トーン・サブセット割り当てのために記載される方法および装置は、広範な通信システムで用いられうる。例えば、様々な特徴は、システムとともに用いることができ、このシステムは、モデムを備えるノートブック・コンピュータ、PDA、およびデバイス移動度のために無線干渉をサポートする広範な他のデバイスなどのモバイル通信デバイスをサポートする。
図1は、セル1 102、セルM 104である複数のセルを含む様々な実施形態に従って実現される典型的な通信システム100を示す。近隣のセル102、104は、セル境界領域168によって示されるように僅かにオーバラップし、それによって近隣のセル内の基地局によって送信される信号間の信号干渉の可能性を与えることに注目されたい。典型的なシステム100の各セル102、104は、3つのセクタを含む。複数のセクタに再分割されていない(N=1)セル、2つのセクタを有する(N=2)セル、および3つより多いセクタを有する(N>3)セルも、様々な実施形態に従って可能である。セル102は、第1のセクタであるセクタ1 110、第2のセクタであるセクタ2 112、および第3のセクタであるセクタ3 114を含む。各セクタ110、112、114は、2つのセクタ境界領域を有し、各セクタ境界領域は、2つの隣接するセクタ間で共有される。セクタ境界領域は、近隣のセクタ内の基地局によって送信された信号間の信号干渉の可能性を与える。ライン116は、セクタ1 110とセクタ2 112との間のセクタ境界領域を表し、ライン118は、セクタ2 112とセクタ3 114との間のセクタ境界領域を表し、ライン120は、セクタ3 114とセクタ1 110との間のセクタ境界領域を表す。同様に、セルM 104は、第1のセクタであるセクタ1 122、第2のセクタであるセクタ2 124、および第3のセクタであるセクタ3 126を含む。ライン128は、セクタ1 122とセクタ2 124との間のセクタ境界領域を表し、ライン130は、セクタ2 124とセクタ3 126との間のセクタ境界領域を表し、ライン132は、セクタ3 126とセクタ1 122との間のセクタ境界領域を表す。セル1 102は、基地局(BS)である基地局1 106と、各セクタ110、112、114内の複数のエンド・ノード(EN)を含む。セクタ1 110は、それぞれ無線リンク140、142を介してBS106に結合されたEN(1)136およびEN(X)138を含み、セクタ2 112は、それぞれ無線リンク148、150を介してBS106に結合されたEN(1’)144およびEN(X’)146を含み、セクタ3 114は、それぞれ無線リンク156、158を介してBS106に結合されたEN(1”)152およびEN(X”)154を含む。同様に、セルM 104は、基地局M 108と、各セクタ122、124、126内の複数のエンド・ノード(EN)を含む。セクタ1 122は、それぞれ無線リンク140’、142’を介してBSM 108に結合されたEN(1)136’およびEN(X)138’を含み、セクタ2 124は、それぞれ無線リンク148’、150’を介してBSM 108に結合されたEN(1’)144’およびEN(X’)146’を含み、セクタ3 126は、それぞれ無線リンク156’、158’を介してBS108に結合されたEN(1”)152’およびEN(X”)154’を含む。システム100は、それぞれネットワーク・リンク162、164を介してBS1 106およびBSM 108に結合されたネットワーク・ノード160も含む。ネットワーク・ノード160は、他のネットワーク・ノードである例えば、他の基地局、AAAサーバ・ノード、中間ノード、ルータなどおよびネットワーク・リンク166を介してインターネットとも結合される。ネットワーク・リンク162、164、166は、例えば光ファイバ・ケーブルでありうる。各エンド・ノード、例えばEN1 136は、送信機のみならず受信機をも含む無線端末でありうる。無線端末、例えばEN(1)136は、システム100を通って移動することができ、かつENが現在位置するセル内の基地局と無線リンクを介して通信することができる。無線端末(WT)、例えばEN(1)136は、ピア・ノード、例えばシステム100内の他のWTと、または基地局、例えばBS106および/またはネットワーク・ノード160を介して、外部システム100と通信することができる。WT、例えばEN(1)136は、セル電話、無線モデムを有する携帯情報端末などモバイル通信デバイスであることができる。各基地局は、トーン割り当てに用いられる方法とは異なるストリップ・シンボル期間のための方法を用いて、かつ残りのシンボル期間、例えば非ストリップ・シンボル期間におけるトーン・ホッピングを決定して、トーン・サブセット割り当てを実行する。無線端末は、特定のストリップ・シンボル期間でデータおよび情報を受信するために用いることが可能なトーンを決定するために、基地局から受信した情報、例えば基地局スロープID、セクタID情報とともに、トーン・サブセット割り当て方法を用いる。様々な実施形態に従って、各トーンを横切るセクタ間およびセル間干渉を拡散するために、トーン・サブセット割り当てシーケンスが構築される。
図2は、様々な実施形態に従った典型的な基地局200を示す。典型的な基地局200は、トーン・サブセット割り当てシーケンスを実施し、異なるトーン・サブセット割り当てシーケンスが、セルの各異なるセクタ・タイプについて生成される。基地局200は、図1のシステム100の基地局106、108の任意の1つとして用いることができる。基地局200は、受信機202、送信機204、例えばCPUのようなプロセッサ206、入力/出力インタフェース208、およびメモリ210を含み、これらは、様々な要素202、204、206、208、および210が、データおよび情報を交換することができるバス209によって共に結合される。
受信機202に結合されたセクタ化アンテナ203は、基地局のセル内の各セクタからの無線端末送信から、データおよび他の信号、例えばチャネル・レポートを受信するために用いられる。送信機204に結合されたセクタ化アンテナ205は、基地局のセル内の各セクタ内の無線端末300(図3参照)へ、データおよび他の信号、例えば制御信号、パイロット信号、ビーコン信号などを送信するために用いられる。様々な実施形態において、基地局200は、複数の受信機202および複数の送信機204、例えば各セクタのために個別の受信機202および各セクタのために個別の送信機204を用いることができる。プロセッサ206は、例えば汎用中央処理ユニット(CPU)であり得る。プロセッサ206は、メモリ210内に格納された1つ以上のルーチン218の管理の下で基地局200の動作を制御し、かつ方法を実施する。I/Oインタフェース208は、BS200を他の基地局、アクセス・ルータ、AAAサーバ・ノードなどへ結合する他のネットワーク・ノード、他のネットワーク、およびインターネットへの接続を提供する。メモリ210は、ルーチン218およびデータ/情報220を含む。
データ/情報220は、データ236、ダウンリンク・ストリップ・シンボル時間情報240およびダウンリンク・トーン情報242を含むトーン・サブセット割り当てシーケンス情報238、複数のWT情報のセット、すなわちWT1情報246およびWTN情報260を含む無線端末(WT)データ/情報244を含む。WT情報の各セット、例えばWT1情報246は、データ248、端末ID250、セクタID252、アップリンク・チャネル情報254、ダウンリンク・チャネル情報256、およびモード情報258を含む。
ルーチン218は、通信ルーチン222および基地局制御ルーチン224を含む。基地局制御ルーチン224は、スケジューラ・モジュール226およびシグナリング・ルーチン228を含み、シグナリング・ルーチン228は、ストリップ・シンボル期間のためのトーン・サブセット割り当てルーチン230、シンボル期間の残り、例えば非ストリップ・シンボル期間のための他のダウンリンク・トーン割り当てホッピング・ルーチン232、およびビーコン・ルーチン234を含む。
データ236は、WTへの送信前に符号化するために送信機204の符号器214へ送られ、かつ受信後に受信機202の復号器212によって処理されたWTからのデータが受信される、送信データを含む。ダウンリンク・ストリップ・シンボル時間情報240は、スーパスロット、ビーコンスロット、およびウルトラスロット構造情報などのフレーム同期構造情報、および、所与のシンボル期間がストリップ・シンボル期間であるか否かを特定する情報であって、そうであれば、ストリップ・シンボル期間のインデクスであり、ストリップ・シンボルが、基地局によって用いられたトーン・サブセット割り当てシーケンスを切り詰めるための再設定ポイントであるか否かを含む。ダウンリンク・トーン情報242は、基地局200に指定されたキャリア周波数、トーンの数および周波数、およびストリップ・シンボル期間に割り当てられるトーン・サブセットのセットを含む情報、およびスロープ、スロープ・インデクス、およびセクタ・タイプなどの他のセルおよびセクタの固有値を含む。
データ248は、WT1 300がピア・ノードから受信したデータ、WT1 300がピア・ノードへ送信することを望むデータ、およびダウンリンク・チャネル品質レポート・フィードバック情報を含むことができる。端末ID250は、WT1 300を識別する基地局200指定IDである。セクタID252は、WT1 300が動作するセクタを識別する情報を含む。セクタID252は、例えばセクタ・タイプを決定するために用いられうる。アップリンク・チャネル情報254は、例えばデータに関するアップリンク・トラフィック・チャネル・セグメント、要求のための専用アップリンク制御チャネル、パワー制御、タイミング制御などを用いるために、WT1 300のためのスケジューラ226によって割り当てられる情報識別チャネル・セグメントを含む。WT1 300に指定された各アップリンク・チャネルは、それぞれアップリンク・ホッピング・シーケンスに続く1つ以上の論理トーンを含む。ダウンリンク・チャネル情報256は、WT1 300へのデータおよび/または情報、例えばユーザ・データのためのダウンリンク・トラフィック・チャネル・セグメントを搬送するために、スケジューラ226によって割り当てられたチャネル・セグメントを識別する情報を含む。WT1 300に指定された各ダウンリンク・チャネルは、それぞれダウンリンク・ホッピング・シーケンスに続く1つ以上の論理トーンを含む。モード情報258は、WT1 300の動作状態、例えばスリープ、ホールド、オンなどを識別する情報を含む。
通信ルーチン222は、様々な通信動作を実行しかつ様々な通信プロトコルを実施するように、基地局200を制御する。
基地局制御ルーチン224は、基本的な基地局機能タスク、例えば信号生成および受信、スケジューリングを実行し、かつストリップ・シンボル期間中にトーン・サブセット割り当てシーケンスを用いて無線端末への信号送信を含むいくつかの実施形態の方法のステップを実施するように、基地局200を制御するために用いられる。
シグナリング・ルーチン228は、その復号器212を有する受信機202、およびその符号器214を有する送信機204の動作を制御する。シグナリング・ルーチン228は、送信されるデータ236および制御情報の生成を制御することに責任がある。トーン・サブセット割り当てルーチン230は、実施形態の方法を使用し、かつダウンリンク・ストリップ・シンボル時間情報240およびセクタID252を含むデータ/情報220を使用して、ストリップ・シンボル期間で使用されるトーン・サブセットを構築する。ダウンリンク・トーン・サブセット割り当てシーケンスは、セル内の各セクタ・タイプについて異なり、かつ隣接セルについて異なる。WT300は、ダウンリンク・トーン・サブセット割り当てシーケンスに従うストリップ・シンボル期間内で信号を受信し、基地局200は、送信される信号を生成するために同一のダウンリンク・トーン・サブセット割り当てシーケンスを使用する。他のダウンリンク・トーン割り当てホッピング・ルーチン232は、ダウンリンク・トーン情報242、およびストリップ・シンボル期間とは異なるシンボル期間に関するダウンリンク・チャネル情報256を含む情報を使用して、ダウンリンク・トーン・ホッピング・シーケンスを構築する。ダウンリンク・データトーン・ホッピング・シーケンスは、セルのセクタを横切って同期化される。ビーコン・ルーチン234は、ビーコン信号、例えば1つまたは数個のトーンに集中される比較的高いパワーの信号の送信を制御し、この信号は、同期化目的、例えばダウンリンク信号のフレーム・タイミング構造を同期化し、それによってウルトラスロット境界に対するトーン・サブセット割り当てシーケンスを同期化するために使用されうる。
図3は、図1に示されるシステム100の無線端末(エンド・ノード)、例えばEN(1)136の任意の1つとして使用されうる典型的な無線端末(エンド・ノード)300を示す。無線端末300は、トーン・サブセット割り当てシーケンスを実施する。無線端末300は、復号器312を含む受信機302、符号器314を含む送信機304、プロセッサ306、およびメモリ308を含み、これらは、様々な要素302、304、306、および308が、データおよび情報を交換することができるバス310によって共に結合される。基地局200からの信号を受信するために使用されるアンテナ303は、受信機302に結合される。例えば基地局200に信号を送信するために使用されるアンテナ305が、送信機304に結合される。
例えばCPUであるプロセッサ306は、無線端末300の動作を制御し、かつルーチン320を実行しかつメモリ308内のデータ/情報322を使用することによって方法を実施する。
データ/情報322は、ユーザ・データ334、ユーザ情報336、およびトーン・サブセット割り当てシーケンス情報350を含む。ユーザ・データ334は、基地局200へ送信機304による送信の前に符号化するための符号器314へルーティングされるピア・ノードに適したデータ、および受信機302内で復号器312によって処理された基地局200から受信されるデータを含むことができる。ユーザ情報336は、アップリンク・チャネル情報338、ダウンリンク・チャネル情報340、端末ID情報342、基地局ID情報344、セクタID情報346、およびモード情報348を含む。アップリンク・チャネル情報338は、基地局200への送信時に使用するために、無線端末300に関して基地局200によって指定されたアップリンク・チャネル・セグメントを識別する情報を含む。アップリンク・チャネルは、アップリンク・トラフィック・チャネル、専用アップリンク制御チャネル、例えば要求チャネル、パワー制御チャネル、およびタイミング制御チャネルを含むことができる。各アップリンク・チャネルは、それぞれアップリンク・トーン・ホッピング・シーケンスに続く1つ以上の論理トーンを含む。アップリンク・ホッピング・シーケンスは、セルの各セクタ・タイプ間および隣接するセル間で異なる。ダウンリンク・チャネル情報340は、BS200がWT300にデータ/情報を送信する場合に使用するために、WT300に基地局200によって指定されたダウンリンク・チャネル・セグメントを識別する情報を含む。ダウンリンク・チャネルは、ダウンリンク・トラフィック・チャネルおよび割り当てチャネルを含むことができ、各ダウンリンク・チャネルは、1つ以上の論理トーンを含み、各論理トーンは、セルの各セクタ間で同期化されるダウンリンク・ホッピング・シーケンスに続く。
ユーザ情報336は、識別が指定された基地局200である端末ID情報342、WTが通信を確立した特定の基地局200を識別する基地局ID情報344、およびWT300が現在位置するセルの特定のセクタを識別するセクタID情報346も含む。基地局ID344は、セルスロープ値を提供し、セクタID情報346は、セクタ・インデクス・タイプを提供し、セルスロープ値およびセクタ・インデクス・タイプは、トーン・ホッピング・シーケンスを駆動するために使用されうる。ユーザ情報336にも含まれるモード情報348は、WT300は、スリープモード、ホールドモード、またはオンモードにあるか否かを識別する。
トーン・サブセット割り当てシーケンス情報350は、ダウンリンク・ストリップ・シンボル時間情報352およびダウンリンク・トーン情報354を含む。ダウンリンク・ストリップ・シンボル時間情報352は、スーパスロット、ビーコンスロット、ウルトラスロット構造情報などのフレーム同期構造情報、および所与のシンボル期間がストリップ・シンボル期間であるか否かを特定する情報であって、もしそうであれば、ストリップ・シンボル期間のインデクスであり、ストリップ・シンボルが、基地局によって使用されたトーン・サブセット割り当てシーケンスを切り詰めるための再設定ポイントであるか否かを含む。ダウンリンク・トーン情報354は、基地局200に指定されたキャリア周波数、トーンの数および周波数、およびストリップ・シンボル期間に割り当てられるトーン・サブセットのセットを含む情報、およびスロープ、スロープ・インデクス、およびセクタ・タイプなどの他のセルおよびセクタの固有値を含む。
ルーチン320は、通信ルーチン324および無線端末制御ルーチン326を含む。通信ルーチン324は、WT300によって使用される様々な通信プロコトルを制御する。無線端末制御ルーチン326は、受信機302および送信機304の制御を含む基本的な無線端末300の機能を制御する。無線端末制御ルーチン326は、シグナリング・ルーチン328を含む。シグナリング・ルーチン328は、ストリップ・シンボル期間のためのトーン・サブセット割り当てルーチン330、およびシンボル期間の残り、例えば非ストリップ・シンボル期間のための他のダウンリンク・トーン割り当てホッピング・ルーチン332を含む。トーン・サブセット割り当てルーチン330は、ダウンリンク・チャネル情報340、基地局ID情報344、例えばスロープ・インデクスおよびセクタ・タイプ、およびいくつかの実施形態に従ってダウンリンク・トーン・サブセット割り当てシーケンスを生成するためにダウンリンク・トーン情報354を含むユーザ・データ/情報322を使用し、かつ基地局200から送信された受信データを処理する。他のダウンリンク・トーン割り当てホッピング・ルーチン330は、ストリップ・シンボル期間以外のシンボル期間に関するダウンリンク・トーン情報354およびダウンリンク・チャネル情報340を含む情報を用いて、ダウンリンク・トーン割り当てホッピング・シーケンスを構築する。トーン・サブセット割り当てルーチン330は、プロセッサ306によって実行されるとき、無線端末300が、基地局200から1つ以上のストリップ・シンボル信号を受信するとき、およびどのトーンであるかを決定するために使用される。アップリンクトーン割り当てホッピング・ルーチン330は、それが送信されるべきトーンを決定するために、基地局200から受信された情報とともに、トーン・サブセット割り当て関数を用いる。
