JP5721362B2 - Vacuum processing apparatus and plasma processing method - Google Patents

Vacuum processing apparatus and plasma processing method Download PDF

Info

Publication number
JP5721362B2
JP5721362B2 JP2010178194A JP2010178194A JP5721362B2 JP 5721362 B2 JP5721362 B2 JP 5721362B2 JP 2010178194 A JP2010178194 A JP 2010178194A JP 2010178194 A JP2010178194 A JP 2010178194A JP 5721362 B2 JP5721362 B2 JP 5721362B2
Authority
JP
Japan
Prior art keywords
ridge
electrode
electrodes
mother gas
discharge chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010178194A
Other languages
Japanese (ja)
Other versions
JP2012036451A (en
JP2012036451A5 (en
Inventor
禎子 中尾
禎子 中尾
笹川 英四郎
英四郎 笹川
竹内 良昭
良昭 竹内
宮園 直之
直之 宮園
大坪 栄一郎
栄一郎 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2010178194A priority Critical patent/JP5721362B2/en
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to EP11814348.6A priority patent/EP2602356A1/en
Priority to US13/703,694 priority patent/US20130084408A1/en
Priority to CN201180030847.9A priority patent/CN102959125B/en
Priority to PCT/JP2011/060625 priority patent/WO2012017717A1/en
Priority to TW100118133A priority patent/TWI442458B/en
Publication of JP2012036451A publication Critical patent/JP2012036451A/en
Publication of JP2012036451A5 publication Critical patent/JP2012036451A5/ja
Application granted granted Critical
Publication of JP5721362B2 publication Critical patent/JP5721362B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Plasma Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、真空処理装置に関し、特にプラズマを用いて基板に処理を行う真空処理装置およびプラズマ処理方法に関する。   The present invention relates to a vacuum processing apparatus, and more particularly to a vacuum processing apparatus and a plasma processing method for processing a substrate using plasma.

一般的に、薄膜太陽電池の生産性を向上させるためには、高品質なシリコン薄膜を、高速に、かつ、大面積で製膜することが重要である。このような高速かつ大面積な製膜を行う方法としては、プラズマCVD(化学気相成長)法による製膜方法が知られている。   Generally, in order to improve the productivity of a thin film solar cell, it is important to form a high-quality silicon thin film at a high speed and in a large area. As a method for performing such high-speed and large-area film formation, a film formation method by plasma CVD (chemical vapor deposition) is known.

プラズマCVD法による製膜を行うためには、プラズマを発生させるプラズマ生成装置(真空処理装置)が必要であり、効率良くプラズマを発生させるプラズマ生成装置として、例えば特許文献1に開示されているリッジ導波管を利用したプラズマ生成装置が知られている。この種のプラズマ生成装置は、同文献1の図10に示されるように、高周波電源(RF電源)を強い電界に変換させる左右一対の変換器(分配室)と、これらの変換器の間に接続される放電室(有効空間)とを備えて構成されている。   In order to perform film formation by the plasma CVD method, a plasma generation apparatus (vacuum processing apparatus) that generates plasma is necessary. As a plasma generation apparatus that generates plasma efficiently, for example, a ridge disclosed in Patent Document 1 A plasma generating apparatus using a waveguide is known. As shown in FIG. 10 of the document 1, this type of plasma generation apparatus includes a pair of left and right converters (distribution chambers) that convert a high-frequency power source (RF power source) into a strong electric field, and these converters. A discharge chamber (effective space) to be connected is provided.

放電室の内部には、互いに対向する上下一対の平面状のリッジ電極が設けられており、この間にプラズマが発生する。したがって、ガラス基板等に製膜処理を施す場合には、このようなリッジ電極の間に基板を設置して製膜処理を施すことが考えられる。具体的には、上下のリッジ電極が水平になるように装置全体を設置し、上下の電極の間に基板を搬入して、この基板を下側のリッジ電極の上面に載置する。そして、放電室の内部を真空状態に近づけると同時に、製膜材料となるガスを供給し、リッジ電極の間にプラズマを発生させると、基板に膜等が形成される。   A pair of upper and lower planar ridge electrodes facing each other are provided inside the discharge chamber, and plasma is generated therebetween. Therefore, when a film forming process is performed on a glass substrate or the like, it is conceivable to perform the film forming process by installing a substrate between such ridge electrodes. Specifically, the entire apparatus is installed so that the upper and lower ridge electrodes are horizontal, a substrate is loaded between the upper and lower electrodes, and this substrate is placed on the upper surface of the lower ridge electrode. Then, when the inside of the discharge chamber is brought close to a vacuum state, and at the same time, a gas as a film forming material is supplied to generate plasma between the ridge electrodes, a film or the like is formed on the substrate.

特表平4−504640号公報Japanese National Patent Publication No. 4-504640

このようなリッジ導波管を利用したプラズマ生成装置では、リッジ導波管に対して、横方向からマイクロ波電力を供給する構造になっていた。即ち、リッジ導波管に沿った長手方向における電界強度分布は分配室と称されるリッジ導波管に併設された部分および分配室からリッジ導波管にマイクロ波を供給するための結合穴の構成により定まる。そのため、リッジ導波管と分配室は同じ長さが必要であり、かつ分配室や結合穴における取りうる構成が制限されると、電界強度分布の均一性も制限されることからプラズマの均一化が困難になるという問題があった(特許文献1参照)。   Such a plasma generation apparatus using a ridge waveguide has a structure in which microwave power is supplied from the lateral direction to the ridge waveguide. That is, the electric field intensity distribution in the longitudinal direction along the ridge waveguide is a part of the ridge waveguide called a distribution chamber and a coupling hole for supplying microwaves from the distribution chamber to the ridge waveguide. It depends on the configuration. For this reason, the ridge waveguide and the distribution chamber must have the same length, and if the possible arrangements in the distribution chamber and the coupling hole are limited, the uniformity of the electric field strength distribution is also limited, so that the plasma is uniformized. There is a problem that it becomes difficult (see Patent Document 1).

さらに、リッジ導波管を利用したプラズマ生成装置において、基板に製膜処理を施す場合は、必要な膜質を得る製膜条件を整えるために、基板が載置される下側のリッジ電極を予熱する必要がある。また、プラズマ発生時には、プラズマのエネルギーによって上下のリッジ電極が加熱される。このため、基板の板厚方向に生じる熱流束により基板の表裏面に温度差が生じ、リッジ電極および基板がそれぞれ反り等の熱変形を起こしやすくなる。リッジ電極と基板のいずれか一方でも熱変形を起こせばリッジ電極同士の間隔およびリッジ電極と基板との間隔が不均等になり、均一なプラズマ特性が得られなくなって、結果として高品質で均一な製膜処理を行うことができなくなる。この問題のため、特に面積が1m以上、さらには2m級の大型基板においては、プラズマCVD法による製膜処理を施すのが困難であり、リッジ導波管による製膜処理の実用化に向けて解決が望まれていた。 Furthermore, in a plasma generator using a ridge waveguide, when a film is formed on the substrate, the lower ridge electrode on which the substrate is placed is preheated in order to adjust the film forming conditions for obtaining the required film quality. There is a need to. When plasma is generated, the upper and lower ridge electrodes are heated by the plasma energy. For this reason, a temperature difference occurs between the front and back surfaces of the substrate due to the heat flux generated in the thickness direction of the substrate, and the ridge electrode and the substrate are liable to undergo thermal deformation such as warpage. If either one of the ridge electrode and the substrate is thermally deformed, the distance between the ridge electrodes and the distance between the ridge electrode and the substrate become uneven, and uniform plasma characteristics cannot be obtained. The film forming process cannot be performed. Because of this problem, it is difficult to perform film forming processing by the plasma CVD method particularly for large substrates having an area of 1 m 2 or more, and even 2 m 2 class. A solution was desired.

本発明は、上記の課題を解決するためになされたものであって、リッジ導波管を利用したリッジ電極間でプラズマを発生させて基板にプラズマ処理を施す真空処理装置において、リッジ電極および基板の熱変形を抑制し、大型の基板にも安定したプラズマ処理が行える真空処理装置およびプラズマ処理方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and is a vacuum processing apparatus for generating plasma between ridge electrodes using a ridge waveguide to perform plasma processing on a substrate. An object of the present invention is to provide a vacuum processing apparatus and a plasma processing method capable of suppressing thermal deformation of the substrate and performing stable plasma processing even on a large substrate.

上記目的を達成するために、本発明は、以下の手段を提供する。
即ち、本発明に係る真空処理装置は、平板状に形成されて互いに平行に対向配置され、その間にプラズマが生成される一方および他方のリッジ電極を有するリッジ導波管からなる放電室と、前記放電室の両端に隣接して配置され、互いに平行に対向配置された一対のリッジ部を有するリッジ導波管からなり、高周波電源から供給された高周波電力を方形導波管の基本伝送モードに変換して前記放電室に伝送し、前記一方および他方のリッジ電極の間にプラズマを発生させる一対の変換器と、前記他方のリッジ電極の外面側に間隔を空けて平行に設置されて、プラズマ処理が施される基板がセットされ、該基板の温度を制御する均熱温調器と、前記一方のリッジ電極の外面側に設置され、該一方のリッジ電極の温度を制御する熱吸収温調ユニットと、前記放電室および前記変換器の内部の気体を排出させる排気手段と、前記基板にプラズマ処理を施すのに必要な母ガスを前記一方および他方のリッジ電極の間に供給する母ガス供給手段とを有することを特徴とする。
In order to achieve the above object, the present invention provides the following means.
That is, the vacuum processing apparatus according to the present invention is formed in a flat plate shape and disposed opposite to each other in parallel, and a discharge chamber comprising a ridge waveguide having one and other ridge electrodes between which plasma is generated, disposed adjacent to both ends of the discharge chamber, of a non-ridge portion waveguide having a pair of ridge portions which are parallel to face each other, the fundamental transmission mode of the radio-frequency power supplied from the high frequency power source the rectangular waveguide A pair of converters for generating a plasma between the one and the other ridge electrode, and being arranged in parallel with an interval on the outer surface side of the other ridge electrode, A substrate to be subjected to plasma treatment is set, a soaking temperature controller that controls the temperature of the substrate, and a heat absorption temperature that is installed on the outer surface side of the one ridge electrode and controls the temperature of the one ridge electrode. Tone , Exhaust means for exhausting the gas inside the discharge chamber and the converter, and a mother gas for supplying a mother gas necessary for performing plasma treatment to the substrate between the one and the other ridge electrodes And a supply means.

上記構成によれば、前記熱吸収温調ユニットと均熱温調器によって一方および他方のリッジ電極の温度を制御して、基板の板厚方向を通過する熱流束が制御されるため、基板の表裏温度差による変形(反り)を抑制して、均一で高品質なプラズマ処理を行うことができる。したがって、この真空処置装置を基板にプラズマ製膜処理を施す製膜装置として適用した場合には、高品質で均一な製膜処理を行うことができる。   According to the above configuration, the heat flux passing through the thickness direction of the substrate is controlled by controlling the temperature of the one and the other ridge electrodes by the heat absorption temperature adjusting unit and the soaking temperature controller. Deformation (warping) due to the temperature difference between the front and back surfaces can be suppressed, and uniform and high-quality plasma treatment can be performed. Therefore, when this vacuum treatment apparatus is applied as a film forming apparatus for performing a plasma film forming process on a substrate, a high quality and uniform film forming process can be performed.

また、本発明に係る真空処理装置は、前記熱吸収温調ユニットが前記一方のリッジ電極に対向する平面部を有し、該平面部に前記一方のリッジ電極が密着するように保持されていることを特徴とする。本構成によれば、一方のリッジ電極が、これを通過する熱流束によって変形する(反る)ことを確実に防止して均一なプラズマ特性を確保し、高品質で均一なプラズマ処理を行うことができる。   Further, in the vacuum processing apparatus according to the present invention, the heat absorption temperature control unit has a flat part facing the one ridge electrode, and the one ridge electrode is held in close contact with the flat part. It is characterized by that. According to this configuration, one of the ridge electrodes is surely prevented from being deformed (warped) by the heat flux passing therethrough to ensure uniform plasma characteristics and perform high-quality and uniform plasma processing. Can do.

また、本発明に係る真空処理装置は、前記一方および他方のリッジ電極は厚さ0.5mm以上3mm以下の金属板であることを特徴とする。このようにリッジ電極を薄く形成することにより、リッジ電極を通過する熱流束によりリッジ電極がプラズマ分布に影響する程度に変形するような表裏温度差が生じないため、リッジ電極の反りを防止でき、均一なプラズマ特性を確保して高品質なプラズマ処理を行うことができる。   The vacuum processing apparatus according to the present invention is characterized in that the one and the other ridge electrodes are metal plates having a thickness of 0.5 mm or more and 3 mm or less. By thinly forming the ridge electrode in this way, the heat flux passing through the ridge electrode does not cause a temperature difference between the front and back, which deforms the ridge electrode to the extent that it affects the plasma distribution. High quality plasma processing can be performed while ensuring uniform plasma characteristics.

また、本発明に係る真空処理装置は、前記他方のリッジ電極の重量を分配して前記一方のリッジ電極に対して平行かつ平坦に支持するリッジ電極対向間隔調整手段をさらに有することを特徴とする。この構成により、他方のリッジ電極の平坦度を高めて、放電室における均一なプラズマ特性を確保し、高品質なプラズマ処理を行うことができる。   The vacuum processing apparatus according to the present invention further includes a ridge electrode facing distance adjusting unit that distributes the weight of the other ridge electrode and supports the ridge electrode in parallel and flat with respect to the one ridge electrode. . With this configuration, the flatness of the other ridge electrode can be increased, uniform plasma characteristics in the discharge chamber can be ensured, and high-quality plasma treatment can be performed.

また、本発明に係る真空処理装置は、前記リッジ電極対向間隔調整手段が、前記他方のリッジ電極を上方から複数の吊持部材を介して吊持するように構成されていることを特徴とする。本構成によれば、熱吸収温調ユニットによって他方のリッジ電極が平坦に吊持されるため、他方のリッジ電極の平坦度を高めて、放電室における均一なプラズマ特性を確保し、高品質なプラズマ処理を行うことができる。   The vacuum processing apparatus according to the present invention is characterized in that the ridge electrode facing distance adjusting means is configured to suspend the other ridge electrode from above via a plurality of suspension members. . According to this configuration, since the other ridge electrode is suspended flat by the heat absorption temperature control unit, the flatness of the other ridge electrode is increased to ensure uniform plasma characteristics in the discharge chamber, and high quality. Plasma treatment can be performed.

また、本発明に係る真空処理装置は、前記リッジ電極対向間隔調整手段が、前記放電室の非リッジ部導波管の断面形状を変化させることなく、前記一方のリッジ電極と他方のリッジ電極との間を平行に保った状態で、該両リッジ電極間の間隔を調整可能にすることを特徴とする。本構成によれば、非リッジ部導波管の伝送特性を変化させずに、リッジ電極の間隔を最適値に設定でき、これによって高品質なプラズマ処理を行うことができる。 Further, in the vacuum processing apparatus according to the present invention, the ridge electrode facing distance adjusting means may change the one ridge electrode and the other ridge electrode without changing the cross-sectional shape of the non-ridge waveguide of the discharge chamber. The distance between the ridge electrodes can be adjusted in a state where the distance between them is kept parallel. According to this configuration, the interval between the ridge electrodes can be set to an optimum value without changing the transmission characteristics of the non-ridge portion waveguide, whereby high-quality plasma processing can be performed.

また、本発明に係る真空処理装置は、前記一方および他方のリッジ電極の熱膨張を吸収する熱膨張吸収手段をさらに有することを特徴とする。これにより、一方および他方のリッジ電極が熱膨張により変形(反る)ことを確実に防止して均一なプラズマ特性を確保し、高品質で均一なプラズマ処理を行うことができる。   The vacuum processing apparatus according to the present invention further includes thermal expansion absorption means for absorbing thermal expansion of the one and the other ridge electrodes. Accordingly, it is possible to reliably prevent the one and the other ridge electrodes from being deformed (warped) due to thermal expansion, to ensure uniform plasma characteristics, and to perform high quality and uniform plasma processing.

また、本発明に係る真空処理装置は、前記熱膨張吸収手段が、前記一方および他方のリッジ電極に設けられて該両リッジ電極を電極保持部に締結保持するための締結部材挿通孔と、この締結部材挿通孔に挿通される締結部材とを有し、前記締結部材挿通孔は、前記電極保持部に対する前記リッジ電極の熱膨張方向に延びる長孔形状とされるとともに、前記締結部材の締結力は、前記リッジ電極が熱膨張した際に該リッジ電極と前記電極保持部との間の相対移動を許容できる強度に設定されていることを特徴とする。   Further, in the vacuum processing apparatus according to the present invention, the thermal expansion absorbing means is provided on the one and the other ridge electrodes, and a fastening member insertion hole for fastening and holding the ridge electrodes to the electrode holding portion, A fastening member that is inserted into the fastening member insertion hole, and the fastening member insertion hole has a long hole shape extending in a direction of thermal expansion of the ridge electrode with respect to the electrode holding portion, and a fastening force of the fastening member Is characterized in that the strength is set to allow the relative movement between the ridge electrode and the electrode holding portion when the ridge electrode is thermally expanded.

上記構成によれば、一方および他方のリッジ電極が熱膨張を起こして面方向に寸法が延びても、リッジ電極の締結部材挿通孔の位置が電極保持部に対して相対移動できるため、各リッジ電極を通過する熱流束により、各リッジ電極が反る等の変形を確実に防止して、これによって一方および他方のリッジ電極間を平行に保って均一なプラズマを発生させ、高品質なプラズマ処理を行うことができる。   According to the above configuration, the position of the fastening member insertion hole of the ridge electrode can be moved relative to the electrode holding portion even when one and the other ridge electrodes are thermally expanded to extend in the surface direction. The heat flux passing through the electrodes ensures that each ridge electrode is prevented from warping and other deformations, so that one and the other ridge electrodes are kept parallel to generate a uniform plasma, resulting in high-quality plasma processing. It can be performed.

また、本発明に係る真空処理装置は、前記一方および他方のリッジ電極には複数の通気孔が穿設され、前記熱吸収温調ユニットは該通気孔を介して前記放電室に連通するマニホールド状に形成されるとともに、前記熱吸収温調ユニットの内部に温調媒体が流通する温調媒体流通路を有し、前記排気手段は前記熱吸収温調ユニットのヘッダー部に接続されて、該熱吸収温調ユニットのマニホールド形状を介して前記放電室および前記変換器の内部の気体を排出させることを特徴とする。   Further, in the vacuum processing apparatus according to the present invention, the one and the other ridge electrodes are provided with a plurality of vent holes, and the heat absorption temperature control unit communicates with the discharge chamber through the vent holes. And a temperature adjustment medium flow passage through which the temperature adjustment medium flows, and the exhaust means is connected to a header portion of the heat absorption temperature adjustment unit, The gas inside the discharge chamber and the converter is discharged through the manifold shape of the absorption temperature control unit.

上記構成によれば、前記熱吸収温調ユニットのマニホールド形状により、前記放電室の一方のリッジ電極面の広い範囲から放電室内部の排気ができるので、放電室内部における母ガスの分布を均一化してプラズマを安定化させ、高品質なプラズマ処理を行うことができる。   According to the above configuration, the manifold shape of the heat absorption temperature control unit allows the inside of the discharge chamber to be exhausted from a wide range of one ridge electrode surface of the discharge chamber, so that the distribution of the mother gas in the inside of the discharge chamber is made uniform. This stabilizes the plasma and enables high-quality plasma treatment.

