home
TWI386652B (zh) 辨識電器狀態之方法、系統及電腦程式產品
JP5931076B2 (ja) 個別識別化装置
JP5729162B2 (ja) 電力管理装置
JP5859026B2 (ja) エネルギー使用量推定装置及びエネルギー使用量推定方法
Matthews et al. Automatically disaggregating the total electrical load in residential buildings: a profile of the required solution
JP5911498B2 (ja) 動作状態判定装置
TWI504095B (zh) Non - invasive load monitoring system and its method
Buchhop et al. Residential load identification based on load profile using artificial neural network (ANN)
Jimenez et al. Steady state signatures in the time domain for nonintrusive appliance identification
JP5991942B2 (ja) 電源電圧歪みによる電流の特徴への影響除去法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150403

R150 Certificate of patent or registration of utility model

Ref document number: 5727949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150