図4は、図1の各セル(102、104)の各セクタについて実施される様々な実施形態のOFDM拡散スペクトル・エア・インタフェース技術を示す。図4において、横軸451は周波数を表す。例えばダウンリンク・シグナリングのための特定のキャリア周波数453のための利用可能な帯域幅の全量は、等しく離間されたトーン数Kに分割される。いくつかの実施形態において、113個の等しく離間されたトーンが存在する。これらトーンは、0からK−1までインデクスされる。典型的なトーンであるトーン0 455、トーン1 457、トーン2 459、およびトーンK−1 461が図4に示される。帯域幅は、2つのセル102、104を備える各セクタ110、112、114、122、124、126に同時に用いられる。各セルの各セクタにおいて、トーン0からK−1が、ダウンリンク信号を送信するためにそれぞれ各セルの各セクタで使用される。同一の帯域幅が、セル102、104の両方の各セクタで使用されるので、同時に周波数トーンで異なるセルおよびセクタによって送信される信号は、例えばオーバラップする有効範囲領域、例えばセクタ境界エリア116、118、120、128、130、132、およびセル境界エリア168内で互いに干渉することがある。
図5は、図1の各セル(102、104)の各セクタについて実施される様々な実施形態に従うストリップ・シンボル期間および非ストリップ・シンボル期間を示す典型的な信号フレーム構造を示す。図5において、横軸501は時間を示す。時間軸501における単位は、シンボル期間、例えばOFDM通信システムにおけるOFDMシンボル期間を表す。各シンボル期間において、図4に示されるK個のトーンのセットまたはサブセットが、基地局200から無線端末300へのダウンリンク信号を送信するために使用される。ダウンリンク信号を送信する目的でのトーンの割り当ては、異なる割り当て方法または異なるシンボル期間におけるアルゴリズムに従うことができる。典型的な実施形態において、2つの異なるトーン割り当て方法が存在する。第1のトーン割り当て方法では、K個のトーンのサブセットだけがシンボルにおいて使用され、サブセットは、所定のスケジュール・シーケンスに従ってトーン・サブセットの固定されたセットから選択される。第1のトーン割り当て方法がトーンを割り当てるために使用されるシンボルは、ストリップ・シンボルと呼ばれ、例えば図5において示される502、506、および510である。第2のトーン割り当て方法において、トーン・ホッピング・シーケンスが、論理トーンに対応する物理トーンを決定するために使用され、トーン割り当ては、論理トーンを割り当てることによって行われる。第2のトーン割り当て方法がトーンを割り当てるために使用されるシンボルは、非ストリップ・シンボルと呼ばれ、例えば図5において示される504、508、および512である。一般に、非ストリップ・シンボル期間で使用されるトーンのセットは、所定のスケジュール・シーケンスに従ってトーン・サブセットの固定されたセットの結果からは生じない。様々な実施形態において、ストリップ・シンボルおよび非ストリップ・シンボルに加えて他のシンボル期間、例えばビーコン信号が送信されるシンボル期間が存在することがあることに注目されたい。
図6は、様々な実施形態に従って基地局送信機によって使用されるトーン・サブセットの典型的なセットを示す。簡略化のため、トーンの全数は7に等しい。典型的な実施形態において、トーンの全数は113でありうる。縦軸601は、トーンのインデクスを示し、トーン・インデクスは、0から6まで存在する。各列は、ストリップ・シンボルで使用されるトーンのサブセットを表す。各列において、黒ボックスは、対応するトーンが所与のトーン・サブセットに含まれることを表す。例えば、列602におけるトーン・サブセットは、トーン0、3、6を含み、列604におけるトーン・サブセットは、トーン1、4、5を含み、列606におけるトーン・サブセットは、トーン2、3、5を含み、列608におけるトーン・サブセットは、トーン0、2、6を含み、列610におけるトーン・サブセットは、トーン1、4、6を含む。図示において、全体でN=5のトーン・サブセットが存在する。図示において、各トーン・サブセットに含まれるトーン数は同一であり3に等しい。
一般に、各トーン・サブセットのトーン数は、同一または異なりうる。様々な実施形態に従って、任意の2つのトーン・サブセットにおけるトーン数間の差異は、いずれかのトーン・サブセットにおけるトーン数の多くとも20%である。様々な実施形態に従って、トーン・サブセットに含まれるトーン数は、トーンの全数の半分に近い。例えば、トーン・サブセットに含まれるトーン数とトーンの全数の半分との間の差異は、トーンの全数の半分の多くとも20%である。
図7は、それぞれ様々な実施形態に従って2つの基地局送信機によって使用される2つの典型的なトーン・サブセット割り当てシーケンスを示す。図示700は、第1の送信機によって使用されるトーン・サブセット割り当てシーケンスであり、図示720は、第2の送信機によって使用されるトーン・サブセット割り当てシーケンスである。
図示700において、横軸703は、時間を示し、時間軸701における各単位は、シンボル期間を表す。ストリップ・シンボルにおけるトーンの使用は、縦方向列で示される。他のシンボル期間におけるトーンの使用は、図示されていないが、トーンは、所定のトーン割り当ておよび/またはホッピング方法に従って使用されることが理解される。図示700は、ストリップ・シンボルにおいて、固定されたトーン・サブセットに含まれるトーンは、ダウンリンク信号を送信するために使用されることを示す。N=5の個別トーン・サブセットからなる、図示700で用いられるトーン・サブセットのセットは、図6に示されるセットである。これらトーン・サブセットは、(602に関して)0、(604に関して)1、(606に関して)2、(608に関して)3、および(610に関して)4としてインデクスされる。トーン・サブセットは、トーン・サブセット割り当てシーケンスである所定のスケジュールに従ってトーン・サブセットのセットから選択される。特に、トーン・サブセット0は、ストリップ・シンボル702で使用され、トーン・サブセット1は、ストリップ・シンボル704で使用され、トーン・サブセット2は、ストリップ・シンボル706で使用され、トーン・サブセット3は、ストリップ・シンボル708で使用され、トーン・サブセット4は、ストリップ・シンボル710で使用される。ストリップ・シンボル710の後、トーン・サブセット割り当てシーケンスが反復する。したがって、トーン・サブセット0は、ストリップ・シンボル712で使用され、トーン・サブセット1は、ストリップ・シンボル714で使用され、トーン・サブセット2は、ストリップ・シンボル716で使用される等である。
図示720において、横軸723は、時間を表し、時間軸721における各単位は、シンボル期間を表す。ストリップ・シンボルにおけるトーンの使用は、縦方向列で示される。他のシンボル期間におけるトーンの使用は、図示しないが、トーンは、所定のトーン割り当ておよび/またはホッピング方法に従って使用されうることが理解される。図示720は、ストリップ・シンボルにおいて、固定されたトーン・サブセットに含まれるトーンが、ダウンリンク信号を送信するために使用されることを示す。図示720で使用されるトーン・サブセットのセットは、図示700で使用される同一のセットである。トーン・サブセットは、トーン・サブセット割り当てシーケンスである所定のスケジュールに従ってトーン・サブセットのセットから選択される。第2の基地局で使用されるトーン・サブセット割り当てシーケンスは、第1の基地局で使用されるトーン・サブセット割り当てシーケンスとは異なる。特に、トーン・サブセット0は、ストリップ・シンボル722で使用され、トーン・サブセット2は、ストリップ・シンボル724で使用され、トーン・サブセット4は、ストリップ・シンボル726で使用され、トーン・サブセット1は、ストリップ・シンボル728で使用され、トーン・サブセット3は、ストリップ・シンボル730で使用される。ストリップ・シンボル730の後、トーン・サブセット割り当てシーケンスが反復する。したがって、トーン・サブセット0は、ストリップ・シンボル732で使用され、トーン・サブセット2は、ストリップ・シンボル734で使用され、トーン・サブセット4は、ストリップ・シンボル736で使用されるなどである。第2の基地局で使用されるトーン・サブセット割り当てシーケンスの期間は、第1の基地局で使用されるトーン・サブセット割り当てシーケンスの期間と同一である。期間は、セットにおけるトーン・サブセットの数に等しい。好ましくは、セットにおけるトーン・サブセットの数は、素数であり、例えばN=97である。
図示700および720において、2つの基地局が、ストリップ・シンボル702および722において同一のトーン・サブセットを使用する。2つのストリップ・シンボルが整列されるとき、2つの基地局は、実際に、それらのダウンリンク信号を送信するために同一のトーンを使用し、それによってそれらの間に強い相関した干渉を生じる。有利なことに、トーン・サブセット割り当てシーケンスは、様々な実施形態に従って異なるので、2つの基地局は、以降のストリップ・シンボルで異なるトーン・サブセットを使用し、それによって干渉が永続的に強いことを避ける。2つの基地局は、必ずしも完全に互いに同期化される時間ではないことに留意されたい。
図8は、様々な実施形態に従うフレーム同期構造に適合するように、トーン・サブセット割り当てシーケンスを切り詰める動作を示す。図7に示される図示において、トーン・サブセット割り当てシーケンスは、1つの期間から次の期間へと動作する。いくつかの実施形態において、ダウンリンク信号において他のフレーム同期構造と整列されるために、トーン・サブセット割り当てシーケンスは、切り詰められかつ再開始される。図8は、スーパスロット、ビーコンスロット、およびウルトラスロットを含む典型的なフレーム同期構造を示す。スーパスロットは、固定数のシンボル、例えば114個の連続するOFDMシンボル送信時間間隔を含む。所定のダウンリンク・トーン・ホッピング・シーケンスは、スーパスロットの周期性を有する。ビーコンスロットは、固定数のスーパスロット、例えば8個の連続するインデクスされたスーパスロットを含む。1つの実施形態において、ビーコン信号は、ビーコンスロットで送信される。ウルトラスロットは、固定数のビーコンスロット、例えば18個の連続するインデクスされたビーコンスロットを含む。
図8において、ウルトラスロット800は、18個のビーコンスロット822、824、826、828、830、832、834、836、838、840、842、844、846、848、850、852、854、856を含む。これらのビーコンスロットは、それぞれL=0、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17としてインデクスされる。ビーコンスロット、例えばビーコンスロット836は、8個のスーパスロット802、804、806、808、810、812、814、816を含む。特別なシンボルが、各スーパスロットの始まりで送信される。例えば、スーパスロット802において、第1の2つのシンボル860が、ビーコン信号を送信するために使用され、スーパスロット804および806において、第1の2つのシンボル864および866は、送信されない。スーパスロット808、810、812、814、816において、第1の2つのシンボル868、870、872、874、および876は、例えば同報通信および/または制御情報を送るために使用されるストリップ・シンボルである。スーパスロットは、第1の2つの特定のシンボルに加えて他のシンボル、例えばダウンリンク・トラフィック・チャネル・セグメントに含まれるユーザ・データを含むデータ/情報を復元するために使用される112個のOFDMシンボルを含むことができる。ビーコンスロットのタイミング構造は反復する。例えば、2つのシンボル862は、第1の2つのシンボル860に類似するビーコン信号を送信するために使用される。
図8の典型的な実施形態のビーコンスロットにおけるストリップ・シンボルはm=0、1、・・・、9としてインデクスされる。例えば、ビーコンスロットにおける第1のストリップ・シンボル880はm=0としてインデクスされ、ビーコンスロットにおける第2のストリップ・シンボル882はm=1としてインデクスされる。
典型的な実施形態において、トーン・サブセット割り当てシーケンスは、以下のように与えられる。
f(bssSlopeIndex,bssSectorType,k)=(bssSlopeIndex+1)/(bssSectorType*k+k2)は、ストリップ・シンボルkにおいて選択されるべきトーン・サブセットのインデクスを表す。ここで、全ての算術演算子(+,2,*,/)は、Nの領域で規定され、Nは素数であり、例えば、N=97である。
bssSlopeIndexは、セルスロープ値のインデクスであり、好ましくはセルの各セクタについて同一であり、隣接セルは、bssSlopeIndexに関して異なる値を有するべきである。パラメータbssSlopeIndexは、0,1,・・・,N1−1に等しい。ここで、N1≦Nである。1つの実施形態において、N1=96である。
bssSectorTypeは、セクタのインデクスである。セクタ・タイプTが、セット{0,1,・・・,5}、{0,1}または{0,1,2}にあり、所与の基地局における隣接セクタは、Tの異なる値を有するべきである。
fは、基地局のセクタにおける特定の関数である。
kは、ストリップ・シンボル期間のインデクスであり、k=L*10+mである。
わずかに異なる形式で表現され、
k=L*10+m
temp0=bssSectorType*k+k*k
temp1=imod(temp0、N)
f(bssSlopeIndex、bssSectorType,k)=mod(temp1*(bssSlopeIndex+1),N)であり、
ここで、整数xおよびmに関して、モジュロ関数mod(x,m)は、mod(x,m)=x−m*floor(x/m)として定義され、ここで関数floor(x)は、x以下の最大の整数として定義され、整数xおよびmに関して、逆モジュロ関数imod(x,m)は、yに等しく、ここでmod(x*y,m)が1に等しいなら1≦y≦mである。mod(x,m)がゼロであるなら、imod(x,m)は、0に設定される。
時間インデクスkが、0から無限大になることができるなら、上記トーン・サブセット割り当てシーケンスは、N個のストリップ・シンボルの自然期間を有する。
しかしながら、ダウンリンク信号のフレーム・タイミング構造と適合するために、kは0からP−1に進む。なお、典型的な実施形態においてP=180である。言い換えれば、トーン・サブセット割り当てシーケンスは、第1の自然期間に関してk=0からk=96(=N−1)について動作し、k=97から再び始まる。第2の自然期間が、k=193(2*N−1)で自然に終了する前に、時間インデクスは、k=179で停止し、k=0に再設定する。結果として、第2の期間は切り詰められ、トーン・サブセット割り当てシーケンスは、始まりから再開始する。
これは、図8の下側部分に示される。第1のウルトラスロット891および第2のウルトラスロット892は、互いに並ぶ。時間瞬間890は、2つのウルトラスロット間の境界である。トーン・サブセット割り当てシーケンスは、k=0の場合に第1のウルトラスロット891の先頭から始まり、k=96である場合に第1のウルトラスロット891内に位置する、時間瞬間894のシーケンスの第1の自然期間893で完了する。トーン・サブセット割り当てシーケンスは、k=97から第2の期間を開始するように続く。第2の期間895は、第1のウルトラスロットが終了した後の時間瞬間で完了する。しかしながら、kは、第1のウルトラスロットが終了するとき再設定され、第2のウルトラスロットは、第2の期間895が切り詰められる時間瞬間890で開始し、トーン・サブセット割り当てシーケンスは、第2の期間895を完了するように連続するよりむしろk=0から再開始される。
ウルトラスロット、ビーコンスロット、スーパスロットなどの上記フレーム・タイミング構造が、ウルトラスロット毎に繰り返す。
図9は、様々な実施形態に従って実施された典型的なトーン・サブセット割り当てモジュール900の図である。基地局は、エア・インタフェースを介するネットワーク接続を得るための無線端末のためのネットワーク・アクセス・ポイントである。基地局は、1つまたは複数の基地局セクタ(BSS)を含む。BSSは、基地局の一部である。全BBSは、基地局に対応する全セルにおける無線端末にサービスを提供する。指向性BBSは、セルのサブセット部分、例えばセルのセクタ内の無線端末と通信するために、特定の方向のアンテナを使用することができる。
モジュール900は、基地局または無線端末の一部として含まれることができ、BSSに対応するセルのセクタ内で使用されるべきであるトーン・サブセット割り当てパターンを決定するために使用される。典型的なトーン・サブセット割り当てモジュール900は、トーン・サブセット割り当て決定モジュール902、セル識別マッピング・モジュール904、セクタ識別マッピング・モジュール906、および時間インデクス・マッピング・モジュール908を含む。
BSは、BSSスロープ912に関連付けられるBS識別子を有することができる。セルの異なるセクタは、いくつかの実施形態において、同一のBSSスロープ912を使用する。通信システムにおける所与のBSSは、対応するBSSスロープ912およびBSSセクタID914を有する。セルIDマッピング・モジュール904は、bssSlopeIndex値916にBSSスロープ912をマッピングする。同一のセルに対応する複数のBSSは、bssSlopeIndexに関して同一の値を有する。隣接するセルは、bssSlopeIndexの異なる値を有する。
セルIDマッピング・モジュール904は、例えばルックアップ・テーブルを介して、BSSスロープ912をbssSlopeIndex値916への変換を実行する。いくつかの実施形態において、有効なbssSlopeIndexのセットは、0:95の範囲内の整数値である。