また、本発明に係る真空処理装置は、前記一方および他方のリッジ電極における単位面積当たりの前記通気孔の開口率が、前記排気手段に対して前記母ガス供給手段に近い位置範囲に比べて、前記母ガス供給手段に遠い位置範囲の方が高いことを特徴とする。これにより、母ガスを放電室内の中央付近までに均等に行き渡らせて安定したプラズマ処理を行うことができる。   Further, in the vacuum processing apparatus according to the present invention, the aperture ratio of the vent per unit area in the one and the other ridge electrodes is compared with a position range close to the mother gas supply unit with respect to the exhaust unit, The position range far from the mother gas supply means is higher. Thereby, it is possible to perform stable plasma processing by evenly distributing the mother gas to the vicinity of the center in the discharge chamber.

また、本発明に係る真空処理装置は、前記母ガス供給手段が、前記放電室の非リッジ部導波管の内部に収容され、該導波管の内部の長手方向に沿って配設された母ガス供給管と、この母ガス供給管から前記一方および他方のリッジ電極の間に母ガスを噴き出させる複数の母ガス噴出孔とを備えてなることを特徴とする。本構成によれば、非リッジ部導波管の内部スペースを有効に利用して真空処理装置のコンパクト化を図りつつ、放電室の両端にある非リッジ部導波管から母ガスを均等に放電室内部へと行き渡らせてプラズマを均一化し、高品質で安定したプラズマ処理を行うことができる。   Further, in the vacuum processing apparatus according to the present invention, the mother gas supply means is accommodated in a non-ridge portion waveguide of the discharge chamber, and is disposed along the longitudinal direction of the inside of the waveguide. It is characterized by comprising a mother gas supply pipe and a plurality of mother gas ejection holes through which the mother gas is ejected from the mother gas supply pipe between the one and the other ridge electrodes. According to this configuration, the internal space of the non-ridge waveguide is effectively used to make the vacuum processing apparatus compact, and the mother gas is uniformly discharged from the non-ridge waveguide at both ends of the discharge chamber. The plasma can be made uniform by spreading to the inside of the room, and high-quality and stable plasma treatment can be performed.

また、本発明に係る真空処理装置は、前記母ガス供給手段が前記熱吸収温調ユニットの内部に収容され、前記母ガス供給手段は、該熱吸収温調ユニットの内部に張り巡らされた母ガス分配部と、この母ガス分配部から前記熱吸収温調ユニットの内部を経て前記一方および他方のリッジ電極の間に母ガスを噴き出させる複数の母ガス噴出孔とを備えてなることを特徴とする。   In the vacuum processing apparatus according to the present invention, the mother gas supply means is accommodated in the heat absorption temperature control unit, and the mother gas supply means is installed in the mother of the heat absorption temperature adjustment unit. A gas distribution section, and a plurality of mother gas ejection holes for ejecting a mother gas from the mother gas distribution section through the heat absorption temperature control unit and between the one and the other ridge electrodes. Features.

この構成によれば、前記一方のリッジ電極の平面面積と略同じ平面面積を持つ熱吸収温調ユニットから母ガスを放電室内に供給できるため、母ガスを均一に供給することができ、これによってプラズマを均一化し、高品質なプラズマ処理を行うことができる。   According to this configuration, since the mother gas can be supplied into the discharge chamber from the heat absorption temperature control unit having a plane area substantially the same as the plane area of the one ridge electrode, the mother gas can be supplied uniformly. Plasma can be made uniform and high-quality plasma treatment can be performed.

また、本発明に係る真空処理装置は、前記母ガス噴出孔には、噴出した母ガスを早期に拡散させずに前記一対のリッジ電極の間の空間に供給する母ガス導入ガイド手段が備えられたことを特徴とする。これにより、一方および他方のリッジ電極の間に母ガスを均等に行き渡らせてプラズマを均一化し、高品質で安定したプラズマ処理を行うことができる。   Further, in the vacuum processing apparatus according to the present invention, the mother gas ejection hole is provided with mother gas introduction guide means for supplying the ejected mother gas to the space between the pair of ridge electrodes without early diffusion. It is characterized by that. Thereby, the mother gas is evenly distributed between the one and the other ridge electrodes to make the plasma uniform, and high-quality and stable plasma treatment can be performed.

また、本発明に係る真空処理装置は、前記排気手段が前記放電室の非リッジ部導波管の少なくとも1箇所に接続されたことを特徴とする。これにより、放電室の幅方向両端からバランスをとりながら排気を行えるので、放電室の内部で母ガスが澱みにくくなり、母ガスの分布を均一化して高品質なプラズマ処理を行うことができる。   Moreover, the vacuum processing apparatus according to the present invention is characterized in that the exhaust means is connected to at least one location of the non-ridge waveguide of the discharge chamber. Accordingly, exhaust can be performed while balancing from both ends in the width direction of the discharge chamber, so that the mother gas is less likely to stagnate inside the discharge chamber, and the distribution of the mother gas can be made uniform and high-quality plasma treatment can be performed.

そして、本発明に係るプラズマ処理方法は、前記各態様における真空処理装置を用いて基板にプラズマ処理を施すことを特徴とする。これにより、高品質なプラズマ処理を行うことができる。   The plasma processing method according to the present invention is characterized in that the substrate is subjected to plasma processing using the vacuum processing apparatus in each of the above aspects. Thereby, high quality plasma processing can be performed.

以上のように、本発明に係る真空処理装置およびプラズマ処理方法によれば、リッジ電極を有するリッジ導波管を利用した放電室内でプラズマを発生させて、リッジ電極間の外側に設置した基板にプラズマ処理を施す真空処理装置において、リッジ電極および基板の熱変形を抑制して、リッジ電極間に均一なプラズマを発生させ、大型の基板にも安定した高品質なプラズマ処理が行うことができる。   As described above, according to the vacuum processing apparatus and the plasma processing method of the present invention, the plasma is generated in the discharge chamber using the ridge waveguide having the ridge electrodes, and the substrate placed outside the ridge electrodes is applied to the substrate. In a vacuum processing apparatus that performs plasma processing, thermal deformation of a ridge electrode and a substrate is suppressed, uniform plasma is generated between the ridge electrodes, and stable and high-quality plasma processing can be performed even on a large substrate.

本発明の実施形態に係るダブルリッジ型の製膜装置の概略構成を説明する模式的な斜視図である。It is a typical perspective view explaining schematic structure of the double ridge type film forming apparatus which concerns on embodiment of this invention. 同じく製膜装置の放電室付近における、より詳細な概略構成を説明する模式的な分解斜視図である。It is a typical disassembled perspective view explaining the detailed schematic structure in the discharge chamber vicinity of a film forming apparatus similarly. 図2のIII-III矢視断面により、本発明の第1実施形態に係る製膜装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the film forming apparatus which concerns on 1st Embodiment of this invention by the III-III arrow cross section of FIG. 本発明の第1実施形態における製膜装置の放電室周りの分解斜視図である。It is an exploded perspective view around the discharge chamber of the film forming apparatus in the first embodiment of the present invention. リッジ電極と母ガス供給手段を示す斜視図である。It is a perspective view which shows a ridge electrode and a mother gas supply means. (a)は上側のリッジ電極を示し、(b)は下側のリッジ電極を示す平面図である。(A) shows an upper ridge electrode, and (b) is a plan view showing a lower ridge electrode. (a)は熱吸収温調ユニット単体の横断面図であり、(b)は熱吸収温調ユニットに上側のリッジ電極が重ねられた状態を示す平面図である。(A) is a cross-sectional view of the heat absorption temperature control unit alone, and (b) is a plan view showing a state in which the upper ridge electrode is superimposed on the heat absorption temperature control unit. 本発明の第2実施形態に係る製膜装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the film forming apparatus which concerns on 2nd Embodiment of this invention. 本発明の第2実施形態における製膜装置の放電室およびリッジ電極対向間隔調整機構周りの分解斜視図である。It is a disassembled perspective view around the discharge chamber and the ridge electrode facing distance adjusting mechanism of the film forming apparatus in the second embodiment of the present invention. 本発明の第3実施形態に係る製膜装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the film forming apparatus which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態における製膜装置の放電室およびリッジ電極対向間隔調整機構周りの分解斜視図である。It is a disassembled perspective view around the discharge chamber and the ridge electrode facing distance adjusting mechanism of the film forming apparatus in the third embodiment of the present invention. 本発明の第4実施形態に係る製膜装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the film forming apparatus which concerns on 4th Embodiment of this invention. 本発明の第4実施形態における製膜装置の放電室、リッジ電極対向間隔調整機構および母ガス分配部周りの分解斜視図である。FIG. 10 is an exploded perspective view around a discharge chamber, a ridge electrode facing distance adjustment mechanism, and a mother gas distribution part of a film forming apparatus in a fourth embodiment of the present invention. 本発明の第5実施形態に係る製膜装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the film forming apparatus which concerns on 5th Embodiment of this invention. (a),(b)は、本発明の第5実施形態における製膜装置の母ガス供給手段の構造例を示す斜視図である。(A), (b) is a perspective view which shows the structural example of the mother gas supply means of the film forming apparatus in 5th Embodiment of this invention.

以下、本発明の各実施形態について、図1〜図15を参照して説明する。本実施形態においては、本発明を、一辺が1mを越える大面積な基板Sに対して、アモルファス太陽電池や微結晶太陽電池等に用いられる非晶質シリコン、微結晶シリコン等の結晶質シリコン、窒化シリコン等からなる膜の製膜処理をプラズマCVD法によって行うことが可能な、ダブルリッジ型の製膜装置(真空処理装置)に適用した場合について説明する。   Hereinafter, each embodiment of the present invention will be described with reference to FIGS. In this embodiment, the present invention is applied to a crystalline silicon such as amorphous silicon, microcrystalline silicon, etc. used for an amorphous solar cell, a microcrystalline solar cell, etc. with respect to a large-area substrate S having a side exceeding 1 m. A case where the film forming process of a film made of silicon nitride or the like is applied to a double ridge type film forming apparatus (vacuum processing apparatus) capable of performing the plasma CVD method will be described.

〔第1実施形態〕
まず、本発明の第1実施形態を図1〜図7に基づいて説明する。図1は、本発明の第1実施形態における製膜装置1の概略構成を説明する模式的な斜視図であり、図2は特に製膜装置1の放電室付近における、より詳細かつ模式的な分解斜視図である。また、図3は図2のIII-III矢視断面により、本発明の第1実施形態に係る製膜装置を示す縦断面図である。
[First Embodiment]
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a schematic perspective view illustrating a schematic configuration of a film forming apparatus 1 according to the first embodiment of the present invention. FIG. 2 is a more detailed and schematic view particularly in the vicinity of a discharge chamber of the film forming apparatus 1. It is a disassembled perspective view. FIG. 3 is a longitudinal sectional view showing the film forming apparatus according to the first embodiment of the present invention by a cross section taken along line III-III in FIG.

この製膜装置1は、放電室(プロセス室)2と、この放電室2の両端に隣接して配置された変換器3A,3Bと、これらの変換器3A,3Bに一端が接続される電源ラインとしての同軸ケーブル4A,4Bと、これらの同軸ケーブル4A,4Bの他端に接続される高周波電源5A,5Bと、同軸ケーブル4A,4Bの中間部に接続された整合器6A,6Bおよびサーキュレータ7A,7Bと、放電室2に接続される排気手段9および材料ガスを含む母ガス供給手段10を主な構成要素として備えている。排気手段9としては、公知の真空ポンプ等を用いることができ、本発明において特に限定されるものではない。サーキュレータ7A,7Bは、それぞれ高周波電源5A,5Bから供給された高周波電力を放電室(プロセス室)2に導くとともに、高周波電源5A,5Bに対して進行方向が違う高周波電力が入力されることを防止するものである。   The film forming apparatus 1 includes a discharge chamber (process chamber) 2, converters 3A and 3B disposed adjacent to both ends of the discharge chamber 2, and a power source having one end connected to the converters 3A and 3B. Coaxial cables 4A and 4B as lines, high-frequency power supplies 5A and 5B connected to the other ends of these coaxial cables 4A and 4B, matching units 6A and 6B connected to the middle part of the coaxial cables 4A and 4B, and a circulator 7A and 7B, an exhaust means 9 connected to the discharge chamber 2, and a mother gas supply means 10 containing a material gas are provided as main components. A known vacuum pump or the like can be used as the exhaust means 9 and is not particularly limited in the present invention. The circulators 7A and 7B guide the high-frequency power supplied from the high-frequency power sources 5A and 5B to the discharge chamber (process chamber) 2, respectively, and that high-frequency power having a different traveling direction is input to the high-frequency power sources 5A and 5B. It is to prevent.

この場合の高周波電源5A,5Bは、周波数が13.56MHz以上、好ましくは30MHzから400MHz(VHF帯からUHF帯)である。これは、13.56MHzより、周波数が低いとダブルリッジ導波管(後述するリッジ電極21と非リッジ部導波管22)のサイズが基板サイズに対して大型化するために装置設置スペースが増加し、周波数が400MHzより高いと放電室(プロセス室)2が延びる方向(L方向)に生じる定在波の影響が増大するためである。なお、上述した排気手段9および母ガス供給手段10は図2に示されている。   In this case, the high frequency power supplies 5A and 5B have a frequency of 13.56 MHz or more, preferably 30 MHz to 400 MHz (VHF band to UHF band). This is because when the frequency is lower than 13.56 MHz, the size of the double ridge waveguide (the ridge electrode 21 and the non-ridge portion waveguide 22 described later) becomes larger than the substrate size, so that the installation space for the device increases. However, if the frequency is higher than 400 MHz, the influence of standing waves generated in the direction (L direction) in which the discharge chamber (process chamber) 2 extends increases. The exhaust means 9 and the mother gas supply means 10 described above are shown in FIG.

図1、図2および図3において、製膜装置1は図示しない真空容器に収納されるものである。図示しない真空容器は圧力差に耐え得る構造とされている。例えば、ステンレス鋼(JIS規格におけるSUS材)や、一般構造用圧延材(JIS規格におけるSS材)などから形成され、リブ材などで補強された構成を用いることができる。   In FIGS. 1, 2 and 3, the film forming apparatus 1 is housed in a vacuum container (not shown). A vacuum vessel (not shown) has a structure that can withstand a pressure difference. For example, the structure formed from stainless steel (SUS material in JIS standard), the rolling material for general structures (SS material in JIS standard), etc., and reinforced with a rib material etc. can be used.

図示しない真空容器には排気手段9が接続されている。そのため、真空容器の内部や、放電室(プロセス室)2、変換器3Aおよび変換器3Bの内部は、排気手段9により真空状態とされる。この排気手段9は、本発明において特に限定されることはなく、たとえば公知の真空ポンプ、圧力調整弁と真空排気配管等を用いることができる。   An exhaust means 9 is connected to a vacuum container (not shown). Therefore, the inside of the vacuum vessel and the inside of the discharge chamber (process chamber) 2, the converter 3 </ b> A, and the converter 3 </ b> B are evacuated by the exhaust unit 9. The exhaust means 9 is not particularly limited in the present invention. For example, a known vacuum pump, a pressure adjusting valve, a vacuum exhaust pipe, and the like can be used.

放電室2は、アルミニウム合金材料等の、導電性を有し非磁性または弱磁性を有する材料から形成された容器状の部品であって、所謂ダブルリッジ型の導波管状に形成されたものである。放電室2および変換器3A,3Bの内部は、排気手段9により0.1kPaから10kPa程度の真空状態とされるため、放電室2および変換器3A,3Bはその内外の圧力差に耐え得る構造とされている。   The discharge chamber 2 is a container-like part formed of a conductive non-magnetic or weak magnetic material such as an aluminum alloy material, and is formed in a so-called double ridge type waveguide tube. is there. Since the inside of the discharge chamber 2 and the converters 3A and 3B is brought to a vacuum state of about 0.1 kPa to 10 kPa by the exhaust means 9, the discharge chamber 2 and the converters 3A and 3B can withstand a pressure difference between the inside and the outside. It is said that.

本実施形態では、放電室2が延びる方向をL方向(図1における左右方向)とし、リッジ電極21a,21bの面に直交してプラズマ放電時に電気力線が延びる方向をE方向(図1における上下方向)とし、一対のリッジ電極21a,21bに沿い、かつE方向と直交する方向をH方向(図1における紙面に対して直交する方向)とする。   In the present embodiment, the direction in which the discharge chamber 2 extends is defined as the L direction (the left-right direction in FIG. 1), and the direction in which the lines of electric force extend at the time of plasma discharge perpendicular to the surfaces of the ridge electrodes 21a and 21b. (Vertical direction), and a direction along the pair of ridge electrodes 21a and 21b and orthogonal to the E direction is defined as an H direction (a direction orthogonal to the paper surface in FIG. 1).

図1〜図4に示すように、放電室2には、上下一対の放電用の排気側リッジ電極21a(一方のリッジ電極)と、基板側リッジ電極21b(他方のリッジ電極)が設けられている。これらのリッジ電極21a,21bは、ダブルリッジ導波管である放電室2における主要部分となるリッジ形状を構成するものであり、互いに平行に対向配置された平板状の部分である。リッジ電極21a,21bは、電極板の表裏温度差によるソリ量が小さくなるように、線膨張率αが小さくて熱伝達率λの大きい特性を有し、板厚tが薄い金属の板材が望ましい。リッジ電極21a,21bの材質としては、具体的にはSUS304等が好適であるが、線膨張率が大きい反面、熱伝達率が格段に大きいアルミニウム系金属を用いてもよい。これらのリッジ電極21a,21bには複数の通気孔23a,23bが穿設されている。   As shown in FIGS. 1 to 4, the discharge chamber 2 is provided with a pair of upper and lower discharge exhaust ridge electrodes 21a (one ridge electrode) and a substrate ridge electrode 21b (the other ridge electrode). Yes. These ridge electrodes 21a and 21b form a ridge shape which is a main part in the discharge chamber 2 which is a double ridge waveguide, and are flat plate-like portions arranged to face each other in parallel. The ridge electrodes 21a and 21b are preferably metal plates having a characteristic that the linear expansion coefficient α is small and the heat transfer coefficient λ is large, and the plate thickness t is thin, so that the warp amount due to the temperature difference between the front and back surfaces of the electrode plate is small. . Specifically, SUS304 or the like is preferable as the material of the ridge electrodes 21a and 21b. However, an aluminum-based metal having a remarkably large heat transfer coefficient may be used although the coefficient of linear expansion is large. A plurality of vent holes 23a and 23b are formed in these ridge electrodes 21a and 21b.

板厚tは0.5mm以上で3mm以下が好ましい。0.5mm以下では素材の表面残留応力のために排気側リッジ電極21aおよび基板側リッジ電極21bの平面度を維持することが難しくなる、また通過する熱流束と板厚の積で表裏温度差が生じるので、熱伝達率λが大きいアルミニウムやアルミニウム合金においても、一辺が1mを越える大型の電極サイズでは、3mm以上では略1mm以上の凸変形に至る表裏温度差が生じ易くなる。さらには、板厚tは薄いながらも構造的な取扱強度を確保するためには、1mm以上で2mm以下が更に好ましい。   The plate thickness t is preferably 0.5 mm or more and 3 mm or less. Below 0.5 mm, it becomes difficult to maintain the flatness of the exhaust side ridge electrode 21a and the substrate side ridge electrode 21b due to the surface residual stress of the material, and there is a difference in front and back temperature due to the product of the passing heat flux and the plate thickness. Therefore, even in aluminum or aluminum alloy having a large heat transfer coefficient λ, a large and small electrode size with a side exceeding 1 m tends to cause a front-back temperature difference that leads to a convex deformation of approximately 1 mm or more at 3 mm or more. Furthermore, in order to ensure structural handling strength even though the plate thickness t is thin, it is more preferably 1 mm or more and 2 mm or less.

図2に示すように、一方の排気側リッジ電極21aから他方の基板側リッジ電極21bまでの距離がリッジ対向間隔d1(mm)と定められる。このリッジ対向間隔d1は、高周波電源5A,5Bの周波数、基板Sの大きさやプラズマ製膜処理の種類等に応じて、凡そ3〜30mm程度の範囲に設定される。そして、これら一対のリッジ電極21a,21bの両側に、一対の非リッジ部導波管22a,22bが設けられている。上下のリッジ電極21a,21bと、左右の導波管22a,22bによって、放電室2の縦断面形状が略「H」字形状に形成されている。   As shown in FIG. 2, the distance from one exhaust side ridge electrode 21a to the other substrate side ridge electrode 21b is defined as a ridge facing distance d1 (mm). The ridge facing distance d1 is set in a range of about 3 to 30 mm according to the frequency of the high frequency power supplies 5A and 5B, the size of the substrate S, the type of plasma film forming process, and the like. A pair of non-ridge waveguides 22a and 22b are provided on both sides of the pair of ridge electrodes 21a and 21b. The vertical cross-sectional shape of the discharge chamber 2 is formed in a substantially “H” shape by the upper and lower ridge electrodes 21 a and 21 b and the left and right waveguides 22 a and 22 b.

図4に示すように、リッジ電極21a,21bは、それぞれ左右の非リッジ部導波管22a,22bに設けられた上下一対の重ね代状の電極保持部22cに、ボルト14とナット15等の締結部材によって分解可能に締結される。リッジ電極21a,21bの周部には、ボルト14を挿通させるための少なくとも6箇所の締結部材挿通孔24a〜24fが穿設されている。これらの締結部材挿通孔24a〜24fは、電極保持部22cに対するリッジ電極21a,21bの熱膨張方向に長孔形状が設けている。また、電極保持部22cにも、締結部材挿通孔24a〜24fと同様に締結部材挿通孔25a〜25fが形成されている。ボルト14、ナット15、締結部材挿通孔24a〜24f、締結部材挿通孔25a〜25fは熱膨張吸収手段を構成している。   As shown in FIG. 4, the ridge electrodes 21 a and 21 b are connected to a pair of upper and lower overlapping electrode holding portions 22 c provided on the left and right non-ridge waveguides 22 a and 22 b, respectively, such as bolts 14 and nuts 15. It is fastened so as to be disassembled by the fastening member. At least six fastening member insertion holes 24a to 24f through which the bolts 14 are inserted are formed in the peripheral portions of the ridge electrodes 21a and 21b. These fastening member insertion holes 24a to 24f are provided with long hole shapes in the thermal expansion direction of the ridge electrodes 21a and 21b with respect to the electrode holding portion 22c. In addition, fastening member insertion holes 25a to 25f are formed in the electrode holding portion 22c similarly to the fastening member insertion holes 24a to 24f. The bolt 14, the nut 15, the fastening member insertion holes 24a to 24f, and the fastening member insertion holes 25a to 25f constitute thermal expansion absorbing means.

ここでは、例えばリッジ電極21a,21bの片側の辺の中央部に設けられた締結部材挿通孔24aのみが位置決め孔として円孔状に形成され、他の締結部材挿通孔24b〜24fは、締結部材挿通孔24aから熱伸方向である放射方向に延びる長孔状に形成されている。そして、ボルト14とナット15の締結力は、リッジ電極21a,21bが熱膨張した際に、ボルト14が長円状の締結部材挿通孔24b〜24fの長手方向に相対スライドして、リッジ電極21a,21bの熱伸びを許容できる強度にトルク管理される。あるいは、スプリングワッシャを介装し、このスプリングワッシャが潰れきらない程度にボルト14とナット15が締め込まれる。   Here, for example, only the fastening member insertion hole 24a provided at the center of one side of the ridge electrodes 21a and 21b is formed in a circular shape as a positioning hole, and the other fastening member insertion holes 24b to 24f are fastening members. It is formed in the shape of a long hole extending in the radial direction that is the direction of hot drawing from the insertion hole 24a. The fastening force between the bolt 14 and the nut 15 is such that when the ridge electrodes 21a and 21b are thermally expanded, the bolt 14 is relatively slid in the longitudinal direction of the oval fastening member insertion holes 24b to 24f. , 21b is controlled to a strength that allows the thermal elongation. Alternatively, a spring washer is interposed, and the bolt 14 and the nut 15 are tightened to such an extent that the spring washer is not crushed.

このように締結部材挿通孔24b〜24fの形状を位置決め孔である締結部材挿通孔24aから熱伸び方向である放射方向に延びる長孔状に形成したことにより、リッジ電極21a,21bの熱膨張時には、締結部材挿通孔24aの位置におけるリッジ電極21a,21bと電極保持部22cとの相対位置は変化しないが、他の締結部材挿通孔24b〜24fの位置ではリッジ電極21a,21bが電極保持部22cに対して締結部材挿通孔24b〜24fの長手方向に相対移動することができ、熱膨張によるリッジ電極21a,21bの水平方向への拡がりがスムーズに吸収され、リッジ電極21a,21bの変形を拘束しないので凹凸変形や反りや歪み等の変形が抑制される。   In this way, the shape of the fastening member insertion holes 24b to 24f is formed as a long hole extending in the radial direction which is the heat extension direction from the fastening member insertion hole 24a which is a positioning hole, so that the ridge electrodes 21a and 21b are thermally expanded. The relative positions of the ridge electrodes 21a and 21b and the electrode holding portion 22c at the position of the fastening member insertion holes 24a do not change, but the ridge electrodes 21a and 21b are connected to the electrode holding portions 22c at the positions of the other fastening member insertion holes 24b to 24f. Can be relatively moved in the longitudinal direction of the fastening member insertion holes 24b to 24f, the horizontal expansion of the ridge electrodes 21a and 21b due to thermal expansion is smoothly absorbed, and the deformation of the ridge electrodes 21a and 21b is restrained. Therefore, deformation such as uneven deformation, warpage, and distortion is suppressed.

なお、締結部材挿通孔24b〜24fは必ずしも長孔状でなくてもよく、リッジ電極21a,21bと電極保持部22cとの相対位置だけを変化しないようにする場合は、単にボルト14の外径よりも十分に大きく余裕を持った内径の円孔状にしても同様な作用効果が得られる。また、電極保持部22c側の締結部材挿通孔25a〜25fは真円状でもよい。また、締結材であるボルト14の頭が電極面内側(プラズマ生成側)へ突出しないよう、ボルト14の頭を薄くして曲面を持たせるなどの工夫がされていると好ましい。さらに、長孔24b〜24fは、位置決め孔である締結部材挿通孔24aから離れた位置にある長孔ほど長孔形状が長くなるよう拡大されると、不要な長孔設置による電極強度低下を防止できるのでさらに好ましい。   The fastening member insertion holes 24b to 24f do not necessarily have a long hole shape. When only the relative position between the ridge electrodes 21a and 21b and the electrode holding portion 22c is not changed, the outer diameter of the bolt 14 is simply used. The same effect can be obtained even if the inner diameter is sufficiently larger than the inner diameter of the hole. Further, the fastening member insertion holes 25a to 25f on the electrode holding portion 22c side may have a perfect circle shape. In addition, it is preferable that the bolt 14 is thinned to have a curved surface so that the head of the bolt 14 that is a fastening material does not protrude to the inside of the electrode surface (plasma generation side). Further, when the long holes 24b to 24f are enlarged so that the long hole shape is longer as the long hole is located farther from the fastening member insertion hole 24a which is the positioning hole, the deterioration of the electrode strength due to unnecessary long hole installation is prevented. It is more preferable because it is possible.

一方、変換器3A,3Bは、放電室2と同様に、アルミニウム合金材料等の導電性を有し非磁性または弱磁性を有する材料から形成された容器状の部品であって、放電室2と同じくダブルリッジ導波管状に形成されている。変換器3A,3Bの内部は、放電室2と同様に排気手段9により0.1kPaから10kPa程度の真空状態とされるため、変換器3A,3Bはその内外の圧力差に耐え得る構造とされている。   On the other hand, the converters 3A and 3B are container-like parts formed of a conductive non-magnetic or weak magnetic material such as an aluminum alloy material, similar to the discharge chamber 2. Similarly, it is formed in a double ridge waveguide tube. Since the insides of the converters 3A and 3B are brought into a vacuum state of about 0.1 kPa to 10 kPa by the exhaust means 9 similarly to the discharge chamber 2, the converters 3A and 3B have a structure that can withstand the pressure difference between the inside and the outside. ing.

変換器3A,3Bには、図1に示すように、それぞれ上下一対の平板状のリッジ部31a,31bが設けられている。これらのリッジ部31a,31bは、ダブルリッジ導波管である変換器3A,3Bにおけるリッジ形状を構成するものであり、互いに平行に対向して配置されている。また、これら一対のリッジ部31a,31bの両側に、一対の非リッジ部導波管32a,32bが設けられている。変換器3A,3Bにおける一方のリッジ部31aから他方のリッジ部31bまでの距離がリッジ対向間隔d2(mm)と定められる(図1参照)。   As shown in FIG. 1, the converters 3A and 3B are provided with a pair of upper and lower flat ridges 31a and 31b, respectively. These ridge portions 31a and 31b form a ridge shape in the converters 3A and 3B, which are double ridge waveguides, and are arranged to face each other in parallel. A pair of non-ridge waveguides 32a and 32b are provided on both sides of the pair of ridges 31a and 31b. A distance from one ridge 31a to the other ridge 31b in the converters 3A and 3B is determined as a ridge facing distance d2 (mm) (see FIG. 1).

このリッジ対向間隔d2は、高周波電源5A,5Bの周波数、基板Sの大きさやプラズマ製膜処理の種類等に応じて、凡そ50〜200mm程度の範囲に設定される。即ち、変換器3A,3Bにおけるリッジ部31a,31b間のリッジ対向間隔d2(凡そ50〜200mm)よりも、放電室2におけるリッジ電極21a,21b間のリッジ対向間隔d1(凡そ3〜30mm)の方が狭く設定されているため、リッジ部31a,31bとリッジ電極21a,21bとの境界部に数十〜百数十ミリのリッジ段差D(図1参照)が存在している。   The ridge facing distance d2 is set in a range of about 50 to 200 mm according to the frequency of the high frequency power supplies 5A and 5B, the size of the substrate S, the type of plasma film forming process, and the like. That is, the ridge facing distance d1 (approximately 3 to 30 mm) between the ridge electrodes 21a and 21b in the discharge chamber 2 is larger than the ridge facing distance d2 (approximately 50 to 200 mm) between the ridge portions 31a and 31b in the converters 3A and 3B. Therefore, a ridge step D (see FIG. 1) of several tens to several tens of millimeters exists at the boundary between the ridges 31a and 31b and the ridge electrodes 21a and 21b.

高周波電源5A,5Bから供給された高周波電力は、同軸ケーブル4A,4Bおよび変換部3A,3Bを介して放電室2のリッジ電極21a,21bに伝送され、リッジ電極21a,21bの間隔を狭く設けることで強い電界が発生し、リッジ電極21a,21bの間に母ガスを導入することでプラズマを生成させ、母ガスの材料ガスが分解や活性化して製膜種が生成される。生成された製膜種のうち基板Sに向かって拡散で移動したものは、基板Sにて膜が形成され、製膜処理が施される。   The high frequency power supplied from the high frequency power supplies 5A and 5B is transmitted to the ridge electrodes 21a and 21b of the discharge chamber 2 through the coaxial cables 4A and 4B and the converters 3A and 3B, and the gap between the ridge electrodes 21a and 21b is provided narrow. As a result, a strong electric field is generated, and plasma is generated by introducing the mother gas between the ridge electrodes 21a and 21b, and the material gas of the mother gas is decomposed and activated to generate a film-forming species. Of the generated film forming species, the film that has moved by diffusion toward the substrate S is formed with a film on the substrate S and subjected to a film forming process.

ところで、同軸ケーブル4A,4Bは、外部導体41および内部導体42を有しており、外部導体41が変換器3A,3Bの例えば上側のリッジ部31aに電気的に接続され、内部導体42が上側のリッジ部31aと変換器3A,3Bの内部空間を貫通して下側のリッジ部31bに電気的に接続されている。同軸ケーブル4A,4Bは、それぞれ、高周波電源5A,5Bから供給された高周波電力を変換器3A,3Bに導くものである。なお、高周波電源5A,5Bとしては、公知のものを用いることができ、本発明において特に限定されるものではない。そして、変換器3A,3Bは、高周波電力の伝送モードを同軸伝送モードであるTEMモードから方形導波管の基本伝送モードであるTEモードに変換して放電室2に伝送し、リッジ電極21a,21bの間にプラズマを発生させる。   By the way, the coaxial cables 4A and 4B have an outer conductor 41 and an inner conductor 42. The outer conductor 41 is electrically connected to, for example, the upper ridge portion 31a of the converters 3A and 3B, and the inner conductor 42 is connected to the upper side. The ridge portion 31a and the internal spaces of the converters 3A and 3B are electrically connected to the lower ridge portion 31b. The coaxial cables 4A and 4B lead the high frequency power supplied from the high frequency power supplies 5A and 5B to the converters 3A and 3B, respectively. As the high frequency power supplies 5A and 5B, known ones can be used, and are not particularly limited in the present invention. The converters 3A and 3B convert the transmission mode of the high-frequency power from the TEM mode that is the coaxial transmission mode to the TE mode that is the basic transmission mode of the rectangular waveguide, and transmits the converted transmission mode to the discharge chamber 2. Plasma is generated during 21b.

導波管の特性により、一対のリッジ電極21a,21bの間ではリッジ電極に沿う方向(H方向)の電界強度分布がほぼ均一になる。さらに、リッジ導波管を用いることにより、この一対のリッジ電極21a,21bの間ではプラズマを生成可能な程度の強い電界強度を得ることができる。放電室2、変換器3Aおよび変換器3Bは、ダブルリッジ導波管により構成されていてもよいし、シングルリッジ導波管により構成されていてもよい。   Due to the characteristics of the waveguide, the electric field intensity distribution in the direction along the ridge electrode (H direction) is substantially uniform between the pair of ridge electrodes 21a and 21b. Furthermore, by using a ridge waveguide, it is possible to obtain a strong electric field strength that can generate plasma between the pair of ridge electrodes 21a and 21b. The discharge chamber 2, the converter 3A, and the converter 3B may be configured by a double ridge waveguide or may be configured by a single ridge waveguide.

その一方で、放電室2には、高周波電源5Aから供給された高周波電力と、高周波電源5Bから供給された高周波電力により、定在波が形成される。このとき、電源5Aおよび電源5Bから供給される高周波電力の位相が固定されていると、定在波の位置(位相)が固定され、一対のリッジ電極21a,21bにおける放電室2が延びる方向であるL方向の電界強度の分布に偏りが生じる。そこで、高周波電源5Aおよび高周波電源5Bの少なくとも一方から供給される高周波電力の位相を調節することにより、放電室2に形成される定在波の位置の調節が行われる。これにより、一対のリッジ電極21a,21bにおけるL方向の電界強度の分布が時間平均的に均一化される。   On the other hand, a standing wave is formed in the discharge chamber 2 by the high frequency power supplied from the high frequency power source 5A and the high frequency power supplied from the high frequency power source 5B. At this time, if the phase of the high-frequency power supplied from the power supply 5A and the power supply 5B is fixed, the position (phase) of the standing wave is fixed, and the discharge chamber 2 extends in the pair of ridge electrodes 21a and 21b. There is a bias in the distribution of the electric field strength in a certain L direction. Therefore, the position of the standing wave formed in the discharge chamber 2 is adjusted by adjusting the phase of the high frequency power supplied from at least one of the high frequency power source 5A and the high frequency power source 5B. Thereby, the distribution of the electric field intensity in the L direction in the pair of ridge electrodes 21a and 21b is made uniform on a time average basis.

具体的には、定在波の位置が、時間の経過に伴いL方向に、Sin波状や、三角波状や、階段(ステップ)状に移動するように高周波電源5Aおよび高周波電源5Bから供給される高周波電力の位相が調節される。定在波が移動する範囲や、定在波を移動させる方式(Sin波状、三角波状、階段状等)や、位相調整の周期の適正化は、電力の分布や、プラズマからの発光の分布や、プラズマ密度の分布や、製膜された膜に係る特性の分布等に基づいて行われる。膜に係る特性としては、膜厚や、膜質や、太陽電池等の半導体としての特性などを挙げることができる。そして、リッジ部を形成したリッジ導波管の特性と、高周波電源5A,Bから供給された高周波電力の位相変調により、基板Sに対してH方向とL方向のいずれの方向にも均一なプラズマを広い範囲に生成することができ、大面積基板へ製膜するにあたり、高品質な膜を均一に製膜することができる。   Specifically, the position of the standing wave is supplied from the high-frequency power source 5A and the high-frequency power source 5B so as to move in the L direction in the L direction as time elapses, in a sine wave shape, a triangular wave shape, or a staircase (step) shape. The phase of the high frequency power is adjusted. The range in which the standing wave moves, the method of moving the standing wave (Sin wave shape, triangular wave shape, stepped shape, etc.) and the optimization of the phase adjustment period are based on the power distribution, the light emission distribution from the plasma, It is performed based on the distribution of plasma density, the distribution of characteristics related to the formed film, and the like. Examples of characteristics relating to the film include film thickness, film quality, and characteristics as a semiconductor such as a solar cell. The plasma is uniform in both the H and L directions with respect to the substrate S by the characteristics of the ridge waveguide formed with the ridge portion and the phase modulation of the high frequency power supplied from the high frequency power supplies 5A and 5B. Can be produced in a wide range, and a high-quality film can be uniformly formed when forming a film on a large-area substrate.

図2、図3に示すように、基板側リッジ電極21bの下方(−E方向)には均熱温調器11が設けられている。この均熱温調器11の上面11aは平坦で、基板側リッジ電極21bに平行しており、基板側リッジ電極21bの下面に対して数mmから数十mm程度の間隔が空いている。均熱温調器11には熱媒体流通路11bが接続されている。そして、この均熱温調器11の上面11aに、プラズマ製膜処理が施される基板Sが載置される。つまり、基板Sは放電室2の外部に配置され、均熱温調器11によって均等に加熱される。基板Sとしては透光性ガラス基板を例示することができる。例えば、太陽電池パネルに用いられるものでは、縦横の大きさが1.4m×1.1m、厚さが3.0mmから4.5mmのものが挙げられる。   As shown in FIGS. 2 and 3, a soaking temperature controller 11 is provided below the substrate-side ridge electrode 21b (in the −E direction). The top surface 11a of the soaking temperature controller 11 is flat and parallel to the substrate-side ridge electrode 21b, and is spaced from the lower surface of the substrate-side ridge electrode 21b by several millimeters to several tens of millimeters. A heat medium flow passage 11 b is connected to the soaking temperature controller 11. Then, the substrate S on which the plasma film forming process is performed is placed on the upper surface 11 a of the soaking temperature controller 11. That is, the substrate S is disposed outside the discharge chamber 2 and is heated uniformly by the soaking temperature controller 11. As the substrate S, a translucent glass substrate can be exemplified. For example, what is used for a solar cell panel has a vertical and horizontal size of 1.4 m × 1.1 m and a thickness of 3.0 mm to 4.5 mm.