BSSは、関連付けられたBSSセクタ識別子914も有する。セルの各セクタは、異なるBSSセクタ識別子914を有する。同一BSの異なるBSSは、同一のbssSectorType918を有することができる。しかしながら、好ましい実施形態において、同一BSの隣接するBSSは、同一のbssSectorTypeを有さない。セクタIDマッピング・モジュール906は、BSSセクタID914をbssSectorType値918にマッピングする。いくつかの実施形態において、bssSectorType値=mod(BSSセクタID,3)である。いくつかのそのような実施形態において、BSSセクタIDは、0・・5の範囲内の整数値であり、一方bssSectorTypeは、0・・2の範囲内の整数値である。
いくつかの実施形態において、通信システムにおける所与のBSSに関して、bssSlopeIndex916およびbssSectorType918のための値は固定され、時間とともに変わらない。
いくつかのそのような実施形態において、その接続点としてBSSを使用することを望む無線端末は、BSSに対応するbssSlopeIndex値およびbssSectorType値を決定し、次にトーン・サブセット割り当てシーケンスを計算するためにこれらの値を用いる。
時間インデクス・マッピング・モジュール908は、タイミング構造情報910を含む。タイミング構造情報910は、各BSSと関連するダウンリンク構造情報、例えばOFDMシンボル・タイミング、およびスーパスロット、ビーコンスロット、ウルトラスロットなどのOFDMシンボルの様々なグルーピング、ならびにグルーピングに関連するインデクス情報を識別する。タイミング構造情報910は、OFDMシンボルがストリップ・シンボルか否かも決定する。時間インデクス・マッピング・モジュール908は、現在のダウンリンクdlUltraslotBeaconIndex値922および現在のビーコンスロット値924内の現在のストリップ・シンボル・インデクスを受信し、時間依存値k920を決定する。例えば、kは、0・・179の範囲内の整数値であり得る。現在のdlUltraslotBeaconIndex値922は、BSSに対応するダウンリンク・タイミング構造内の現在のウルトラスロット内の現在のビーコンスロット・インデクスを識別する。いくつかの実施形態において、dlUltraslotBeaconIndexの値は、0から17におよぶ整数値である。現在のビーコンスロット値924内の現在のストリップ・シンボル・インデクスは、ダウンリンク・タイミング構造内の現在のビーコンスロット内の現在のストリップ・シンボルを識別する。いくつかの実施形態においてインデクス924の値は0から9におよぶ。
トーン・サブセット割り当てシーケンス決定モジュール902は、制御入力bssSlopeIndex値916、bssSectorType918、および時間インデクスk値920を受信する。決定モジュール902は、現在のストリップ・シンボルで使用されるべきトーン・サブセット928の対応するインデクスを決定する。いくつかの実施形態において、インデクスは、0から96の範囲内の整数値である。
いくつかの実施形態において、時間インデクス・マッピング・モジュール908は、式k=L*10+mを使用してkを決定し、ここでLは、0から17の範囲の整数値であるdlUltraslotBeaconIndexであり、mは、0から9の範囲の整数値である現在のビーコンスロット内の現在のストリップ・シンボルのインデクスである。いくつかのそのような実施形態において、トーン・サブセット割り当てシーケンス決定モジュール902は、f(bssSlopeIndex、bssSectorType,k)=mod(temp1*(bssSlopeIndex+1),97)を使用し、ここで、temp1=imod(temp0,97)、ここでtemp0=bssSectorType*k+k*kである。
図10A、図10B、図10C、図10D、図10E、図10F、および図10Gの組み合わせからなる図10は、典型的な実施形態において、ストリップ・シンボル間隔で用いるために割り当てられた典型的なトーン・サブセットのセットの表1000である。第1の列1002は、0から96におよぶトーン・サブセット・インデクスを含む。第2の列1004は、各トーン・サブジェクト・インデクス値に対応するトーン・マスクを含む。所与のOFDMストリップ・シンボルのために使用されるべきトーン・サブジェクト・インデクス値は、例えばトーン・サブセット割り当てシーケンス決定モジュール902によって決定される。この典型的な実施形態において、基地局セクタ接続点に対応するダウンリンク・トーン・ブロックは、113個のOFDMトーンを使用する。トーン・マスクは、どのトーンがトーン・サブセットで使用されるべきかを識別する。トーン・サブセット・インデクスに対応する各エントリは、113個の値を列挙しており、各値は、ダウンリンク・トーン・ブロックにおける113個のトーンのセットがインデクスされたトーンに対応している。値が0であればトーンは使用されない。値が1であればトーンは使用される。例えば、インデクスが0であるトーン・サブセットを考慮し、インデクス値が2、5、9、10、12、13、16、17、18、20、24、29、30、34、35、36、38、39、43、44、45、47、49、52、53、54、55、57、58、59、60、61、63、64、67、69、70、73、74、76、77、78、80、85、88、89、90、92、94、100、101、102、103、108、109、110を有するトーンが使用され、一方、インデクス値が0、1、3、4、6、7、8、11、14、15、19、21、22、23、25、26、27、28、31、32、33、37、40、41、42、46、48、50、51、56、62、65、66、68、71、72、75、79、81、82、83、84、86、87、91、93、95、96、97、98、99、104、105、106、107、111、および112を有するトーンが使用されない。いくつかの実施形態において、DCトーン、例えばトーン・インデクス56を有するトーン・ブロック内の中央トーンは、トーン・マスクが、使用されるべきであることを示していても、使用されないままである。
図11は、様々な実施形態に従って基地局接続点に関連付けられたダウンリンク・トーン・ブロックの使用に対する典型的な反復タイミング構造を示す図1100である。典型的なタイミング構造は、典型的な反復第3の時間期間1102を含む。
典型的な第3の時間期間1102は、連続する順番に、典型的な時間期間(1104、1106、1108、1110、1112、1114、1116、1118、1120、1122、1124、1126、1128、1130、1132、1134、1136、1138、1140、1142、1144)を含む。典型的な第4の時間期間1104は、ビーコン信号を搬送するために使用されるようにスケジューリングされる。典型的な第2の時間期間1106は、ユーザ・データを搬送するために使用されるようにスケジューリングされる。典型的な第4の時間期間1108は、使用されないままであるようにスケジューリングされる。典型的な第2の時間期間1110は、ユーザ・データを搬送するために使用されるようにスケジューリングされる。典型的な第4の時間期間1112は、使用されないままであるようにスケジューリングされる。典型的な第2の時間期間1114は、ユーザ・データを搬送するために使用されるようにスケジューリングされる。典型的な第4の時間期間1116は、決定された非ヌル・トーン・サブセットを使用して同報通信制御情報を搬送するために使用されるようにスケジューリングされ、かつ決定されたヌル・トーン・サブセット上でヌル・トーンを搬送するようにスケジューリングされ、トーン・サブセットは、トーン・サブセット・ホッピング・シーケンスに従って決定される。典型的な第1の時間期間1118は、決定された非ヌル・トーン・サブセットを使用して同報通信制御情報を搬送するために使用されるようにスケジューリングされ、かつ決定されたヌル・トーン・サブセット上でヌル・トーンを搬送するようにスケジューリングされ、トーン・サブセットは、トーン・サブセット・ホッピング・シーケンスに従って決定される。典型的な第2の時間期間1120は、ユーザ・データを搬送するために使用されるようにスケジューリングされる。典型的な第1の時間期間1122は、決定された非ヌル・トーン・サブセットを使用して同報通信制御情報を搬送するために使用されるようにスケジューリングされ、かつ決定されたヌル・トーン・サブセット上でヌル・トーンを搬送するようにスケジューリングされ、トーン・サブセットは、トーン・サブセット・ホッピング・シーケンスに従って決定される。典型的な第1の時間期間1124は、決定された非ヌル・トーン・サブセットを使用して同報通信制御情報を搬送するために使用されるようにスケジューリングされ、かつ決定されたヌル・トーン・サブセット上でヌル・トーンを搬送するようにスケジューリングされ、トーン・サブセットは、トーン・サブセット・ホッピング・シーケンスに従って決定される。典型的な第2の時間期間1126は、ユーザ・データを搬送するために用いられるようにスケジューリングされる。典型的な第1の時間期間1128は、決定された非ヌル・トーン・サブセットを使用して同報通信制御情報を搬送するために用いられるようにスケジューリングされ、かつ決定されたヌル・トーン・サブセット上でヌル・トーンを搬送するようにスケジューリングされ、トーン・サブセットは、トーン・サブセット・ホッピング・シーケンスに従って決定される。典型的な第1の時間期間1130は、決定された非ヌル・トーン・サブセットを使用して同報通信制御情報を搬送するために使用されるようにスケジューリングされ、かつ決定されたヌル・トーン・サブセット上でヌル・トーンを搬送するようにスケジューリングされ、トーン・サブセットは、トーン・サブセット・ホッピング・シーケンスに従って決定される。典型的な第2の時間期間1132は、ユーザ・データを搬送するために使用されるようにスケジューリングされる。典型的な第1の時間期間1134は、決定された非ヌル・トーン・サブセットを使用して同報通信制御情報を搬送するために使用されるようにスケジューリングされ、かつ決定されたヌル・トーン・サブセット上でヌル・トーンを搬送するようにスケジューリングされ、トーン・サブセットは、トーン・サブセット・ホッピング・シーケンスに従って決定される。典型的な第1の時間期間1136は、決定された非ヌル・トーン・サブセットを使用して同報通信制御情報を搬送するために使用されるようにスケジューリングされ、かつ決定されたヌル・トーン・サブセット上でヌル・トーンを搬送するようにスケジューリングされ、トーン・サブセットは、トーン・サブセット・ホッピング・シーケンスに従って決定される。典型的な第2の時間期間1138は、ユーザ・データを搬送するために使用されるようにスケジューリングされる。典型的な第1の時間期間1140は、決定された非ヌル・トーン・サブセットを使用して同報通信制御情報を搬送するために使用されるようにスケジューリングされ、かつ決定されたヌル・トーン・サブセット上でヌル・トーンを搬送するようにスケジューリングされ、トーン・サブセットは、トーン・サブセット・ホッピング・シーケンスに従って決定される。典型的な第1の時間期間1142は、決定された非ヌル・トーン・サブセットを使用して同報通信制御情報を搬送するために用いられるようにスケジューリングされ、かつ決定されたヌル・トーン・サブセット上でヌル・トーンを搬送するようにスケジューリングされ、トーン・サブセットは、トーン・サブセット・ホッピング・シーケンスに従って決定される。典型的な第2の時間期間1144は、ユーザ・データを搬送するために使用されるようにスケジューリングされる。
1つの典型的な実施形態において、第3の時間期間は、ウルトラスロットに対応し、第4の時間期間は、ビーコン信号送信および意図的な送信機ダウンリンク・トーン・ブロック非送信の1つが生じるようにスケジューリングされる、2つの連続するOFDMシンボル送信時間期間の間隔に対応し、かつ第1のタイプの時間間隔は、非ビーコン同報通信制御信号を運ぶストリップ・シンボルの送信のためにスケジューリングされる単一のOFDMシンボルの広い間隔に対応する。反復構造における連続する第1の時間期間は、第1のトーン・セット・ホッピング・シーケンスに従って同報通信制御信号を搬送するために異なるトーン・サブセットを使用する。
例えば、図8の1つの典型的な実施形態において、ウルトラスロットは、それぞれ912個のOFDMシンボル時間期間幅である18個のインデクスされたビーコンスロットを含む16416個の連続するOFDMシンボル時間期間を含む。各インデクスされたビーコンスロットは、3/4の間隔を含み、各第4の間隔は、2個のOFDMシンボル時間期間幅であり、1/4の間隔は、ビーコン信号を搬送し、2/4の間隔は、意図的なトーン・ブロック・ヌルを有する。各インデクスされたビーコンスロットは、10個の第1の期間も含み、各第1の期間は、ストリップ・シンボルを搬送するために使用されるOFDMシンボル送信時間期間幅であり、第1の期間は、一度に2つのグループにされる(m=(0,1)、(2,3)、(4、5)、(6、7)、(8、9)である図8を参照)。それぞれインデクスされたビーコンスロットは、8個の第2の時間期間も含み、各第2の時間期間は、112個のOFDMシンボル幅であり、ユーザ・データを含む112個のOFDMシンボルを搬送するようにスケジューリングされる。
図8の実施例において、第1のトーン・サブセット・ホッピング・シーケンスは、第1の時間期間に関する制御信号を搬送するために使用されるべき97個の異なる所定のトーン・サブセットを有する。図10は、ホッピング・シーケンスで使用されるべき97個の異なる所定のトーン・サブセットの実施例を提供する。しかしながら図8の典型的なウルトラスロットは、180個の第1の時間期間を含む。このようにウルトラスロットは、第1のトーン・セット・ホッピング・シーケンスの1回の反復を含み、k=0から96に対応する各97個のインデクスされたトーン・サブセット、およびk=97から179に対応する第1のトーン・セット・ホッピング・シーケンスの第2の反復の一部が、一度使用される。第1のトーン・サブセット・ホッピング・シーケンスの異なる所定のトーン・サブセットの順番は、セルおよび/またはセクタ識別子の関数である。図7は、例えばセルおよび/またはセクタ識別子情報の関数として、2つの異なるベース送信機のための2つの異なる第1のトーン・サブセット・ホッピング・シーケンスの概念を示す。
図12は、情報を通信するためにトーンのブロック、例えば113個のトーンのダウンリンク・トーン・ブロックを使用する通信デバイス、例えば基地局を動作する典型的な方法のフローチャート1200を示す。動作は、通信デバイスがパワーオンされかつ初期化されるステップ1202で開始する。この動作は、開始ステップ1202からステップ1204へ進む。
ステップ1204において、通信デバイスは、第3の時間期間の間に通信されるべきヌル・トーン、非ヌル・トーン、および信号を決定し、例えば反復基準で信号を送信する。例えば、第3の時間期間は、通信デバイスによって使用される反復タイミング構造におけるウルトラスロットであり得る。ステップ1204は、サブステップ1206、1208、1210、1212、1214、1216、1218、1220、および1222を含んでいる。
サブステップ1206において、通信デバイスは、第3の時間期間内の現在のシンボル時間が、第1、第2、または第4の時間期間に対応するか否かを決定する。現在のシンボル時間期間が、第4の時間期間に対応するならば、動作は、サブステップ1206からサブステップ1208へ進む。現在のシンボル時間期間が、第1の時間期間に対応するならば、動作は、サブステップ1206からサブステップ1214へ進む。現在のシンボル時間期間が、第2の時間期間に対応するならば、動作は、サブステップ1206からサブステップ1216へ進む。
サブステップ1208において、通信デバイスは、ビーコン送信がトーン・ブロック内で送信されるようにスケジューリングされるか否かを決定する。ビーコンが、現在のシンボル時間に対応してスケジューリングされるなら、動作は、サブステップ1208からサブステップ1210へ進む。ビーコンが、現在のシンボル時間に対応してスケジューリングされていないのであれば、動作は、サブステップ1208からサブステップ1212へ進む。サブステップ1210において、通信デバイスは、第4の反復時間期間、例えばビーコン信号およびトーン・ブロック・ヌルの1つに関して確保された2つの連続するOFDMシンボル送信時間間隔の時間期間中に、第2の反復時間期間中に送信される任意のトーンより高いトーン信号当たりのエネルギ・レベルを有する狭帯域ビーコン・トーンを送信する。サブステップ1212において、通信デバイスは、第4の反復時間期間の間に、該トーン・ブロックへの送信を停止する。動作は、サブステップ1210またはサブステップ1212からサブステップ1222へ進む。
いくつかの実施形態において、通信システム内の異なる基地局接続点は、例えばセルおよび/またはセクタ識別子の関数として、ビーコン信号を搬送するために第3の時間期間内で異なる第4の時間期間を使用している。例えば、1つの典型的な3つのセクタ実施形態において、第3の時間期間は、24個のインデクスされた第4の時間期間を含む。例えば、セクタ・タイプ0の接続点は、ビーコン信号を搬送するためにインデクス0、3、6、9、12、15、18、21を有する第4の時間期間を使用し、かつトーン・ブロックに対するインデクス1、2、4、5、7、8、10、11、13、14、16、17、19、20、22、23を有する第4の時間期間の間の送信を停止する。セクタ・タイプ1の接続点は、ビーコン信号を搬送するためにインデクス1、4、7、10、13、16、19、22を有する第4の時間期間を使用し、かつトーン・ブロックに対するインデクス0、2、3、5、6、8、9、11、12、14、15、17、18、20、21、23を有する第4の時間期間の間の送信を停止する。セクタ・タイプ2の接続点は、ビーコン信号を搬送するためにインデクス2、5、8、11、14、17、20、23を有する第4の時間期間を使用し、かつトーン・ブロックに対するインデクス0、1、3、4、6、7、9、10、12、13、15、16、18、19、21、22を有する第4の時間期間の間の送信を停止する。
サブステップ1214において、第1の反復時間期間、例えば1つのOFDMシンボル時間間隔の持続期間のストリップ・シンボル時間期間について、通信デバイスは、第1のトーン・ホッピング・シーケンスに従って、パワーが送信されるべきでないトーン・サブセット、および非ゼロ変調シンボルが送信されるべきであるトーン・サブセットを決定し、パワーが送信されるべきでない該決定されたトーン・サブセットは、該トーン・サブセット内のトーンの少なくとも30パーセントを含み、変調シンボルが送信されるべきである該決定されたトーン・サブセットは、使用されるべき複数の所定のトーン・サブセットの1つである。