一方、母ガス供給手段10は、放電室2の両端に設けられた非リッジ部導波管22a,22bの内部に収容され、その内部空間の長手方向に沿って配設された母ガス供給管10aと、この母ガス供給管10aから放電室2の内部においてリッジ電極21a,21bの間に、基板Sの表面にプラズマ製膜処理を施すのに必要な原料ガスを含む母ガス(例えば、SiHガス等の材料ガス)噴き出させる複数の母ガス噴出孔10bとを備えている。ガス噴出孔10bは、リッジ電極21a,21bの間に母ガスを略均一に噴き出すように、ガス噴出孔10bが噴出し径を適正化して複数設けられている。なお、母ガス噴出孔10bから噴出した母ガスがすぐに拡散せずに、上下のリッジ電極21a,21bの間を奥まで進んで均等に拡散するように、母ガス供給管10aの側面に一列に形成された複数の母ガス供給管10aの上下に、庇状のガイド板10cが設けられている。これら母ガス供給管10aおよびガス噴出孔10bおよびガイド板10cにより母ガス供給手段10が構成されている。 On the other hand, the mother gas supply means 10 is accommodated in the non-ridge waveguides 22a and 22b provided at both ends of the discharge chamber 2, and is provided along the longitudinal direction of the inner space. 10a and a mother gas (for example, SiH) containing a source gas necessary for performing a plasma film forming process on the surface of the substrate S between the mother gas supply tube 10a and the ridge electrodes 21a and 21b inside the discharge chamber 2 And a plurality of mother gas ejection holes 10b to be ejected. The gas ejection holes 10b are provided with a plurality of gas ejection holes 10b with an appropriate ejection diameter so that the mother gas is ejected substantially uniformly between the ridge electrodes 21a and 21b. It should be noted that the mother gas ejected from the mother gas ejection hole 10b is not immediately diffused, but is lined up on the side surface of the mother gas supply pipe 10a so as to diffuse evenly between the upper and lower ridge electrodes 21a and 21b. A bowl-shaped guide plate 10c is provided above and below the plurality of mother gas supply pipes 10a. These mother gas supply pipes 10a, gas ejection holes 10b and guide plates 10c constitute mother gas supply means 10.

例えば、各ガス噴出孔10aが噴出すガス流速は、音速を超えることによりチョーク現象を発生させることで均一なガス流速になるので好ましい。母ガス流量と圧力条件によるが、このような噴出し径としてφ0.3mm〜φ0.5mmを用いてガス噴出孔10aの数量を設定することが例示される。また、庇状のガイド板10cは、そのスリット状のガイド板対の間隔が0.5mmから2mm程度で、ガス助走長となるガイド板10cの幅(図3ではH方向)は、母ガス供給管10の径の1倍から3倍程度が例示される。   For example, the gas flow velocity ejected from each gas ejection hole 10a is preferable because it generates a choke phenomenon by exceeding the speed of sound, resulting in a uniform gas flow velocity. Although depending on the mother gas flow rate and pressure conditions, it is exemplified that the number of gas ejection holes 10a is set using φ0.3 mm to φ0.5 mm as the ejection diameter. In addition, the saddle-shaped guide plate 10c has a gap between the slit-shaped guide plate pairs of about 0.5 mm to 2 mm, and the width (in the H direction in FIG. 3) of the guide plate 10c serving as the gas running length is the mother gas supply. The diameter is about 1 to 3 times the diameter of the tube 10.

熱吸収温調ユニット12は、真空排気の均一化が可能なマニホールド12aと、熱吸収が可能な温調器12bとを一体化させた構造であり、排気側リッジ電極21aの外面側(上部)に密着して設置され、リッジ電極21aの温度を制御することで、プラズマ処理が施される基板Sの板厚方向を通過する熱流束を制御するものであり、基板Sの反り変形が抑制できる。   The heat absorption temperature control unit 12 has a structure in which a manifold 12a capable of uniforming vacuum exhaust and a temperature controller 12b capable of heat absorption are integrated, and the outer surface side (upper part) of the exhaust side ridge electrode 21a. By controlling the temperature of the ridge electrode 21a, the heat flux passing through the thickness direction of the substrate S to be subjected to plasma processing is controlled, and warpage deformation of the substrate S can be suppressed. .

熱吸収温調ユニット12のマニホールド12aと温調器12bは、アルミ合金の機械加工やダイキャスト製法等によって剛性のある一体構造物として形成され、その平面形状が排気側リッジ電極21aの平面形状と略同一の平面形状を有している。熱吸収温調ユニット12の下面には排気側リッジ電極21aに対向する平坦な平面部12cが形成され、この平面部12cに排気側リッジ電極21aが強く熱的に接触されつつ保持されている。排気側リッジ電極21aは、熱吸収温調ユニット12の平面部に密着して一体となり、排気側リッジ電極21aが変形しないよう固定される。もしくは、排気側リッジ電極21aは平面部12cから離れないように図示しない固定部材によって保持され、その熱膨張時には平面部12cに対して面方向に相対移動可能に保持され、寸法差を吸収可能にされていてもよい。   The manifold 12a and the temperature controller 12b of the heat absorption temperature control unit 12 are formed as a rigid integrated structure by machining an aluminum alloy or die casting, and the planar shape thereof is the same as that of the exhaust-side ridge electrode 21a. They have substantially the same planar shape. A flat flat surface portion 12c facing the exhaust side ridge electrode 21a is formed on the lower surface of the heat absorption temperature control unit 12, and the exhaust side ridge electrode 21a is held in strong and thermal contact with the flat surface portion 12c. The exhaust-side ridge electrode 21a is in close contact with and integrated with the flat portion of the heat absorption temperature control unit 12, and is fixed so that the exhaust-side ridge electrode 21a is not deformed. Alternatively, the exhaust-side ridge electrode 21a is held by a fixing member (not shown) so as not to be separated from the plane portion 12c, and is held so as to be relatively movable in the plane direction with respect to the plane portion 12c at the time of thermal expansion, so that the dimensional difference can be absorbed. May be.

即ち、排気側リッジ電極21aと熱吸収温調ユニット12の熱膨張率が大きく異なる場合には、排気側リッジ電極21aは、基板Sの一端辺側中央に設けた位置決め孔24aと、熱膨張差を吸収するように角部や周辺位置に設けた複数箇所(図示の例では5箇所)のスライド長孔24b〜24fの方向を熱膨張方向に適切に設けることにより、熱膨張した排気側リッジ電極21aは、水平方向にスムーズに変形して凹凸を生じることはなく、高剛性の熱吸収温調ユニット12に密着しながら変形を抑制する。   That is, when the exhaust ridge electrode 21a and the heat absorption temperature adjustment unit 12 have a large difference in thermal expansion coefficient, the exhaust ridge electrode 21a is different from the positioning hole 24a provided at the center of one end side of the substrate S and the thermal expansion difference. Exhaust-side ridge electrode that has been thermally expanded by appropriately providing the direction of the slide long holes 24b to 24f provided at the corners and the peripheral positions so as to absorb the heat in the direction of thermal expansion. 21a is smoothly deformed in the horizontal direction without causing irregularities, and suppresses deformation while being in close contact with the highly rigid heat absorption temperature control unit 12.

また、排気側リッジ電極21aの中央付近に熱吸収温調ユニット12と密着させるよう、±H方向のスライド長穴24gが設けられているとさらに好ましいが、締結材の頭が電極面より内側(プラズマ生成側)へ突出しないよう、締結材の頭が薄く曲面をもつ、もしくはスライド長穴24gは、板厚の略半分に締結材の頭が入る段差部を設けるなどの工夫がされていると好ましい。さらに、スライド長孔24b〜24f,24gは、位置決孔24aから離れた位置にある長孔ほど、熱膨張方向に長孔形状が長くなるよう拡大されると、不要な長穴設置による電極強度低下を防止できるのでさらに好ましい。   Further, it is more preferable that a slide long hole 24g in the ± H direction is provided in the vicinity of the center of the exhaust-side ridge electrode 21a so as to be in close contact with the heat absorption temperature control unit 12, but the head of the fastening material is inside the electrode surface ( When the head of the fastening material has a thin curved surface, or the slide long hole 24g is provided with a stepped portion into which the head of the fastening material enters approximately half of the plate thickness so as not to protrude to the plasma generation side) preferable. Further, when the long slot holes 24b to 24f and 24g are extended so that the long hole shape in the thermal expansion direction becomes longer as the long hole is located farther from the positioning hole 24a, the electrode strength due to unnecessary long hole installation is increased. Since it can prevent a fall, it is more preferable.

図3に示すように、マニホールド12aの内部には水平方向に拡がる広い共通空間12dが形成されている。そして、マニホールド12aの上面中央部に、マニホールド12aのヘッダー部となる排気管12eが立設され、この排気管12eに排気手段9、即ち図示しない真空ポンプ等が接続される。さらに、図7(a),(b)にも示すように、マニホールド12aの下面(平面部12c)には複数の吸引口12fが開口形成されている。これらの吸引口12fは共通空間12dを介して排気管12eに連通する。なお、図7(a)は熱吸収温調ユニット12単体の横断面図であり、図7(b)は熱吸収温調ユニット12に排気側リッジ電極21aが重ねられた状態を示す平面図である。   As shown in FIG. 3, a wide common space 12d extending in the horizontal direction is formed inside the manifold 12a. An exhaust pipe 12e serving as a header part of the manifold 12a is erected at the center of the upper surface of the manifold 12a, and an exhaust means 9, that is, a vacuum pump (not shown) is connected to the exhaust pipe 12e. Further, as shown in FIGS. 7A and 7B, a plurality of suction ports 12f are formed in the lower surface (plane portion 12c) of the manifold 12a. These suction ports 12f communicate with the exhaust pipe 12e through a common space 12d. 7A is a cross-sectional view of the heat absorption temperature control unit 12 alone, and FIG. 7B is a plan view showing a state in which the exhaust-side ridge electrode 21a is superimposed on the heat absorption temperature control unit 12. is there.

熱吸収温調ユニット12の共通空間12dは、吸引口12fと、排気側リッジ電極21aに設けられた多数の通気孔23aを経て放電室2に連通している。さらに、熱吸収温調ユニット12の内部には、温調器12bの主要部となる熱媒(温調媒体)が流通する温調媒体流通路(熱媒流路)12gが配設されている。この温調媒体流通路12gは、図7に示すように、平面視で熱吸収温調ユニット12の一端部の中央付近に設けた熱媒流路入口より導入され、熱吸収温調ユニット12の外周側から内側に延びて各吸引口12fの周囲を取り巻き、再び外周側に出るようにレイアウトされ、その内部には純水やフッ素系オイル等の熱媒が循環する。このため、平面部12bに密着して設けられた排気側リッジ電極21aの温度の均一化が図られる。   The common space 12d of the heat absorption temperature control unit 12 communicates with the discharge chamber 2 through a suction port 12f and a number of vent holes 23a provided in the exhaust ridge electrode 21a. Furthermore, inside the heat absorption temperature control unit 12, a temperature control medium flow path (heat medium flow path) 12g through which a heat medium (temperature control medium) as a main part of the temperature controller 12b flows is disposed. . As shown in FIG. 7, the temperature control medium flow passage 12 g is introduced from a heat medium flow path inlet provided near the center of one end of the heat absorption temperature control unit 12 in a plan view. It is laid out so as to extend inward from the outer peripheral side, surround each suction port 12f, and come out again to the outer peripheral side, and a heat medium such as pure water or fluorinated oil circulates in the interior. For this reason, the temperature of the exhaust-side ridge electrode 21a provided in close contact with the flat portion 12b can be made uniform.

この場合の熱媒は、熱吸収温調ユニット12の温調器12bの外周側から内側へと通過させて熱媒流路出口から流出させることにより、周囲構造との伝熱影響を受け易い外周側から所定温度に制御された熱媒導入し、これを内側へと導くことで全面にわたって排気マニホールド12aの温度を均一化している。この場合、熱媒流路12gは全体をより均一な温度にするために、2系統に分割され、各熱媒流路12gは排気口12fを避けて設けられているが、これに限定されることはない。なお、温調媒体流通路(熱媒流路)12gに供給される熱媒は、図示しない加熱装置および冷却装置を製膜装置1と離れた図示しない熱媒循環流路中に用いることにより、所定の温度に昇温または降温したものである。   In this case, the heat medium is easily affected by heat transfer with the surrounding structure by passing the heat medium from the outer peripheral side of the temperature controller 12b of the heat absorption temperature control unit 12 to the inner side and flowing out from the outlet of the heat medium flow path. A heat medium controlled to a predetermined temperature is introduced from the side, and this is guided inward to make the temperature of the exhaust manifold 12a uniform over the entire surface. In this case, the heat medium flow path 12g is divided into two systems in order to make the whole temperature more uniform, and each heat medium flow path 12g is provided avoiding the exhaust port 12f, but is limited to this. There is nothing. In addition, the heating medium supplied to the temperature control medium flow path (heating medium flow path) 12 g is used by using a heating apparatus and a cooling apparatus (not shown) in a heating medium circulation path (not shown) separated from the film forming apparatus 1. The temperature is raised or lowered to a predetermined temperature.

さらに、熱吸収温調ユニット12は、セルフクリーニング時の反応(Si(膜や粉)+4F→SiF4(ガス)+1439kcal/mol)による発熱を吸収するので、構造物の温度が高温化して構成材料がセルフクリーニング時にF系ラジカルで腐食が加速されないためにも有効である。熱吸収温調ユニット12は、放電室2内のヒートバランスを考慮して所定の温度に制御した熱媒を所定の流量で循環することなどによる熱吸収や加熱を行うことで、排気側リッジ電極21aの温調が可能となっている。従って、熱吸収温調ユニット12は、高周波電源5A,5Bから供給されプラズマで発生するエネルギーを適切に吸収するとともに、リッジ電極21a,21bのプラズマから基板Sを設置する均熱温調器11への通過熱量や、均熱温調器11から基板Sを通過して熱吸収温調ユニット12へ通過する熱量に伴って基板Sの表裏に生じる温度差の発生を低減するので、基板Sが凹や凸に熱変形することの抑制に有効である。   Furthermore, since the heat absorption temperature control unit 12 absorbs heat generated by the reaction (Si (film or powder) + 4F → SiF4 (gas) +1439 kcal / mol) during self-cleaning, the temperature of the structure is increased and the constituent materials are increased. This is also effective because corrosion is not accelerated by F-based radicals during self-cleaning. The heat absorption temperature adjustment unit 12 performs heat absorption or heating by circulating a heat medium controlled at a predetermined temperature in consideration of the heat balance in the discharge chamber 2 at a predetermined flow rate, and thereby the exhaust side ridge electrode Temperature control of 21a is possible. Accordingly, the heat absorption temperature adjustment unit 12 appropriately absorbs energy generated by the plasma supplied from the high frequency power supplies 5A and 5B, and from the plasma of the ridge electrodes 21a and 21b to the soaking temperature controller 11 where the substrate S is installed. Generation of temperature difference between the front and back of the substrate S due to the amount of heat passing through the substrate S and the amount of heat passing through the substrate S from the soaking temperature controller 11 to the heat absorption temperature adjusting unit 12 is reduced. It is effective for suppressing heat deformation in a convex manner.

ところで、図5、図6に示すように、排気側リッジ電極21aに形成された通気孔23aの内径は、基板側リッジ電極21bに形成された通気孔23bの内径よりも大きく設定されている。排気側リッジ電極21aの通気孔23aの内径は、均一な排気ができることと、排気抵抗が大きくならないことを考慮して、例えばφ2〜5mmの範囲に設定される。また、基板側リッジ電極21bの通気孔23bの内径は、φ1〜3mmの範囲に設定され、かつ23aの内径>23bの内径とされている。   As shown in FIGS. 5 and 6, the inner diameter of the vent hole 23a formed in the exhaust side ridge electrode 21a is set larger than the inner diameter of the vent hole 23b formed in the substrate side ridge electrode 21b. The inner diameter of the vent hole 23a of the exhaust side ridge electrode 21a is set in a range of φ2 to 5 mm, for example, considering that uniform exhaust can be performed and the exhaust resistance does not increase. Further, the inner diameter of the vent hole 23b of the substrate side ridge electrode 21b is set in a range of φ1 to 3 mm, and the inner diameter of 23a is larger than the inner diameter of 23b.

そして、排気側リッジ電極21aの貫通孔23aは、均一な排気ができることを考慮し、基板側リッジ電極21bの通気孔23bは、均一な製膜ができることを考慮する。各リッジ電極21a,21bにおける単位面積当たりの通気孔23a,23bの開口率は、各リッジ電極21a,21bの平面の中央部が密でかつ周囲部が粗いピッチとする。このようにすれば、材料ガスの供給が排気側リッジ電極21aの周辺方向から、即ち、非リッジ部導波管22a,22b内の母ガス供給管10aから基板側リッジ電極21bの面中央部に向うように材料ガスの供給が行われるとともに、基板側リッジ電極21bから製膜種の拡散を得る基板Sの面中央部にも製膜種が行き届き、基板Sの面内で均一に製膜種が拡散されるようにするための工夫である。   Then, considering that the through-hole 23a of the exhaust-side ridge electrode 21a can perform uniform exhaust, it is considered that the vent hole 23b of the substrate-side ridge electrode 21b can form a uniform film. The aperture ratio of the vent holes 23a and 23b per unit area in each ridge electrode 21a and 21b is a pitch where the center of the plane of each ridge electrode 21a and 21b is dense and the periphery is rough. In this way, the material gas is supplied from the peripheral direction of the exhaust side ridge electrode 21a, that is, from the mother gas supply pipe 10a in the non-ridge portion waveguides 22a and 22b to the center of the surface of the substrate side ridge electrode 21b. The material gas is supplied so that the film forming species reaches the center of the surface of the substrate S where the film forming species is diffused from the substrate-side ridge electrode 21b, and the film forming species is uniformly distributed within the surface of the substrate S. It is a device to make the spread.

従って、排気側リッジ電極21aから排気手段9により母ガスが真空排気されるにあたり、少なくとも排気側リッジ電極21aにおける貫通孔23a、もしくは基板側リッジ電極21bにおける通気孔23bにおいて、その単位面積当たりの開口率は、排気手段9に対して、母ガス供給管10aに近い位置範囲に比べて、排気手段9に近い位置範囲(母ガス供給管10aから遠い位置範囲)の方が高くなっている。即ち、具体的にはリッジ電極21a,21bの縦横の辺の30%〜50%となる中央付近の範囲では通気孔23a,23bのピッチ間隔が10〜30mm程度と密に設定され、その周囲の範囲ではピッチ間隔が30〜100mm程度と粗く設定される。あるいは、通気孔23a,23bのピッチ間隔を全域に亘って等間隔に設定し、通気孔23a,23bの内径を中央付近の範囲で大きく、その周囲の範囲で小さくすることによって単位面積当たりの開口率を変化させてもよい。少なくとも排気側リッジ電極21aにおける貫通孔23a、もしくは基板側リッジ電極21bにおける通気孔23bにおいて、リッジ電極面内に有効な孔サイズとピッチに分布を設けて、排気コンダクタンスに分布を設けることで、排気抵抗が大きくならずに、母ガスが放電室2内に均等に行き渡り、安定した製膜を行うことができる。   Therefore, when the mother gas is evacuated from the exhaust side ridge electrode 21a by the exhaust means 9, at least the opening per unit area in the through hole 23a in the exhaust side ridge electrode 21a or the vent hole 23b in the substrate side ridge electrode 21b. The rate is higher in the position range close to the exhaust means 9 (position range far from the mother gas supply pipe 10a) than in the position range close to the mother gas supply pipe 10a. Specifically, in the range near the center, which is 30% to 50% of the vertical and horizontal sides of the ridge electrodes 21a and 21b, the pitch interval of the air holes 23a and 23b is set to a high density of about 10 to 30 mm. In the range, the pitch interval is roughly set to about 30 to 100 mm. Alternatively, openings per unit area can be obtained by setting the pitch intervals of the vent holes 23a and 23b to be equal throughout the entire area, and increasing the inner diameters of the vent holes 23a and 23b in the vicinity of the center and decreasing in the surrounding area. The rate may be varied. At least in the through-hole 23a in the exhaust-side ridge electrode 21a or the vent hole 23b in the substrate-side ridge electrode 21b, a distribution is provided in the effective hole size and pitch in the ridge electrode surface, and a distribution in the exhaust conductance is provided. The resistance is not increased, and the mother gas is evenly distributed in the discharge chamber 2 so that stable film formation can be performed.

図7(b)に示すように、熱吸収温調ユニット12の吸引口12fと、上側のリッジ電極21aに設けられた通気孔23aは、必ずしも整合するように形成しなくてもよいが、各吸引口12fに整合する通気孔23aの数がほぼ均等になるように通気孔23aを形成する必要がある。   As shown in FIG. 7B, the suction port 12f of the heat absorption temperature control unit 12 and the vent hole 23a provided in the upper ridge electrode 21a are not necessarily formed so as to be aligned with each other. It is necessary to form the air holes 23a so that the number of the air holes 23a aligned with the suction ports 12f is substantially equal.

先述のように、一対のリッジ電極21a,21bは厚さ0.5mm〜3mmの薄い金属板である。排気側リッジ電極21aは熱吸収温調ユニット12の下面(平面部12c)に密着保持されているため、この排気側リッジ電極21aが撓んだり、反ったりする懸念は少ない。しかし、基板側リッジ電極21bは、その両面が何にも接していないため、そのままでは特に中央部が自重により下方に撓んでしまう。このため、熱吸収温調ユニット12から下方に垂下させた複数の索状吊持部材27により、下側のリッジ電極21bを吊持する構成となっている。吊持部材27の材質は、放電室2内における電界を乱さないように、セラミックス等の誘電体か、金属棒の周囲を誘電体で覆った径の細いものにするのが望ましい。吊持部材27は、リッジ電極21bの周囲および中央部を含む複数の点を保持し、各々の長さを調整できるようになっている。このため、基板側リッジ電極21bが排気側リッジ電極21aに対して平行かつ平坦に支持されている。   As described above, the pair of ridge electrodes 21a and 21b are thin metal plates having a thickness of 0.5 mm to 3 mm. Since the exhaust-side ridge electrode 21a is held in close contact with the lower surface (planar portion 12c) of the heat absorption temperature control unit 12, there is little concern that the exhaust-side ridge electrode 21a bends or warps. However, since both surfaces of the substrate-side ridge electrode 21b are not in contact with each other, the center portion of the substrate-side ridge electrode 21b is bent downward due to its own weight. For this reason, the lower ridge electrode 21b is suspended by a plurality of cord-like suspension members 27 suspended downward from the heat absorption temperature control unit 12. The material of the suspension member 27 is preferably a dielectric material such as ceramics or a thin material having a metal rod covered with a dielectric material so as not to disturb the electric field in the discharge chamber 2. The suspension member 27 holds a plurality of points including the periphery and the center of the ridge electrode 21b, and can adjust the length of each. For this reason, the substrate side ridge electrode 21b is supported in parallel and flat with respect to the exhaust side ridge electrode 21a.

図3に示すように、基板側リッジ電極21bと、均熱温調器11とを下方(−E方向から+E方向へ)から囲む形状の防着板29が設けられている。この防着板29は均熱温調器11の下面から延びる支持柱30に対して軸方向(±E方向)に摺動可能に設けられるとともに、支持柱30の中間部に形成された鍔状のストッパ30a,30b間に介装された防着板押圧部材31との間に弾装されたスプリング3によってリッジ電極21b側に常時付勢されている。なお、支持柱30は、均熱温調器11を支持し基板Sの搬送時などにおいて±E方向へ移動させるとともに、均熱温調器11へ熱媒など循環供給するための配管を内部に設置することが可能である。 As shown in FIG. 3, an adhesion preventing plate 29 having a shape surrounding the substrate side ridge electrode 21 b and the soaking temperature controller 11 from below (from the −E direction to the + E direction) is provided. The deposition preventing plate 29 is provided so as to be slidable in the axial direction (± E direction) with respect to the support column 30 extending from the lower surface of the soaking temperature controller 11, and has a bowl shape formed in the intermediate portion of the support column 30. the stopper 30a, and is always biased in the ridge electrode 21b side by the spring 3 3 that is elastically interposed between the deposition preventing plate pressing member 31 interposed between 30b. The support column 30 supports the soaking temperature controller 11 and moves in the ± E direction when the substrate S is transported, and has a pipe for circulating and supplying a heating medium and the like to the soaking temperature controller 11 inside. It is possible to install.

この防着板29を設けることにより、均熱温調器11の上面11aに載置された基板Sへの製膜時に拡散する製膜ラジカルや粉類が付着や蓄積される場所を限定し、製膜装置1の製膜に関与しない領域への製膜材料の付着が抑制される。防着板29は、スプリング3の付勢力に抗して下方(−E方向へ)スライドして押し下げることで、基板搬送時など必要に応じて均熱温調器11との位置関係を変更ができ、これによって防着板29と下側のリッジ電極21bとの間に間隔が空くので、均熱温調器11の上面11aに載置する基板Sの搬入・搬出を容易にすることができる。 By providing this deposition preventing plate 29, the place where film-forming radicals and powders that diffuse during film-forming on the substrate S placed on the upper surface 11a of the soaking temperature controller 11 are attached or accumulated is limited, The deposition of the film forming material to the region not involved in the film formation of the film forming apparatus 1 is suppressed. Deposition preventing plate 29, by pressing down with the lower (the -E direction) slides against the biasing force of the spring 3 3, changing the positional relationship between the soaking temperature controller 11 as needed, such as during substrate transfer As a result, there is a gap between the deposition preventing plate 29 and the lower ridge electrode 21b, so that the substrate S placed on the upper surface 11a of the soaking temperature controller 11 can be easily carried in and out. it can.

なお、上述した均熱温調器11は、所定温度と所定流量の熱媒の循環により温度を制御された均熱板と基板テーブルとにより構成される従来構造を採用してもよい。また、均熱温調器11を一定の温度に加熱維持し、吸熱が不要な製膜条件で運用する製膜装置には、熱媒循環ではなく電気ヒータを保有した均熱板であってもよく、コスト削減と制御の簡易化が可能となる。   The above-described soaking temperature controller 11 may adopt a conventional structure constituted by a soaking plate and a substrate table whose temperature is controlled by circulation of a heating medium having a predetermined temperature and a predetermined flow rate. In addition, the film forming apparatus that maintains the soaking temperature controller 11 at a constant temperature and operates under film forming conditions that do not require heat absorption may be a soaking plate having an electric heater instead of a heat medium circulation. Well, it is possible to reduce cost and simplify control.

以上のように構成された製膜装置1において、放電室2の内部に設置された基板Sには、以下の手順によりプラズマ製膜処理が施される。   In the film forming apparatus 1 configured as described above, a plasma film forming process is performed on the substrate S installed inside the discharge chamber 2 by the following procedure.

まず、排気手段9により放電室2、変換器3A,3Bの内部から空気が排出される。この時には、放電室2、変換器3A,3B、および防着板29の内部の空気が、一対のリッジ電極21a,21bに穿設された通気孔23a,23bを経て熱吸収温調ユニット12(マニホールド12a)の吸引孔12fに吸引され、さらに共通空間12dと排気管12eを通り、図示しない圧力調整弁と真空ポンプを経て外部に排気される。次に、防着板29が下方(−E方向)に押し下げられて、基板Sが均熱温調器11の上面11aに載置される(図3)。   First, air is discharged from the discharge chamber 2 and the converters 3A and 3B by the exhaust means 9. At this time, the air inside the discharge chamber 2, the converters 3A and 3B, and the deposition preventing plate 29 passes through the vent holes 23a and 23b formed in the pair of ridge electrodes 21a and 21b, and the heat absorption temperature control unit 12 ( The air is sucked into the suction hole 12f of the manifold 12a), passes through the common space 12d and the exhaust pipe 12e, and is exhausted to the outside through a pressure adjusting valve and a vacuum pump (not shown). Next, the deposition preventing plate 29 is pushed down (-E direction), and the substrate S is placed on the upper surface 11a of the soaking temperature controller 11 (FIG. 3).

さらに、高周波電源5A,5Bから、周波数が13.56MHz以上、好ましくは30MHzから400MHzの高周波電力がサーキュレータ7A,7Bおよび整合器6A,6Bおよび同軸ケーブル4A,4Bおよび整合器6A,6Bを経て放電室2のリッジ電極21a,21bに供給されるとともに、母ガス供給手段10からリッジ電極21a,21b間に、例えばSiHガス等の母ガスが供給される。この時、排気手段9の排気量が制御されて、放電室2等の内部、即ちリッジ電極21a,21bの間の圧力が0.1kPaから10kPa程度の真空状態に保たれる。 Further, high-frequency power having a frequency of 13.56 MHz or more, preferably 30 to 400 MHz, is discharged from the high-frequency power supplies 5A and 5B through the circulators 7A and 7B and the matching units 6A and 6B, the coaxial cables 4A and 4B, and the matching units 6A and 6B. While being supplied to the ridge electrodes 21a and 21b of the chamber 2, a mother gas such as SiH 4 gas is supplied from the mother gas supply means 10 to the ridge electrodes 21a and 21b. At this time, the exhaust amount of the exhaust means 9 is controlled, and the pressure inside the discharge chamber 2 or the like, that is, the pressure between the ridge electrodes 21a and 21b is maintained in a vacuum state of about 0.1 kPa to 10 kPa.

高周波電源5A,5Bから供給された高周波電力は、同軸ケーブル4A,4Bと整合器6A,6Bを介して変換器3A,3Bに伝送される。整合器6A,6Bでは高周波電力を伝送する系統におけるインピーダンス等の値が調節される。そして、変換器3A,3Bにおいて高周波電力の伝送モードが同軸伝送モードであるTEMモードから方形導波管の基本伝送モードであるTEモードに変換される。   The high frequency power supplied from the high frequency power supplies 5A and 5B is transmitted to the converters 3A and 3B via the coaxial cables 4A and 4B and the matching units 6A and 6B. The matching units 6A and 6B adjust values such as impedance in a system that transmits high-frequency power. In the converters 3A and 3B, the transmission mode of the high frequency power is converted from the TEM mode that is the coaxial transmission mode to the TE mode that is the basic transmission mode of the rectangular waveguide.

このような状態において、リッジ電極21a,21bの間で母ガスが電離されてプラズマが発生する。このプラズマにより生成された製膜種が拡散により、基板側リッジ電極21bに穿設された通気孔23bを経て基板Sの上に到達して、基板Sに均一な膜、例えばアモルファスシリコン膜や結晶質シリコン膜が形成される。   In such a state, the mother gas is ionized between the ridge electrodes 21a and 21b to generate plasma. The film-forming species generated by this plasma reaches the substrate S through diffusion through the air holes 23b formed in the substrate-side ridge electrode 21b, and is uniform on the substrate S, such as an amorphous silicon film or a crystal. A quality silicon film is formed.

放電室2は、リッジ部(リッジ電極21a,21b)を形成したリッジ導波管であるため、その特性により、リッジ電極21a,21bの間ではH方向の電界強度分布がほぼ均一になる。さらに、高周波電源5Aおよび高周波電源5Bの少なくとも一方から供給される高周波電力の位相を時間的に変調することにより、放電室2に形成される定在波の位置を変化させ、リッジ電極21a,21bにおけるL方向の電界強度の分布が時間平均的に均一化される。リッジ導波管を用いることにより、伝送損出が小さい効果も加わり、H方向とL方向ともに電界強度分布がほぼ均一化された領域を容易に大面積化できる。   Since the discharge chamber 2 is a ridge waveguide in which ridge portions (ridge electrodes 21a and 21b) are formed, the electric field intensity distribution in the H direction is substantially uniform between the ridge electrodes 21a and 21b due to the characteristics thereof. Further, the position of the standing wave formed in the discharge chamber 2 is changed by temporally modulating the phase of the high frequency power supplied from at least one of the high frequency power source 5A and the high frequency power source 5B, and the ridge electrodes 21a and 21b are changed. The distribution of the electric field intensity in the L direction at is uniformed on a time average basis. By using the ridge waveguide, an effect of low transmission loss is added, and the area where the electric field intensity distribution is almost uniform in both the H direction and the L direction can be easily increased.

本実施形態における真空処理装置1では、放電室2における排気側リッジ電極21aの上部に熱吸収温調ユニット12を設置し、この熱吸収温調ユニット12によって排気側リッジ電極21aの温度および基板Sの板厚方向を通過する熱流束を制御するようにしたため、排気側リッジ電極21aと基板Sの熱膨張による変形(反り)を抑制して均一なプラズマ特性を確保し、高品質なプラズマ製膜処理を行うことができる。   In the vacuum processing apparatus 1 according to the present embodiment, the heat absorption temperature adjustment unit 12 is installed above the exhaust side ridge electrode 21a in the discharge chamber 2, and the heat absorption temperature adjustment unit 12 allows the temperature of the exhaust side ridge electrode 21a and the substrate S to be adjusted. Since the heat flux passing through the plate thickness direction is controlled, deformation (warping) due to thermal expansion of the exhaust-side ridge electrode 21a and the substrate S is suppressed to ensure uniform plasma characteristics, and high-quality plasma deposition Processing can be performed.

即ち、熱吸収温調ユニット12は、放電室2内のヒートバランスを考慮して所定の温度に制御した熱媒を所定の流量で循環することなどによる熱吸収や加熱を行い、排気側リッジ電極21aの温調を可能にしている。従って、熱吸収温調ユニット12は、高周波電源5A,5Bから供給されプラズマで発生するエネルギーを適切に吸収するとともに、リッジ電極21a,21bのプラズマから基板Sを設置する均熱温調器11への通過熱量や、均熱温調器11から基板Sを通過して熱吸収温調ユニット12へ通過する熱量に伴って基板Sの表裏に生じる温度差の発生を低減するので、基板Sが凹や凸に熱変形することの抑制に有効である。   That is, the heat absorption temperature adjustment unit 12 performs heat absorption and heating by circulating a heat medium controlled to a predetermined temperature in consideration of the heat balance in the discharge chamber 2 at a predetermined flow rate, and the like, and the exhaust side ridge electrode 21a temperature control is possible. Accordingly, the heat absorption temperature adjustment unit 12 appropriately absorbs energy generated by the plasma supplied from the high frequency power supplies 5A and 5B, and from the plasma of the ridge electrodes 21a and 21b to the soaking temperature controller 11 where the substrate S is installed. Generation of temperature difference between the front and back of the substrate S due to the amount of heat passing through the substrate S and the amount of heat passing through the substrate S from the soaking temperature controller 11 to the heat absorption temperature adjusting unit 12 is reduced. It is effective for suppressing heat deformation in a convex manner.

また、熱吸収温調ユニット12(マニホールド12a)が剛体として形成されており、この熱吸収温調ユニット12の下面に形成された平面部12cに排気側リッジ電極21aが密着するように保持されているため、排気側リッジ電極21aが熱膨張による変形する(反る)ことをさらに確実に防止して均一なプラズマ特性を確保し、高品質なプラズマ製膜処理を行うことができる。   Further, the heat absorption temperature control unit 12 (manifold 12a) is formed as a rigid body, and the exhaust side ridge electrode 21a is held so as to be in close contact with the flat surface portion 12c formed on the lower surface of the heat absorption temperature control unit 12. Therefore, the exhaust-side ridge electrode 21a can be further reliably prevented from being deformed (warped) due to thermal expansion, ensuring uniform plasma characteristics, and performing high-quality plasma deposition.

さらに、基板側リッジ電極21bを、熱吸収温調ユニット12から複数の吊持部材27を介して吊持し、この基板側リッジ電極21bを排気側リッジ電極21aに対して平行かつ平坦に支持したため、剛体として形成された熱吸収温調ユニット12によって基板側リッジ電極21bが平坦に吊持されており、これによって基板側リッジ電極21bの平坦度を高めるとともに、排気側リッジ電極21aに対する平行精度を高め、放電室2における均一なプラズマ特性を確保して高品質なプラズマ製膜処理を行うことができる。   Further, the substrate side ridge electrode 21b is suspended from the heat absorption temperature control unit 12 via a plurality of suspension members 27, and the substrate side ridge electrode 21b is supported in parallel and flat with respect to the exhaust side ridge electrode 21a. The substrate side ridge electrode 21b is suspended flat by the heat absorption temperature control unit 12 formed as a rigid body, thereby improving the flatness of the substrate side ridge electrode 21b and improving the parallel accuracy to the exhaust side ridge electrode 21a. It is possible to perform high-quality plasma film formation processing while ensuring uniform plasma characteristics in the discharge chamber 2.

また、一対のリッジ電極21a,21bを、厚さ0.5mm〜3mmの薄い金属板で形成したため、リッジ電極21a,21bの温度が制御される時に、その通過熱流束により生じる表裏温度が少なく、また素早く均一になる。したがって、リッジ電極21a,21bの反りを防止でき、均一なプラズマ特性を確保して高品質なプラズマ製膜処理を行うことができる。   In addition, since the pair of ridge electrodes 21a and 21b are formed of a thin metal plate having a thickness of 0.5 mm to 3 mm, when the temperature of the ridge electrodes 21a and 21b is controlled, the front and back temperature generated by the passing heat flux is small, It becomes quick and uniform. Therefore, warpage of the ridge electrodes 21a and 21b can be prevented, and uniform plasma characteristics can be ensured and high-quality plasma film forming processing can be performed.

その上、放電室2および変換器3A,3Bの内部の気体を排出させる排気手段9と、基板Sにプラズマ処理を施すのに必要な母ガスを一対のリッジ電極21a,21bの間に供給する母ガス供給手段10とを設けたため、常に材料ガス流量が制御された母ガスを放電室2内に略均一に供給するとともに、プラズマ発生時に発生するSiナノクラスターなど膜質低下要素を排気側リッジ電極21bから排気手段9により素早く外部に排出して、高品質なプラズマ製膜処理を行うことができる。   In addition, the exhaust means 9 for exhausting the gas inside the discharge chamber 2 and the converters 3A and 3B, and the mother gas necessary for performing plasma treatment on the substrate S are supplied between the pair of ridge electrodes 21a and 21b. Since the mother gas supply means 10 is provided, the mother gas whose material gas flow rate is always controlled is supplied to the discharge chamber 2 substantially uniformly, and the film quality deteriorating elements such as Si nanoclusters generated at the time of plasma generation are supplied to the exhaust side ridge electrode. 21b can be quickly discharged to the outside by the exhaust means 9 to perform a high quality plasma film forming process.

さらに、リッジ電極21a,21bに複数の通気孔23a,23bが穿設され、熱吸収温調ユニット12がこれらの通気孔23a,23bを介して放電室2に連通するマニホールド状に形成されるとともに、その内部に温調媒体が流通する温調媒体流通路12gが形成され、排気手段9は熱吸収温調ユニット12のヘッダー部である排気管12eに接続されて、この熱吸収温調ユニット12のマニホールド形状を介して放電室2および変換器3A,3Bの内部の気体を排出するように構成されているため、熱吸収温調ユニット12のマニホールド形状により、リッジ電極21a,21bの広い範囲で放電室2内部の排気ができる。したがって、放電室2内部における母ガスの分布を均一化してプラズマを安定化させ、高品質なプラズマ製膜処理を行うことができる。   Further, a plurality of vent holes 23a and 23b are formed in the ridge electrodes 21a and 21b, and the heat absorption temperature control unit 12 is formed in a manifold shape communicating with the discharge chamber 2 through the vent holes 23a and 23b. A temperature adjusting medium flow passage 12g through which the temperature adjusting medium flows is formed, and the exhaust means 9 is connected to an exhaust pipe 12e which is a header portion of the heat absorption temperature adjusting unit 12, and this heat absorption temperature adjusting unit 12 is connected. Since the gas inside the discharge chamber 2 and the converters 3A and 3B is discharged through the manifold shape of the heat absorption temperature control unit 12, the manifold shape of the heat absorption temperature control unit 12 can be used in a wide range of the ridge electrodes 21a and 21b. The inside of the discharge chamber 2 can be exhausted. Therefore, the distribution of the mother gas in the discharge chamber 2 can be made uniform to stabilize the plasma, and a high quality plasma film forming process can be performed.