いくつかの実施形態において、第3の時間期間における所与の第1の時間期間に関して、決定されたヌル・トーンのサブセットと非ヌル・トーンのサブセットの組み合わせは、基地局接続点に関するトーン・ブロックトーンのセット、例えば基地局接続点に関するダウンリンク・トーン・ブロックトーンのセットである、図10は、ヌル・トーンの97個の異なるサブセットおよび非ヌル・トーンの97個の異なるサブセットに対応する典型的なトーン・サブセット情報を含む。ヌルおよび非ヌル・トーンの混合を使用することによって、信号送信された第1の時間期間は、チャネル推定を実行するために受信機、例えば無線端末受信機によって使用されうる。さらに、同報通信制御情報は、第1の時間期間の間に通信される非ヌル変調シンボルの値によって通信される。
第3の時間期間における所与の第1の時間期間に対応するトーン・サブセットは、いくつかの実施形態において、セル、セクタ識別子、および/または通信デバイスの接続点に対応するトーン・ブロック、およびタイミング構造内のODFMシンボル時間の関数として決定される。例えば、隣接セルおよびまたはセクタに対応する接続点は、トーンの同一のサブセットを使用して異なるトーン・ホッピング・シーケンスを使用する。図9は、典型的なトーン・ホッピング決定を記載する。
動作は、サブステップ1214からサブステップ1218へ進む。サブステップ1218において、通信デバイスは、サブステップ1214から決定されたトーン・サブセットに従ってOFDMシンボルを生成する。動作は、サブステップ1218からサブステップ1220へ進む。サブステップ1220において、通信デバイスは、ステップ1218から生成されたOFDMシンボルを送信する。動作は、サブステップ1220からサブステップ1222へ進む。
サブステップ1216において、通信デバイスは、第2の反復時間期間、例えばユーザ・データを搬送するために使用される112個の連続するOFDMシンボル時間間隔中、通信デバイスは、情報を送信するためにトーンのブロックを使用し、トーン・ブロックのトーンの少なくとも70パーセントは、第2の時間期間の間に非ゼロ変調シンボルを通信するために利用可能である。例えば、第2の時間期間の間に、ダウンリンク・トラフィック・チャネル信号が、いくつかの制御信号に加えて通信される。サブステップ1216において、いくつかの実施形態において、論理チャネル・トーンは、第1の時間期間に適用可能なトーン・サブセット・ホッピングとは異なる、トーン・ホッピングスキーマに従って物理トーンにホッピングされる。いくつかのそのような実施形態において、第2の時間期間に適用可能なトーン・ホッピングと第1の時間期間に適用可能なトーン・サブセット・ホッピングの両方は、ホッピング、例えばトーン・ホッピング、トーン・サブセット・ホッピングを決定するための入力としてセルおよび/またはセクタ識別子情報を利用する。例えば、異なる式が、同一の基地局セクタ接続点についてのホッピングに対する第1および第2の時間期間の間に使用される。動作は、サブステップ1216からサブステップ1222へ進む。
サブステップ1222において、通信デバイスは、第3の時間期間内のシンボル時間インデクスを更新する。例えば、1つの実施形態において、動作が、サブステップ1210または1222を介してサブステップ1222へ進むなら、インデクスは、2個のOFDMシンボル送信時間期間によって更新され、動作が、サブステップ1214を介してサブステップ1222へ進むなら、インデクスは、1個のOFDMシンボル送信時間期間によって更新され、動作が、サブステップ1216を介してサブステップ1222へ進むのであれば、インデクスは、112個のOFDMシンボル送信時間期間によって更新される。様々な実施形態において、インデクスが、第3の時間期間が完了する場合、次の連続する第3の時間期間、例えばウルトラスロットについて開始するように、更新は、変調計算を使用する。動作は、サブステップ1222からサブステップ1206へ進む。
様々な実施形態において、第2の反復時間期間は、第1の反復時間期間の持続期間の少なくとも10倍の持続期間を有する。いくつかの実施形態において、第2の時間期間は、第1の時間期間の持続期間の50倍より長い持続期間を有する。いくつかの実施形態において、第2の時間期間は、第1の時間期間の持続期間の100倍より長い持続期間を有する。いくつかの実施形態において、第2の時間期間は、ユーザ・データ送信期間に対応するので、第1の時間期間と第2の時間期間との間の平衡、およびユーザ・データが通信されない第1および第4の時間期間等の時間期間のタイミング構造内の位置は、例えば音声アプリケーションなどの特定に低いレイテンシを必要とするアプリケーションにおいて、ユーザの見方から途切れないユーザ・データ通信を達成することに、重要な考慮を要しうる。いくつかの実施形態において、第4の時間期間が、同期化、例えばフレーム同期化を実行する無線端末によって使用されるビーコン信号を搬送するために使用されるので、典型的な第3の時間期間は、第4の時間期間で始まる。
様々な実施形態において、第1の時間期間について、第1のセットトーン・ホッピング・シーケンスは、複数の所定のトーン・サブセットのどれが使用されるかを決定する。例えば、所与の基地局接続点についての反復タイミング構造における所与の第1の時間期間に関する第1のセットトーン・ホッピング・シーケンスは、図10の表1000の97個の列の1つに対応するトーン・サブセット情報を使用することを決定する。様々な実施形態において、無線通信システムにおける異なる隣接する基地局接続点は、異なる第1の時間期間トーン・サブセット・ホッピング・シーケンスを用いる。
様々な実施形態において、第1および第2の時間期間は、所定の基準で反復する第3の時間期間内で生じ、第1の時間期間内のOFDMシンボル送信時間期間は、モジュラ増分インデクスを使用してインデクスされ、第1のトーン・セットホッピング・シーケンスは、モジュラ増分インデクスの関数である。例えば、典型的なウルトラスロットは、180個のインデクスされた第1の時間期間を含むことができるが、第1のトーン・セットホッピング・シーケンスは、ウルトラスロット内の98番目の第1の時間期間で反復を始める。
様々な実施形態において、ヌル・トーン・サブセットおよび非ヌル・トーン・サブセットの少なくとも1つに対応する所定のトーン・サブセットの数は、素数である。図10の実施例において、素数は97である。
1つの典型的な実施形態において、しばしばトーン・サブセット・ホッピング・シーケンスとも称されるトーン・サブセット割り当てシーケンスは、以下のように与えられる。
f(bssSlopeIndex,bssSectorType,k)=(bssSlopeIndex+1)/((bssSectorType*k+k2)は、ストリップ・シンボルkにおいて選択されるべきトーン・サブセットのインデクスを表し、ここで、各算術演算子(+,2,*,/)は、Nの領域で規定され、Nは素数であり、例えば、N=97である。
bssSlopeIndexは、セルスロープ値のインデクスであり、好ましくはセルの各セクタについて同一であり、隣接セルは、bssSlopeIndexに関して異なる値を有するべきである。パラメータbssSlopeIndexは、0,1,・・・,N1−1に等しく、ここで、N1≦Nである。1つの実施形態において、N1=96である。
bssSectorTypeは、セクタのインデクスである。例えば、セクタ・タイプTが、セット{0,1,・・・,5}、{0,1}または{0,1,2}にあると仮定する。所与の基地局における隣接セクタは、Tの異なる値を有するべきである。
fは、基地局のセクタにおける関数である。
kは、ストリップ・シンボル期間のインデクスであり、ここでk=L*10+mである。ここで、mは、ビーコンスロットにおけるストリップ・シンボル・インデクスであり、例えば、mは、セット{0,1,・・・,9}における値であり、Lは、ウルトラスロットにおけるビーコンスロットスロット・インデクスであり、例えば、Lは、セット{0,1,・・・,17}における値である。
わずかに異なる形式で表現され、
k=L*10+m
temp0=bssSectorType*k+k*k
temp1=imod(temp0、N)
f(bssSlopeIndex、bssSectorType,k)=mod(temp1*(bssSlopeIndex+1),N)であり、
ここで、整数xおよびmに関して、モジュロ関数mod(x,m)は、mod(x,m)=x−m*floor(x/m)として定義され、ここで関数floor(x)は、x以下の最大の整数として定義され、整数xおよびmに関して、逆モジュロ関数imod(x,m)は、yに等しく、ここでmod(x*y,m)が1に等しいなら1≦y≦mである。mod(x,m)がゼロであるなら、imod(x,m)は、0に設定される。
様々な実施形態において、第1のトーン・サブセット・ホッピング・シーケンスは、セル識別子、例えばスロープ値の関数である。様々な実施形態において、第1のトーン・セットホッピング・シーケンスも、セクタ識別子値の関数である。
図13は、様々な実施形態に従って実施される典型的な基地局1300の図である。典型的な基地局1300は、バス1310を介してともに結合される受信機モジュール1302、送信機モジュール1304、プロセッサ1306、I/Oインタフェース1307、およびメモリ1308を含み、バス1310を介して、様々な要素が、データおよび情報を交換する。メモリ1308は、ルーチン1312およびデータ/情報1314を含む。例えばCPUであるプロセッサ1306は、ルーチン1312を実行し、基地局1300の動作を制御しかつ方法を実施するためにメモリ1308内のデータ/情報1314を使用する。
例えば、OFDM受信機である受信機モジュール1302は、受信アンテナ1303に結合され、基地局1300は、受信アンテナ1303を介して無線端末からアップリンク信号を受信する。例えば、OFDM送信機である送信機モジュール1304は、送信アンテナ1305に結合され、基地局は、送信アンテナ1305を介して無線端末へダウンリンク信号を送信する。ダウンリンク信号は、第1の時間期間トーン・サブセット・ホッピング・シーケンスに従うヌル・トーンのセットおよび非ヌル・トーンのセットを含む第1の時間期間中に、ストリップ・シンボル信号を含み、第1の時間期間の間の非ヌル・トーンは、同報通信制御情報を搬送する。ダウンリンク信号は、第2の時間期間の間に通信される信号、例えばユーザ・データを搬送するOFDM信号、および第4の時間期間中に通信される信号、例えばビーコン・トーン信号および意図的なトーン・ブロック・ヌル信号も含む。様々な実施形態において、基地局1300は、複数のセクタ、例えば3個のセクタを含む。いくつかの実施形態において、複数の受信機/送信機モジュール対は、各セクタに対応する。
I/Oインタフェース1307は、基地局をインターネットおよび/または他のネットワーク・ノード、例えば他の基地局、ルータ、AAAノード、ホーム・エージェント・ノード等に結合する。I/Oインタフェース1307は、基地局1300をバックホール・ネットワークに結合することによって、ネットワーク接続点として異なる基地局を用いて、無線端末が他の無線端末との通信セッションに参加することを、基地局1300接続点を使用して可能にする。
ルーチン1312は、通信ルーチン1316および基地局制御ルーチン1318を含む。通信ルーチン1316は、基地局1300によって実施される様々な通信プロトコルを実行する。基地局制御ルーチン1318は、受信機制御モジュール1320、送信機制御モジュール1322、時間期間のタイプ決定モジュール1333、I/Oインタフェース制御モジュール1324、第1の期間トーン・サブセット決定モジュール1326、第1の期間シンボル生成モジュール1328、第4の期間シンボル生成モジュール1330、第2の期間シンボル生成モジュール1332、および第2の期間トーン・ホッピング・モジュールを含む。
受信機制御モジュール1320は、受信機1320の動作、例えば接続点によって使用されるアップリンク・キャリア周波数に受信機を同調し、タイミング調整およびパワー・レベル調整を制御し、かつアップリンクOFDMシンボル復元および復号動作を制御することを制御する。I/Oインタフェース制御モジュール1324は、I/Oインタフェース1307の動作を制御し、例えばバックホールを介して通信されるパケットの送信および復元を制御する。
送信機制御モジュール1322は、送信機モジュール1304の動作を制御する。送信機モジュール制御モジュール1322は、第1の時間期間制御モジュール1334、第4の時間期間制御モジュール1336、および第2の時間期間制御モジュール1338を含む。第1の時間期間制御モジュール1334は、第1の時間期間の間の送信機動作、例えばその間に制御情報を運ぶストリップ・シンボルが通信される、基地局によって使用される反復ダウンリンク構造内の所定の時間期間を制御する。第4の時間期間制御モジュール1336は、第4の時間期間の間の送信機動作、例えばその間にビーコン信号およびトーン・ブロック・ヌル信号の1つが通信される、基地局によって使用される反復ダウンリンク構造内の所定の時間間隔を制御する。第2の時間期間制御モジュール1338は、第2の時間期間の間の送信機動作、例えばその間にユーザ・データが通信される、反復ダウンリンク構造内の所定の時間期間を制御する。いくつかの実施形態において、反復ダウンリンク・タイミング構造は、インデクスされた第3の時間期間の反復シーケンス内に再分割され、各第3の時間期間は、複数の第1の時間期間、複数の第2の時間期間、および複数の第4の時間期間内に区分される。
時間期間のタイプ決定モジュール1333は、時間間隔、例えば現在の時間間隔が、基地局によって使用される反復ダウンリンク・タイミング構造内の第1の時間期間、第2の時間期間、または第4の時間期間の1つであるか否かを決定する。モジュール1333の決定は、信号生成および送信で使用される様々ないずれかのモジュール間の送信制御で使用される。例えば、モジュール1333は、考慮中の時間が第1のタイプの時間期間に対応することを決定するなら、モジュール1326、1328、および1334が使用され、一方、モジュール1333は、考慮中の時間が第4のタイプの時間期間に対応することを決定するなら、モジュール1330および1336が使用される。
第1の期間トーン・サブセット決定モジュール1326は、第1のトーン・セットホッピング・シーケンスに従って、パワーが送信されるべきでないトーン・サブセットを第1の反復時間期間について決定し、パワーが送信されるべきでない該決定されたトーン・サブセットは、基地局接続点によって使用されるトーンのダウンリンク・ブロックにおけるトーンの少なくとも30%を含む。第1の期間トーン・サブセット決定モジュール1326は、また第1のトーン・セット・サブセット・ホッピング・シーケンスに従って、パワーが送信されるべきトーン・サブセットを第1の反復時間期間について決定する。様々な実施形態において、基地局接続点に関するダウンリンク・トーン・ブロックは、反復ダウンリンク構造内の所与の第1の時間期間について、パワーが送信されるべきでないトーン・サブセットおよびパワーが送信されるべきトーン・サブセットに区分される。例えば、図10の情報を使用する典型的な実施形態において、97個の異なる区分が、それぞれインデクス数に関連付けられて示され、任意の所与の第1の時間間隔について、これら97個の異なる区分の1つが選択される。いくつかの実施形態において、第1の期間トーン・サブセット決定モジュール1326は、セル識別子、セクタ・タイプ識別子、および反復ダウンリンク・タイミング構造内の第1の時間期間インデクスの関数として決定を実行する。図9は、基地局1300の一部として、例えば基地局1300におけるモジュール1326として実施されることができる典型的なトーン・セット割り当てモジュール900を記載する。
第1の期間シンボル生成モジュール1328は、第1の時間期間の間に通信されるべきOFDMシンボルを生成する。第1の期間シンボル生成モジュール1328は、どのトーンが、変調シンボル、例えば制御同報通信データを搬送する変調シンボルを運び、かつ第1の時間期間の間に通信されるべきOFDMシンボルを生成するべきであるかを決定するために、モジュール1326からパワーが送信されるべき決定されたトーン・サブセットを使用する。
第2の期間シンボル生成モジュール1332は、第2の時間期間についてのOFDMシンボルのシーケンスを生成し、少なくともいくつかのOFDMシンボルは、ユーザ・データ、例えばダウンリンク・トラフィック・チャネル・セグメントの一部を搬送する変調シンボルを運ぶ。第2の期間シンボル生成モジュールによって使用される第2の期間トーン・ホッピング・モジュール1335は、物理トーンに対する論理チャネル・トーンに関するトーン・ホッピングを実行し、第1の期間トーン・サブセット決定モジュール1326とは異なる関数を使用する。
第4の期間シンボル生成モジュール1330は、反復タイミング構造内の所与の第4の時間期間について、2つのシンボル・ワイド・ビーコン信号およびダウンリンク・トーン・ブロック・ヌル信号の一方を生成する。第4の期間シンボル生成モジュール1330は、ビーコン・モジュール1331を含む。ビーコン・モジュール1331は、ビーコン信号を生成し、生成されたビーコン信号は、反復タイミング構造に従って、第4の時間期間のいくつかの間に送信されるべきであり、生成されたビーコン信号は、時間の第2の期間の間に送信される任意のトーンより高いトーン当たりの信号エネルギを有するビーコン・トーンを含む狭帯域信号である。
データ/情報1314は、ダウンリンク・トーン・ブロック情報1340、格納された送信機制御情報1342、基地局セル識別子情報1344、基地局セクタ識別子情報1346、第1の期間トーン・サブセット・ホッピング式情報1348、タイミング構造情報1350、トーン・パワー・レベル情報1352、第1の期間トーン・サブセット・インデクス・マッピング情報1354、反復タイミング構造内の現在時間情報1355、ウルトラスロット内のビーコンスロット・インデクス1356、ビーコンスロット内の第1の時間期間ストリップ・シンボル・インデクス1358、第1の時間期間シンボル・インデクス1360、現在の第1の時間間隔についての決定されたトーン・サブセット・インデクス1362、第1の期間シンボルについての制御データ1364、およびユーザ・データ1366を含む。