また、リッジ電極21a,21bにおける単位面積当たりの通気孔23a,23bの開口率が、排気手段9に対して母ガス供給手段10(母ガス供給管10a)に近い範囲位置に比べて、排気手段9(排気管12e)に近い範囲位置の方が高くされているため、母ガスを放電室2内に均等に行き渡らせて、リッジ電極21a,21bの間で母ガスからプラズマにより生成された製膜種が、拡散により基板側リッジ電極21bの通気孔23bを経て基板Sの上に到達して、基板Sに安定したプラズマ製膜処理を行うことができる。   Further, the evacuation means has an opening ratio of the vent holes 23a and 23b per unit area in the ridge electrodes 21a and 21b as compared with a range position close to the mother gas supply means 10 (mother gas supply pipe 10a) with respect to the evacuation means 9. 9 (exhaust pipe 12e) is higher in the range position so that the mother gas is evenly distributed in the discharge chamber 2 and is produced by plasma from the mother gas between the ridge electrodes 21a and 21b. The film type reaches the upper surface of the substrate S by diffusion through the air holes 23b of the substrate-side ridge electrode 21b, and a stable plasma film forming process can be performed on the substrate S.

さらに、母ガス供給手段10が、放電室2の両端に設けられる非リッジ部導波管22a,22bの内部に収容されて長手方向に延びる母ガス供給管10aと、この母ガス供給管10aから上下のリッジ電極21a,21bの間に母ガスを噴き出させる複数の母ガス噴出孔10bと庇状のガイド板10cを備えてなるため、非リッジ部導波管22a,22bの内部スペースを有効に利用して真空処理装置1のコンパクト化を図りつつ、放電室2の両端にある非リッジ部導波管22a,22bから母ガスを均等に放電室2の内部に行き渡らせてプラズマを均一化し、高品質なプラズマ製膜処理を行うことができる。   Further, the mother gas supply means 10 is accommodated in the non-ridge waveguides 22a and 22b provided at both ends of the discharge chamber 2, and extends in the longitudinal direction, and the mother gas supply pipe 10a Since the plurality of mother gas ejection holes 10b for ejecting the mother gas between the upper and lower ridge electrodes 21a and 21b and the bowl-shaped guide plate 10c are provided, the internal spaces of the non-ridge waveguides 22a and 22b are effectively used. In order to make the vacuum processing apparatus 1 more compact by using it, the mother gas is uniformly distributed from the non-ridge waveguides 22a and 22b at both ends of the discharge chamber 2 to the inside of the discharge chamber 2 to make the plasma uniform. High-quality plasma film forming treatment can be performed.

また、リッジ電極21a,21bを非リッジ部導波管22a,22bの電極保持部に22cにボルト14とナット15で締結するための締結部材挿通孔24a〜24fが、締結部材挿通孔24aを位置決め点として、電極保持部22cに対するリッジ電極21a,21bの熱膨張方向に沿って長孔に形状が拡大されるとともに、ボルト14とナット15の締結力が、リッジ電極21a,21bの熱膨張時に、その伸びを許容できる強度に設定されているため、各リッジ電極21a,21bが熱膨張を起こして面方向に寸法が延びても、電極保持部22cに対するリッジ電極21a,21bの締結部材挿通孔24a〜24fの位置が相対位置を管理しながら相対移動できるため、リッジ電極21a,21bに拘束する応力が加わらず、反り等の変形を起こさなくなり、これによって上下のリッジ電極21a,21bの間を平行に保って均一なプラズマを発生させ、高品質なプラズマ製膜処理を行うことができる。   Further, fastening member insertion holes 24a to 24f for fastening the ridge electrodes 21a and 21b to the electrode holding portions of the non-ridge portion waveguides 22a and 22b with bolts 14 and nuts 15 position the fastening member insertion holes 24a. As a point, the shape of the ridge electrodes 21a and 21b with respect to the electrode holding portion 22c is enlarged in the elongated hole along the direction of thermal expansion, and the fastening force between the bolt 14 and the nut 15 is increased during the thermal expansion of the ridge electrodes 21a and 21b. Since the elongation is set to an allowable strength, the fastening member insertion holes 24a of the ridge electrodes 21a and 21b with respect to the electrode holding portion 22c are formed even when the ridge electrodes 21a and 21b are thermally expanded and have a dimension in the plane direction. Since the position of ˜24f can be moved relative to the relative position while managing the relative position, no stress is applied to the ridge electrodes 21a and 21b. No longer cause shape, whereby the upper and lower ridge electrodes 21a, to generate a uniform plasma maintained in parallel between 21b, it is possible to perform high-quality plasma film forming process.

〔第2実施形態〕
次に、本発明の第2実施形態を図8、図9に基づいて説明する。図8は、本発明の第2実施形態に係る製膜装置41を示す縦断面図であり、図9は製膜装置41の放電室2およびリッジ電極対向間隔調整機構42周りの分解斜視図である。なお、この図8および図9において、図3および図4に示す第1実施形態の製膜装置1と同様な構成の部分には、符号を付さない、または同じ符号を付して説明を省略する。
[Second Embodiment]
Next, a second embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a longitudinal sectional view showing a film forming apparatus 41 according to the second embodiment of the present invention, and FIG. 9 is an exploded perspective view around the discharge chamber 2 and the ridge electrode facing distance adjusting mechanism 42 of the film forming apparatus 41. is there. 8 and 9, the same components as those of the film forming apparatus 1 of the first embodiment shown in FIGS. 3 and 4 are not denoted by the same reference numerals, or the same reference numerals are used for the description. Omitted.

この製膜装置41では、放電室2における一対のリッジ電極21a,21bの間を平行に保った状態で、これら両方のリッジ電極21a,21b間の間隔(リッジ対向間隔d1)を調整可能にするリッジ電極対向間隔調整機構42(リッジ電極対向間隔調整手段)が設けられている。このリッジ電極対向間隔調整機構42は、基板側リッジ電極21bを、上方から複数の吊持部材43により吊持して排気側リッジ電極21aに対し平行に支持し、基板側リッジ電極21bを排気側リッジ電極21aに対し平行に移動させる構成となっている。   In the film forming apparatus 41, the distance between the ridge electrodes 21a and 21b (ridge facing distance d1) can be adjusted in a state where the distance between the pair of ridge electrodes 21a and 21b in the discharge chamber 2 is maintained in parallel. A ridge electrode facing distance adjusting mechanism 42 (ridge electrode facing distance adjusting means) is provided. The ridge electrode facing distance adjusting mechanism 42 suspends the substrate-side ridge electrode 21b from above by a plurality of suspension members 43 and supports the substrate-side ridge electrode 21b in parallel with the exhaust-side ridge electrode 21a. It is configured to move parallel to the ridge electrode 21a.

また、リッジ電極対向間隔調整機構42は、非リッジ部導波管22a,22bのL方向断面形状を変化させることなく導波管特性を維持をすることで、伝送特性を変化しないよう保持しながら、排気側リッジ電極21aに対して基板側リッジ電極21bを平行に保った状態で移動させ、両方のリッジ電極21a,21b間の対向間隔を調整可能にしている。   Further, the ridge electrode facing interval adjusting mechanism 42 maintains the waveguide characteristics without changing the L-direction cross-sectional shape of the non-ridge waveguides 22a and 22b, while maintaining the transmission characteristics so as not to change. The substrate-side ridge electrode 21b is moved in parallel with the exhaust-side ridge electrode 21a so that the facing distance between both ridge electrodes 21a and 21b can be adjusted.

例えば熱吸収温調ユニット12の上部には、枠状に形成された吊持枠材44が設けられており、この吊持枠材44は図示しない上下スライド機構によって上下(±E方向)にスライドするようになっている。そして、この吊持枠材44に、例えば総数8本の吊持部材43の上端部が接続され、これらの吊持部材43は吊持枠材44から下方(−E方向)に延びて、熱吸収温調ユニット12と排気側リッジ電極21aと放電室2の内部空間を貫通して、その下端部が基板側リッジ電極21bの、少なくとも中央部付近を、好ましくは中央付近と周囲部付近を含む8箇所以上に接続さている。吊持部材43の数は、基板側リッジ電極21bが自重に対して平面度が確保できるよう適宜増減させてもよい。吊持部材43は実施形態1における吊持部材27と同様である。   For example, a suspension frame member 44 formed in a frame shape is provided on the upper portion of the heat absorption temperature control unit 12, and this suspension frame member 44 is slid up and down (± E direction) by an unillustrated vertical slide mechanism. It is supposed to be. Then, for example, the upper end portions of a total of eight suspension members 43 are connected to the suspension frame member 44, and these suspension members 43 extend downward (−E direction) from the suspension frame member 44 and are heated. The absorption temperature control unit 12, the exhaust-side ridge electrode 21a, and the inner space of the discharge chamber 2 pass through, and the lower end thereof includes at least the vicinity of the center of the substrate-side ridge electrode 21b, preferably the vicinity of the center and the vicinity of the periphery. Connected to more than 8 locations. The number of the suspension members 43 may be appropriately increased or decreased so that the flatness of the substrate-side ridge electrode 21b can be secured with respect to its own weight. The suspension member 43 is the same as the suspension member 27 in the first embodiment.

吊持部材43の材質は、放電室2内における電界を乱さないように、セラミックス等の誘電体、もしくは金属棒の周囲を誘電体で覆い径が細いものが望ましい。たとえば、吊持部材43はφ0.3〜φ1mmのSUS304線材の表面にアルミナセラミックスの誘電体で覆ったものが利用可能である。こうして、基板側リッジ電極21bが複数の細い吊持部材43で保持されているので、基板側リッジ電極21bが熱膨張で熱伸びをしても、リッジ電極面方向で拘束する応力が生じないため、湾曲や反り等の変形が起こらないので、好ましい。   The material of the suspension member 43 is preferably a dielectric material such as ceramics or a material with a thin diameter covering the periphery of a metal rod so as not to disturb the electric field in the discharge chamber 2. For example, as the suspension member 43, a SUS304 wire having a diameter of 0.3 to 1 mm covered with an alumina ceramic dielectric can be used. In this way, since the substrate-side ridge electrode 21b is held by the plurality of thin suspension members 43, even if the substrate-side ridge electrode 21b is thermally expanded due to thermal expansion, there is no stress restraining in the ridge electrode surface direction. This is preferable because deformation such as bending and warping does not occur.

吊持部材43が熱吸収温調ユニット12を貫通する部分には、熱吸収温調ユニット12の内部の排気手段9に通じるマニホールド形状との気密を保ちつつ、吊持部材43を軸方向にスライド自在に保持するシール支持部材45が設けられていてもよい。また、排気側リッジ電極21aには吊持部材43を貫通させるための貫通孔46(図9参照)が穿設されているが、この貫通孔46の内径は、放電室2内における電界を乱さないように、吊持部材43が無干渉で通れるだけの最小限の大きさにすることが望ましい。また排気側リッジ電極21aに穿設された複数の通気孔23aを用いて、吊持部材43を通してもよい。   In the portion where the suspension member 43 penetrates the heat absorption temperature control unit 12, the suspension member 43 is slid in the axial direction while maintaining airtightness with the manifold shape leading to the exhaust means 9 inside the heat absorption temperature control unit 12. A seal support member 45 that is freely held may be provided. The exhaust ridge electrode 21a is provided with a through hole 46 (see FIG. 9) for allowing the suspension member 43 to pass therethrough. The inner diameter of the through hole 46 disturbs the electric field in the discharge chamber 2. In order to prevent the suspension member 43 from passing, it is desirable that the suspension member 43 has a minimum size that allows the suspension member 43 to pass through without interference. Alternatively, the suspension member 43 may be passed through a plurality of vent holes 23a formed in the exhaust ridge electrode 21a.

一方、基板側リッジ電極21bのH方向の両辺部は、非リッジ部導波管22a,22bの電極保持部22cに締結固定されるが、基板側リッジ電極21bを上下移動可能にするため、図8に示すように、電極保持部22cの位置を非リッジ部導波管22a,22bに対して上下(±E方向)にスライドさせるスライド調整部47が設けられている。このスライド調整部47もリッジ電極対向間隔調整機構42の構成要素である。   On the other hand, both sides in the H direction of the substrate side ridge electrode 21b are fastened and fixed to the electrode holding portions 22c of the non-ridge portion waveguides 22a and 22b. As shown in FIG. 8, there is provided a slide adjusting portion 47 that slides the position of the electrode holding portion 22c up and down (± E direction) with respect to the non-ridge portion waveguides 22a and 22b. The slide adjusting unit 47 is also a component of the ridge electrode facing distance adjusting mechanism 42.

このスライド調整部47は、電極保持部22cを非リッジ部導波管22a,22bとは別体として非リッジ部導波管22a,22bに重ね合わせてE方向にスライド可能にし、締結部材48で締結してその高さを固定するようにしたものである。このため、電極保持部22cの位置をスライドさせても、非リッジ部導波管22a,22bのL方向断面形状を変化させることがなく、導波管特性を維持するので伝送特性は変化しない。締結部材48は頭が非リッジ部導波管22a,22bの内面側へ突出しないよう、締結部材48の頭が薄く曲面をもつものが好ましい。このように、電極保持部22cおよびスライド調整部47および締結部材48もリッジ電極対向間隔調整機構42を構成している。   The slide adjusting unit 47 is configured such that the electrode holding unit 22c is separated from the non-ridge waveguides 22a and 22b and can be slid in the E direction by overlapping the non-ridge waveguides 22a and 22b. It is fastened to fix its height. For this reason, even if the position of the electrode holding portion 22c is slid, the cross-sectional shape in the L direction of the non-ridge portion waveguides 22a and 22b is not changed, and the waveguide characteristics are maintained, so the transmission characteristics do not change. The fastening member 48 preferably has a thin head with a curved surface so that the head does not protrude toward the inner surfaces of the non-ridge waveguides 22a and 22b. Thus, the electrode holding portion 22c, the slide adjusting portion 47, and the fastening member 48 also constitute the ridge electrode facing interval adjusting mechanism 42.

以上のように構成された製膜装置41において、基板側リッジ電極21bの高さを調整してリッジ電極対向間隔を調整する場合には、締結部材48を緩めてリッジ電極21bと電極固定部22cの高さを移動できるようにした後、図示しない上下スライド機構により吊持枠材44を上下に移動させて、リッジ電極21bの高さを変化させ、所定の高さに基板側リッジ電極21bが到達したら締結部材48で締結して固定する。これによりリッジ電極対向間隔が所定の間隔:d1となる。   In the film forming apparatus 41 configured as described above, when the height of the substrate-side ridge electrode 21b is adjusted to adjust the ridge electrode facing distance, the fastening member 48 is loosened and the ridge electrode 21b and the electrode fixing portion 22c. The height of the ridge electrode 21b is changed by moving the suspension frame member 44 up and down by a vertical slide mechanism (not shown) so that the substrate-side ridge electrode 21b has a predetermined height. When it reaches, it is fastened by the fastening member 48 and fixed. As a result, the distance between the ridge electrodes is a predetermined distance d1.

このように、この製膜装置41によれば、リッジ電極支持機構42により、一対のリッジ電極21a,21bの間を平行に保ちながら基板側リッジ電極21bを上下に位置調整してリッジ対向間隔d1を最適値に設定できる。また、下基板側リッジ電極21bが8本の吊持部材43によって水平かつ平面度を維持した状態で吊持されるため、基板側リッジ電極21bの厚みが薄くても、自重による湾曲や反り等の変形が起こらず、これによって基板側リッジ電極21bを薄板化させて熱伝達率を高め、表裏温度差や熱膨張による変形を抑制することができる。さらに、基板側リッジ電極21bの表裏面には細い吊持部材43を除いて構造物がないため、放電室2内でプラズマを発生させ、製膜種を基板Sへと拡散させるのに影響がない。これらのため、放電室2内において均一なプラズマを発生させ、基板Sに高品質なプラズマ製膜処理を行うことができる。   Thus, according to the film forming apparatus 41, the ridge electrode support mechanism 42 adjusts the position of the substrate-side ridge electrode 21b in the vertical direction while keeping the pair of ridge electrodes 21a and 21b parallel to each other, and the ridge facing distance d1. Can be set to the optimum value. In addition, since the lower substrate side ridge electrode 21b is suspended by the eight suspension members 43 in a state where the substrate side ridge electrode 21b is thin, the lower substrate side ridge electrode 21b is curved or warped by its own weight. Thus, the substrate-side ridge electrode 21b can be thinned to increase the heat transfer coefficient, and deformation due to front-back temperature difference and thermal expansion can be suppressed. Further, since there is no structure on the front and back surfaces of the substrate-side ridge electrode 21b except for the thin suspension member 43, plasma is generated in the discharge chamber 2 to affect the diffusion of the film-forming species into the substrate S. Absent. For these reasons, a uniform plasma can be generated in the discharge chamber 2 and a high-quality plasma film forming process can be performed on the substrate S.

〔第3実施形態〕
次に、本発明の第3実施形態を図10、図11に基づいて説明する。図10は、本発明の第3実施形態に係る製膜装置51を示す縦断面図であり、図11は製膜装置51の放電室2およびリッジ電極対向間隔調整機構52周りの分解斜視図である。なお、この図10および図11において、図8および図9に示す第2実施形態の製膜装置41と同様な構成の部分には、同じ符号を付して説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present invention will be described with reference to FIGS. FIG. 10 is a longitudinal sectional view showing a film forming apparatus 51 according to the third embodiment of the present invention. FIG. 11 is an exploded perspective view around the discharge chamber 2 and the ridge electrode facing distance adjusting mechanism 52 of the film forming apparatus 51. is there. 10 and 11, the same reference numerals are given to the same components as those of the film forming apparatus 41 of the second embodiment shown in FIGS. 8 and 9, and the description thereof will be omitted.

この製膜装置51にも、放電室2における一対のリッジ電極21a,21bの間を平行に保った状態で、これら両方のリッジ電極21a,21b間の間隔(リッジ対向間隔d1)を調整可能にするリッジ電極対向間隔調整機構52が設けられている。このリッジ電極対向間隔調整機構52は、基板側リッジ電極21bを下方(−E方向)から支える電極支持部材53を有している。この電極支持部材53は、例えば外枠部53aと、この外枠部53aの内側にて十字状に架設された桟部53bとを有して、平面視で略「田」の字形に形成されており、その上面の平面度が正確に出されている。   Also in this film forming apparatus 51, the distance between the ridge electrodes 21a and 21b (ridge facing distance d1) can be adjusted in a state in which the distance between the pair of ridge electrodes 21a and 21b in the discharge chamber 2 is maintained in parallel. A ridge electrode facing interval adjusting mechanism 52 is provided. The ridge electrode facing distance adjusting mechanism 52 includes an electrode support member 53 that supports the substrate-side ridge electrode 21b from below (−E direction). The electrode support member 53 includes, for example, an outer frame portion 53a and a crosspiece portion 53b that is laid in a cross shape inside the outer frame portion 53a, and is formed in a substantially “rice” shape in plan view. The flatness of the upper surface is accurately obtained.

そして、この電極支持部材53の上面に、基板側リッジ電極21bが載置され、複数のスライドピン54によって電極支持部材53に保持されている。基板側リッジ電極21bにはスライドピン54を挿通させる複数のピン孔55が穿設されており、このピン孔55は、電極支持部材53上における基板側リッジ電極21bの熱膨張を許容するべく長孔状に形成されている。複数のピン孔55は、基板側リッジ電極21bの片側の辺の中央部に設けられたピン孔のみが位置決めピン孔として円孔状に形成され、他のピン孔55は、位置決めピン孔から熱伸方向である放射方向に延びる長孔状に形成されている。このため、リッジ電極21bは電極支持部材53上に相対位置を保ちながら密着するように平面度を維持して保持された状態で熱膨張を起こしても拘束されないので、反ったり、歪んだりすることがない。なお、スライドピン54の頭が電極面内側(プラズマ生成側)へ突出しないよう、スライドピン54の頭が薄く曲面をもつなどの工夫がされていると好ましい。桟部53bは、スライドピン54を固定できる範囲で幅が狭いことが好ましい。   The substrate-side ridge electrode 21 b is placed on the upper surface of the electrode support member 53, and is held on the electrode support member 53 by a plurality of slide pins 54. The substrate-side ridge electrode 21b is formed with a plurality of pin holes 55 through which the slide pins 54 are inserted, and the pin holes 55 are long to allow thermal expansion of the substrate-side ridge electrode 21b on the electrode support member 53. It is formed in a hole shape. In the plurality of pin holes 55, only the pin hole provided in the center of one side of the substrate-side ridge electrode 21b is formed in a circular shape as a positioning pin hole, and the other pin holes 55 are heated from the positioning pin holes. It is formed in the shape of a long hole extending in the radial direction which is the extending direction. For this reason, the ridge electrode 21b is not restrained even if thermal expansion occurs while maintaining the flatness so that the ridge electrode 21b is kept in close contact with the electrode support member 53 while maintaining a relative position, and thus warps or distorts. There is no. In addition, it is preferable that the head of the slide pin 54 is thin and has a curved surface so that the head of the slide pin 54 does not protrude to the inside of the electrode surface (plasma generation side). The crosspiece 53b is preferably narrow in the range in which the slide pin 54 can be fixed.

平面視で略「田」の字形に形成された電極支持部材53により、基板側リッジ電極21bの下面の、周囲部分と中央部分の重量が支持される。このため、基板側リッジ電極21bは、その自重により下方に撓むことが阻止され平面度を維持される。また、基板側リッジ電極21bの上面は全面的に露出しており、下面も、少なくとも基板Sのプラズマ処理(製膜処理)に差し支えない程度に露出している。電極支持部材53の平面形状は必ずしも「田」の字形でなくてもよいが、基板側リッジ電極21bの少なくとも周囲部分と中央部分の重量を支持でき、かつ基板側リッジ電極21bの下面を過剰に覆って放電室2内における電界を乱すことのない形状であり、製膜種が基板側リッジ電極21bに設けられた多数の通気孔23bを通過して基板Sに到達する拡散を妨げることのない形状にする必要がある。   The weight of the peripheral portion and the central portion of the lower surface of the substrate-side ridge electrode 21b is supported by the electrode support member 53 that is formed in a substantially “field” shape in plan view. For this reason, the substrate-side ridge electrode 21b is prevented from being bent downward by its own weight, and the flatness is maintained. Further, the upper surface of the substrate-side ridge electrode 21b is exposed entirely, and the lower surface is also exposed to the extent that at least plasma processing (film formation processing) of the substrate S can be prevented. The planar shape of the electrode support member 53 does not necessarily need to be a square shape, but can support the weight of at least the peripheral portion and the central portion of the substrate-side ridge electrode 21b, and excessively covers the lower surface of the substrate-side ridge electrode 21b. The shape does not disturb the electric field in the discharge chamber 2 and does not hinder the diffusion of the film-forming species through the numerous air holes 23b provided in the substrate-side ridge electrode 21b and reaching the substrate S. It needs to be shaped.

電極支持部材53のH方向の両辺部は、第2実施形態の製膜装置41と同じく、非リッジ部導波管22a,22bに設けられた電極固定部22cに締結固定され、電極固定部22cはスライド調整部47によって±E方向にスライド可能に保持されていて、電極支持部材53と基板側リッジ電極21bは、製膜装置41と同様に上下(±E方向)に位置調整することができる。   Both sides in the H direction of the electrode support member 53 are fastened and fixed to the electrode fixing portions 22c provided in the non-ridge waveguides 22a and 22b, as in the film forming apparatus 41 of the second embodiment, and the electrode fixing portions 22c. Is slidably held in the ± E direction by the slide adjusting unit 47, and the electrode support member 53 and the substrate side ridge electrode 21b can be adjusted in the vertical direction (± E direction) in the same manner as the film forming apparatus 41. .

以上のように構成された製膜装置51によれば、基板側リッジ電極21bが排気側リッジ電極21aに対して平行かつ平坦に支持され、しかも基板側リッジ電極21bの表裏面がプラズマ処理に差し支えない程度に露出しているため、薄い金属板でなる基板側リッジ電極21bが自重により撓むことを防止して平面度を高い精度で保ち、放電室2内において均一なプラズマを発生させ、基板Sに高品質なプラズマ製膜処理を行うことができる。   According to the film forming apparatus 51 configured as described above, the substrate-side ridge electrode 21b is supported flat and parallel to the exhaust-side ridge electrode 21a, and the front and back surfaces of the substrate-side ridge electrode 21b can be used for plasma processing. Therefore, the substrate-side ridge electrode 21b made of a thin metal plate is prevented from being bent by its own weight, the flatness is kept with high accuracy, and uniform plasma is generated in the discharge chamber 2, thereby generating a substrate. A high-quality plasma film forming process can be performed on S.

〔第4実施形態〕
次に、本発明の第4実施形態を図12、図13に基づいて説明する。図12は、本発明の第4実施形態に係る製膜装置61を示す縦断面図であり、図13は製膜装置61の放電室2、リッジ電極対向間隔調整機構62および母ガス供給手段としての母ガス分配部63周りの分解斜視図である。なお、この図12および図13において、図3および図4に示す第1実施形態の製膜装置1と同様な構成の部分には、符号を付さない、または同じ符号を付して説明を省略する。
[Fourth Embodiment]
Next, 4th Embodiment of this invention is described based on FIG. 12, FIG. FIG. 12 is a longitudinal sectional view showing a film forming apparatus 61 according to the fourth embodiment of the present invention. FIG. 13 shows the discharge chamber 2, the ridge electrode facing distance adjusting mechanism 62, and the mother gas supply means of the film forming apparatus 61. FIG. 6 is an exploded perspective view around the mother gas distributor 63 of FIG. In FIGS. 12 and 13, the same components as those of the film forming apparatus 1 of the first embodiment shown in FIGS. 3 and 4 are not denoted by the same reference numerals, or the same reference numerals are used for the description. Omitted.

この製膜装置61では、母ガス分配部63が熱吸収温調ユニット12の内部の共通空間12d内に収容されている。この母ガス分配部63は、共通空間12d内にてリッジ電極21aの面方向に沿って複数本平行に張り巡らされた母ガス供給管63aと、これら各母ガス供給管63aの両端部が集合するヘッダー管63bと、各母ガス供給管63aの下面に穿設された複数の母ガス噴出孔63cと、両ヘッダー管63bにそれぞれ接続される母ガス導入管63dとを備えて構成されている。複数の母ガス供給管63aと一対のヘッダー部63bはラダー状に組み立てられている。母ガス導入管63dは図示しない主配管から分岐して均一に母ガスが供給され、この母ガスが母ガス噴出孔63cから熱吸収温調ユニット12の内部を経て上下のリッジ電極21a,21bの間に噴き出される。   In the film forming apparatus 61, the mother gas distribution unit 63 is accommodated in the common space 12 d inside the heat absorption temperature adjustment unit 12. The mother gas distribution unit 63 includes a plurality of mother gas supply pipes 63a extending in parallel along the surface direction of the ridge electrode 21a in the common space 12d, and both ends of each of the mother gas supply pipes 63a. Header pipe 63b, a plurality of mother gas ejection holes 63c drilled in the lower surface of each mother gas supply pipe 63a, and a mother gas introduction pipe 63d connected to each header pipe 63b. . The plurality of mother gas supply pipes 63a and the pair of header parts 63b are assembled in a ladder shape. The mother gas introduction pipe 63d is branched from a main pipe (not shown) so that the mother gas is uniformly supplied. The mother gas passes through the mother gas injection hole 63c, passes through the heat absorption temperature control unit 12, and is connected to the upper and lower ridge electrodes 21a and 21b. Spouted in between.

母ガス噴出孔63bは放電室2の内部の排気側リッジ電極21aの背面に略均等に配置可能となるので、放電室2の内部に母ガスを均等に行きわたらせることができる。ヘッダー管63bと、これから分岐している各母ガス供給管63aの間にはオリフィスを設置するなど適切な分配処理がなされて、各母ガス供給管63aへ均等に母ガスが分配されることが好ましい。また、複数の母ガス噴出孔63cは、先述の第1実施形態と同様に、噴出すガス流速は音速を超えることにより、チョーク現象を発生させることで均一なガス流速になるので好ましい。母ガス流量と圧力条件によるが、このような噴出し径としてφ0.3mm〜φ0.5mmを用いて母ガス噴出孔63bの数量を設定することが例示される。なお、母ガス分配部63は、複数の母ガス供給管63aとヘッダー管63bとを有するラダー状に限定されるものでなく、同様の機能を有する構造であれば良い。   Since the mother gas ejection holes 63b can be disposed substantially evenly on the back surface of the exhaust-side ridge electrode 21a inside the discharge chamber 2, the mother gas can be evenly distributed inside the discharge chamber 2. Appropriate distribution processing such as installing an orifice is performed between the header pipe 63b and each of the mother gas supply pipes 63a branched from the header pipe 63b so that the mother gas is evenly distributed to each of the mother gas supply pipes 63a. preferable. In addition, the plurality of mother gas ejection holes 63c are preferable because the gas flow velocity to be ejected exceeds the speed of sound and a uniform gas flow velocity is generated by generating a choke phenomenon, as in the first embodiment. Although depending on the mother gas flow rate and the pressure condition, it is exemplified that the number of mother gas ejection holes 63b is set using φ0.3 mm to φ0.5 mm as the ejection diameter. The mother gas distribution unit 63 is not limited to a ladder shape having a plurality of mother gas supply pipes 63a and header pipes 63b, and may have a structure having a similar function.

また、この第4実施形態では、排気手段が放電室2の両端に設けられる非リッジ部導波管22a,22bに接続されている。具体的には、各々の非リッジ部導波管22a,22bの上面に排気管64a,64bが設けられ、ここに図示しない真空ポンプ等の排気手段9が接続されている。この場合、非リッジ部導波管22a,22bは、その供給する高周波周波数と伝送モードから適切なサイズが決定されるので、非リッジ部導波管22a,22bの内部に所定の容量に仕切る導波管区画用のメッシュ65a,65bを設ける。このメッシュ65a,65bは導電性のある金属製であり、ガスの排気を妨げることなく、電位場を区画することが可能である。メッシュ65a、65bより下部方向(−E方向)にある下部分は、適切な伝送用サイズを確保する。また、メッシュ65a,65bより上部方向(+E方向)にある上部分は均一な真空排気に必要な空間としてサイズや形状を自由に選定することができる。メッシュ65a,65bの開口部の大きさは3〜20mm程度が望ましい。   In the fourth embodiment, the exhaust means is connected to the non-ridge waveguides 22 a and 22 b provided at both ends of the discharge chamber 2. Specifically, exhaust pipes 64a and 64b are provided on the top surfaces of the non-ridge portion waveguides 22a and 22b, and an exhaust means 9 such as a vacuum pump (not shown) is connected thereto. In this case, since the appropriate sizes of the non-ridge waveguides 22a and 22b are determined based on the supplied high frequency and transmission mode, the non-ridge waveguides 22a and 22b are guided into a predetermined capacity inside the non-ridge waveguides 22a and 22b. Meshes 65a and 65b for wave tube sections are provided. The meshes 65a and 65b are made of conductive metal, and can partition a potential field without hindering gas exhaust. The lower part in the lower direction (-E direction) than the meshes 65a and 65b ensures an appropriate transmission size. Further, the size and shape of the upper part in the upper direction (+ E direction) from the meshes 65a and 65b can be freely selected as a space necessary for uniform evacuation. The size of the openings of the meshes 65a and 65b is preferably about 3 to 20 mm.

さらに、排気手段9の排気管64は各非リッジ部導波管2a,2bへの接続において、1箇所でもよいが、複数箇所に存在すると更に好ましい。放電室2の両端にある非リッジ部導波管22a,22bの上面には、複数の排気管64a,64bが設けられ、ここに図示しない真空ポンプ等の排気手段9が接続されている。図13では、非リッジ部導波管22a,22bの上面には、L方向の両端付近に各2個の排気管64a,64bが設けられている。この場合、非リッジ部導波管22a,22bに接続した各排気管64a,64bの排気能力を、各排気配管途中に設けたコントロール弁によりバランスを変更することができる。製膜種は基板Sへの拡散によるので、複数の排気管64の排気流のバランスを調整することで、基板S付近の製膜種の±H方向と±L方向のガス拡散を制御して、より均一な製膜処理をすることができる。 Further, in the exhaust pipe 64 of the exhaust means 9 connected to the non-ridge portion waveguide 2 2a, 2 2b, may be in one place, but still preferably present in a plurality of locations. A plurality of exhaust pipes 64a and 64b are provided on the top surfaces of the non-ridge waveguides 22a and 22b at both ends of the discharge chamber 2, and an exhaust means 9 such as a vacuum pump (not shown) is connected thereto. In FIG. 13, two exhaust pipes 64a and 64b are provided on the upper surfaces of the non-ridge portion waveguides 22a and 22b, respectively, near both ends in the L direction. In this case, the balance of the exhaust capacity of the exhaust pipes 64a and 64b connected to the non-ridge waveguides 22a and 22b can be changed by a control valve provided in the middle of each exhaust pipe. Since the film-forming type depends on the diffusion to the substrate S, the gas diffusion in the ± H direction and the ± L direction of the film-forming type near the substrate S is controlled by adjusting the balance of the exhaust flow of the plurality of exhaust pipes 64. More uniform film forming treatment can be performed.

なお、リッジ電極対向間隔調整機構62は、第2実施形態のリッジ電極対向間隔調整機構42と同様であり、基板側リッジ電極21bを吊持する複数の吊持部材43と、これらの吊持部材43を上方から保持する吊持枠材44と、吊持枠材44を上下動させる図示しない上下スライド機構とを備えて構成されている。また、基板側リッジ電極21bを上下移動可能にするためのスライド調整部47の構成も同様である。   The ridge electrode facing distance adjusting mechanism 62 is the same as the ridge electrode facing distance adjusting mechanism 42 of the second embodiment, and includes a plurality of suspension members 43 that suspend the substrate side ridge electrode 21b, and these suspension members. A suspension frame member 44 that holds 43 from above, and a vertical slide mechanism (not shown) that moves the suspension frame member 44 up and down. The configuration of the slide adjusting portion 47 for enabling the substrate side ridge electrode 21b to move up and down is the same.

この製膜装置61では、排気手段9の真空ポンプの作動により、放電室2の内部の気体が、一対のリッジ電極21a,21bの間を通り、非リッジ部導波管2a,2bの内部を抜けて、導波管区画用のメッシュ65a,65bを通過して、排気管64a,64bから排気される。同時に、母ガス供給管63aの母ガス噴出孔63bから母ガスが一対のリッジ電極21a,21bの間に供給される。 In the film forming apparatus 61, the operation of the vacuum pump of the gas exhaust means 9, the gas inside the discharge chamber 2, a pair of ridge electrodes 21a, passes between the 21b, the non-ridge portion waveguide 2 2a, 2 2b The air passes through the inside and passes through the waveguide partition meshes 65a and 65b, and is exhausted from the exhaust pipes 64a and 64b. At the same time, the mother gas is supplied between the pair of ridge electrodes 21a and 21b from the mother gas ejection hole 63b of the mother gas supply pipe 63a.

本構成によれば、放電室2の上部の排気側リッジ電極21aの略全面の広い面積から母ガスが均一に供給されるため、プラズマを均一化することに適する。また、放電室2の両側(±H方向)から排気がなされるため、放電室2の内部で母ガスを澱みにくくし、母ガスの分布を均一化して高品質なプラズマ処理を行うとともに、複数の排気管64a,64bから真空ポンプ等の排気手段に至る排気経路の一部にコントロール弁(絞り機構)を設けて±H方向と±L方向の全面にわたり排気量のバランスを取ることにより、基板Sへの膜厚分布を最適に調整することができる。したがって、大面積な基板Sに適した高品質な製膜処理を施すことができる。   According to this configuration, since the mother gas is uniformly supplied from a large area of the substantially entire surface of the exhaust-side ridge electrode 21a above the discharge chamber 2, it is suitable for making the plasma uniform. In addition, since exhaust is performed from both sides (± H direction) of the discharge chamber 2, the mother gas is less likely to stagnate inside the discharge chamber 2, the distribution of the mother gas is made uniform, and high-quality plasma processing is performed. By providing a control valve (throttle mechanism) in a part of the exhaust path from the exhaust pipes 64a and 64b to the exhaust means such as a vacuum pump to balance the exhaust amount over the entire surfaces in the ± H and ± L directions, The film thickness distribution to S can be adjusted optimally. Therefore, a high-quality film forming process suitable for the large-area substrate S can be performed.

〔第5実施形態〕
次に、本発明の第5実施形態を図14、図15に基づいて説明する。図14は、本発明の第5実施形態に係る製膜装置71を示す縦断面図であり、図15は製膜装置71における母ガス供給手段としての母ガス分配部63の構造例を示す斜視図である。なお、この図14において、図12および図13に示す第4実施形態の製膜装置61と同様な構成の部分には、符号を付さない、または同じ符号を付して説明を省略する。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described with reference to FIGS. FIG. 14 is a longitudinal sectional view showing a film forming apparatus 71 according to a fifth embodiment of the present invention, and FIG. 15 is a perspective view showing an example of the structure of a mother gas distribution unit 63 as mother gas supply means in the film forming apparatus 71. FIG. In FIG. 14, parts having the same configurations as those of the film forming apparatus 61 of the fourth embodiment shown in FIGS. 12 and 13 are not denoted by the same reference numerals, and the description thereof is omitted.

この製膜装置71では、第4実施形態の製膜装置61と同様に、母ガス分配手段63が熱吸収温調ユニット12の内部の、共通空間12d内に収容されている。但し、各母ガス噴出孔63cには、図15(a)に示すように、排気側リッジ電極21aまで母ガスを逆流させずに導通させる母ガス導入ガイド手段がある。母ガス導入ガイド手段は、具体的には、それぞれ熱吸収温調ユニット12の吸引口12fを通って下方に延びるガイドパイプ63eか、図15(b)に示すように、複数の母ガス噴出孔63cをまとめて囲うスリットガイド板63fが設けられている。このため、母ガス噴出孔63cから噴出する母ガスが、真空排気ガスが通過する吸引孔12fや排気側リッジ電極21aの通気孔23aにおいても、拡散しないでリッジ電極21aと21bとの間の空間に入ることができ、均一なプラズマ分布と均一な製膜種の形成が行なわれる。一方、排気手段は、第1〜第3実施形態の製膜装置1,41,51と同様に、熱吸収温調ユニット12の上部に設けられた排気管12eから行われる。   In the film forming apparatus 71, the mother gas distribution means 63 is accommodated in the common space 12 d inside the heat absorption temperature control unit 12, as in the film forming apparatus 61 of the fourth embodiment. However, as shown in FIG. 15A, each mother gas ejection hole 63c has mother gas introduction guide means for conducting the mother gas without backflowing to the exhaust side ridge electrode 21a. Specifically, the mother gas introduction guide means is either a guide pipe 63e extending downward through the suction port 12f of the heat absorption temperature control unit 12, or a plurality of mother gas ejection holes as shown in FIG. A slit guide plate 63f that surrounds 63c is provided. Therefore, the space between the ridge electrodes 21a and 21b is not diffused by the mother gas ejected from the mother gas ejection hole 63c without being diffused in the suction hole 12f through which the vacuum exhaust gas passes or the vent hole 23a of the exhaust ridge electrode 21a. A uniform plasma distribution and uniform film-forming species are formed. On the other hand, the exhaust means is performed from the exhaust pipe 12e provided in the upper part of the heat absorption temperature control unit 12, like the film forming apparatuses 1, 41, 51 of the first to third embodiments.