ダウンリンク・トーン・ブロック情報1340は、基地局接続点によって使用されるダウンリンク・トーンのセット、例えば113個の連続するトーンのセット、およびダウンリンク・トーン・ブロックに関連するキャリア周波数を含む。格納された送信機制御情報1342は、モジュール1332によって使用される情報を含む。基地局セル識別子情報1344は、基地局1300に関連付けられた局所的に唯一のセル識別子、例えば範囲0、・・・、95内の整数などの基地局スロープ値、およびそれぞれスロープ値に関連付けられる基地局スロープ・インデクス値を含む。基地局セクタ識別子情報1346は、基地局セクタ識別子、および基地局セクタ・タイプ値、例えば送信機モジュール1304のセクタに関連付けられた基地局セクタ・タイプ識別子、例えばセット{0、1、2}における値を含む。
第1の期間トーン・サブセット・ホッピング式情報1348は、トーン・サブセット・ホッピング・シーケンスの生成において第1の期間トーン・サブセット決定モジュール1326によって使用される情報、例えば、基地局セル識別子、基地局セクタ・タイプ識別子、および反復タイミング構造内の第1の期間インデクスに関連する情報を含む。
タイミング構造情報1350は、OFDMシンボル送信時間間隔情報、および例えばスロット情報、スーパスロット情報、ビーコンスロット情報、ウルトラスロット情報などの基地局送信機1304によって使用される反復ダウンリンク構造内の複数のOFDMシンボル送信時間間隔のグループ分けに関連する情報を含む。タイミング構造情報1350は、第1の時間期間を識別する情報、第2の時間期間を識別する情報、第4の時間期間を識別する情報、第3の時間期間を識別する情報、および様々なタイプの時間期間に関連付けられるインデクス、例えばウルトラスロット内の第1のタイプの時間期間の第1の発生、およびウルトラスロット内の第1のタイプの時間期間の第2の発生などを含む情報も含む。
トーン・パワー・レベル情報1352は、様々なタイプのダウンリンク信号、例えばビーコン・トーン信号変調シンボル・パワー・レベル情報、非ヌル・トーンの第1の期間変調シンボル・パワー・レベル、第2の時間期間の間に搬送される少なくともいくつかの変調シンボルについて使用されるトラフィック・チャネル・パワー・レベル情報、第2の時間期間の間に搬送される少なくともいくつかの変調シンボルについて使用されるパイロット・チャネル・パワー・レベル情報に関連付けられたパワー・レベル情報を含む。
第1の期間トーン・サブセット・インデクス・マッピング情報1354は、トーン・サブセット・インデクスが、決定モジュール1326によって使用されるべきものであることを決定するなら、所与の第1の時間期間の間に使用される識別されたヌル・トーンのセットおよび識別された非ヌル・トーンのセットを、複数のトーン・サブセット・インデクスのそれぞれを関連付ける情報を含む。図10の表1000は、第1の期間トーン・サブセット・インデクス・マッピング情報1354の実施例である。
反復タイミング構造内の現在時間情報1355は、基地局送信機モジュール1304によって使用される反復ダウンリンク・タイミング構造における現在の位置を識別する。ウルトラスロット内のビーコンスロットスロット・インデクス1356、例えば範囲0、・・・、17内の整数インデクス値Lは、現在時間がどのウルトラスロット内のビーコンスロットに対応するかを識別する。ビーコンスロット内の第1の時間期間ストリップ・シンボル・インデクス1358、例えば範囲0、・・・、9内の整数値mは、時間が第1の時間期間に対応するとき、現在時間がビーコンスロット内のどのインデクスされたストリップ・シンボルに対応するかを識別する。第1の時間期間シンボル・インデクス1360、例えば整数値kは、ウルトラスロットの第1の時間期間の間のストリップ・シンボルについて使用されるインデクス値を識別し、例えばkは、範囲0、・・・、179内の整数値である。いくつかの実施形態において、kは、第1のトーン・サブセット決定モジュール1326によって、値Lおよびmの関数として生成される。現在の第1の時間間隔について決定されたトーン・サブセット・インデクス1362は、基地局セル識別子1344、基地局セクタ識別子1346、および第1の時間期間ストリップ・シンボル・インデクス1360の関数である決定モジュール1326の結果である。
第1の期間シンボルについての制御データ1364は、非ヌル・トーン上の第1の時間期間の間に同報通信される変調シンボルで搬送されるべき制御データ/情報を含む。ユーザ・データ1366は、第2の時間期間の間にトラフィック・チャネル・セグメントの変調シンボルを介して搬送されるべきデータ/情報、例えば音声、ビデオ、音響、テキスト、画像、ファイルなどを含む。
様々な実施形態において、第2の反復時間期間の間に、ダウンリンク・トーンのブロック、例えば113個のトーンのダウンリンク・トーン・ブロックは、第2の時間期間の間に非ゼロ変調シンボルを通信するために使用可能であるダウンリンク・トーン・ブロックトーンの少なくとも70%である情報を送信するために使用される。いくつかの実施形態において、第2の時間期間は、第1の時間期間の持続期間の少なくとも10倍の持続期間を有する。1つの典型的な実施形態において、第1時間期間は、1個のOFDMシンボル送信時間間隔の持続期間を有し、第2の時間期間は、112個のOFDMシンボル送信時間間隔の持続期間を有する。いくつかの実施形態において、タイミング構造は、複数、例えば2個または3個の第1の時間期間がともにグループに分けられるものである。いくつかの実施形態において、タイミング構造は、第1の時間期間の所定のグループ分けが、第4の時間期間、例えばビーコン信号が通信されることができる第4の時間期間と同じ持続期間を有するものである。
様々な実施形態において、第1の期間トーン・サブセット決定モジュール1326は、基地局送信機モジュール1304によって使用される反復ダウンリンク・タイミング構造における所与の第1の時間期間に関して、複数の所定のトーン・サブセットのどの1つが使用されるか、例えば図10の表1000からのどのトーン・サブセット・インデクスが使用されるかを決定する。いくつかの実施形態において、所定のトーン・サブセット・インデクス値の数は、素数、例えば97である。
様々な実施形態において、第1および第2の時間期間は、所定の基準で繰り返す第3の時間期間内で生じる。例えば、第3の時間期間は、各第1の時間期間が、ストリップ・シンボル時間期間であることができ、第2の時間期間が、ユーザ・データを搬送するために使用される連続するOFDMシンボル送信時間期間のセットであることができる典型的なウルトラスロットであり得る。
いくつかの実施形態において、第1の期間トーン・サブセット決定モジュール1326は、以下の式を実施するために第1の期間トーン・サブセット・ホッピング式情報1348を使用する。f(bssSlopeIndex,bssSectorType,k)=(bssSlopeIndex+1)/((bssSectorType*k+k2)、ここで、f(bssSlopeIndex,bssSectorType,k)は、bssSlopeIndex値およびbssSectorType値を有する基地局セクタについて、ストリップ・シンボルkにおいて選択されるべきトーン・サブセットのインデクスを表し、各算術演算子(+,2,*,/)は、Nの領域で規定され、Nは素数であり、bssSlopeIndexは、{0,1,・・・,N1−1}に対する値のセット内の局所的に唯一のセル識別子値であり、ここで、N1≦Nであり、N1はゼロではない正の整数であり、bssSectorTypeは、セット{0,1,・・・,5}、{0,1}、および{0,1,2}の中の1つからのセクタのセクタ識別子値インデクスであり、fは、基地局のセクタにおける関数であり、kは、負ではない整数である。いくつかのそのような実施形態において、N=97およびN1=96である。いくつかの実施形態において、k=L*n+mであり、ここでmは、第1のタイプの時間スロットにおけるストリップ・シンボル・インデクスであり、mは、負ではない整数であり、Lは、第2のタイプの時間スロットにおける第1のタイプの時間スロット・インデクスであり、nは、第1のタイプの時間スロットにおけるインデクスされたストリップ・シンボルの数である。いくつかの実施形態において、第1のタイプの時間スロットは、ビーコンスロットであり、第2のタイプの時間スロットは、ウルトラスロットであり、ここで、mは、セット{0,1,・・・,9}における値であり、Lは、セット{0,1,・・・,17}における値であり、nは10である。
いくつかの実施形態において、第4および第1の時間期間は、同報通信チャネルのために確保された時間に属し、第4の時間期間は、ビーコン・サブチャネルのために確保された時間間隔に対応し、一方、第1の時間期間は、非ビーコン同報通信サブチャネルのために確保された時間に対応する。いくつかの実施形態において、第1および第4の時間期間の両方の間の送信シンボル時間間隔は、ストリップ・シンボル時間間隔と呼ばれ、ストリップ・シンボル時間間隔は、さらに、ビーコンストリップ・シンボル時間間隔および非ビーコン・ストリップ・シンボル時間間隔として分類される。
図18は、例えばストリップ・シンボル・データのようなオーバヘッド信号データを例示する図である。ストリップ・シンボル・データは、コード・ブロックに分割されうる。図13に関して示された期間決定モジュール1333のタイプ、あるいは、図15に関して示された期間決定モジュール1530のタイプは、時間期間またはシンボルが、ビーコン・シンボル(第4の時間期間)、ストリップ・シンボル(第1の時間期間)、またはユーザ・データ(第2の時間期間)の何れかであるかを決定する。図13に関して示された送信機制御モジュール1322は、オーバヘッド・データ時間期間としても知られている第2の時間期間中に、ストリップ・シンボルを送信するように送信機を制御する。あるいは、無線端末の場合、本明細書に記載の方法およびデバイスの結果として、図15について示すような第1の時間期間処理モジュール1534が、プロセッサ1506に情報を通信する。ストリップ・シンボルは、例えばビーコンのようなタイミング基準に対して周期的な関係を有する図8に示す如くでありうる。図18に再び示すように、いくつかのOFDMストリップ・シンボルが、1つのコード・ブロックに含まれうる。例えば6つのストリップ・シンボルを含み、それぞれがNビットを備えるいくつかのストリップ・シンボル・コード1810、1813、1816、1819および1822が示される。
ストリップ・シンボル・コード・ブロックはそれぞれ、固定ビット用途データ1825およびフレキシブル・ビット用途データ1830に分割されうる。固定ビット用途データ1825は、N1ビットを有して示される。フレキシブル・ビット用途データ1830は、N2ビットを有して示される。一例において、N1+N2=Nである。固定ビット用途データ1825は、ビットが、予め定められた用途を有することを意味する。すなわち、ビットの用途は、コード・ブロックにおけるビット位置によって決定される。しかしながら、いくつかメッセージ・ヘッダでは、必ずしも明示的に定義されている必要はない。例えば、基地局のソフトウェア・バージョンの識別に使用するために、あるビットが予め定められる。別の例として、システム時間を規定するために他のビットを使用することができる。アクセス優先度を規定するために更に別のビットを使用することができる。例えば、基地局の負荷が高い場合、それは、高い優先度のユーザしか基地局にアクセスできないか、あるいは、許可されたサービスが、例えば負荷に基づいて変わることでありうる。固定ビット用途ビットはまた、キャリアまたはセクタ・コンフィグレーションを規定するためにも使用される。例えば、どのキャリアであるか、どれだけ多くのキャリアが使用されているか、あるいはどれだけ多くのセクタが使用されているかを規定するために使用することができる。送信機によって使用される送信機電力を、例えばdBmの単位で規定するために、固定ビット用途ビットを使用することもできる。
フレキシブル・ビット用途データ1830は、あるフレキシブルなオーバヘッド・データを与えるために使用することができる。一般に、フレキシブル・ビット用途データ1830は、少なくとも3つのフィールド、すなわち、タイプ・フィールド、長さフィールド、およびデータ・フィールドを持つだろう。タイプ・フィールドは、フレキシブル・ビット用途データ1830に、どのタイプのデータが含まれているかを規定する。長さフィールドは、データがどれくらいの長さであるかを規定する。データ・フィールドは、送信されているデータを含む。例えば、フレキシブル・ビット用途データは、その他のキャリアまたはその他のセクタ負荷情報でありうる。例えば、基地局は、基地局の別のセクタにおける負荷条件を無線端末へブロードキャストしうる。これは、例えば、無線端末が、他のセクタへハンドオフすべきか否かの決定を支援することができる。この例では、タイプ・フィールドは、フレキシブル・ビット用途データ1830を、他のセクタの負荷情報として認識するだろう。フレキシブル・ビット用途データ1830の長さフィールドは、データ(他のセクタの負荷情報)の長さを規定するだろう。そして、データ・フィールドは、別のセクタの負荷に関するデータを含むだろう。フレキシブル・ビット用途データ1830を持つ実現性は、データが、N2ビットより長くなることができるということである。すなわち、例えば他のセクタ・レポート・データのような1つのレポートは、ブロック1810から1813へ続きうる。その場合、無線端末は、ストリップ・シンボル・ブロック1810およびストリップ・シンボル・ブロック1813からのデータを結合することを認識している。
固定ビット用途データ1825におけるデータは、例えばビーコンのような固定時間基準に対するある周期を持っており周期的である。他のタイプのデータの周期性は、異なりうる。例えば、セクタ内の負荷情報は、ストリップ・シンボル・ブロック毎にブロードキャストされる一方、例えばソフトウェア・バージョン情報のようなその他のデータは、1つおきのストリップ・シンボル・ブロック毎に一度ブロードキャストされうる。データ・ブロック1844および1846は、ストリップ・シンボル・ブロック1813に対応する固定ビット用途データである。データ・ブロック1848および1850は、ストリップ・シンボル・ブロック1816等に対応する固定ビット用途データである。ブロック1840、1844、1848、1852、1856および1860は、全てN1Aとラベル付けされており、全てが、例えばセクタ負荷情報のような同じタイプのデータであることが示される。しかしながら、ブロック1842とブロック1846とは異なるタイプのデータである。例えば、N1Bとラベル付けされたブロック1842は、N1Bとラベル付けされた次のブロック、すなわちブロック1850まで反復されないシステム・ソフトウェア情報でありうる。したがって、ソフトウェア・バージョン情報は、セクタ負荷情報の2倍の期間を有する。N1Cとラベルを付けされたブロック1846は、アクセス優先度情報であり、この例では次に、ブロック1854で反復される。典型的な期間は、10ミリ秒、100ミリ秒、1秒、および1分近傍のある値を含む。
図19は、情報を通信するストリップ・シンボル・データの方法を例示するフローチャートである。ステップ1910では、ビーコン時間期間が識別される。ビーコン時間期間は、例えば、ビーコンスロットの開始のような基準時間である。ステップ1920では、ビーコン時間期間に関連するオーバヘッド信号周期性を有する反復時間期間のオーバヘッド・セットが識別される。例えば、反復時間期間のオーバヘッド・セットは、非ビーコン・ストリップ・シンボル期間である。ステップ1930では、ビーコン時間期間に関連するデータ・ペイロード周期性を有する反復時間期間のデータ・ペイロード・セットが識別される。反復時間期間のデータ・ペイロード・セットは、ユーザ・データ時間期間であり、第2の時間期間としても知られている。ステップ1940では、反復時間期間のオーバヘッド・セットが、例えば図18に関して示すような反復時間期間のフレキシブル・ビット用途サブセットと、反復時間期間の固定ビット用途サブセットとに分割される。
ステップ1950乃至1980はオプションである。ステップ1950では、第1のタイプの固定ビット用途メッセージが生成される。ステップ1960では、第2のタイプの固定ビット用途メッセージが生成される。ステップ1970では、送信するために、第1のタイプの固定ビット用途メッセージの反復送信のための第1の周期が識別される。例えば、第1のタイプの固定ビット用途メッセージは、メッセージ1840、1844、1848、1852、1856、1860等でありうる。ステップ1980では、送信するために、第2のタイプの固定ビット用途メッセージの反復送信のための第2の周期が識別される。第2のタイプの固定ビット用途メッセージは、メッセージ1842、1850、1858等でありうる。第1のタイプの固定ビット用途メッセージは、ソフトウェア・バージョン、システム時間、アクセス優先度、負荷情報、キャリア・コンフィグレーション、セクタ・コンフィグレーション、および送信電力のうちの1つでありうる。反復時間期間のフレキシブル・ビット用途サブセットのためのフレキシブル・ビット用途メッセージは、その他のキャリア負荷メッセージを含みうる。反復時間期間のフレキシブル・ビット用途サブセットのためのフレキシブル・ビット用途メッセージは、他のセクタ負荷メッセージでありうる。
図14Aおよび図14Bの組み合わせからなる図14は、様々な実施形態に従う無線端末の動作の典型的な方法のフローチャートである。動作は、無線端末がパワーオンされかつ初期化されるステップ1402で始まる。動作は、ステップ1402からステップ1404へ進む。
ステップ1404において、無線端末は、基地局接続点送信機から、第4の時間期間の間のビーコン信号を受信する。動作は、ステップ1404からステップ1406へ進む。ステップ1406において、無線端末は、基地局接続点送信機から受信したビーコン信号に対応するセルおよび/またはセクタ識別子情報(1408、1410)を決定する。動作は、ステップ1406からステップ1412へ進む。ステップ1412において、無線端末は、タイミング同期化情報を決定するために受信したビーコン信号を使用する。例えば、無線端末は、第3の時間期間、例えば反復ダウンリンク・タイミング構造内のウルトラスロットの開始時間を決定するように同期化情報を決定する。次に、ステップ1414において、無線端末は、基地局接続点送信機に対して無線端末のダウンリンク受信を同期化するために、ステップ1414から決定された同期化情報を使用する。動作は、ステップ1414からステップ1416へ進む。
ステップ1416において、無線端末は、進行基準で基地局接続点送信機からダウンリンク信号を受信する。動作は、ステップ1416からステップ1418へ進む。ステップ1418において、無線端末は、第3の時間期間内の現在のシンボル時間が、第1、第2、または第3の時間期間に対応するか否かを決定する。第3の時間期間内の現在のシンボル時間が、第4の時間期間に対応するなら、動作は、ステップ1418からステップ1420へ進み、第3の時間期間内の現在のシンボル時間が、第2の時間期間に対応するなら、動作は、ステップ1418からステップ1422へ進み、第3の時間期間内の現在のシンボル時間が、第1の時間期間に対応するなら、動作は、ステップ1418から接続ノードA1424を介してステップ1426へ進む。
ステップ1420において、無線端末は、受信したならビーコン信号を監視し、復元しかつ処理する。いくつかの実施形態において、いくつかの第4の時間期間は、ビーコン信号を運び、一方、いくつかの第4の時間期間は、基地局接続点送信機による意図的なダウンリンク・トーン・ブロック・ヌルに対応する。動作は、ステップ1420からステップ1442へ進む。
ステップ1422において、無線端末は、ユーザ・データを含むOFDMシンボルを復元しかつ処理する。ステップ1422は、サブステップ1423を含む。サブステップ1423において、無線端末は、論理チャネル・トーンを物理チャネル・トーンへマッピングするためにトーン・ホッピング式を使用し、トーン・ホッピング式は、第1の時間期間の間に使用されたトーン・サブセット・ホッピング・シーケンス式とは異なる。様々な実施形態において、サブステップ1423のホッピング関数は、セルID情報1408およびセクタID情報1410の少なくとも1つを入力として使用する。動作は、ステップ1422からステップ1442へ進む。
ステップ1426において、無線端末は、ストリップ・シンボルを復元しかつ処理する。ステップ1426は、サブステップ1428、1430、1432、1434、1436、および1438を含む。サブステップ1428において、無線端末は、第3の時間期間内の第1の時間期間インデクス、例えば値k1429を決定する。動作は、サブステップ1428からサブステップ1430へ進む。
サブステップ1430において、無線端末は、第3の時間期間内の第1の時間期間インデクス1429、決定されたセル識別子情報1408、および決定されたセクタ識別子情報1410の関数として、第1の時間期間トーン・サブセット・インデクス1431を決定する。例えば、サブステップ1430において、フローチャート1200および第1の時間期間についての基地局1300に関して前述された同一のトーン・サブセット・ホッピング関数が、使用されることができる。動作は、サブステップ1430からサブステップ1432へ進む。サブステップ1432において、無線端末は、ヌル・トーンのサブセットおよび非ヌル・トーンのサブセットを決定するために、決定された第1の時間期間トーン・サブセット・インデクス値1431、およびトーン・サブセット・マッピング情報に対する格納された第1の時間期間トーン・サブセット・インデクス1433を使用する。1つの典型的な実施形態において、マッピング情報1433は、図10の表1000の情報を含むことができる。動作は、サブステップ1432からサブステップ1434へ進む。
サブステップ1434において、無線端末は、ストリップ・シンボルの非ヌル・トーンの識別されたサブセットによって搬送される変調シンボル値を復元する。動作は、サブステップ1434からサブステップ1436へ進む。サブステップ1436において、無線端末は、復元された変調シンボル値によって搬送される同報通信制御データを復元する。動作は、サブステップ1436からサブステップ1438へ進む。サブステップ1438において、無線端末は、基地局接続点送信機が、接続点のトーン・サブセット・ホッピング割り当てシーケンスに従って、第1の時間期間の間に決定されたヌル・トーン・サブセットのトーンで送信することを止める知識を使用して、チャネル推定を実行する。様々な実施形態において、サブステップ1434、1436、および1438の動作は、異なる順番で実行され、かつ/または1つ以上のサブステップ1434、1436、1438は、共同で実行される。例えば、チャネル推定は、同報通信制御データ復元に先行することができる。動作は、サブステップ1426から接続ノードB1440を介してステップ1442へ進む。
ステップ1442において、無線端末は、第3の時間期間内のシンボル時間インデクスを更新する。ステップ1442への経路に応じて、いくつの実施形態において、インデクス更新量は異なる。例えば、1つの実施形態において、第4の時間期間は、2個の連続するOFDMシンボル送信時間期間を占め、第2の時間期間は、112個の連続するOFDMシンボル送信時間期間を占め、かつ第1の時間期間は、単一のOFDMシンボル送信時間期間を占める。ステップ1442の更新は、第3の時間期間が、例えば変調動作を使用して完了したとき、第3の期間インデクスが再開始することも考慮する。いくつかの実施形態において、第1の時間期間トーン・サブセット・インデクス値kは、新たな第3の時間期間、例えば新たなウルトラスロットの始まりで再設定され、例えば0である。
動作は、ステップ1442からステップ1418へ進み、ステップ1418で、無線端末は、第3の時間期間内の現在のシンボル時間インデクスが、第1、第2、または第4の時間期間に対応するか否かを決定する。
図15は、様々な実施形態に従って実施される典型的な無線端末1500の図である。典型的な無線端末1500は、図14のフローチャート1400の方法を実施することができる。典型的な無線端末1500は、様々な要素がデータおよび情報を交換することができるバス1510を介してともに結合された受信機モジュール1502、送信機モジュール1504、プロセッサ1506、I/Oデバイス1507、およびメモリ1508を含む。メモリ1508は、ルーチン1512およびデータ/情報1514を含む。プロセッサ1506、例えばCPUは、無線端末の動作を制御しかつ方法を実施するために、ルーチン1512を実行しかつメモリ1508内のデータ/情報1514を使用する。
受信機モジュール1502、例えばOFDM受信機は、それを介して無線端末1500が基地局接続点送信機からダウンリンク信号を受信する受信アンテナ1503に結合され、ダウンリンク信号は、ビーコン信号、ストリップ・シンボル信号、およびユーザ・データ信号を含む。送信機モジュール1504、例えばOFDM送信機は、それを介して無線端末1500が基地局セクタ接続点へアップリンク信号を送信する送信アンテナ1505に結合される。いくつかの実施形態において、同一のアンテナが、受信機モジュール1502および送信機モジュール1504について、例えば二重モジュールとともに使用される。
I/Oデバイス1507は、例えば、マイクロホン、キーボード、キーパッド、マウス、スイッチ、カメラ、スピーカ、ディスプレイなどを含む。I/Oデバイス1507は、無線端末1500のユーザが、データ/情報を入力し、出力データ/情報にアクセスし、アプリケーションを制御し、かつ少なくともいくつかの機能を開始かつ/または制御し、例えば通信セッションを開始することを可能にする。
ルーチン1512は、通信ルーチン1516および無線端末制御ルーチン1518を含む。通信ルーチンは、無線端末によって使用される様々な通信プロコトルを実施する。無線端末制御ルーチン1518は、受信機制御モジュール1520、送信機制御モジュール1522、I/Oデバイス制御モジュール1524、タイミング同期化決定モジュール1526、タイミング同期化調整モジュール1528、時間期間のタイプ決定モジュール1530、第1の時間期間処理モジュール1534、第4の時間期間処理モジュール1548、第2の時間期間処理モジュール1552、接続点識別モジュール1556、およびタイミングモジュール1558を含む。
受信機制御モジュール1520は、受信機モジュール1502の様々な機能、例えばサーチ・キャリア・サーチ・ルーチンを制御し、かつ受信機をダウンリンク・キャリア周波数に調整することを制御する。送信機制御モジュール1522は、送信機モジュール1504の機能を制御し、例えばモジュール1522は、アップリンク・キャリア設定、アップリンク周波数およびタイミング調整、アップリンクOFDMシンボル構成および送信、および送信機パワー・レベルを制御する。I/Oデバイス制御モジュール1524は、I/Oデバイス1507の動作を制御する。
タイミング同期化決定モジュール1526は、反復第3の時間期間、例えば基地局接続点送信機のウルトラスロットに対するタイミング同期化情報を決定する。例えば、タイミング同期化決定モジュール15256は、決定されたタイミング同期化情報に対して1つ以上の受信されたビーコン信号を使用する。タイミング同期化調整モジュール1528は、モジュール1526からの決定されたタイミング同期化情報を使用して、ダウンリンク受信を同期化する。例えば、タイミング同期化調整モジュール1528は、ストリップ・シンボル信号が復元されることができるように、ダウンリンク受信を同期化し、ストリップ・シンボル信号は、同一の基地局接続点から受信され、同期化情報が得られる受信されたビーコン信号に対応する。
時間期間のタイプ決定モジュール1530は、基地局接続点によって使用される反復ダウンリンク・タイミング構造内の様々な異なるタイプの時間期間、例えば、その間に同報通信制御データを運ぶストリップ・シンボルが通信される第1のタイプの時間期間、その間にビーコン信号およびダウンリンク・トーン・ブロック・ヌルの一方が通信される第4のタイプの時間期間、およびその間にユーザ・データを含む複数のOFDMシンボルが通信される第2のタイプの時間期間を識別する。時間期間のタイプ決定モジュール1530は、より大きな反復第3の時間期間内の第1の時間期間を識別する第1の時間期間識別モジュール1532を含み、例えば、モジュール1532は、ウルトラスロット内のストリップ・シンボル時間期間を識別する。
第1の時間期間処理モジュール1534は、第1の時間期間の間に通信される受信されたストリップ・シンボルを復元しかつ処理する。ストリップ・シンボルを送信する基地局セクタ接続点は、第1の時間期間、ストリップ・シンボル時間期間の間、対応するトーン・サブセット・ホッピング・シーケンスを使用するが、第3の時間期間内の他の時間期間、例えばビーコン・シグナリング時間期間およびユーザ・データ・シグナリング時間期間の間、そのトーン・サブセット・ホッピング・シーケンスを使用しない。無線通信システムは、局所的な領域内の異なる基地局セクタ接続点送信機に、異なるトーン・サブセット・ホッピング・シーケンスを使用する。第1の時間期間処理モジュール1534は、第1の時間期間インデクス決定モジュール1536、第1の時間期間トーン・サブセット・インデクス決定モジュール1538、ヌル・サブセット/非ヌル・サブセット決定モジュール1540、変調シンボル復元モジュール1542、制御データ復元モジュール1544、およびチャネル推定モジュール1546を含む。
第1の時間期間決定モジュール1536は、第3の時間期間で処理される第1の時間期間のインデクスを決定する。例えば、いくつかの実施形態において、各第3の時間期間、例えばウルトラスロットは、180個のインデクスされた第1の時間期間、ストリップ・シンボル時間期間を含み、kは、範囲0、・・・、179内のインデクス値である。
第1の時間期間トーン・サブセット・インデクス決定モジュール1538は、第3の時間期間内の識別された第1の時間期間、例えばモジュール1536からのインデクス値、セル識別子情報、およびセクタ識別子情報の関数として、第1の時間期間トーン・サブセット・インデクスを決定する。例えば、処理される受信されたストリップ・シンボルを送信した基地局接続点に対応するセルおよびセクタ識別子情報は、いくつかの実施形態において、同一の基地局接続点からビーコン信号を介して通信される情報から復元される。第1の時間期間トーン・サブセット・インデクス決定モジュール1538は、いくつかの実施形態において、例えば図12、図13、または図14に関して前述されたトーン・サブセット・ホッピング関数を使用する。1つの典型的な実施形態において、第1の時間期間トーン・サブセット・インデクス決定モジュール1538は、図10の表1000の97個のインデクスの1つを決定する。
ヌル・サブセット/非ヌル・サブセット・モジュール1540は、モジュール1538によって決定された第1の時間期間トーン・サブセット・インデクス、およびトーン・サブセット・マッピング情報に対する格納された第1の時間期間トーン・サブセット・インデクスを使用して、ヌル・トーンのサブセットおよび非ヌル・トーンのサブセットを決定する。変調シンボル復元モジュール1542は、ストリップ・シンボルの非ヌル・トーンによって搬送される変調シンボル値を復元する。制御データ復元モジュール1544は、モジュール1542から復元された変調シンボル値によって搬送される同報通信制御データを復元する。チャネル推定モジュール1546は、基地局接続点送信機が、接続点のトーン・サブセット・ホッピング割り当てシーケンスに従って、第1の時間期間の間に決定されたヌル・トーン・サブセットのトーンで送信することを止める知識を使用して、チャネル推定を実行する。
第4の時間期間処理モジュール1548は、第4の時間期間の間に受信する信号、例えばビーコン信号および意図的なダウンリンク・トーン・ブロック・ヌルを処理する。第4の時間期間処理モジュール1548は、ビーコン・モジュール1550を含み、ビーコン・モジュール1550は、受信したビーコン信号を処理する、例えばビーコン・トーンを識別し、ビーコン・トーンのシーケンスを識別し、かつ/または受信したビーコン信号に対応するセルおよび/またはセクタ識別子情報を決定する。接続点識別情報モジュール1556は、対象の接続点、例えば無線端末が接続を求めまたは現在接続される接続点に対応する識別情報を得るかつ/または決定する。いくつかの実施形態において、無線端末は、ビーコン信号、例えばスロープ値およびセクタ・インデクス値を介して接続された、セルおよび/またはセクタ識別子情報を受信することができる。接続点情報モジュール1556は、いくつかの実施形態において、そのような情報をさらに処理し、例えば、第1の時間期間トーン・サブセット・インデクス決定モジュール1538によって使用されるスロープ・インデクス値およびセクタ・タイプ値を得る。
第2の時間期間処理モジュール1552は、第2の時間期間の間にユーザ・データを含むOFDMシンボルを受信しかつ処理し、第2の時間期間は、第3の時間期間内にあり、第2の時間期間は、第1の時間期間の持続期間の少なくとも10倍の持続期間を有する。第2の時間期間処理モジュール1552は、トーン・ホッピング・モジュール1554を含む。トーン・ホッピング・モジュール1552は、トーン・ホッピングを決定するために、物理トーン・ホッピング関数に対する論理チャネル・トーンならびにセルおよび/またはセクタ識別子情報を使用する。第2の時間期間の間にモジュール1554によって使用されるトーン・ホッピング関数は、第1の時間期間の間に使用されるトーン・サブセット・ホッピング関数とは異なる式を使用する。
タイミングモジュール1558は、無線端末1500に関するシンボル・タイミングを維持しかつ更新し、例えば第3の時間期間内のシンボル時間インデクスを更新する。1つの典型的な実施形態において、第1の時間期間は、1個のOFDMシンボル送信時間期間の持続期間を有し、第4の時間期間は、2個のOFDMシンボル送信時間期間の持続期間を有し、かつ第2の時間期間は、112個のOFDMシンボル送信時間期間の持続期間を有する。
データ/情報1514は、ダウンリンク・トーン・クロック情報1560、タイミング構造情報1562、トーン・パワー・レベル情報1564、第1の期間トーン・サブセット・ホッピング式情報1566、第2の期間トーン・ホッピング情報1568、第1の期間トーン・サブセット・インデクス・マッピング情報1570、タイミング同期化情報1572、基地局セル識別子情報1574、基地局セクタ識別子情報1576、反復タイミング構造内の現在の時間情報1578、ウルトラスロット内のビーコン・インデクス、例えばL値1580、ビーコンスロット内の第1の時間期間ストリップ・シンボル・インデクス、例えばm値1582、第1の時間期間ストリップ・シンボル・インデクス、例えばk値1584、現在の第1の時間間隔に関して決定されたトーン・サブセット・インデクス1586、復元されたストリップ・シンボル変調シンボル情報1588、第1の期間シンボルからの制御データ1590、決定されたチャネル推定1592、およびユーザ・データ1594を含む。ダウンリンク・トーン・ブロック情報1560は、1つ以上のダウンリンク・トーン・ブロック、例えば、キャリア周波数、トーン・ブロック内のトーンの数、トーンの周波数などを含む通信システムで使用される113個のOFDMトーンのダウンリンク・トーン・ブロックに対応する情報を含む。タイミング構造情報1562は、OFDMシンボル送信時間期間情報を含む反復ダウンリンク・タイミング構造の情報、およびOFDMシンボル送信時間期間、例えばウルトラスロットなどの第3の時間期間、ストリップ・シンボル時間期間などの第1の時間期間、ユーザ・データ・シグナリング時間期間などの第2の時間期間、およびビーコン信号および意図的なダウンリンク・トーン・ブロック・ヌルの一方のために確保された期間などの第4の時間期間のグループ分けに関連する情報を含む。トーン・パワー・レベル情報1564は、様々なタイプの信号に関連する基地局接続点送信パワー・レベル情報、例えばビーコン情報、ストリップ・シンボル同報通信信号、パイロット・チャネル、トラフィック・チャネル・ユーザ・データ信号などを含む。
第1のトーン期間トーン・サブセット・ホッピング式情報1566は、第1の時間期間トーン・サブセット・インデクス決定モジュール1538によって使用される、例えば第1の時間期間についてのホッピング式の実施における情報を含む。第2の期間トーン・ホッピング情報1568は、第2のトーンの間のダウンリンク・トーン・ホッピングの実行でトーン・ホッピング・モジュール1554によって使用される。第1の期間トーン・サブセット・インデクス・マッピング情報1570は、例えば図10の表1000の情報を含む。