本構成によれば、プラズマ生成時にリッジ電極21a,21bの間で生成されるSiナノクラスター等の高次シランガス成分を、その流れ方向をそのままUターンさせて素早く製膜雰囲気から排出できるため、SiHラジカル拡散主体とした高性能、高品質製膜を得ることができる。ここで、排気側リッジ電極21aでは、母ガスを各ガス噴出孔63cから略均等に噴出す孔部分と、排気手段9による真空排気を行なう通気孔23aとは、必ずしも同一である必要はない。各孔は、基板Sに対して均一な製膜が行なえるよう各孔ピッチをずらして設けても良い。この場合、各ガス噴出孔63cから噴出した母ガスは、一端に排気側リッジ電極21aより確実に排出された後に、通気孔23aから吸引孔12fを経由し排気口12eより排気手段9による真空排気が行なえるので、基板Sの全面にわたり製膜条件を維持し管理できるので、さらに好ましい。 According to this configuration, since higher-order silane gas components such as Si nanoclusters generated between the ridge electrodes 21a and 21b at the time of plasma generation can be quickly discharged from the film-forming atmosphere by making a U-turn in the flow direction as they are. High-performance and high-quality film formation mainly consisting of three radicals can be obtained. Here, in the exhaust-side ridge electrode 21a, the hole portion for ejecting the mother gas from each gas ejection hole 63c substantially uniformly and the vent hole 23a for performing the vacuum exhaust by the exhaust means 9 are not necessarily the same. The holes may be provided by shifting the hole pitch so that uniform film formation can be performed on the substrate S. In this case, the mother gas ejected from each gas ejection hole 63c is reliably exhausted from the exhaust side ridge electrode 21a to one end, and then evacuated by the exhaust means 9 from the exhaust port 12e through the suction hole 12f through the suction hole 12f. Since the film forming conditions can be maintained and managed over the entire surface of the substrate S, it is more preferable.

なお、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。例えば、上記各実施形態においては、放電室(プロセス室)2が水平に設置された製膜装置1,41,51,61,71に本発明を適用した例について説明したが、プロセス室が鉛直上下方向へ傾斜させて設置する縦型の製膜装置にも本発明を適用することができる。傾斜させて設置する場合は、基板Sは鉛直方向からθ=7°〜12°傾斜させることで、基板自重のsin(θ)成分により基板を安定して支持させるとともに、基板搬送時のゲート弁通過幅や製膜装置の設置床面積を少なく出来るので、好ましい。また、本発明はダブルリッジ導波管状の製膜装置のみには限定されず、シングルリッジ導波管状の製膜装置にも適用することができる。   The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention. For example, in each of the above embodiments, the example in which the present invention is applied to the film forming apparatuses 1, 41, 51, 61, 71 in which the discharge chamber (process chamber) 2 is installed horizontally has been described. The present invention can also be applied to a vertical film forming apparatus that is installed to be inclined in the vertical direction. In the case of installation with inclination, the substrate S is inclined by θ = 7 ° to 12 ° from the vertical direction so that the substrate is stably supported by the sin (θ) component of the substrate's own weight, and the gate valve at the time of substrate transfer The passage width and the installation floor area of the film forming apparatus can be reduced, which is preferable. Further, the present invention is not limited to a double ridge waveguide tubular film forming apparatus, but can be applied to a single ridge waveguide tubular film forming apparatus.

1,41,51,61,71 製膜装置(真空処理装置)
2 放電室
3A,3B 変換器
9 排気手段
10 母ガス供給手段
10a 母ガス供給管
10b 母ガス噴出孔
10c ガイド板
11 均熱温調器
12 熱吸収温調ユニット
12c 平面部
12e 排気管(ヘッダー部)
12g 温調媒体流通路
14 ボルト(熱膨張吸収手段)
15 ナット(熱膨張吸収手段)
21a,21b リッジ電極
22a,22b 非リッジ部導波管
23a,23b 通気孔
24a〜24f 締結部材挿通孔(熱膨張吸収手段)
25a〜25f 締結部材挿通孔(熱膨張吸収手段)
27 吊持部材
31a,31b リッジ部
32a,32b 非リッジ部導波管
42,52,62 リッジ電極対向間隔調整機構(リッジ電極対向間隔調整手段)
63e ガイドパイプ(母ガス導入ガイド手段)
63f スリットガイド板
S 基板
1, 41, 51, 61, 71 Film-forming equipment (vacuum processing equipment)
2 Discharge chambers 3A, 3B Converter 9 Exhaust means 10 Mother gas supply means 10a Mother gas supply pipe 10b Mother gas ejection hole 10c Guide plate 11 Soaking temperature controller 12 Heat absorption temperature controller 12c Plane section 12e Exhaust pipe (header section) )
12g temperature control medium flow path 14 volts (thermal expansion absorption means)
15 Nut (thermal expansion absorption means)
21a, 21b Ridge electrodes 22a, 22b Non-ridge portion waveguides 23a, 23b Vent holes 24a-24f Fastening member insertion holes (thermal expansion absorbing means)
25a-25f Fastening member insertion hole (thermal expansion absorbing means)
27 Suspension member 31a, 31b Ridge part
32a, 32b Non-ridge portion waveguides 42, 52, 62 Ridge electrode facing distance adjusting mechanism (ridge electrode facing distance adjusting means)
63e Guide pipe (mother gas introduction guide means)
63f Slit guide plate S Substrate

Claims (15)

平板状に形成されて互いに平行に対向配置され、その間にプラズマが生成される一方および他方のリッジ電極を有するリッジ導波管からなる放電室と、
前記放電室の両端に隣接して配置され、互いに平行に対向配置された一対のリッジ部を有するリッジ導波管からなり、高周波電源から供給された高周波電力を方形導波管の基本伝送モードに変換して前記放電室に伝送し、前記一方および他方のリッジ電極の間にプラズマを発生させる一対の変換器と、
前記他方のリッジ電極の外面側に間隔を空けて平行に設置されて、プラズマ処理が施される基板がセットされ、該基板の温度を制御する均熱温調器と、
前記一方のリッジ電極の外面側に設置され、該一方のリッジ電極の温度を制御する熱吸収温調ユニットと、
前記放電室および前記変換器の内部の気体を排出させる排気手段と、
前記基板にプラズマ処理を施すのに必要な母ガスを前記一方および他方のリッジ電極の間に供給する母ガス供給手段と、
を有することを特徴とする真空処理装置。
A discharge chamber formed of a ridge waveguide formed in a flat plate shape and disposed opposite to each other in parallel, and having one and the other ridge electrodes between which plasma is generated;
Wherein disposed adjacent to both ends of the discharge chamber, of a non-ridge portion waveguide having a pair of ridge portions which are parallel to face each other, the high frequency power supplied from the high frequency power supply basic transmission of the rectangular waveguide A pair of converters that convert to mode and transmit to the discharge chamber to generate plasma between the one and the other ridge electrodes;
A substrate on which the plasma treatment is performed, set in parallel on the outer surface side of the other ridge electrode, is set, and a soaking temperature controller for controlling the temperature of the substrate;
A heat absorption temperature control unit installed on the outer surface side of the one ridge electrode and controlling the temperature of the one ridge electrode;
Exhaust means for discharging the gas inside the discharge chamber and the converter;
Mother gas supply means for supplying a mother gas necessary for performing plasma treatment to the substrate between the one and the other ridge electrodes;
A vacuum processing apparatus comprising:
前記熱吸収温調ユニットは前記一方のリッジ電極に対向する平面部を有し、該平面部に前記一方のリッジ電極が密着するように保持されていることを特徴とする請求項1に記載の真空処理装置。   The said heat absorption temperature control unit has a plane part which opposes said one ridge electrode, and is hold | maintained so that said one ridge electrode may closely_contact | adhere to this plane part. Vacuum processing equipment. 前記一方および他方のリッジ電極は厚さ0.5mm以上3mm以下の金属板であることを特徴とする請求項1または2に記載の真空処理装置。   3. The vacuum processing apparatus according to claim 1, wherein the one and the other ridge electrodes are metal plates having a thickness of 0.5 mm or more and 3 mm or less. 前記他方のリッジ電極の重量を分配して前記一方のリッジ電極に対して平行かつ平坦に支持するリッジ電極対向間隔調整手段をさらに有することを特徴とする請求項1〜3のいずれかに記載の真空処理装置。   The ridge electrode facing interval adjusting means for distributing the weight of the other ridge electrode and supporting the ridge electrode parallel and flat with respect to the one ridge electrode is further provided. Vacuum processing equipment. 前記リッジ電極対向間隔調整手段は、前記他方のリッジ電極を上方から複数の吊持部材を介して吊持するように構成されていることを特徴とする請求項4に記載の真空処理装置。   The vacuum processing apparatus according to claim 4, wherein the ridge electrode facing distance adjusting unit is configured to suspend the other ridge electrode from above through a plurality of suspension members. 前記リッジ電極対向間隔調整手段は、前記放電室の非リッジ部導波管の断面形状を変化させることなく、前記一方のリッジ電極と他方のリッジ電極との間を平行に保った状態で、該両リッジ電極間の間隔を調整可能にすることを特徴とする請求項4または5に記載の真空処理装置。 The ridge electrode facing interval adjusting means is configured to keep the one ridge electrode and the other ridge electrode in parallel without changing the cross-sectional shape of the non-ridge portion waveguide of the discharge chamber. The vacuum processing apparatus according to claim 4 , wherein a distance between both ridge electrodes is adjustable. 前記一方および他方のリッジ電極の熱膨張を吸収する熱膨張吸収手段をさらに有することを特徴とする請求項1〜6のいずれかに記載の真空処理装置。   The vacuum processing apparatus according to claim 1, further comprising thermal expansion absorbing means for absorbing thermal expansion of the one and the other ridge electrodes. 前記熱膨張吸収手段は、前記一方および他方のリッジ電極に設けられて該両リッジ電極を電極保持部に締結保持するための締結部材挿通孔と、この締結部材挿通孔に挿通される締結部材とを有し、前記締結部材挿通孔は、前記電極保持部に対する前記リッジ電極の熱膨張方向に延びる長孔形状とされるとともに、前記締結部材の締結力は、前記リッジ電極が熱膨張した際に該リッジ電極と前記電極保持部との間の相対移動を許容できる強度に設定されていることを特徴とする請求項7に記載の真空処理装置。   The thermal expansion absorbing means is provided on the one and the other ridge electrodes, a fastening member insertion hole for fastening and holding the ridge electrodes to the electrode holding portion, and a fastening member inserted through the fastening member insertion hole, The fastening member insertion hole has a long hole shape extending in the direction of thermal expansion of the ridge electrode with respect to the electrode holding portion, and the fastening force of the fastening member is determined when the ridge electrode is thermally expanded. The vacuum processing apparatus according to claim 7, wherein the vacuum processing apparatus is set to have a strength that allows relative movement between the ridge electrode and the electrode holding portion. 前記一方および他方のリッジ電極には複数の通気孔が穿設され、前記熱吸収温調ユニットは該通気孔を介して前記放電室に連通するマニホールド状に形成されるとともに、前記熱吸収温調ユニットの内部に温調媒体が流通する温調媒体流通路を有し、前記排気手段は前記熱吸収温調ユニットのヘッダー部に接続されて、該熱吸収温調ユニットのマニホールド形状を介して前記放電室および前記変換器の内部の気体を排出させることを特徴とする請求項1〜8のいずれかに記載の真空処理装置。   The one and the other ridge electrodes are provided with a plurality of vent holes, and the heat absorption temperature control unit is formed in a manifold shape communicating with the discharge chamber through the vent holes, and the heat absorption temperature control unit. A temperature adjusting medium flow passage through which the temperature adjusting medium flows inside the unit, and the exhaust means is connected to a header portion of the heat absorbing temperature adjusting unit, and the manifold is formed through the manifold shape of the heat absorbing temperature adjusting unit. The vacuum processing apparatus according to claim 1, wherein the gas inside the discharge chamber and the converter is exhausted. 前記一方および他方のリッジ電極における単位面積当たりの前記通気孔の開口率は、前記排気手段に対して前記母ガス供給手段に近い位置範囲に比べて、前記母ガス供給手段に遠い位置範囲の方が高いことを特徴とする請求項9に記載の真空処理装置。   The opening ratio of the vent per unit area in the one and the other ridge electrodes is greater in the position range farther from the mother gas supply means than in the position range closer to the mother gas supply means than the exhaust means. The vacuum processing apparatus according to claim 9, wherein the vacuum processing apparatus is high. 前記母ガス供給手段は、前記放電室の非リッジ部導波管の内部に収容され、該導波管の内部の長手方向に沿って配設された母ガス供給管と、この母ガス供給管から前記一方および他方のリッジ電極の間に母ガスを噴き出させる複数の母ガス噴出孔とを備えてなることを特徴とする請求項1〜10のいずれかに記載の真空処理装置。   The mother gas supply means is housed in a non-ridge portion waveguide of the discharge chamber, and is disposed along the longitudinal direction of the inside of the waveguide, and the mother gas supply tube The vacuum processing apparatus according to claim 1, further comprising: a plurality of mother gas ejection holes for ejecting a mother gas between the first and the other ridge electrodes. 前記母ガス供給手段は前記熱吸収温調ユニットの内部に収容され、前記母ガス供給手段は、該熱吸収温調ユニットの内部に張り巡らされた母ガス分配部と、この母ガス分配部から前記熱吸収温調ユニットの内部を経て前記一方および他方のリッジ電極の間に母ガスを噴き出させる複数の母ガス噴出孔とを備えてなることを特徴とする請求項1〜11のいずれかに記載の真空処理装置。   The mother gas supply means is housed inside the heat absorption temperature control unit, and the mother gas supply means includes a mother gas distribution unit stretched around the heat absorption temperature control unit, and a mother gas distribution unit. 12. A plurality of mother gas ejection holes for ejecting a mother gas between the one and the other ridge electrodes through the inside of the heat absorption temperature control unit. The vacuum processing apparatus as described in. 前記母ガス噴出孔には、噴出した母ガスを早期に拡散させずに前記一対のリッジ電極の間の空間に供給する母ガス導入ガイド手段が備えられたことを特徴とする請求項12に記載の真空処理装置。   13. The mother gas injection hole is provided with mother gas introduction guide means for supplying the ejected mother gas to the space between the pair of ridge electrodes without diffusing the ejected mother gas at an early stage. Vacuum processing equipment. 前記排気手段は前記放電室の非リッジ部導波管の少なくとも1箇所に接続されたことを特徴とする請求項1〜13のいずれかに記載の真空処理装置。   The vacuum processing apparatus according to claim 1, wherein the exhaust unit is connected to at least one portion of the non-ridge waveguide of the discharge chamber. 請求項1〜14のいずれかに記載の真空処理装置を用いて基板にプラズマ処理を施すことを特徴とするプラズマ処理方法。   The plasma processing method characterized by performing a plasma processing to a board | substrate using the vacuum processing apparatus in any one of Claims 1-14.
JP2010178194A 2010-08-06 2010-08-06 Vacuum processing apparatus and plasma processing method Active JP5721362B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2010178194A JP5721362B2 (en) 2010-08-06 2010-08-06 Vacuum processing apparatus and plasma processing method
US13/703,694 US20130084408A1 (en) 2010-08-06 2011-05-09 Vacuum processing apparatus and plasma processing method
CN201180030847.9A CN102959125B (en) 2010-08-06 2011-05-09 Vacuum processing apparatus and plasma processing method
PCT/JP2011/060625 WO2012017717A1 (en) 2010-08-06 2011-05-09 Vacuum processing apparatus and plasma processing method
EP11814348.6A EP2602356A1 (en) 2010-08-06 2011-05-09 Vacuum processing apparatus and plasma processing method
TW100118133A TWI442458B (en) 2010-08-06 2011-05-24 Vacuum processing device and plasma processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010178194A JP5721362B2 (en) 2010-08-06 2010-08-06 Vacuum processing apparatus and plasma processing method

Publications (3)

Publication Number Publication Date
JP2012036451A JP2012036451A (en) 2012-02-23
JP2012036451A5 JP2012036451A5 (en) 2013-08-29
JP5721362B2 true JP5721362B2 (en) 2015-05-20

Family

ID=45848747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010178194A Active JP5721362B2 (en) 2010-08-06 2010-08-06 Vacuum processing apparatus and plasma processing method

Country Status (1)

Country Link
JP (1) JP5721362B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0235801A (en) * 1988-07-26 1990-02-06 Fujitsu Ltd Small ridge waveguide and coaxial line converter
DE3912569A1 (en) * 1989-04-17 1990-10-18 Siemens Ag METHOD AND DEVICE FOR GENERATING AN ELECTRICAL HIGH FREQUENCY FIELD IN A UTILITY ROOM
JP3249356B2 (en) * 1995-10-26 2002-01-21 三菱重工業株式会社 Plasma chemical vapor deposition equipment
DE19540543A1 (en) * 1995-10-31 1997-05-07 Leybold Ag Apparatus for coating a substrate by means of a chemical vapour deposition process
JP2000261232A (en) * 1999-03-12 2000-09-22 Mitsubishi Electric Corp Ridge hone antenna
JP4758938B2 (en) * 2001-08-30 2011-08-31 東京エレクトロン株式会社 Insulating film forming method and insulating film forming apparatus
JP4082720B2 (en) * 2001-09-10 2008-04-30 キヤノンアネルバ株式会社 Substrate surface treatment equipment
JP2006019593A (en) * 2004-07-02 2006-01-19 Mitsubishi Heavy Ind Ltd Deposition apparatus for amorphous solar cell and its manufacturing method
JP4859472B2 (en) * 2006-02-08 2012-01-25 独立行政法人物質・材料研究機構 Plasma process equipment
JP2010092781A (en) * 2008-10-10 2010-04-22 Adtec Plasma Technology Co Ltd Plasma generating device
JP5199962B2 (en) * 2009-08-05 2013-05-15 三菱重工業株式会社 Vacuum processing equipment

Also Published As

Publication number Publication date
JP2012036451A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
WO2012017717A1 (en) Vacuum processing apparatus and plasma processing method
US9224581B2 (en) Parallel plate reactor for uniform thin film deposition with reduced tool foot-print
JP6240607B2 (en) Gas delivery and distribution for homogeneous processes in a linear large area plasma reactor.
JP5082229B2 (en) Plasma processing equipment
US20040029339A1 (en) Plasma processing apparatus and plasma processing method
US20110011341A1 (en) Shower plate and plasma processing device using the same
JP2006324023A (en) Plasma treatment device
JP4910396B2 (en) Plasma processing equipment
US20110088849A1 (en) Plasma processing apparatus
US10487401B2 (en) Diffuser temperature control
JP4326300B2 (en) Plasma CVD apparatus and electrode for plasma CVD apparatus
JP5622477B2 (en) Vacuum processing equipment
JP2002231637A (en) Plasma processor
JP5721362B2 (en) Vacuum processing apparatus and plasma processing method
JP5517826B2 (en) Vacuum processing apparatus and plasma processing method
JP2007327097A (en) Plasma treatment apparatus
JP2012036448A (en) Vacuum treatment apparatus and plasma treatment method
JP5517827B2 (en) Vacuum processing apparatus and plasma processing method
JP4786723B2 (en) Plasma CVD apparatus and electrode for plasma CVD apparatus
JP5822658B2 (en) Vacuum processing equipment
CN111128785A (en) Heat treatment device
TWI437120B (en) Parallel plate reactor for uniform thin film deposition with reduced tool foot-print
JP4491643B2 (en) Plasma processing equipment
JP2000234173A (en) Plasma processing unit structure
JP5066502B2 (en) Plasma processing equipment

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150224

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150324