タイミング同期化情報1572は、モジュール1526から決定されかつモジュール1528によって使用される情報、例えば、無線端末がダウンリンク・タイミング構造内のウルトラスロットの始まりに対して同期化することを可能にするオフセット情報を含む。基地局セル識別子情報1574は、ストリップ・シンボルが処理される基地局接続点に関連付けられるスロープ値および/またはスロープ・インデクス値などの情報を含む。いくつかの実施形態において、セル識別子情報は、モジュール1550および/またはモジュール1556から得られかつ/または導出される。基地局セクタ識別子情報1576は、ストリップ・シンボルが処理される基地局接続点に関連付けられるセクタ値および/またはセクタ・タイプ値などの情報を含む。いくつかの実施形態において、セクタ識別子情報1576は、モジュール1550および/またはモジュール1556から得られかつ/または導出される。基地局セル識別子情報1574および基地局セクタ識別子情報1576は、例えば制御入力として、第1の時間期間トーン・サブセット・インデクス決定モジュール1538およびトーン・ホッピング・モジュール1554によって使用される。
反復タイミング構造内の現在の時間情報1578は、その無線端末が、ダウンリンク信号を復元するためにそのダウンリンク・タイミング構造を同期化した基地局接続点送信機によって使用される反復ダウンリンク・タイミング構造内の現在の位置を識別する。ウルトラスロット内のビーコンスロット・インデクス1580、例えば範囲0、・・、17内の整数インデクス値Lは、ウルトラスロット内のどのビーコンスロットが現在の時間に対応するかを識別する。ビーコンスロット内の第1の時間期間ストリップ・シンボル1583、例えば範囲0、・・・、9内の整数値mは、時間が第1の時間期間に対応するとき、インデクスされたストリップ信号がビーコンスロット内の現在の時間に対応するかを識別する。第1の時間期間ストリップ・シンボル・インデクス1584、例えば整数値kは、ウルトラスロットの第1の時間期間の間のストリップ・シンボルに使用されるインデクス値を識別し、kは例えば範囲0、・・、179内の整数値であり、第1の時間間隔のウルトラスロット内の相対位置を識別する。いくつかの実施形態において、kは、第1の時間期間インデクス決定モジュール1536によって、値Lおよびmの関数として生成される。現在の第1の時間間隔に関して決定されたトーン・サブセット・インデクス1586は、基地局セル識別子1574、基地局セクタ識別子1576、および第1の時間期間ストリップ・シンボル・インデクス1584の関数である決定モジュール1538の結果である。
復元されたストリップ・シンボル変調シンボル情報1588は、変調シンボル復元モジュール1542によって復元された情報を含む。例えば、復元されたストリップ・シンボル変調シンボル情報1588は、所与の復元されたストリップ・シンボルに関して、ストリップ・シンボルによって搬送される55個または56個のQPSK復元された変調シンボルのセットに対応する情報を含む。第1の期間シンボルに関する制御データ1590は、基地局接続点からストリップ・シンボルの非ヌル・トーンで、第1の時間期間の間に変調シンボル同報通信から復元された制御データ/情報を含む。情報1590は、制御データ復元モジュール1544の出力である。決定されたチャネル推定1592は、チャネル推定モジュール1546からの出力であり、処理される第1の時間期間からのストリップ信号に少なくとも部分的に基づく。いくつかの実施形態において、チャネル推定1592は、ストリップ信号情報に完全に基づく。ユーザ・データ1366は、データ/情報、例えば音声、ビデオ、音響、テキスト、画像、ファイルなどを含み、データ/情報は、第2の時間期間の間にダウンリンク・トラフィック・チャネル・セグメントの変調シンボルを介して受信される。
図16は、様々な実施形態に従って情報を通信するためにトーンのブロックを使用する通信デバイス、例えば基地局を動作するモジュールを有する典型的な通信デバイスのブロック図である。モジュール1604は、第3の時間期間の間に通信されるべきヌル・トーン、非ヌル・トーン、および信号を決定し、かつ例えば繰り返す基準で信号を送信する。例えば、第3の時間期間は、通信デバイスによって使用される反復タイミング構造内のウルトラスロットであり得る。モジュール1604は、モジュール1606、1608、1610、1612、1614、1616、1618、1620、および1622を含む。
モジュール1606において、通信デバイスは、第3の時間期間内の現在のシンボル時間が、第1、第2、または第4の時間期間に対応するか否かを決定する。現在のシンボル時間期間が、第4の時間期間に対応するなら、動作は、モジュール1606からモジュール1608へ進む。現在のシンボル時間期間が、第1の時間期間に対応するなら、動作は、モジュール1606からモジュール1614へ進む。現在のシンボル時間期間が、第2の時間期間に対応するなら、動作は、モジュール1606からサブステップ1616へ進む。
モジュール1608において、通信デバイスは、ビーコン送信がトーン・ブロック内で送信されるようにスケジュールされるか否かを決定する。ビーコンが、現在のシンボル時間に対応してスケジュールされるなら、動作は、モジュール1608からモジュール1610へ進む。ビーコンが、現在のシンボル時間に対応してスケジュールされていないなら、動作は、サブステップ1608からモジュール1612へ進む。モジュール1610において、通信デバイスは、第4の反復時間期間の間、例えば、ビーコン信号およびトーン・ブロック・ヌルの1つのために確保された2つの連続するOFDMシンボル送信時間間隔の時間期間の間に、第2の反復時間期間の間に送信される任意のトーンより高いトーン信号当たりのエネルギ・レベルを有する狭帯域ビーコン・トーンを送信する。モジュール1612において、通信デバイスは、第4の反復時間期間の間、トーン・ブロックへの送信を止める。動作は、モジュール1610またはモジュール1612からモジュール1622へ進む。
いくつかの実施形態において、通信システム内の異なる基地局接続点は、例えばセルおよび/またはセクタ識別子の関数として、ビーコン信号を搬送するために第3の時間期間内で異なる第4の時間期間を使用した。例えば、1つの典型的な3個のセクタ実施形態において、第3の時間期間は、24個のインデクスされた第4の時間期間を含む。例えば、セクタ・タイプ0の接続点は、ビーコン信号を搬送するためにインデクス0、3、6、9、12、15、18、21を有する第4の時間間隔を使用し、かつトーン・ブロックに対してインデクス1、2、4、5、7、8、10、11、13、14、16、17、19、20、22、23を有する第4の時間期間の間に送信を止める。セクタ・タイプ1の接続点は、ビーコン信号を搬送するためにインデクス1、4、7、10、13、16、19、22を有する第4の時間間隔を使用し、かつトーン・ブロックに対してインデクス0、2、3、5、6、8、9、11、12、14、15、17、18、20、21、23を有する第4の時間期間の間に送信を止める。セクタ・タイプ2の接続点は、ビーコン信号を搬送するためにインデクス2、5、8、11、14、17、20、23を有する第4の時間間隔を使用し、かつトーン・ブロックに対してインデクス0、1、3、4、6、7、9、10、12、13、15、16、18、19、21、22を有する第4の時間期間の間に送信を止める。
モジュール1614において、第1の反復時間期間、例えば1個のOFDMシンボル時間間隔持続期間のストリップ・シンボル時間期間について、通信デバイスは、第1のトーン・ホッピング・シーケンスに従って、パワーが送信されるべきでないトーン・サブセット、および非ゼロ変調シンボルが送信されるべきであるトーン・サブセットを決定し、パワーが送信されるべきでない決定されたトーン・サブセットは、トーン・ブロック内のトーンの少なくとも30パーセントを含み、変調シンボルが送信されるべきである決定されたトーン・サブセットは、使用されるべき複数の所定のトーン・サブセットの1つである。
いくつかの実施形態において、第3の時間間隔における所与の第1の時間期間について、決定されたヌル・トーンのサブセットおよび非ヌル・トーンのサブセットの結合は、基地局接続点に関するトーン・ブロックトーンのセット、例えば基地局接続点に関するダウンリンク・トーン・ブロックトーンのセットである。図10は、ヌル・トーンの97個の異なるサブセットおよび非ヌル・トーンの97個の異なるサブセットに対応する典型的なトーン・サブセット情報を含む。ヌルおよび非ヌル・トーンの混合を使用することによって、信号が送信された第1の時間期間は、チャネル推定を実行するために受信機、例えば無線端末受信機によって使用されることができる。さらに、同報通信制御情報は、第1の時間期間の間に通信される非ヌル変調シンボルの値によって通信される。
第3の時間期間内の所与の第1の時間期間に対応するトーン・サブセットは、いくつかの実施形態において、通信デバイスの接続点に対応するセル、セクタ識別子、および/またはトーン・ブロック、およびタイミング構造内のOFDMシンボル時間の関数として決定される。例えば、隣接するセルおよびまたはセクタに対応する接続点は、同一のトーンのサブセットを使用して異なるトーン・ホッピング・シーケンスを使用する。図9は、典型的なトーン・ホッピング決定を記載する。
動作は、モジュール1614からモジュール1618へ進む。モジュール1618において、通信デバイスは、モジュール1614から決定されたトーン・サブセットに従ってOFDMシンボルを生成する。動作は、モジュール1618からモジュール1620へ進む。モジュール1620において、通信デバイスは、モジュール1218から生成されたOFDMシンボルを送信する。動作は、モジュール1220からモジュール1222へ進む。
モジュール1616において、通信デバイスは、第2の反復時間期間、例えばユーザ・データを搬送するために使用される112個の連続するOFDMシンボル時間間隔の間に、情報を送信するためにトーンのブロックを使用し、トーン・ブロックのトーンの少なくとも70パーセントが、第2の時間期間の間に非ゼロ変調シンボルを通信するために利用可能である。例えば、第2の時間期間、ダウンリンク・トラフィック・チャネル・セグメント信号は、いくつかの制御信号に加えて通信される。モジュール1616において、論理チャネル・トーンは、いくつかの実施形態において、第1の時間期間に適用可能なトーン・サブセット・ホッピングとは異なるトーン・ホッピング・スキームに従って、物理トーンにホッピングされる。いくつかのそのような実施形態において、第2の時間期間の間に適用可能なトーン・ホッピング、および第1の時間期間の間に適用可能なトーン・サブセット・ホッピングの両方は、ホッピング、例えばトーン・ホッピング、トーン・サブセット・ホッピングを決定するための入力として、セルおよび/またはセクタ識別子情報を利用する。例えば、異なる式は、同一の基地局セクタ接続点に関するホッピングに対して第1および第2の時間期間の間に使用される。動作は、モジュール1616からモジュール1622へ進む。
モジュール1622において、通信デバイスは、第3の時間期間内のシンボル時間インデクスを更新する。例えば、1つの実施形態において、動作が、モジュール1610または1622を介してモジュール1622へ進んだなら、インデクスは、2個のOFDMシンボル送信時間期間によって更新される。動作が、モジュール1614を介してモジュール1622へ進んだなら、インデクスは、1個のOFDMシンボル送信時間期間によって更新される。動作が、モジュール1616を介してモジュール1622へ進んだなら、インデクスは、112個のOFDMシンボル送信時間期間によって更新される。様々な実施形態において、更新は、インデクスが、第3の時間期間が完了したとき、次の連続する第3の時間期間、例えばウルトラスロットについて始まるように、変調計算を使用する。動作が、モジュール1622からモジュール1606へ進む。
様々な実施形態において、第2の反復時間期間は、第1の時間期間の持続期間の少なくとも10倍の持続期間を有する。いくつかの実施形態において、第2の時間期間は、第1の時間期間の持続期間の50倍より長い持続期間を有する。いくつかの実施形態において、第2の時間期間は、第1の時間期間の持続期間の100倍より長い持続期間を有する。いくつかの実施形態において、第2の時間期間が、ユーザ・データ送信期間に対応するので、第1および第2の時間期間と、ユーザ・データが通信されない第1および第4の時間期間などの時間期間のタイミング構造内位置との間の平衡は、ユーザの様相から途切れないユーザ・データ通信の達成、特に、例えば音声アプリケーションなどの小さいレイテンシを必要とするアプリケーションにおいて重要な考慮すべきことであり得る。いくつかの実施形態において、第4の時間期間は、同期化、例えばフレーム同期化を実行する無線端末によって使用されるビーコン信号を搬送するために利用されるので、典型的な第3の時間期間は、第4の時間期間で始まる。
様々な実施形態において、第1の時間期間について、第1のセットトーン・ホッピング・シーケンスは、複数の所定のトーン・サブセットのどの1つを使用するかを決定する。例えば、所与の基地局接続点についての反復タイミング構造内の所与の第1の時間期間に関する第1のトーン・セット・ホッピング・シーケンスは、図10の表1000の97個の列の1つに対応するトーン・サブセット情報を使用することを決定する。様々な実施形態において、無線通信システムにおける異なる隣接する基地局接続点は、異なる第1の時間期間トーン・サブセット・ホッピング・シーケンスを使用する。
様々な実施形態において、第1および第2の時間期間は、変調増分インデクスを使用してインデクスされた第1の時間期間内のOFDMシンボル送信時間期間を、所定の基準で繰り返す第3の時間期間内で生じ、第1のトーン・セット・ホッピング・シーケンスは、変調増分インデクスの関数である。例えば、典型的なウルトラスロットは、180個のインデクスされた第1の時間期間を含むことができるが、第1のトーン・ホッピング・シーケンスは、ウルトラスロット内の98番目の第1の時間期間で反復を開始する。
様々な実施形態において、ヌル・トーン・サブセットおよび非ヌル・トーン・サブセットの少なくとも1つに対応する所定のトーン・サブセットの数は、素数である。図10の実施例において、素数は97である。
1つの典型的な実施形態において、しばしばトーン・サブセット・ホッピング・シーケンスとも称されるトーン・サブセット割り当てシーケンスは、以下のように与えられる。
f(bssSlopeIndex,bssSectorType,k)=(bssSlopeIndex+1)/((bssSectorType*k+k2)は、ストリップ・シンボルkにおいて選択されるべきトーン・サブセットのインデクスを表し、ここで、各算術演算子(+,2,*,/)は、Nの領域で規定され、Nは素数であり、例えば、N=97である。
bssSlopeIndexは、セルスロープ値のインデクスであり、好ましくはセルの各セクタについて同一であり、隣接セルは、bssSlopeIndexに関して異なる値を有するべきである。パラメータbssSlopeIndexは、0,1,・・・,N1−1に等しく、ここで、N1≦Nである。例えば、1つの実施形態において、N1=96である。
bssSectorTypeは、セクタのインデクスである。例えば、セクタ・タイプTが、セット{0,1,・・・,5}、{0,1}または{0,1,2}にあると仮定し、所与の基地局における隣接セクタは、Tの異なる値を有するべきである。
fは、基地局のセクタにおける関数である。
kは、ストリップ・シンボル期間のインデクスであり、ここでk=L*10+mである。
mは、ビーコンスロット内のストリップ・シンボル・インデクスであり、例えば、mは、セット{0,1,・・・,9}内の値である。
Lは、ウルトラスロット内のビーコン・インデクスであり、例えばLは、セット{0,1,・・・,17}内の値である。
わずかに異なる形式で表現され、
k=L*10+m
temp0=bssSectorType*k+k*k
temp1=imod(temp0、N)
f(bssSlopeIndex、bssSectorType,k)=mod(temp1*(bssSlopeIndex+1),N)であり、
ここで、整数xおよびmに関して、モジュロ関数mod(x,m)は、mod(x,m)=x−m*floor(x/m)として定義され、ここで関数floor(x)は、x以下の最大の整数として定義され、整数xおよびmに関して、逆モジュロ関数imod(x,m)は、yに等しく、mod(x*y,m)が1に等しいなら1≦y≦mである。mod(x,m)がゼロであるなら、imod(x,m)は、0に設定される。
様々な実施形態において、第1のトーン・サブセット・ホッピング・シーケンスは、セル識別子、例えばスロープ値の関数である。様々な実施形態において、第1のトーン・ホッピング・シーケンスは、セクタ識別子値の関数でもある。
図17Aおよび図17Bの組み合わせからなる図17は、様々な実施形態に従って無線端末を動作するモジュールを有する典型的な無線端末のブロック図である。無線端末1700は、無線端末が、基地局接続点送信機から第4の時間期間の間にビーコン信号を受信するモジュール1704を含む。動作は、モジュール1704からモジュール1706へ進む。モジュール1706において、無線端末は、基地局接続点送信機から受信したビーコン信号に対応するセルおよび/またはセクタ識別子情報(1708、1710)を決定する。動作は、モジュール1706からモジュール1712へ進む。モジュール1712において、無線端末は、タイミング同期化情報を決定するために受信したビーコン信号を使用する。例えば、無線端末は、第3の時間期間、例えば反復ダウンリンク・タイミング構造におけるウルトラスロットの始まりを決定するように同期化情報を決定する。次に、モジュール1714において、無線端末は、無線端末のダウンリンク受信を基地局接続点送信機に同期化するために、モジュール1714から決定された同期化情報を使用する。動作は、モジュール1714からモジュール1716へ進む。
モジュール1716において、無線端末は、進行基準で基地局接続点送信機からダウンリンク信号を受信する。動作は、モジュール1716からモジュール1718へ進む。モジュール1718において、無線端末は、第3の時間期間内の現在のシンボル時間が、第1、第2、または第3の時間期間に対応するか否かを決定する。第3の時間期間内の現在のシンボル時間が、第4の時間期間に対応するなら、動作は、モジュール1718からモジュール1720へ進む。第3の時間期間内の現在のシンボル時間が、第2の時間期間に対応するなら、動作は、モジュール1718からモジュール1722へ進む。第3の時間期間内の現在のシンボル時間が、第1の時間期間に対応するなら、動作は、モジュール1718から接続ノードA1724を介してモジュール1726へ進む。
モジュール1720において、無線端末は、受信したならビーコン信号を監視し、復元しかつ処理する。いくつかの実施形態において、いくつかの第4の時間期間は、ビーコン信号を運び、一方、いくつかの第4の時間期間は、基地局接続点送信機による意図的なダウンリンク・トーン・ブロック・ヌルに対応する。動作は、モジュール1720からモジュール1742へ進む。
モジュール1722において、無線端末は、ユーザ・データを含むOFDMシンボルを復元しかつ処理する。モジュール1722は、モジュール1723を含む。モジュール1723において、無線端末は、論理チャネル・トーンを物理チャネル・トーンへマッピングするためにトーン・ホッピング式を使用し、トーン・ホッピング式は、第1の時間期間の間に使用されたトーン・サブセット・ホッピング・シーケンス式とは異なる。様々な実施形態において、モジュール1723のホッピング関数は、セルID情報1408およびセクタID情報1410の少なくとも1つを入力として使用する。動作は、モジュール1722からモジュール1742へ進む。
モジュール1726において、無線端末は、ストリップ・シンボルを復元しかつ処理する。モジュール1426は、モジュール1728、1730、1732、1734、1736、および1738を含む。モジュール1728において、無線端末は、第3の時間期間内の第1の時間期間インデクス、例えば値k1729を決定する。動作は、モジュール1728からモジュール1730へ進む。
モジュール1730において、無線端末は、第3の時間期間内の第1の時間期間インデクス1729、決定されたセル識別子情報1408、および決定されたセクタ識別子情報1410の関数として、第1の時間期間トーン・サブセット・インデクス1731を決定する。例えば、モジュール1730において、フローチャート1200および第1の時間期間についての基地局1300に関して前述された同一のトーン・サブセット・ホッピング関数が使用されうる。動作は、モジュール1730からモジュール1732へ進む。モジュール1732において、無線端末は、ヌル・トーンのサブセットおよび非ヌル・トーンのサブセットを決定するために、決定された第1の時間期間トーン・サブセット・インデクス値1731、およびトーン・サブセット・マッピング情報に対する格納された第1の時間期間トーン・サブセット・インデクス1733を使用する。1つの典型的な実施形態において、マッピング情報1733は、図10の表1000の情報を含むことができる。動作は、モジュール1732からサブステップ1734へ進む。
モジュール1734において、無線端末は、ストリップ・シンボルの非ヌル・トーンの識別されたサブセットによって搬送される変調シンボル値を復元する。動作は、モジュール1734からモジュール1736へ進む。モジュール1736において、無線端末は、復元された変調シンボル値によって搬送される同報通信制御データを復元する。動作は、モジュール1736からモジュール1738へ進む。モジュール1738において、無線端末は、基地局接続点送信機が、接続点のトーン・サブセット・ホッピング割り当てシーケンスに従って、第1の時間期間の間に決定されたヌル・トーン・サブセットのトーンで送信することを止める知識を使用して、チャネル推定を実行する。様々な実施形態において、モジュール1734、1736、および1738の動作は、異なる順番で実行され、かつ/または1つ以上のモジュール1734、1736、1738は、共同で実行される。例えば、チャネル推定は、同報通信制御データ復元に先行することができる。動作は、ステップ1726から接続ノードB1740を介してモジュール1742へ進む。
モジュール1742において、無線端末は、第3の時間期間内のシンボル時間インデクスを更新する。ステップ1742への経路に応じて、いくつの実施形態において、インデクス更新量は異なる。例えば、1つの典型的な実施形態において、第4の時間期間は、2個の連続するOFDMシンボル送信時間期間を占め、第2の時間期間は、112個の連続するOFDMシンボル送信時間期間を占め、かつ第1の時間期間は、単一のOFDMシンボル送信時間期間を占める。モジュール1742の更新は、第3の時間期間が、例えば変調動作を使用して完了したとき、第3の期間インデクスが再開始することも考慮する。いくつかの実施形態において、第1の時間期間トーン・サブセット・インデクス値kは、新たな第3の時間期間、例えば新たなウルトラスロットの始まりで例えば0に再設定される。
動作は、モジュール1742からモジュール1718へ進み、モジュール1718で、無線端末は、第3の時間期間内の現在のシンボル時間インデクスが、第1、第2、または第4の時間期間に対応するか否かを決定する。
図16および図17に関して記載された様々なモジュールは、より少ないモジュールに組み合わせられることができる。例えば、モジュール1610および1612は、単一のモジュールに含まれることができる。さらに、図16および図17に関して記載された様々なモジュールは、図2、図3、図9、図13、および図15で1つ以上のモジュールで表されることができる。
様々な実施形態において、受信されたストリップ・シンボルは、送信されたOFDMシンボルに対応するOFDMシンボルであり、ヌル・トーンのサブセットおよび非ヌル・トーンのサブセットを使用して、基地局接続点送信機によって送信され、ヌル・トーンのサブセットは、ダウンリンク・トーン・ブロックにおけるトーンの少なくとも30%である。いくつかのそのような実施形態において、非ヌル・トーンのサブセットは、複数の無線端末に向けられた同報通信制御情報を通信するために使用される。
様々な実施形態において、第2の反復時間期間の間に、ダウンリンク・トーンのブロック、例えば113個のトーンのダウンリンク・トーン・ブロックは、第2の時間期間の間に非ゼロ変調シンボルを通信するために使用可能であるダウンリンク・トーン・ブロックトーンの少なくとも70%である情報を送信するために使用される。いくつかの実施形態において、第2の時間期間は、第1の時間期間の持続期間の少なくとも10倍の持続期間を有する。1つの典型的な実施形態において、第1の時間期間は、1個のOFDMシンボル送信時間間隔の持続期間を有し、第2の時間期間は、112個のOFDMシンボル送信時間間隔の持続期間を有する。いくつかの実施形態において、タイミング構造は、複数、例えば2個または3個の第1の時間期間がともにグループに分けられるものである。いくつかの実施形態において、タイミング構造は、第1の時間期間の所定のグループ分けが、第4の時間期間、例えばビーコン信号が通信されることができる第4の時間期間と同じ持続期間を有するものである。
いくつかの実施形態の技術は、ソフトウェア、ハードウェア、および/またはソフトウェアとハードウェアとの組み合わせを使用して実施されることができる。いくつかの実施形態は、装置、例えば、モバイル端末、基地局、いくつかの実施形態を実施する通信システムなどのモバイル・ノードに向けられる。それは、方法、例えば、いくつかの実施形態に従って、モバイル・ノード、基地局、および/またはホストなどの通信システムを制御しかつ/または動作する方法にも向けられる。いくつかの実施形態は、いくつかの実施形態に従って1つ以上のステップを実施するために、機械を制御するための機械可読命令を含む、機械可読媒体、例えばROM、RAM、CD、ハードディスクなどにも向けられる。
様々な実施形態において、本明細書に記載されるノードは、いくつかの実施形態の1つ以上の方法に対応するステップ、例えば信号処理、メッセージ生成、および/または送信ステップを実行するために、1つ以上のモジュールを使用して実施される。したがって、いくつかの実施形態において、いくつかの実施形態の様々な特徴は、モジュールを使用して実施される。そのようなモジュールは、ソフトウェア、ハードウェア、またはソフトウェアとハードウェアとの組み合わせを使用して実施されることができる。上述された方法または方法ステップの多くは、例えば1つ以上のノードにおける上述された方法の全てまたは一部を実施するために、追加のハードウェアを有するまたは有さない機械、例えば汎用コンピュータを制御するために、メモリ・デバイス、例えばRAM、フロッピー(登録商標)ディスクなどの機械可読媒体に含まれるソフトウェアなどの機械実行可能な命令を使用して実施されることができる。したがって、とりわけ、いくつかの実施形態は、機械、例えばプロセッサおよび関連付けられるハードウェアに、上述の方法の1つ以上のステップを実行させる機械実行可能な命令を含む機械可読媒体に向けられる。
OFDMシステムに関連して記載されるが、いくつかの実施形態の方法および装置の少なくともいくつかは、多くの非OFDMおよび/または非セルラ・システムを含む広範な通信システムに適用可能である。
上述のいくつかの実施形態の方法および装置に対する多数のさらなる変形は、いくつかの実施形態の上記記載に鑑み当業者には明らかである。そのような変形は、いくつかの実施形態の範囲内であると考えられる。いくつかの実施形態の方法および装置は、CDMA、直交周波数分割多重化(OFDM)、および/またはアクセス・ノードとモバイル・ノードとの間の無線通信リンクを提供するために使用されることができる様々な他のタイプの通信技術であることができ、かつ様々な実施形態において様々な他のタイプの通信技術である。いくつかの実施形態において、アクセス・ノードは、OFDMおよび/またはCDMAを使用するモバイル・ノードを有する通信リンクを確立する基地局として実施される。様々な実施形態において、モバイル・ノードは、ノートブック・コンピュータ、携帯情報端末(PDA)、またはいくつかの実施形態の方法を実施するための受信機/送信機回路および論理および/またはルーチンを含む他の可搬デバイスである。
以下に、本願の出願時の特許請求の範囲に記載された発明を付記する。
[発明1]
情報を通信するために、ストリップ・シンボル・データのブロックを用いる方法であって、
ビーコン時間基準を識別することと、
前記ビーコン時間基準に関するオーバヘッド信号周期性を有する反復時間期間のオーバヘッド・セットを識別することと、
前記ビーコン時間基準に関するデータ・ペイロード周期性を有する反復時間期間のデータ・ペイロード・セットを識別することと、
前記反復時間期間のオーバヘッド・セットを、少なくとも、反復時間期間の固定ビット用途サブセットと、反復時間期間のフレキシブル・ビット用途サブセットとに分割することと、
前記反復時間期間の固定ビット用途サブセットと、前記反復時間期間のフレキシブル・ビット用途サブセットとに基づいて、データを、プロセッサまたは送信機に通信することと
を備える方法。
[発明2]
第1のタイプの固定ビット用途メッセージを生成することと、
第2のタイプの固定ビット用途メッセージを生成することと、
送信のために、前記第1のタイプの固定ビット用途メッセージの反復送信のための第1の期間を識別することと、
送信のために、前記第2のタイプの固定ビット用途メッセージの反復送信のための第2の期間を識別することと
を更に備える発明1に記載の方法。
[発明3]
前記第1のタイプの固定ビット用途メッセージは、ソフトウェア・バージョン、システム時間、アクセス優先度、負荷情報、キャリア・コンフィグレーション、セクタ・コンフィグレーション、および送信電力のうちの1つを備える発明2に記載の方法。
[発明4]
前記反復時間期間のフレキシブル・ビット用途サブセットのフレキシブル・ビット用途メッセージは、その他のキャリア負荷メッセージを備える発明1に記載の方法。
[発明5]
前記反復時間期間のフレキシブル・ビット用途サブセットのフレキシブル・ビット用途メッセージは、その他のセクタ負荷メッセージを備える発明1に記載の方法。
[発明6]
通信デバイスであって、
格納された送信機制御情報を含むメモリと、
情報を通信するためにトーンのブロックを用いる通信モジュールと、
ビーコン時間期間を識別し、前記ビーコン時間期間に関するオーバヘッド信号周期性を有する反復時間期間のオーバヘッド・セットを識別し、前記ビーコン時間期間に関するデータ・ペイロード周期性を有する反復時間期間のデータ・ペイロード・セットを識別し、前記反復時間期間のオーバヘッド・セットを、反復時間期間の固定ビット用途サブセットと、反復時間期間のフレキシブル・ビット用途サブセットとに分割するように構成された決定モジュールと、
前記反復時間期間の固定ビット用途サブセットと、前記反復時間期間のフレキシブル・ビット用途サブセットとの間に送信する送信機と
を備える通信デバイス。
[発明7]
前記決定モジュールは、
第1のタイプの固定ビット用途メッセージを生成し、
第2のタイプの固定ビット用途メッセージを生成し、
送信のために、前記第1のタイプの固定ビット用途メッセージの反復送信のための第1の期間を識別し、
送信のために、前記第2のタイプの固定ビット用途メッセージの反復送信のための第2の期間を識別するように構成された発明6に記載の通信デバイス。
[発明8]
前記第1のタイプの固定ビット用途メッセージは、ソフトウェア・バージョン、システム時間、アクセス優先度、負荷情報、キャリア・コンフィグレーション、セクタ・コンフィグレーション、および送信電力のうちの1つを備える発明7に記載の通信デバイス。
[発明9]
前記反復時間期間のフレキシブル・ビット用途サブセットのフレキシブル・ビット用途メッセージは、その他のキャリア負荷メッセージを備える発明6に記載の通信デバイス。
[発明10]
前記反復時間期間のフレキシブル・ビット用途サブセットのフレキシブル・ビット用途メッセージは、その他のセクタ負荷メッセージを備える発明6に記載の通信デバイス。
[発明11]
情報を通信するためにトーンのブロックを用いるように動作可能な通信デバイスであって、
ビーコン時間期間を識別する手段と、
前記ビーコン時間期間に関するオーバヘッド信号周期性を有する反復時間期間のオーバヘッド・セットを識別する手段と、
前記ビーコン時間期間に関するデータ・ペイロード周期性を有する反復時間期間のデータ・ペイロード・セットを識別する手段と、
前記反復時間期間のオーバヘッド・セットを、反復時間期間の固定ビット用途サブセットと、反復時間期間のフレキシブル・ビット用途サブセットとに分割する手段と、
前記反復時間期間の固定ビット用途サブセットと、前記反復時間期間のフレキシブル・ビット用途サブセットとに基づいて、データを、プロセッサまたは送信機に通信する手段と
を備える通信デバイス。
[発明12]
第1のタイプの固定ビット用途メッセージを生成する手段と、
第2のタイプの固定ビット用途メッセージを生成する手段と、
送信のために、前記第1のタイプの固定ビット用途メッセージの反復送信のための第1の期間を識別する手段と、
送信のために、前記第2のタイプの固定ビット用途メッセージの反復送信のための第2の期間を識別する手段と
を更に備える発明11に記載の通信デバイス。
[発明13]
前記第1のタイプの固定ビット用途メッセージは、ソフトウェア・バージョン、システム時間、アクセス優先度、負荷情報、キャリア・コンフィグレーション、セクタ・コンフィグレーション、および送信電力のうちの1つを備える発明12に記載の通信デバイス。
[発明14]
前記反復時間期間のフレキシブル・ビット用途サブセットのフレキシブル・ビット用途メッセージは、その他のキャリア負荷メッセージを備える発明11に記載の通信デバイス。
[発明15]
前記反復時間期間のフレキシブル・ビット用途サブセットのフレキシブル・ビット用途メッセージは、その他のセクタ負荷メッセージを備える発明11に記載の通信デバイス。
[発明16]
情報を通信するためにトーンのブロックを用いる格納された命令群を有する機械読取可能媒体であって、前記命令群は、
ビーコン時間期間を識別し、
前記ビーコン時間期間に関するオーバヘッド信号周期性を有する反復時間期間のオーバヘッド・セットを識別し、
前記ビーコン時間期間に関するデータ・ペイロード周期性を有する反復時間期間のデータ・ペイロード・セットを識別し、
前記反復時間期間のオーバヘッド・セットを、反復時間期間の固定ビット用途サブセットと、反復時間期間のフレキシブル・ビット用途サブセットとに分割する
ための各命令を備える機械読取可能媒体。
[発明17]
前記命令群は更に、
第1のタイプの固定ビット用途メッセージを生成し、
第2のタイプの固定ビット用途メッセージを生成し、
送信のために、前記第1のタイプの固定ビット用途メッセージの反復送信のための第1の期間を識別し、
送信のために、前記第2のタイプの固定ビット用途メッセージの反復送信のための第2の期間を識別する
ための各命令を備える発明16に記載の機械読取可能媒体。
[発明18]
前記第1のタイプの固定ビット用途メッセージは、ソフトウェア・バージョン、システム時間、アクセス優先度、負荷情報、キャリア・コンフィグレーション、セクタ・コンフィグレーション、および送信電力のうちの1つを備える発明17に記載の機械読取可能媒体。
[発明19]
前記反復時間期間のフレキシブル・ビット用途サブセットのフレキシブル・ビット用途メッセージは、その他のキャリア負荷メッセージを備える発明16に記載の機械読取可能媒体。
[発明20]
前記反復時間期間のフレキシブル・ビット用途サブセットのフレキシブル・ビット用途メッセージは、その他のセクタ負荷メッセージを備える発明16に記載の機械読取可能媒体。
[発明21]
情報を通信するためにトーンのブロックを用いる無線通信システムにおいて動作可能な装置であって、
格納された送信機制御情報を含むメモリと、
ビーコン時間期間を識別し、前記ビーコン時間期間に関するオーバヘッド信号周期性を有する反復時間期間のオーバヘッド・セットを識別し、前記ビーコン時間期間に関するデータ・ペイロード周期性を有する反復時間期間のデータ・ペイロード・セットを識別し、前記反復時間期間のオーバヘッド・セットを、反復時間期間の固定ビット用途サブセットと、反復時間期間のフレキシブル・ビット用途サブセットとに分割するように構成されたプロセッサと
を備える装置。
[発明22]
前記プロセッサは更に、
第1のタイプの固定ビット用途メッセージを生成し、
第2のタイプの固定ビット用途メッセージを生成し、
送信のために、前記第1のタイプの固定ビット用途メッセージの反復送信のための第1の期間を識別し、
送信のために、前記第2のタイプの固定ビット用途メッセージの反復送信のための第2の期間を識別する
ように構成された発明21に記載の装置。
[発明23]
前記第1のタイプの固定ビット用途メッセージは、ソフトウェア・バージョン、システム時間、アクセス優先度、負荷情報、キャリア・コンフィグレーション、セクタ・コンフィグレーション、および送信電力のうちの1つを備える発明22に記載の装置。
[発明24]
前記反復時間期間のフレキシブル・ビット用途サブセットのフレキシブル・ビット用途メッセージは、その他のキャリア負荷メッセージを備える発明22に記載の装置。
[発明25]
前記反復時間期間のフレキシブル・ビット用途サブセットのフレキシブル・ビット用途メッセージは、その他のセクタ負荷メッセージを備える発明21に記載の装置。